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Abstract—As variable renewable energy sources are steadily
incorporated in European power systems, the need for higher
temporal resolution in capacity-expansion models also increases.

Naturally, there exists a trade-off between the amount of
temporal data used to plan power systems for decades ahead and
time resolution needed to represent renewable energy variability
accurately. We propose the use of the Wasserstein distance as a
measure of cluster discrepancy using it to cluster demand, wind
availability, and solar availability data. When compared to the
Euclidean distance and the maximal distance, the hierarchical
clustering performed using the Wasserstein distance leads to
capacity-expansion planning that 1) more accurately estimates
system costs and 2) more efficiently adopts storage resources.
Numerical results indicate an improvement in cost estimation
by up to 5% vis-à-vis the Euclidean distance and a reduction
of storage investment that is equivalent to nearly 100% of the
installed capacity under the benchmark full time resolution.

NOMENCLATURE

A. Indexes and sets

g Generation technology (g ∈ G).
t Time cluster (t ∈ T ).

B. Parameters

Avg,t Availability of generation technology g at time
t ([0,1]).

Dt Demand at time t (MW).
GCG

g Power generation (running) cost of technology
g (ke / MW).

IGg Annualized investment needed to install 1 MW
of technology g (ke / MW).

IS Storage technology annualized investment cost
(ke / MW).

Mg Annual maintenance cost of technology g (ke
/ MW).

RES Minimum renewable energy share (accounted
for over the entire time horizon) ([0,1]).

Slim Percentage limit on load shedding ([0,1]).
Seffic Battery efficiency for charging and discharging.
SCG Load-shedding cost (ke / MW).
τt Length of the time cluster t (hours).

C. Variables

pg,t Dispatch of technology g at time t (MW).
b̄ Battery capacity (MW).
bt State of charge in battery at time t (MW).
p̄g Installed capacity of technology g (MW).
σt Load shedding at time t (MW).

D. Abbreviations

CEP Capacity-expansion planning
ED Euclidean distance
FTR Full time resolution
MD Maximal distance
TA Time aggregation
WD Wasserstein distance

I. INTRODUCTION

A. Motivation and Background

The European power sector is undergoing significant and
enduring changes. Decarbonization was posed as one of the
five European Union headline strategic 2020 targets for smart,
sustainable, and inclusive growth. An outcome of this strategy
is the target of having 32% of the 28 EU Member States’
energy supply provided by renewable sources by 2030 [1],
which implies a deep decarbonization of the power sector
as heat and transportation sectors increasingly electrify. As
a consequence, an increase of almost 100% in installation of
renewable capacity took place between 2004 and 2018 [1],
of which the major part was in the form of wind and solar
photovoltaic power.

Given their dependence on natural phenomena and subse-
quent intermittency, wind and solar sources are referred to
as variable renewable energy sources (VRES). Nowadays, the
main barriers to further development of VRES [2] relate to:
i) the (generation–transmission–distribution) grid capacity for
absorbing intermittent electricity generation; ii) geographical
dispersion of sources; and iii) long distances between high
VRES potential and high demand locations. Hence, the use
of mathematical optimization models that can incorporate
variability underpins sound decision making. Geographically
extensive power systems – such as the one envisioned by the
Energy Union [3] – require similarly expansive and, often
overwhelming, amounts of data to be handled. To circumvent
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the eventual computational intractability of massive datasets
in long-term planning, energy-system models systematically
benefit from methodologies to reduce the amount of input
data [4], such as temporal aggregation (TA). TA generally
consists of grouping periods with similar features (such as
demand levels, wind-generation capacity, and so forth) such
that decisions are based on time clusters, e.g., representative
hours, days, or weeks, that are fewer in number.

Capacity-expansion planning (CEP) involving investment
decisions (including for VRES capacity) is affected by op-
erational efficiency as the grid’s structure limits operational
flexibility. Thus, joint optimization of investment and opera-
tional decisions is desirable. In the presence of high temporal
resolution (e.g., hourly data), TA plays an important role, al-
lowing for the consideration of decisions comprising both CEP
long-term decisions and (short-term) operational decisions.
The need for a high temporal resolution is a consequence of
increased VRES use as operational decisions can change in a
matter of minutes following VRES availability.

Integrated energy systems’ decisions demand large amounts
of data for the implementation of optimization models that
can synchronize decisions between regions and over time.
Therefore, the importance of performing reliable and accurate
TA rests on the fact that the full time resolution (FTR) imple-
mentation often cannot be solved in a tractable computational
time to support decision making. Thus, any improvement to
TA quality can potentially yield benefits for system planning
as it allows decision making to consider chronology without
compromising computational tractability. Hence, long-term
planning that relies on short-term conditions, e.g., VRES avail-
ability, requires a TA that represents spatio-temporal features
of the system without jeopardizing computational tractability.

B. Relevant Literature and Contributions

One of the most developed family of methods to perform
TA is time-series clustering. These methods are classified as
divisive when all elements start belonging to the same cluster
and new clusters are formed by splitting the original one.
Clustering methods can also be classified as agglomerative
when each element is assigned to its own cluster and neigh-
boring clusters are iteratively merged until a certain clustering
level is reached. In each iteration, hierarchical agglomerative
clustering merges the two most similar, or least discrepant,
clusters until a number of clusters initially specified is reached.
This set of clusters is then used as a representation of the
original time series. In order to group clusters, clustering
methods rely on a measure of discrepancy to assess pairwise
differences between clusters [4].

In the context of CEP in power systems, employing hierar-
chical clustering for choosing representative periods is useful
for considering time-correlated decisions that rely on time
continuity, e.g., storage levels over time or unit-commitment
decisions. When performing TA, time clusters can be formed
with time periods that are not necessarily sequential. As
hierarchical clustering merges neighboring clusters, those time
clusters derived from this method can be used in an optimiza-

tion model while maintaining intra-cluster time continuity,
cf. [5], [6]. In [5], hierarchical clustering is used with the
minimal-maximal distance to assess clusters’ discrepancy. The
authors solve a CEP using 30 representative days selected by
their clustering method measuring discrepancy as previously
proposed by [7]. Similarly, [6] uses hierarchically clustered
time periods to assess a CEP also considering storage in-
vestments. It models storage decisions to make possible the
use of both representative days and representative weeks. As
a conclusion, the authors claim that their method obtained
solutions closest to the FTR benchmark considering all of the
tested clustering methods.

A new discrepancy metric can support the definition of
suitable time clusters for CEP optimization, especially when
VRES must be included in the system. The Wasserstein dis-
tance (WD) is proposed in this paper as a discrepancy measure
for the hierarchical clustering method in order to improve the
TA performance. The metric can be straightforwardly calcu-
lated by solving a transportation problem [8]. Traditionally,
WD has been used in a statistical context to compare two sets
of probability distribution functions, continuous or discrete. A
formal definition as well as its convergence proof can be found
in [9]. Among different applications, WD, also referred to
as the Kantorovich–Rubinstein distance, has been used to se-
lect representative scenarios for stochastic programming [10],
within machine-learning applications such as the classification
problem [11] and the imaging problem [12], and to support
distributionally robust optimization [13].

Our aim is to use WD to improve the quality of clustering
of time series typically used for CEP. To assess the benefits
of employing the proposed methods, we develop a case study
aggregating demand levels as well as wind and solar avail-
ability for three distinct single-node systems. By doing so, we
illustrate the suitability of the metric in diverse power systems.
We assess the performance of the clustering method using dif-
ferent discrepancy measures and compare the results in terms
of their correspondence to the decisions made by a benchmark
model using FTR. In particular, we find that for CEP problem
instances involving both generation and storage adoption with
VRES targets, WD outperforms the Euclidean distance (ED)
and maximal distance (MD) discrepancy measures in terms
of estimating both system cost and installed storage capacity
benchmarked to an FTR implementation. Considering previous
TA techniques in long-term power-system models, we provide
a methodological contribution via a novel clustering discrep-
ancy metric that reinforces the chronology of operational deci-
sions. Our innovation is especially pertinent in the context of
VRES penetration in systems with intraday linking constraints
such as storage levels.

II. METHODOLOGY

A. Hierarchical Clustering using the Wasserstein Distance

The main objective of using a hierarchical clustering method
is to form sets of data points that can be represented via
a single value or vector of values. When applied to a time
series, we obtain a reduced time series with k time clusters



from an original series of n time periods. Each cluster is
represented by centroids - defined by the mean of the data
points belonging to that cluster - or medoids - the data point
that is closest to all other data points within the same cluster.
The centroids/medoids are used to derive a representation of
the original time series with dimensionality reduced from n
to k values. The hierarchical clustering algorithm consists of
the following steps:

0) Assume each time period from the FTR is a cluster
comprising a single period. The number of clusters then
(`) equals the number of periods in the time series (n);
1) Compute the representative center of each cluster. In
case centroids are used, this consists of the mean of the
cluster’s data points;
2) Compute the distance between neighboring clusters
(from 1 to `− 1);
3) Find the two neighboring clusters with the minimal
distance between each other and merge them into one
cluster;
3.1) In the case of more than a pair of clusters with
the same distance between each other, choose a criterion
to select the two to be merged (e.g., the lower-ordered
clusters first); and
4) If the desired number of clusters is achieved (` = k),
then stop; otherwise, go back to step 1).

In our numerical examples, the number of clusters, k, is that
to be used by the CEP, which we refer to as the clustering
level. Therefore, we reduce the original n time periods to
k time clusters through an iterative routine to update the
clusters to which they belong. In practice, a vector called
classes with dimension n is created to account for the data
points’ assignment. Both the vector of classes and the clusters’
centroids are the output of this algorithm. The algorithm’s
novelty comes from the use of the WD to measure the
discrepancy between two consecutive clusters. The resulting
routine is formally described in Algorithm 1.

In the proposed algorithm, n represents the length of the
FTR time series, ao with o ∈ {1, . . . ,m}. The element class
is the vector with the classes of each data point in ao and k-
cent stores the centroids of each cluster between 1 and `. dist
stores the distance between clusters i and i+ 1. The auxiliary
matrix, class[nx`], stores the values of the classes for each
possible aggregation between clusters, and class

R
represents

the column of this matrix when cluster R is aggregated with
R+ 1. āRo [j] represents how the previous iteration’s clustered
time series would change in case the Rth cluster were merged
with its immediate neighbor. Then, WDO(·) calculates the WD
between the original series and the representative centroids in
the FTR n when cluster i is merged with cluster i+ 1. WDO
stands for the Wasserstein distance optimization problem being
solved to calculate the WD when comparing two time series,
in this case ao and āRo . The intuition is that WD provides
a good proxy to measure the representation quality of the
clustering to be performed when contrasted with the FTR
series. For example, if aggregating time cluster i with time

Algorithm 1 Hierarchical clustering for m time series
(a1, . . . , am) using Wasserstein distance

Input: k, (a1, . . . , am)
Output: classes, centroids

Initialization :
1: class = (1 : n)
2: k-cento = ao
3: for ` = n to k do
4: for i = 1 to `− 1 do
5: for j = 1 to n, R = 1 to `− 1, o = 1 to m do
6: class

R
:= class

7: for s = R+ 1 to n do
8: class

R
(s) := class(s)− 1

9: end for
10: āRo (j) = mean(ao | class

R
= class

R
(j))

11: end for
Computing clusters’ discrepancy :

12: distWD(i) =
∑m

o=1WDO(āR=i
o , ao)

Electing new classes :
13: min = argminx∈1:`(distWD(x))
14: for j = min+ 1 to n do
15: class(j) = class(j)− 1
16: end for
17: end for

Updating centroids :
18: for i = 1 to `, o = 1 to m do
19: k-cento(i) = mean(ao | class = class(i))
20: end for
21: end for
22: return class, k-cento

cluster i + 1 yields a larger WD to the original series than
when aggregating i∗ with cluster i∗ + 1, then it is preferable
to aggregate i∗ instead of i. By using the WD, we expect to
retain, as much as possible, the time series’ information while
reducing the temporal resolution by grouping i∗ and i∗ + 1.
In lines 10 and 19, we use a conditional mean – mean(·|·)
– to calculate the centroids belonging to a specific cluster,
thereby averaging just the data points belonging to the same
class. The algorithm terminates when the number of clusters,
k, is achieved. The methodology and, therefore, the algorithm
can be trivially generalized to an m number of series - in our
examples, we used 3 series for 3 nodes, but more temporal
features of the system and/or nodes can be used - thus making
it applicable also to larger test systems.

Line 12 of Algorithm 1 computes the discrepancy between
clusters. Other possible cluster discrepancy metrics are ED and
MD. ED is the norm of the difference between corresponding
centroids of each cluster and its following neighbor:

distED(i) =

m∑
o=1

‖k-cento(i)− k-cento(i+ 1)‖

The second metric considers the maximal difference between
two elements belonging to neighboring clusters. It then
considers the two points farthest away in the case a cluster i
is clustered with its immediate neighbor i + 1. The MD is



then defined as:

distMD(i) =

m∑
o=1

max‖aio − ai+1
o ‖

Examples of the employment of hierarchical clustering
using ED and MD can be found, respectively, in [5] and
[6]. In Section IV, we perform the clustering using the three
metrics presented and compare the results obtained from the
CEP model described next.

B. CEP Optimization Model

Consider a CEP model that decides the infrastructure to
be installed to fulfil the demand of a given region. The
geographical scope of the model can vary from an independent
distribution system to a multi-country integrated network. For
the sake of simplicity, we consider a single-node system disre-
garding electricity transmission. We also consider a greenfield
standpoint, meaning that no capacity is initially available.
Storage capacity is also considered with only battery storage
available. Additionally, to meet sustainability requirements of
future power systems, a minimum renewable energy penetra-
tion is imposed on the system, calculated as a percentage of
the total production within the planning horizon. The CEP
problem is formulated as follows:

min
Ξ

∑
g

(
IGg +Mg

)
p̄g +

∑
g,t

GCG
g pg,tτt +

∑
t

SCGσtτt

+ IS b̄ (1)

s.t.
∑
g

pg,t + σt − Seffic (bt − bt−1) = Dt, ∀t ∈ T (2)

pg,t ≤ Avg,tp̄g, ∀g ∈ G, t ∈ T (3)∑
g∗∈GR,t

pg∗,t ≥ RES
∑
g∈G,t

pg,t (4)

σt ≤ SlimDt, ∀t ∈ T (5)
bt ≤ b̄, ∀t ∈ T (6)
b1 = bT (end) (7)
pg,t ≥ 0,∀g ∈ G, t ∈ T ; p̄g ≥ 0,∀g ∈ G;

σt, bt ≥ 0,∀t ∈ T ; b̄ ≥ 0, (8)

where Ξ ≡ {pg,t, p̄g, σt, bt, b̄}. The objective function in (1)
minimizes generation-investment costs (accounting for both
the annualized cost of investment and the maintenance costs)
plus the operational costs of generation, load-shedding costs,
and battery-investment costs. Constraints (2) define the energy
balance of the system. Constraints (3) limit the generation to
the available capacity (while considering that non-renewable
generators always have 100% availability). Constraints (4)
enforce the production of a minimal share of renewable
energy. Constraints (5) limit the load shedding to a certain
percentage of the demand. Constraints (6) limit the amount of
energy stored according to the storage capacity. Constraints (7)

enforce that the storage level at the end of the time horizon
is the same as the initial level. Finally, (8) sets the domain of
the decision variables.

The model presented considers joint investment and oper-
ational decisions in which some features were on purpose
disregarded, e.g., unit commitment, ramping limits, voltage
angles, etc. By using a less-detailed operational description of
the problem, we aim to focus on the effects of temporal re-
duction, i.e., we reduce the operational complexity to focus on
the long-term investment decisions. An underlying operational
assumption is that all generation plants and storage are fully
flexible, viz., they can vary their production freely between 0
and their capacity.

Nonetheless, using a simple CEP optimization model, we
can still assess important features related to the clustering such
as how the total costs are estimated when using a clustered
approach and how capacity-investment decisions in power
systems can differ among clustering approaches.

III. CASE STUDY

We model three different single-node systems in order to
contrast the decisions made when considering different nodal
profiles in terms of demand and wind and solar availability.
We consider three different time series for each node, viz.,
demand, wind availability, and solar availability. Node 1 (N1)
has the highest demand but a relatively low wind and solar
availability on average. Node 2 (N2) has a high wind avail-
ability, whereas Node 3 (N3) has the highest solar incidence
of them all (see Figure 1).

Fig. 1: Demand, wind availability, and solar availability at
nodes N1 (blue), N2 (orange), and N3 (green)

Operational details intrinsic to power system such as which
distribution lines to use or the reserve systems needed to
guarantee the system’s stability are outside the scope of
this study. As the nodes are supposed to share the same
geographical region, the time series are influenced by some
common seasonal weather aspects.



The study encompasses nine time series (three nodes with
three features), comprising a full year with hourly resolution,
i.e., 8,760 hours. Each time series ranges from 0 to 1, as they
are normalized. Every clustering performed aims to replace the
original 8,760 hours FTR by a set of representative hours per
month to reduce the model size. The series are analyzed on a
monthly basis to maintain part of the seasonal effects through-
out the year. For example, if we set the number of clusters k
to 2, we use 2 representative hours per month, implying 24
representative hours for the entire year. Our experiments range
from 1 cluster per month, with 12 representative hours, to 100,
comprising 1,200 representative hours.

The data used for demand, wind availability, and solar avail-
ability were collected from ENTSO-E databases of Denmark,
Germany, and Spain [14]. No public economic incentives or
premiums (such as the ones to promote renewable capacity
expansion) are included in the model. Except from the minimal
renewable generation share - which in the case study is
50%. We assume perfect competition, i.e., producers have
no market power to manipulate prices. Five generation types
can be employed at each node: wind, solar, coal, open-cycle
gas turbines (OCGT), and closed-cycle gas turbines (CCGT).
Battery storage investments are also possible in the system.

IV. RESULTS AND DISCUSSION

Figure 2 shows the relative difference between the FTR total
costs and the costs found when time clusters are considered.
The relative difference is computed by the difference between
total costs found by the clustered optimization and the FTR
total costs divided by the latter. The total cost serves as
an indicator for investors and decision makers about how
efficiently resources are being allocated. Errors in the total
cost, both under- and overestimation, lead to either the increase
of real costs to cover future corrections needed because of
insufficient capacity or to financial waste due to underused
structures. Therefore, as long as all of the constraints are
satisfied, cost estimation reflects the decisions’ accuracy.

As can be observed, MD performs the worst among the three
measures. One reason for that relates to the representation of
the maximum difference between elements within a cluster.
Whereas the average can provide descriptive statistics about
the data points, the difference between the highest and the low-
est levels fails to convey information about statistical moments.
In general, MD clustering leads to a less conservative approach
as the extreme cases, in terms of high demand and low wind
and solar availability, can only be accurately represented when
a large number of clusters is used. These cases are averaged
with more favorable hours, i.e., low demand and high wind
and solar availability, leading to lower capacity investments
than required by the system. Therefore, considering clustering
levels ranging from 1 to 100 clusters per month, the total costs
resulting from MD clustering are considerably underestimated.

At Node 2, both ED and WD lead to similar costs along
the full range of clustering levels. Nevertheless, at Nodes 1
and 3, WD performs consistently better than ED. When the

clustering level reaches 25 clusters per month, the difference
between using ED and WD increases to 5.2%.

One of the reasons for that is a relatively high solar
availability at both Nodes 1 and 3 and how the representative
values of the cluster are set. For example, when morning or
afternoon hours are clustered with night hours, this set of
hours will be represented by the average. In contrast with
night hours in the FTR, this new cluster created can present
solar availability higher than zero. Thus, the optimal clustered
solution can assign solar generation for those hours, whereas
storage or other generation sources will be demanded in the
FTR as the solar availability is concentrated within daylight
hours. We could notice that solar seasonal availability seems
to be less perceived by the clustering procedure under ED than
when WD is used.

Differences between ED and WD as discrepancy metrics
can be seen also when analyzing the storage investment (see
Figure 3). We focus on the effects of using only WD and ED
since employing MD as a discrepancy metric was considerably
less effective in terms of total costs. At all nodes, the clustered
time periods lead to an overestimation of the storage capacity
needed. For Nodes 1 and 3, following their solar availability,
WD leads to more accurate storage investments, mainly for
clustering levels below 25, i.e., around one representative day
per month. Savings at Node 1 when using WD vis-à-vis ED
for hierarchical clustering can be up to 25,000 MW of battery
capacity, which is about 100% of the FTR battery capacity.
These benefits arising from using WD are a consequence of a
better assessment of the storage needed to enable further wind
and solar penetration.

V. CONCLUSIONS

In this study, we propose the Wasserstein distance as a
discrepancy metric for hierarchical clustering. We use the
metric as a discrepancy measure for the clustering process
taking advantage of its chronological properties. We conclude
that in some renewable energy profiles, such as with a high
incidence of insolation, CEP optimization can benefit from the
use of WD to select clusters effectively.

While using clusters screened via WD, the optimized deci-
sion improves the cost estimation in up to 5.2% of the FTR
system’s full cost when compared to the results if clusters
formed using the ED are used. Storage capacity estimation
also benefits from the use of WD by increasing accuracy vis-
à-vis ED up to 100% of the FTR solution. Despite this success,
not all generation technologies could benefit equally from the
use of WD to improve the clustering resolution. Future work
to explore how statistical moments can affect WD’s accuracy
would be warranted in order to reveal conditions in which WD
can capture better the features to support decision making in
CEP optimization.

Different clustering methods can be used to improve de-
cisions such as the storage capacity. As indicated in [15],
Enhanced Representative Periods (ERP) can lead to better
energy storage systems planning. Therefore, the effects of
using WD for performing clustering in such methods and



Fig. 2: Percentage difference between the costs as estimated
by clustered time-series and the FTR cost, per node

the respective outcomes on energy storage planning are also
directions for future work. Additionally, an extension of the
numerical examples to an integrated multi-nodal system can
inform how WD relates to the temporal correlation between
different regions with complementary weather conditions, such
as the effects of having a region with a high solar incidence
connected to another region with high wind availability. Fi-
nally, to provide further evidence of the WD performance as a
discrepancy measure, analysis with alternative measures could
also be undertaken.
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