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Non-alcoholic fatty liver disease (NAFLD) is the hepatic manifestation of

metabolic syndrome, being a common comorbidity of type 2 diabetes and

with important links to inflammation and insulin resistance. NAFLD rep-

resents a spectrum of liver conditions ranging from steatosis in the form of

ectopic lipid storage, to inflammation and fibrosis in nonalcoholic steato-

hepatitis (NASH). Macrophages that populate the liver play important

roles in maintaining liver homeostasis under normal physiology and in pro-

moting inflammation and mediating fibrosis in the progression of NAFLD

toward to NASH. Liver macrophages are a heterogenous group of innate

immune cells, originating from the yolk sac or from circulating monocytes,

that are required to maintain immune tolerance while being exposed portal

and pancreatic blood flow rich in nutrients and hormones. Yet, liver

macrophages retain a limited capacity to raise the alarm in response to

danger signals. We now know that macrophages in the liver play both

inflammatory and noninflammatory roles throughout the progression of

NAFLD. Macrophage responses are mediated first at the level of cell sur-

face receptors that integrate environmental stimuli, signals are transduced

through multiple levels of regulation in the cell, and specific transcriptional
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programmes dictate effector functions. These effector functions play para-

mount roles in determining the course of disease in NAFLD and even

more so in the progression towards NASH. The current review covers

recent reports in the physiological and pathophysiological roles of liver

macrophages in NAFLD. We emphasise the responses of liver macro-

phages to insulin resistance and the transcriptional machinery that dictates

liver macrophage function.

Introduction: Inflammation and
metabolic decline in non-alcoholic
fatty liver disease

Non-alcoholic fatty liver disease (NAFLD) is the most

common form of chronic liver disease with an esti-

mated worldwide prevalence of 25% [1,2]. NAFLD is

the hepatic manifestation of metabolic syndrome and

common comorbidity of type 2 diabetes (T2D), obesity

and hypertension. Indeed, around 55% of patients

with T2D also have NAFLD [3]. Metabolic and

inflammatory disturbances are important parts of the

aetiology of NAFLD and of its comorbidities [4,5].

Non-alcoholic fatty liver disease represents a spec-

trum of conditions ranging from fatty liver, relatively

benign steatosis in the form ectopic lipid storage, to

nonalcoholic steatohepatitis (NASH) where inflamma-

tion and tissue remodelling can impair tissue function

and whole-body metabolism. NASH represents the last

reversible step of NAFLD, before progression to hepa-

tocellular carcinoma (HCC) [6,7] (Fig. 1).

Over recent decades, considerable progress has been

made in understanding the mechanisms of NAFLD

development and progression [5]. An important mile-

stone was published by Day and James in 1998 when

they put forward their ‘two-hit’ hypothesis. In this

hypothesis, steatosis was considered the first hit and

inflammation the second, causing progression through

the spectrum of NAFLD towards NASH [8].

Given that T2D and NAFLD are frequent comor-

bidities, a relationship with insulin sensitivity or secre-

tion was sought in the earliest studies [9]. Initial

clinical work found associations between insulin resis-

tance and NAFLD, even in the absence of frank T2D

(compromised insulin secretion). Glucose disposal and

insulin sensitivity were also found to be progressively

impaired going from healthy subjects, to patients with

steatotic livers and then in patients with NASH

[10,11]. At the cellular level, insulin resistance also

contributes to steatosis through two main mechanisms:

increased hepatic de novo lipogenesis [12] and ectopic

lipid storage in response to systemic dyslipidaemia

[13]. Dyslipidaemia arises early in disease course from

increased lipolysis in adipose tissue [13].

When hepatocytes reach their lipid storage thresh-

old, lipotoxicity and hepatocellular stress lead to apop-

tosis [14,15]. Lipid overload and insulin resistance are

associated with endoplasmic reticulum (ER) stress and

the unfolded protein response (UPR) [15]. Physiologi-

cally, X-box binding protein (XBP)-1 mRNA splicing

responds to ER stress and promotes cell survival by

increasing ER protein folding capacity [16]. However,

XBP-1-mediated cell survival fails in NAFLD, result-

ing in hepatocellular stress, inflammation, further loss

of insulin sensitivity and apoptosis [17,18].

The above step is key in initiating inflammation and

the transition from benign steatosis to NASH. The ini-

tial inflammatory response is largely mediated by tis-

sue-resident macrophages [19]. Upon inflammatory

signalling, tissue-resident macrophages recruit other

immune cells from circulation, including monocytes

that differentiate into macrophages in situ and amplify

inflammatory signalling [20]. When this cycle is sus-

tained under chronic hepatocellular stress, a macro-

phage pro-resolution response is also initiated. The

resolution of inflammation is beneficial in response to

acute inflammation; however, in response to chronic

inflammation in the liver the resolution phase is associ-

ated with excessive deposition of collagen in extracellu-

lar matrix [21]. Fibrosis in later stages of NASH, from

excessive collagen deposition, is the result of an exu-

berant scarring response, which over time significantly

remodels the tissue and impedes liver function [21,22].

Macrophages are central to the progression of

NAFLD, and their proliferation, differentiation and

polarisation are tightly controlled and dependent on

extracellular stimuli as well as intracellular signalling

cascades [23]. While initially acting as sentinel cells,

macrophages are also very important effectors cells

that secrete cytokines and chemokines, influencing cells

in the microenvironment. This review covers the mech-

anisms of how liver macrophages undergo activation

and contribute to the development and progression of

NAFLD. Given the importance of insulin resistance in
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the pathogenesis of disease, we also address the role of

insulin signalling, and insulin action on liver macro-

phages.

Insulin signalling and NAFLD

Insulin is an anabolic hormone secreted by pancreatic

beta cells and is widely recognised for its role in regu-

lating glucose homeostasis, lipid metabolism and cell

growth. The effects of insulin are mediated through

the insulin receptor [24,25] and the insulin-like growth

factor 1 receptor [26]. When insulin binds to its recep-

tor it activates two major downstream pathways: the

phosphoinositide 3-kinase (PI3K) pathway and the

mitogen-activated protein kinase (MAPK) pathway

[26,27]. The PI3K pathway mediates insulin’s meta-

bolic effects including the translocation of glucose

transporter (GLUT)-4 in metabolic tissues such as

muscle, liver and adipose [26], while the MAPK path-

way regulates mitogenesis and growth [27]. Recently,

the insulin receptor has also been shown to directly

interact with transcriptional machinery, an additional

mechanism for effects in normal physiology and dis-

ease [28].

Insulin resistance is the term given to the lack of an

appropriate response to physiological levels of insulin,

typically determined through systemic metabolic mea-

sures such as blood glucose. Insulin resistance is a pre-

cursor syndrome to T2D and its comorbidities [29]. In

humans, patients presenting with NAFLD are often

insulin resistant; however, it is unclear whether insulin

resistance is compensatory rather than causal – the

challenges to addressing this important question have

been recently reviewed [30]. Various murine models of

NAFLD have been proposed (detailed below), and in

order to reproduce human disease, the model applied

will ideally display obesity, insulin resistance and

NAFLD concurrently [31]. One of the early mouse

models investigating insulin’s function, through global

targeted disruption of the insulin receptor (Insr�/�
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Fig. 1. NAFLD progression. Benign

steatosis (fat accumulation in hepatocytes)

can trigger inflammation in the liver (starting

point for NASH). As inflammation worsens,

hepatic stellate cell activation leads to

extracellular matrix deposition and fibrosis.

Eventually, this process facilitates

tumorigenesis and development of

hepatocellular carcinoma. A tumour mass

can also arise directly from NASH without

need for progressive fibrosis. Fibrosis in

NASH is the last reversible step of NAFLD.
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mouse), reported liver steatosis and hepatic insulin

resistance. The model initially exhibits dramatic meta-

bolic insulin resistance, which is followed by age-de-

pendent morphological and functional changes in the

liver [32,33]. This early model suggested that changes

in insulin sensitivity are sufficient to initiate NAFLD

[32,33].

Insulin and macrophages

While macrophages are less associated with the roles

of insulin compared with the majority cells of the

metabolic tissues, macrophages do express insulin

receptors and downstream intracellular signalling path-

ways [34,35]. In vitro studies investigating the direct

effects of insulin on macrophages have shown insulin

to have a profound effect on macrophage activation

including inflammatory or M1-like polarisation

(Table 1) or anti-inflammatory or M2-like polarisation

(Table 2). Discrepancies in reports may be due to a

lack of consistency in the model of macrophage inves-

tigated (different species/tissue type/cell line), concen-

tration or duration of insulin used. The effects of

insulin on macrophages are seemingly wide-ranging

and thus may reflect macrophage plasticity and ability

Table 1. Evidence supporting pro-inflammatory role of insulin in

macrophages. Where insulin resistance is anti-inflammatory.

Model Summary Ref

Cell lines ML-1, THP-1,

PL-21

Insulin enhances LPS-

stimulated IL-1b

[333]

Cell line THP-1 Insulin upregulates TNFa [334]

Mouse myeloid/

macrophage insulin

resistance

Protects against atherosclerosis [37]

Mouse myeloid/

macrophage insulin

resistance

Protects against obesity-

induced inflammation

[335]

Human macrophages Insulin promotes foam cell

formation

[336]

Mouse insulin-resistant

macrophages

Attenuation of atherosclerosis,

promotion of M2-type

phenotype when stimulated

with pro-inflammatory

cytokines

[337]

Mouse macrophages Insulin and IL-1b synergistically

promote inflammation

[338]

Diabetic mouse bone

marrow-derived

macrophages

Insulin increases TNFa and IL-6

secretion in LPS-stimulated

macrophages

[339]

Mouse macrophages Insulin resistance promotes

M2-like phenotype and

reduced LPS responses

[340]

Table 2. Evidence supporting anti-inflammatory role of insulin in

macrophages. Where insulin resistance is pro-inflammatory.

Model Summary Ref

Rat peritoneal

macrophages

Insulin enhances phagocytosis

capacity and production of

H2O2

[341]

Obese human

mononuclear cells

Insulin inhibits NFjB and

stimulates IjB

[342]

Cell line THP-1 Insulin inhibits apoptosis [343]

Cell line THP-1 Insulin inhibits apoptosis and

reduces TNF and IL-1b

[344]

Rat macrophages Insulin suppresses LPS-induced

iNOS and COX-2 expression

and NK-jB activation

[345]

Mouse myeloid/

macrophage insulin

resistance

Increased macrophage

apoptosis and atherosclerotic

plaque necrotic core formation

[36]

Mouse insulin-resistant

macrophages

Increased macrophage

apoptosis

[346]

Cell line THP-1 Insulin pretreatment delays

endotoxin mediated

macrophage activation

[347]

Mouse insulin-resistant

macrophages

Increased LPS IL-1b production [348]

Mouse insulin-resistant

macrophages

Enhanced monocyte adhesion [349]

Mouse insulin-resistant

macrophages

Enhanced vascular wall

adhesion and pro-inflammatory

mediator adhesion

[350]

Mouse insulin-resistant

macrophages

Increased apoptosis [351]

Cell line RAW264.7 and

high fat fed mice

+insulin

Reduced foam cell formation,

down-regulation of pro-

inflammatory cytokines,

decreased serum pro-

inflammatory mediators and

macrophage infiltration

[352]

Mouse insulin-resistant

macrophages

Increased atherosclerosis

through IFNc-regulated

macrophage network

[353]

Mouse macrophages Insulin promotes IL-10

expression and attenuates

LPS-induced Tnf-a, Il-1b and

iNOS expression

[354]

Rat macrophages Insulin advances infiltration and

resolution of macrophages

[355]

Diabetic mouse alveolar

and peritoneal

macrophages

Insulin reduces TNFa, IL-6 and

IL-1b secretion in LPS-

stimulated macrophages

[339]

Mouse macrophages Insulin resistance impairs M2a

activation

[356]

Rat macrophages and

cell line THP-1

Insulin polarises macrophages

to M2 phenotype under high

glucose conditions

[357]

Rat macrophages Insulin restores abnormal

macrophage infiltration,

promotes efferocytosis and

induces M1 to M2 transition

[358]
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to respond to the fluctuating nature of blood insulin

levels.

Insulin and liver macrophages

Surprisingly, while the impact of macrophages on

NAFLD development is appreciated, and the signifi-

cance of insulin resistance on macrophages in car-

diometabolic diseases such as atherosclerosis are

recognised, studies investigating the specific role of

insulin-resistant macrophages on NAFLD have yet to

be reported [36–38]. In obesity-induced insulin resis-

tance in mice, distinct subpopulations of hepatic

macrophages, with Kupffer cells (KC), secrete high

levels of chemokine ligand (CCL)-2/monocyte

chemoattractant protein (MCP)-1. CCL2/MCP-1 acts

to recruit ‘recruited hepatic macrophages’ (RHMs).

RHMs in turn enhance the severity of obesity-induced

inflammation and hepatic insulin resistance [39].

Recently, Morgantini et al. [40] have shown that in

obesity-induced insulin resistance in flies, humans and

mice; liver macrophages produce noninflammatory fac-

tors including insulin-like growth factor-binding pro-

tein (IGFBP)-7 that can bind to the insulin receptor,

directly regulating liver metabolism independently of

inflammation.

Macrophages in liver physiology

There are two major types of hepatic macrophages:

monocyte-derived and tissue-resident macrophages.

KCs, bona fide liver-resident macrophages, are by far

the most abundant in the healthy liver. In mice, KCs

are identified by their expression of the pan-macro-

phage marker F4/80, low expression of CD11b, as well

as by expression of specific markers such as the C-

Type Lectin Domain Family 4 Member F (CLEC4F)

or T-Cell Immunoglobulin and Mucin Domain Con-

taining 4 (TIM4) [41–43]. Their development occurs

during embryogenesis, from yolk-sac precursors that

populate the foetal liver [44–47]. Like other tissue-resi-

dent macrophages, KCs are thought to persist in adult

mice by self-renewal [48]. From surveillance, to recy-

cling iron and promoting immune tolerance, KCs play

important homeostatic roles in normal liver physiology

(Fig. 2A).

KCs are located in liver sinusoids, and they continu-

ously survey blood for metabolites and microbial

products [41]. Mice lacking KCs show impaired sur-

vival following Listeria monocytogenes infection,

emphasising their importance for the depletion of

blood-borne bacteria [49,50]. Similarly, KCs remove

damaged or apoptotic cells [51,52].

KCs also have important roles in iron and choles-

terol metabolism. They are able to detect and phago-

cytose damaged erythrocytes and erythrocyte-derived

vesicles containing haemoglobin [53,54]. KCs also

influence iron reabsorption by regulating hepatocyte

hepcidin expression [55]. With regard to cholesterol,

all macrophages metabolise lipids, as required by

their canonical function of phagocytosing cellular

debris and processing lipid-rich elements such as

membranes. However, relative to other tissue-resident

macrophages, the KC transcriptome is enriched with

genes that uptake, process and export cholesterol to

extracellular high-density lipoprotein acceptors [42].

Indeed, KCs highly express cholesteryl ester transfer

protein (CETP) amongst other genes in lipid process-

ing, which are controlled by well-known transcription

factors that regulate cellular lipids (e.g. PPARs,

LXR) [42,56]. Physiologically, KCs may require this

high lipid processing capacity to cope with dynamic

cholesterol synthesis in the liver or to cope with

exposure to systemic lipids packaged into lipoproteins

in the liver. While KCs are clear drivers of inflamma-

tion in NAFLD, [57] their activation spectrum

remains to be defined (in the context of M1-/M2-like

polarisation), similarly questions remain unanswered

with regards to their capacity to accumulate lipids,

such as adipose or vascular foams cells, and with

regard to their persistence in later stages of NAFLD

[58–61].
Immunologically, KCs promote immune tolerance

by diverse mechanisms, and their capacity to present

antigens and activate T cells is very limited [62]. In

mice, as well as in humans, KCs secrete anti-inflam-

matory cytokines such as interleukin (IL)-10 [63,64].

They also express co-inhibitory molecule Pro-

grammed Death Ligand (PD-L)-1, a potent inhibitor

of T-cell activity [64]. They can also induce regula-

tory T-cell (TRegs) differentiation through secretion

of prostaglandins [62,64]. Monocyte-derived macro-

phages (Mo-MPs) or RHMs can also populate the

liver and differentiate from (C-C motif chemokine

receptor (CCR)-2+ C-X-C 3 chemokine receptor

(CX3CR)-1+ lymphocyte antigen (Ly)-6C+ monocytes.

Mo-MPs account for a minority of macrophages in

the healthy liver [65] but can be rapidly recruited

upon liver injury [66] and can persist in chronic dis-

eases such as NAFLD. Like KCs, they are impor-

tant for erythrocyte clearance and iron recycling

during homeostasis [67]. More recently, a third type

of macrophage was reported in the liver capsule and

these capsular macrophages are derived from bone

marrow and play a role in peritoneal-derived patho-

gen clearance [68].
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Modelling NAFLD physiopathology

To study NAFLD physiopathology and allow the iso-

lation of different cell fractions, including macro-

phages, murine models are indispensable. Modelling

NAFLD in mice comes with its challenges and oppor-

tunities. Resistance of mice to spontaneously develop

NAFLD upon high-fat feeding had initially led scien-

tists to develop various models that recapitulate iso-

lated events in the disease. In this light, a high-fat diet

(HFD) can recapitulate simple steatosis and insulin

resistance, while carbon tetrachloride (CCl4) induces

inflammation and fibrosis without steatosis and a

methionine-and-choline–deficient (MCD) diet results in

fibrosis, inflammation and steatosis without insulin

resistance [31,69,70]. Similarly, surgical ligation of the

bile-duct induces cholestatic injury, inflammation and

fibrosis in mice, without insulin resistance [71]. Genetic

models such as the widely adopted ob/ob or db/db mice

can recapitulate obesity, insulin resistance and to a

slight degree liver inflammation, but do not progress

beyond steatosis [69]. These above models may be
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Fig. 2. Cellular crosstalk during NASH. (A) In homeostatic conditions, Kupffer cells (KCs) inhibit monocyte and macrophage recruitment

through interleukin 10 (IL-10) secretion. They also promote immune tolerance from T cells by inducing regulatory T cells (Treg) and

expressing programmed death ligand 1 (PD-L1). (B) During NASH, apoptotic hepatocytes release danger-associated molecular patterns

(DAMPs) that activate KCs. Activated KCs secrete chemokines recruiting monocytes to the liver. Monocytes differentiate into macrophages

in situ and produce pro-inflammatory cytokines which drives hepatocyte death and reinforces their pro-inflammatory phenotype. Liver

macrophages are also fuelling inflammation by promoting recruitment of other immune cells and TH17 polarisation. Additionally, KCs and

recruited Ly6Chi monocytes can trigger hepatic stellate cells (HSCs) activation through cytokine signalling. HSCs differentiation into

myofibroblasts leads to production of extracellular matrix and fibrosis. On the contrary, Ly6Clow monocytes are able to inhibit this process.

EV, extracellular vesicle; ICAM1, intercellular adhesion molecule 1; MMP, metalloproteinase; Mo-MPs, monocyte-derived macrophages; NK,

natural killer; NKT cells, natural killer T cells; PGE2, prostaglandin E2; TGFb, transforming growth factor b; TNF-a, tumour necrosis factor a;

VCAM1, vascular cell adhesion molecule 1; VAP1, vascular adhesion protein 1.
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considered extreme and can only be interpreted as

models due to their lacking holistic systemic represen-

tation of NAFLD and its comorbidities.

More holistic models exist today that recapitulate a

larger part of the NAFLD spectrum, such as the cho-

line-deficient HFD (CD-HFD), high fructose-HFD

(HF-HFD) or genetic-based models including the

sterol regulatory element-binding protein-1c

(SREBP1c) transgenic mouse, methionine adenosyl

transferase 1A knockout mouse with high transient

expression of urokinase plasminogen activator in hepa-

tocytes (MUP-uPA Tg) and the DIAMOND model

[69]. These models, and others, have been recently

reviewed in-depth by Febbraio et al. [69]. Briefly,

through different mechanisms, these models have been

shown to recapitulate obesity, insulin resistance,

steatosis, inflammation, ER stress and fibrosis in

NASH, including a transition towards HCC [69]. Of

these models, CD-HFD is gaining popularity, where

the lack of choline prevents cholesterol export from

hepatocytes, resulting in lipotoxicity and progression

of NAFLD. Mice on CD-HFD develop obesity, insu-

lin resistance, glucose intolerance and NAFLD. How-

ever, whether the status of other tissues is modified by

the lack of choline has not been investigated. The

MUP-uPA model recapitulates obesity, insulin resis-

tance and glucose intolerance on HFD, where the key

mechanism of hepatocyte ER stress (due to uPA over-

expression) leads to mice consistently developing

NASH, and up to 85% spontaneously progressing to

HCC [69,72].

Choice of model and understanding the mechanisms

by which NAFLD and NASH develop are critical to

correct interpretation of results. In the case of macro-

phage responses, most models recapitulate the inflam-

matory hit, to varying degrees, and thus most are

applicable. However, results must always be inter-

preted within the constraints and contexts of the given

model, especially in the case of toxic models of fibrosis

(CCl4) or in models of global knockout or knockin

(e.g. ob/ob, db/db or SREBP1c Tg).

Macrophages in NAFLD
physiopathology

Macrophages are drivers of NAFLD, and human stud-

ies show positive correlations between macrophage

numbers in the liver and NAFLD severity [73,74]. In

mouse models, early depletion of KCs prevents pro-

gression of the disease, as well as insulin resistance

[75–77]. In macrophage-depleted mice, IL-1b produc-

tion was decreased while levels of the protective factor

peroxisome proliferator-activated protein (PPAR)-a

was increased in hepatocytes [78,79]. Additionally, pre-

venting monocyte entry into the liver through CCR2

blockade improves NASH [74,80] and it is now widely

accepted that monocyte recruitment and in situ differ-

entiation into macrophages fuels NAFLD progression.

In NASH, monocytes replace a fraction of the KC

pool by differentiating into monocyte-derived KCs

(Mo-KCs) [42,43] which express KC markers, but are

functionally different. Mo-KCs express more inflam-

matory genes potentially contributing to disease pro-

gression [43].

Macrophages are at the heart of intense cellular

crosstalk in NAFLD, interacting with many liver cell

types (Fig. 2B). Macrophages recognise hepatocyte-

derived Danger-Associated Molecular Patterns

(DAMPs), they secrete cytokines that may alter hepa-

tocyte physiology and promote NAFLD progression

[79]. Macrophage-derived cytokines also target hepatic

stellate cells (HSCs). Tumour necrosis factor (TNF)-a,
IL-1b and transforming growth factor (TGF)-b can all

induce HSC activation [81,82]. In turn, HSCs up-regu-

late several ligands able to attract macrophages and

regulate their activity (like CCL2) in NASH [83]. Liver

sinusoidal endothelial cells (LSECs) drive anti-inflam-

matory polarisation of macrophages and down-regu-

late cytokine and chemokine secretion through nitric

oxide production [84]. However, LSECs can also pro-

mote monocyte infiltration and contribute to liver

inflammation [85,86]. Finally, macrophages can inter-

act with other immune cells. Cytokine secretion by

activated T cells can then reinforce macrophage pro-

inflammatory phenotype in a feed-forward loop [87].

Additionally, chemokine secretion by activated macro-

phages leads to recruitment of several immune cell

types in the liver [88].

Macrophage subtypes in the liver

The optimisation of single-cell RNA sequencing

(scRNA-seq) in recent years has allowed the more pre-

cise identification of macrophage subpopulations. Sev-

eral macrophage subpopulations have been defined in

NAFLD. One study identified KCs and three different

populations of Mo-MPs. While it is surprising to see

the presence of such Mo-MPs already under a normal

diet, these cells were enriched in mice fed a western

diet (WD). They express less calprotectin, a marker of

inflammation, in WD-fed mice, suggesting that these

subsets may be protective [65]. Another study in amy-

lin diet-induced NASH showed both KCs and Mo-

MPs displayed a pro-inflammatory phenotype com-

pared with controls. Two KC subsets were identified

and segregated based on triggering receptor expressed
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on myeloid cells (TREM)-2 expression. TREM2-low

KCs were predominant in mice fed a normal diet.

TREM2-high KCs were almost exclusively found in

NASH and were therefore called ‘NASH-associated

macrophages’ (NAMs) [83]. These two reports inde-

pendently identified different functionally and pheno-

typically diverse subsets of macrophages in NAFLD.

Interestingly however, subsequent reanalysis demon-

strated that similar macrophage subsets were found in

sequencing data from both studies. This highlights the

divergent views in the field with regard to the identity

of resident macrophages [89]. Specifically addressing

fibrosis, two populations of Mo-MPs have been

described based on Ly6C expression. Ly6Chi cells are

pro-fibrogenic and express cytokines that are able to

activate HSCs such as IL-1b and TGFb whereas

Ly6Clow cells derived from Ly6hi monocytes promote

resolution of fibrosis and express matrix-degrading fac-

tors such as metalloproteinases [90].

Macrophage polarisation in NAFLD

Depending on microenvironmental cues, macrophages

display different functional phenotypes. Typically,

macrophages have been divided into classically acti-

vated M1-like or alternatively activated M2-like

macrophages. Macrophages adopt a M1 phenotype in

response to Toll-like receptor (TLR) stimulation for

example with lipopolysaccharide (LPS), and in

response to type 1 cytokines such as interferon (IFN)-

c. These macrophages produce pro-inflammatory

cytokines such as IL-1b or TNF-a and are potent anti-

gen presenting cells that are able to induce TH1/TH17

cell responses. As a consequence, they are involved in

inflammatory responses and are responsible for patho-

gen killing. On the contrary, M2 macrophages secrete

anti-inflammatory cytokines such as IL-10 or TGF-b
and elicit TH2/TReg responses. They respond to extra-

cellular pathogens, are more tolerogenic and are asso-

ciated with resolution of inflammation and tissue

repair [91].

In a number of tissues, including the liver, M1

macrophages are generally characterised by the expres-

sion of CD11c, while CD206 is the common marker of

M2 macrophages [92]. With increasing mechanistic

studies and novel technologies, this framework has

now developed to offer a more comprehensive repre-

sentation of macrophage heterogeneity and functional

diversity. For example, functionally diverse M2 macro-

phage subtypes have now been identified: M2a, M2b,

M2c and M2d [93]. The emergence of transcriptomics

and scRNA-seq technologies has further refined that

description by emphasising the diversity of tissue

macrophages and the highly spectral nature of macro-

phage polarisation [94,95].

Macrophage polarisation is an important parameter

influencing NAFLD progression. Reports with regard

to polarisation of liver macrophages in metabolic dis-

eases have been conflicting. While high-fat diet (HFD)

has been predominantly associated with M1 polarisa-

tion of liver macrophages [58,96], other groups have

recently demonstrated that liver macrophages regulate

systemic metabolism upon HFD through predomi-

nantly noninflammatory signalling [40]. Impaired M2

polarisation was associated with impaired hepatic lipid

metabolism and steatosis [97]. In addition, M2 macro-

phages were shown to induce M1 macrophage apopto-

sis [96]. Overall, studies suggest that pro-inflammatory

macrophages are mostly detrimental in NAFLD while

anti-inflammatory macrophages are protective, this

remains highly dependent on the stage of NAFLD

progression. Indeed, studies have pointed out detri-

mental roles for M2 macrophages, for example during

long-term HFD [60,98]. Polarisation state has different

effects depending on disease stage, for example M2-

like macrophages may mitigate inflammation in the

early stages of NAFLD but promote matrix deposition

and fibrosis at later stages.

Molecular mechanisms of macrophage
polarisation in NAFLD

Molecular drivers of macrophage inflammatory

status

Macrophage polarisation, and more generally the role

of macrophages in liver inflammation during NAFLD,

is controlled by multiple pathways and transcription

factors. The activity of these transcription factors is

triggered by molecular cues coming from the liver but

also from other organs of the body. While diverse in

nature, in the context of NAFLD, these cues can be

divided into two main categories: DAMPs and cytoki-

nes, both of which act through cell surface receptors

and lead to transcriptional reprogramming in macro-

phages (Fig. 3).

TLRs and TLR ligands in liver macrophage

polarisation

Toll-like receptors are transmembrane proteins

expressed by cells of the innate immune system, nota-

bly macrophages, and that are activated in response to

DAMPs, thirteen TLRs have been identified in mice

[99]. Several TLRs play important roles in macro-

phages during NAFLD progression. TLR4, which
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responds to bacterial LPS, is pivotal in KCs activa-

tion. Steatosis promotes lipid accumulation in macro-

phages, which become more sensitive to LPS-mediated

TLR4 stimulation, promoting inflammation [100]. This

is of particular relevance since microbial dysbiosis and

microbial products coming from the gut are increas-

ingly shown to potentiate NAFLD [101]. Other TLRs

and their ligands play a part in macrophage polarisa-

tion during NAFLD. Dying hepatocytes, for example,

release DAMPs that are recognised by TLRs. His-

tidine-rich glycoprotein (HRG), a protein that is abun-

dantly produced by hepatocytes, induces pro-

inflammatory cytokines in macrophages, even though

the receptor and transduction pathway implicated are

yet to be discovered. As a result, HRG-deficient mice

were partially protected against steatohepatitis induced

by a MCD diet [102]. Hepatocyte-derived mitochon-

drial DNA and extracellular vesicles also trigger a pro-

inflammatory phenotype through respective ligation of

TLR9 and Death receptor 5 (DR5) and therefore also

drive NAFLD progression [103,104]. Finally, free fatty

acids, especially saturated fatty acids, have been asso-

ciated with macrophage-driven inflammation. Satu-

rated fatty acids induce IL-1 and inducible nitric oxide

synthase (iNOS) expression in macrophages in vitro

through TLR4-dependent nuclear factor (NF)-jB
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Fig. 3. Transcriptional control of macrophage polarisation. Toll-like receptor (TLR) stimulation by different ligands leads to activation of

different intracellular pathways. Mitogen-activated protein kinase kinase kinase 7 (TAK1) activation ultimately leads to phosphorylation of I-

jB and c-Jun. Phosphorylation of I-jB enables release of NF-jB and its translocation to the nucleus. c-Jun phosphorylation triggers

formation of the activator protein 1 (AP-1) complex through association with c-Fos. NF-jB and AP-1 can then launch transcription of pro-

inflammatory genes and cytokines. TLR4 and TLR9 ligation additionally triggers activation of interferon regulatory factor (IRF) 3, 5 and/or 7

and subsequent type I interferon (IFN) production. Cytokine signalling also drives M1-like polarisation, notably through activation of TAK1

and Signal Transducer and Activator of Transcription (STAT) 1. M2-like phenotype is mainly driven by cytokine signalling leading to activation

of STAT5/6 and IRF3/4. In vivo, a spectrum of intermediate phenotypes exists and it is likely still unknown signalling pathways are involved

in this differentiation process. HIF-1a, hypoxia-inducible factor 1a; HMGB1, high-mobility group box 1; JNK, c-Jun N-terminal kinase; M-CSF,

macrophage colony-stimulating factor; MyD88, myeloid differentiation primary response 88; SFAs, saturated fatty acids.
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activity while unsaturated fatty acids inhibit this pro-

cess [105]. In another report, palmitate was shown to

induce IL-1 expression after TLR2 stimulation [106].

TLR4-palmitate interaction in infiltrating macrophages

has also been shown to drive NAFLD, indicating that

different macrophage subsets may have specificities in

recognising different sources of free fatty acids [107].

Cytokine signalling and liver macrophage

polarisation

During NAFLD, activated KCs become pro-inflamma-

tory and secrete cytokines such as IL-1b, IL-6 or

TNF-a which promote inflammation and monocyte

recruitment to the liver [108]. Several cytokines play

key roles in NAFLD. Early TNF-a secretion by KCs

drives hepatic steatosis and inflammation [108,109].

Similarly, IL-1b is a potent driver of NAFLD and

produced by KCs in the early phases of the disease

[108,110]. It has an important role in promoting

monocyte recruitment, inflammation and steatosis

[79,110]. In addition, both TNF-a and IL-1b, as well

as TGFb, promote liver fibrosis by activating HSCs

and promoting their survival [81,82]. IL-6 has a more

complex role in the course of NAFLD. It seems to

have a protective effect against liver injury and hepato-

cyte death but may promote NASH progression and

fibrosis at high levels [111,112].

Other cytokines favouring M1 polarisation, while

less studied, also contribute to NAFLD progression

[113]. Interestingly, IFNc deficiency has been associ-

ated with decreased production of pro-inflammatory

cytokines, decreased inflammation and fibrosis in a

mouse model of NASH [114]. Granulocyte–macro-

phage colony-stimulating factor (GM-CSF) promotes

M1 polarisation and subsequent fibrosis in a model of

virus-related fibrosis, suggesting that it could also play

a similar role during NAFLD [115]. However, M2-po-

larising cytokines such as IL-10 also have a role in

NAFLD. IL-10 production was reported in livers from

mice fed a HFD alongside pro-inflammatory cyto-

kines. Its blockade is associated with increased TNF-a
and IL-1b levels and impaired insulin sensitivity [116].

Transcriptional control of liver
macrophage polarisation

Transcriptional control downstream of TLR

ligation

In response to their respective ligands, TLRs can trigger

different intracellular pathways. TLR3 and TLR4 acti-

vate NF-jB, Activator protein (AP)-1 and Interferon

Regulatory Factors (IRF)-3 and -5 while TLRs 7, 8

and 9 activate IRF7 instead of IRF3 (Fig. 3) [99].

In quiescent macrophages, NF-jB activity is hindered

by inhibitor of jB (IjB). Upon TLR stimulation, phos-

phorylation of IjB releases NF-jB, and NF-jB then

translocates to induce transcription of target genes [117].

NF-jB is a key regulator of M1 polarisation [118,119].

It is responsible for production of pro-inflammatory

cytokines such as IL-1, IL-6, IL-12 or TNF-a [118].

During NAFLD, NF-jB seems to have an important

role in triggering inflammation. Indeed, one upstream

regulator of NF-jB, glucocorticoid-induced leucine zip-

per (Gilz), has been shown to be down-regulated in

macrophages during NAFLD. Its overexpression in

macrophages results in decreased pro-inflammatory

cytokine secretion and decreased hepatic inflammation

[120]. Decreased activity of NF-jB due to loss of Pro-

tein tyrosine phosphatase receptor type O truncated iso-

form (PTPROt) activity in liver macrophages is also

associated with decreased inflammation [121].

AP-1 is a complex formed of 2 proteins, c-Jun and

c-Fos. After TLR stimulation, AP-1 is activated

through c-Jun phosphorylation by MAPK, specifically

by p38 and c-Jun N-terminal kinase (JNK). AP-1 and

NF-kB are closely linked and regulate similar tran-

scriptional programmes [122]. JNK has been shown to

promote M1 polarisation of adipose tissue macro-

phages, while pro-inflammatory cytokine production in

response to palmitate in vitro is JNK-dependent

[123,124]. Studies in other macrophages populations

indicate a strongly pro-inflammatory role for AP-1,

yet its role and regulation in liver macrophages

remains to be entirely elucidated. A recent study has

reported that c-Jun/AP-1 plays different roles in hepa-

tocytes and in nonparenchymal liver cells (NPLCs, a

significant proportion of which is macrophages) [125].

Schulien et al report that while expression in hepato-

cytes correlated with transition from steatosis to

NASH, c-Jun expression in NPLCs specifically corre-

lated with fibrosis. In hepatocytes, c-Jun promotes sur-

vival, preventing the regenerative ductal reaction and

fibrosis, whereas in NPLCs c-Jun promotes ductal

regeneration and fibrosis through regulating both

osteopontin and CD44 expression [125]. Whether this

mechanism is mediated wholly or in part by macro-

phages remains to be demonstrated. A recent study of

macrophage-specific p38 deficiency demonstrated that,

as canonically described, p38 maintains its pro-inflam-

matory actions in liver macrophages and this promotes

the progression of NASH [126].

IRF3 has a more complex role in macrophage polar-

isation. BMDM differentiated with Macrophage Col-

ony-Stimulating Factor (M-CSF) display are
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predominantly M2-like and activate IRF3 [127]. Its

overexpression in microglia blunts the production of

IL-1b and TNF-a in response to IL-1b and IFNc,
while boosting IL-10 secretion [128]. However, IRF3

also triggers the expression of pro-inflammatory fac-

tors CCL5 [129] and IFN-b, as well as CXCL9 and

CXCL10 [130]. Studies showed that the Stimulator of

Interferon Genes (STING)-IRF3 cascade is activated

in livers of mice fed a HFD [131]. Upon inactivation

of STING in myeloid cells, inflammation and steatosis

are decreased, suggesting a potential role for this axis

in regulating liver macrophage inflammatory status

[132]. Likewise, IRFs 5 and 7 has been associated with

M1 polarisation in response to LPS [133,134]. Follow-

ing TLR signalling, IRFs 3, 5 and 7 are responsible

for type I IFNs production [99,135]. Type I IFNs are

increasingly regarded as important players in NAFLD.

In particular, they have been shown to induce T-cell

recruitment, secretion of pro-inflammatory cytokines

and subsequent insulin resistance [92,136].

Other transcription factors, such as hypoxia induci-

ble factor (HIF)-1a, can be indirectly involved in

TLR-mediated macrophage polarisation, HIF-1a is

stabilised and activated in response to hypoxia

[137,138]. It was shown to induce M1 polarisation

in vitro and to have an important role in macrophage

function, both under normoxic or hypoxic conditions

[139,140]. TLR stimulation can also induce HIF-1a
activity though transcriptional control by NF-jB
[141,142]. Liver macrophages from mice fed a MCD

diet have enhanced HIF-1a expression. Mice overex-

pressing HIF-1a in myeloid cells display increased

levels of pro-inflammatory cytokines and increased

steatosis compared with controls, both under a chow

diet or MCD [143,144]. Moreover, palmitate was

shown to induce HIF-1a activity [143,144]. These

results suggest a macrophage-specific role for TLR-in-

duced HIF-1a in liver inflammation and pathology in

NASH. A role for HIF-1a in liver fibrosis has also

been reported even if the precise mechanisms still

remain to be elucidated [145]. Additionally, HIF-1a is

able to increase TLR4 in response to hypoxia, thereby

sensitising macrophages to LPS stimulation [137].

Hypoxia has been reported to happen during NAFLD

[146], which suggests that HIF-1a may also increase

hepatic inflammation indirectly through macrophage

sensitisation to TLR ligands.

Transcriptional control through cytokine

signalling

Cytokines such as IFN-c, IL-1b, IL-4 or IL-10 can

activate different transcription factors to orient

macrophage polarisation, among which NF-jB, AP-1

or members of the IRF and Signal Transducer and

Activator of Transcription (STAT) families.

Interferon regulatory factors

The IRF family comprises nine members of transcrip-

tion factors [147]. IRFs 3, 5 and 7 have critical roles

in M1 polarisation. GM-CSF-treated macrophages dis-

play an M1-like phenotype and highly express IRF5 in

particular. Macrophages transfected in vitro with a

siRNA targeting IRF5 lose their ability to produce

pro-inflammatory cytokines like IL-12 in response to

LPS [148]. Alzaid et al. showed that IRF5 is also

metabolically responsive and its expression in macro-

phages during NAFLD was responsible for M1 polari-

sation and secretion of pro-inflammatory and pro-

apoptotic mediators. This translated into liver inflam-

mation, Fas-dependent hepatocyte death and fibrosis

[92,149].

Other members of the IRF family can induce M1

polarisation. IRF1 expression is induced in vitro in

macrophages treated with IFN-c. IRF1 can then syner-

gise with NF-jB to trigger IL-12, iNOS and IFN-b
expression [150]. IRF8 is activated through the Notch

pathway during LPS stimulation and is crucial for tran-

scription of typical M1-related genes in this context

[151]. It was shown to collaborate with other transcrip-

tion factors, such as IRF1 or STAT1, to drive pro-in-

flammatory genes transcription in response to IFN-c
[152]. On the contrary, IRF4 has a clear role in M2

polarisation in response to IL-4. IRF4-deficient macro-

phages secrete more cytokines such as TNF-a, IL-6 but

also IL-10 [153]. Lysine demethylase 6B (KDM6B) was

shown to enhance IRF4 production in IL-4-stimulated

macrophages, an event directly promoting M2 polarisa-

tion [154]. Additionally, IRF4 can suppress IRF5 activ-

ity by competing for binding to the Myeloid

differentiation primary response 88 (MyD88), a crucial

adaptor protein in TLR signalling [155].

Signal transducers and activators of transcription

The STAT family is composed of seven members

[156]. STAT1 is phosphorylated and activated in

response to IFN-c, one of the canonical stimuli of M1

polarisation [157]. STAT1-deficient macrophages lose

the induction of IFN-c-activated genes such as induci-

ble nitric oxide synthase (iNOS) or Class II major his-

tocompatibility complex transactivator (CIITA) [158].

STAT1 also plays a key role in type I IFNs ability to

induce M1 macrophages through STAT1:STAT2

dimers and IFN-stimulated gene factor 3 (ISGF3)
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[159,160]. Likewise, STAT5 is classically regarded as

inducing M1 polarisation in response to GM-CSF

[127]. However, broader assessment of GM-CSF–re-
sponsive genes has revealed that STAT5 may in fact

induce both M1- and M2-related genes, resulting in an

intermediate phenotype [161]. STAT3 and STAT6 pro-

mote M2-like macrophage polarisation. STAT6-defi-

cient macrophages lose their ability to respond to IL-4

[162] and the ability to induce a number of M2-related

genes [160]. IL-6 and IL-10 induce STAT3, and

STAT3-deficiency leads to greater accumulation of

pro-inflammatory macrophages and susceptibility to

inflammatory conditions, namely enterocolitis [163–
165].

Nuclear receptors in gene regulation
and as therapeutic targets in NAFLD
and NASH

The nuclear receptor (NR) superfamily of transcription

factors control transcription in response to specific

ligands [166]. Agonists for these receptors range from

hormones to vitamins, to fatty acids and cholesterol

[167] as well as synthetic and pharmaceutical ligands

that currently represent about 16% of all approved

drugs [168]. NRs play important functions in regulat-

ing hepatic lipid and glucose metabolism as well as

multiple inflammatory pathways and immune

responses. As such, they are prime candidates to mod-

ulate NAFLD development [169]. Indeed, many NRs

have shown promising potential as targets for anti-

NAFLD therapeutics. To date, 48 NRs that share

structural and functional characteristics have been

described in humans [166]. Of these, 17 have been

linked to NAFLD, either using synthetic ligands that

target them in experimental models of disease or in

models of global, hepatic- or, in few cases, myeloid-

specific NR deficiency showing changes in liver steato-

sis and/or the development of steatohepatitis. For a

detailed description of how these receptors function

and the roles they play, we refer the reader to a recent

comprehensive review [169]. Here, we focus on recep-

tors that are or have been drug targets in clinical trials

for NAFLD and NASH.

Thyroid hormone receptor b

Thyroid hormone (TH) receptor b (TRb) is the TR

isoform thought to be responsible for the main benefi-

cial effects of TH on liver [170]. TRb regulates gene

expression by binding to TH response elements (TREs)

in regulatory regions within target genes, mostly as

heterodimers with the retinoid X receptor or RXR

[171]. Unliganded TR represses basal gene expression

by recruiting a corepressor complex [172]. Ligand

(TH) binding then leads to the dissociation of core-

pressors and favours the recruitment of coactivators

promoting chromatin accessibility thereby increasing

gene transcription [173]. In this manner, TR enhances

the expression of genes involved in fatty acid metabo-

lism [174]. TR also inhibits the expression of lipogenic

genes promoting steatosis [175].

TH metabolism and TH status have been linked to

various aspects of the immune response [176] and

recent reports suggest that innate immune cells are

important TH targets and that intracellular TH plays

essential roles on several innate immune cell types,

including monocytes and liver macrophages [176].

Functional studies have shown TH pro-inflammatory

actions in macrophages. A shift towards an M1 pheno-

type alongside an inhibition of M2 polarisation was

reported in bone marrow-derived macrophages [177].

Intriguingly, polarisation was associated with changes

in TRa1 : TRb1 ratio, suggesting the relative abun-

dance of TR isoforms may be linked to macrophage

phenotype [177]. However, this study contrasts with

reports that found no effect on macrophage polarisa-

tion [178] and it has been speculated that this could be

due to differences in the hormone concentrations used

[179].

Some TH actions are mediated through signal trans-

duction mechanisms, for instance, through cell surface

integrins leading to PI3K activation followed by the

iNOS upregulation, nitrite production and bacterial

killing [180]. Other studies have concluded that higher

levels of bioavailable TH increase macrophage phago-

cytic capacity [181]. The effects of intracellular TH are

partly mediated via TRa [182] and unstimulated

macrophages deficient in TRa show low-grade inflam-

mation suggesting a TRa-mediated anti-inflammatory

response [182]. TH stimulation leads to KC hyper-

plasia and enhanced phagocytosis [183]. TH has shown

pro-inflammatory actions in KCs involving NFjB acti-

vation [184] and acute-phase responses in liver involv-

ing increased STAT3 activation [185], in turn

increasing hepatic iNOS activity, enhancing production

of reactive oxygen species and hepatic oxidative stress

[186]. However, another study showed conflicting

results in models of endotoxemia [187]. Clearly, more

research is needed to establish whether similar mecha-

nisms occur in other inflammatory contexts including

NAFLD and to establish better in vitro models to

replicate not only the inflammatory, but also dyslipi-

daemic environment in this disease.

Overall, THs have been shown to be beneficial for

liver metabolism through: (a) an increase in energy
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expenditure via ATP consumption, membrane perme-

ability and effects on mitochondrial biogenesis and

activation [188], and (b) lipid metabolism such as

cholesterol clearance by LDLR, cholesterol biosynthe-

sis and metabolism through regulation of CYP7A1, a

key bile acid synthesis enzyme [189]. In addition,

hypothyroidism has been considered a risk factor for

NAFLD [190], while TH administration improves lipid

profiles in experimental models of NAFLD [191].

Unfortunately, these beneficial effects are accompanied

by thyrotoxicosis and harmful effects in the brain

[192]. Work on animal models stresses the importance

of TRs for the hepatic actions of TH [193]. Using indi-

vidual TRa1 and TRb, knockout mice treated with TH

and dietary cholesterol showed that CYP7A1 regula-

tion was lost only in TRb knockout mice and that TH

administration was not able to modulate cholesterol

levels [194], suggesting a key role for TRb. Consis-

tently, TRb mutant mice are unable to bind TH and

develop liver steatosis [195].

As TRb is the predominant isoform in liver, efforts

have focussed on the development of TH analogs cap-

able of uncoupling beneficial liver actions (triglyceride

and cholesterol lowering) from deleterious effects

[196]. TRb agonists modulate lipid metabolism path-

ways and reduce hepatic steatosis and inflammation in

animal models [197] as well as improve liver function

in clinical trials in patients with NAFLD and NASH

[191]. Unfortunately, Sobetirome (GC-1) and Epro-

tirome (KB2115), early examples of TRb-selective thy-

romimetics showing encouraging effects against

hypercholesterolemia and NASH, in the absence of

adverse side effects, were stopped after Phase 1 and

Phases 2–3 clinical trials, respectively [170]. Resme-

tirom (MGL-3196), another liver-directed and TRb-se-
lective agonist, successfully reduced steatosis and was

advanced to Phase 3 trials. Other compounds are

being evaluated in Phase 2 trials [198] or have shown

promising preclinical effects [199]. These studies sug-

gest that the most recent classes of thyromimetics are

promising alternatives to existing NASH therapies.

Peroxisome proliferator-activated receptors

Peroxisome proliferator-activated receptors (PPARs)

are a nuclear receptor subfamily with key actions on

glucose and lipid metabolism as well as on inflamma-

tory and fibrotic processes. Thus, PPARs are consid-

ered interesting NAFLD therapeutic targets for

improving liver function and showing beneficial liver,

cardiovascular and diabetes-related outcomes [200].

The role of PPARs in the development of NAFLD

has been recently reviewed in detail [201].

PPARs were first described as ligand-activated

transcription factors that promote peroxisome prolif-

eration [202], and subsequently, they have been

shown to be involved in function of other organelles,

mainly mitochondria, showing pleiotropic actions

[203]. Three PPAR isotypes have been described – a,
b/d and c, with two subtypes: c1 and c2, and with

each isotype showing a specific pattern of tissue and

cell-type expression [203]. Additionally, substantial

species-specific differences, especially for PPARa,
exist and must be considered when translating find-

ings from experimental models [204]. Specifically,

PPARa activity in human liver is lower compared

with rodents with reported differences in PPARa
expression, ligand activation and biological responses

[205].

PPARa

PPARa, encoded by the NR1C1 gene, binds to several

saturated and unsaturated fatty acids, whereas the

other isotypes show affinity mostly restricted to

polyunsaturated fatty acids [206]. PPARa is predomi-

nantly expressed in tissues with high fatty acid oxida-

tion rates such as skeletal muscle, liver – mostly in

hepatocytes – heart, kidney and brown adipose tissue

[207]. Besides hepatocytes, PPARa is expressed in

sinusoidal endothelial cells and in HSCs [208]. In the

liver, this nuclear receptor acts as a nutrient sensor

and its expression and activity are stimulated by fast-

ing or a fat-rich diet [209]. PPARa functions as a tran-

scription factor mostly as a heterodimer with RXR

and, upon ligand binding, activates genes associated

with mitochondrial and peroxisomal fatty acid oxida-

tion [210]. PPARa can also repress gene expression, by

interfering with the glucocorticoid receptor [211] or by

tethering to other transcription factors [212]. Regard-

ing NAFLD development, it is worth noting that a

fat-rich diet elevates hepatic PPARa expression in a

circadian rhythmic manner and that the lipid-lowering

effect of a PPARa agonist is more prominent when

PPARa expression peaks [212,213]. Additionally,

PPARa dampens NASH fibrotic and inflammatory

gene expression through protein–protein interactions

with pro-inflammatory transcription factors NF-kB

and AP-1 [210,214].

Multiple studies in preclinical models or PPARa-de-
ficient mice show PPARa is a critical regulator of tar-

get genes involved in fatty acid metabolism and

ketogenesis. Specifically, it regulates fatty acid trans-

port, peroxisomal and mitochondrial b-oxidation and

lipolysis, and influences the production of apolipopro-

teins [215]. This reduces triglyceride-rich lipoproteins
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and triglyceride accumulation in the liver, whereas

plasma HDL cholesterol is increased [215]. Consis-

tently, preclinical studies show that deficiency in

PPARa, either in global or liver-specific-deficient mice,

leads to more severe NASH [216,217], which can be

improved or prevented by specific PPARa ligands

[217–219]. Interestingly, expression of a PPARa
mutant that only shows transrepressive activity in mice

confers protection against NASH but not steatosis,

whereas mice expressing wild-type PPARa are pro-

tected from both NASH and steatosis [210] highlight-

ing the importance of this activity in the overall effects

of PPARa.
Considering that approximately 50% of PPARa tar-

get genes are conserved between mice and humans

[220], it is relevant that this experimental evidence

agrees with existing clinical findings (see below). Addi-

tionally, hepatic PPARa expression inversely correlates

with severity in patients with NASH, visceral fat and

insulin resistance, and improved liver histology posi-

tively correlates with increased PPARa expression

[221]. Accordingly, PPARa was considered a promis-

ing therapeutic target for NAFLD, though the number

of clinical studies evaluating single PPARa ligands is

low [201,218]. Drugs of the fibrate class that predomi-

nantly act as PPARa ligands such as Clofibrate and

Fenofibrate have been used clinically to treat hyper-

triglyceridemia, without affecting insulin sensitivity or

hepatic steatosis [222–225]. Disappointingly, their

effect on NASH was not proven [226,227], which

could be due in part to the species-specific differences

mentioned above. Exploiting the concept of selective

PPAR modulators based on differences in receptor

and coactivator binding, other fibrate compounds

(Gemfibrozil, Pemafibrate) are currently being tested

in clinical studies based on their promising clinical

profiles [228–230]. In addition, targeting both PPARa
and PPARb/d with Elafibranor has shown promising

anti-NASH properties in a clinical trial [231], reporting

improved glycaemic control and lipid profile, reduction

in hepatic and muscle insulin resistance and steatohep-

atitis [232]. Recruitment was recently terminated on

the phase III RESOLVE-IT clinical trial

(NCT02704403) assessing Elafibranor for NASH reso-

lution [233]. Results at termination of the study have

not yet been published; however, interim analyses in

May 2020 revealed a near significant (P = 0.066) reso-

lution of NASH without worsening fibrosis in patients

treated with Elafibranor compared with placebo [234].

Elafibranor was found to be safe and well tolerated,

consistent with a previous study in biliary cholangitis

that reported improvement in a number of disease

markers [234,235].

PPARb/d

PPARb/d which is encoded by NR1C2 and expressed

in hepatocytes, sinusoidal endothelial cells, HSCs and

KCs also has an important role in liver metabolism

[236]. This receptor activates glucose utilisation, hep-

atic lipogenesis and lipoprotein metabolism, as con-

firmed by transcriptomic analyses in PPARb/d-
deficient mice [237]. In addition, PPARb/d increases

the production of monounsaturated fatty acids and

protects against lipotoxicity and saturated fatty acid

cytotoxicity in vitro [238]. It appears PPARa is pre-

dominant in the fasting state whereas PPARb/d is

equally involved in both fasting and fed states [239].

PPARb/d also regulates the expression of key genes

in innate immunity and inflammation [237,240]. In the

absence of ligand, PPARb/d has pro-inflammatory

effects mainly in atherosclerotic models. Ligand binding

exerts anti-inflammatory effects, such as the suppression

of pro-inflammatory adhesion molecules on endothelial

cells [241,242]. PPARb/d ligands promote a more anti-

inflammatory phenotype in KCs resulting in improved

metabolic and hepatic dysregulation [97]. In addition,

PPARb/d may have a potential role in wound healing,

as its activation in fibroblasts increases a-smooth mus-

cle actin production and myofibroblast differentiation

[243,244]. Importantly, synthetic PPARb/d ligands

mimic the endogenous activation of PPARb/d, although
different responses have been reported for different

ligands [245]. Additionally, the selective PPARb/d ago-

nist Seladelpar improves dyslipidaemic lipid profiles in

overweight or obesity patients at risk of CVD [246]

although these compounds have not been as broadly

tested as the fibrate PPARa agonists.

PPARc

Finally, PPARc is encoded by NR1C3 and is expressed

in the liver, yet less than adipose tissue where it is a mas-

ter regulator of multiple metabolic pathways. As other

PPARS, PPARc forms a heterodimer with RXR to con-

trol gene expression. In addition, as shown in cistrome

studies in peritoneal macrophages, macrophage lineage

factors SPI1 (PU.1) and CEBPb are present with

PPARc in regulatory sites [247,248], enhancing permis-

sive chromatin configurations. In liver, PPARc is

induced by obesity in mice [249] although this is not

seen in patients with NASH [221]. Hepatocyte-specific

PPARc deficiency protects mice from steatosis in diet-

induced or genetic obesity in mice by reducing expres-

sion of genes promoting lipogenesis and lipid transport

[250,251]. In contrast, PPARc agonists, including

antidiabetic thiazolidinedione drugs (TZDs), improve
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NAFLD partly by reshuffling fatty acids and triglyc-

erides to privilege storage in adipose tissue [252].

PPARc is also present in macrophages, KCs and

HSCs. In liver and other tissues, PPARc binds to the

p65 subunit of the NF-jB complex to dampen NF-jB-
driven inflammatory gene expression [253]. A PPARc
sumoylation-dependent pathway was described to

mediate some of the anti-inflammatory actions of this

receptor [254]. In KCs, PPARc agonists inhibit pro-in-

flammatory gene expression leading to lower inflam-

mation and hepatosteatosis [58]. Consistently,

inhibition of PPARc with a specific antagonist pro-

motes the M2c anti-inflammatory phenotype in human

monocyte-derived macrophages [255], although despite

the concomitant induction of MerTK expression, cells

do not show enhanced efferocytosis. In HSCs, PPARc
is predominantly expressed in the quiescent state and

lowered in the activated state. Ligand activation in

these cells or in experimental models of fibrosis

reduces collagen levels, but the mechanism underlying

this regulation still need to be refined [256,257].

Finally, PPARc also improves endothelial cell inflam-

mation and function in patients with diabetes and

atherosclerosis [258], controls vascular homeostasis

and decreases blood pressure in patients with diabetes,

leading to reduced CVD risk [259].

Hepatic PPARc expression is elevated in patients

with NAFLD and NASH [260], and PPARc agonists

are promising therapeutics. The TZD class of PPARc
agonist antidiabetics, including rosiglitazone and

pioglitazone. TZDs ameliorate steatosis and inflamma-

tion, but have shown only minimal reduction in fibro-

sis [258,259,261–263]. A PPARa/c dual agonist

Saroglitazar improves cardiovascular risk profiles in

diabetics [264,265] and after promising results in ani-

mal models of NASH [266] is being tested in a ran-

domised clinical trial [258].

This subfamily of nuclear receptors represents a

great example of how simultaneous activation of mul-

tiple isotypes could be a more efficacious therapeutic

approach by targeting multiple pathways that con-

tribute to the development and progression of NASH.

Early studies with Lanifibranor (IVA337), which acti-

vates all three PPAR subtypes and acts on multiple

NASH-affected pathways [267,268], showed it was

effective at preventing and even inducing regression of

pre-existing fibrotic lesions in different organs

[269,270]. This occurred in the absence of deleterious

effects of TZDs while improving insulin sensitivity

and lipid profiles in NASH [267]. Remarkably, Lanifi-

branor actions on inflammation, fibrosis and macro-

phage accumulation and activation seem stronger

than single and dual PPAR agonists in several models

of NASH [271]. Lanifibranor is now part of a phase

IIb trial in patients with NASH without cirrhosis. To

date, significant reductions in steatohepatitis, regres-

sion of fibrosis and improved glycaemic control and

lipid profile have been reported [272], suggesting pan-

PPAR agonism could have a strong therapeutic

potential and be a promising therapeutic strategy for

NASH.

Farnesoid X receptor

Farnesoid X receptor (FXR), encoded by NR1H4

gene, whose expression is attenuated in NASH

patients [273], was originally labelled as an orphan

receptor and subsequently considered ‘adopted’ as free

or conjugated bile acids were recognised to be endoge-

nous ligands [274–276]. Its impact on the regulation of

key aspects of metabolic, inflammatory and fibrotic

pathways has been recently covered in detail [277].

FXR is highly expressed in liver [274] and acts,

through FXR response elements, mainly as a heterodi-

mer with RXR [278]. The liver receptor homolog-1

(LRH-1) is also present in a substantial number of

FXR-binding sites and induces gene transcription

mostly in lipid metabolic pathways [279,280]. Other

studies have proposed direct transcriptional repression

by FXR in the regulation of lipoprotein metabolism

and as an important contributor to its anti-inflamma-

tory effects through a motif independent of the canon-

ical one [281–284].
FXR is a well-established regulator of bile acid

homeostasis showing tissue-specific roles in the liver

and intestine [285]. Upon activation, FXR reduces the

levels of its ligands by suppressing bile acid synthesis

through CYP7A1 [275], an example of a negative feed-

back regulatory loop. In addition, FXR is critical in

regulating the enterohepatic circulation of bile acids by

affecting the expression of several transporters [286–
289] and in regulating lipid and glucose homeostasis.

FXR activation lowers blood lipid levels as it inhibits

fatty acid synthesis [290,291], decreases hepatic secre-

tion of VLDL [292] and increases triglyceride hydroly-

sis and clearance as well as fatty acid oxidation [293–
296]. Conflicting evidence exists regarding FXR

actions in glucose homeostasis [277] which could be

due to species differences between humans and mice

[297,298]. Nevertheless, FXR likely plays an important

role as FXR-deficient mice develop steatosis, show ele-

vated circulating FFAs and glucose levels, and are

insulin resistant [299]. In addition, FXR activation

may improve glucose dysregulation, as either FXR

activation or hepatic overexpression significantly low-

ers blood glucose levels and FFA levels, and improves
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insulin sensitivity in both db/db diabetic and wild-type

mice [300].

FXR is also a homeostatic regulator that suppresses

liver inflammation and fibrosis. Pretreatment of

HepG2 cells and primary hepatocytes with FXR ago-

nists suppresses NF-jB-mediated inflammation in an

FXR-dependent manner [301]. In NASH models, syn-

thetic FXR agonists lower MCP-1 chemokine expres-

sion leading to significantly reduced hepatic

inflammatory cell infiltration [301,302]. Moreover,

FXR-deficient mice display strong hepatic inflamma-

tion in response to LPS, concomitant liver necrosis

and a significant increase in inflammatory molecules

such as iNOS, COX-2 and IFN-c [301]. A growing

body of evidence suggests that bile acids modulate

intestinal and liver immune cells [303–305] and the role

played by bile acid receptors has been reviewed in

detail [303]. Briefly, FXR is expressed by circulating

monocytes and both intestinal and liver macrophages

[306]. FXR activation in human and rodent macro-

phages shows effective anti-inflammatory activities,

and FXR is required for the TLR9-dependent inhibi-

tion of pro-inflammatory responses of intestinal

macrophages [307]. Transrepression of inflammatory

genes in macrophages by FXR ligands involves com-

plex mechanisms that are both SHP-dependent and

SHP-independent [306–308]. In addition, ligand-in-

duced sumoylation of FXR has also been implicated

in the regulation of NF-jB and AP1-driven gene

expression [309]. Beyond NF-jB-mediated mecha-

nisms, FXR may exert anti-inflammatory actions indi-

rectly, for instance by reducing cholestasis and the

levels of toxic bile acid production and accumulation

in the liver [277].

Macrophage phenotypic shift has also been

described for FXR. Treatment of an obese and dia-

betic mouse model of NAFLD mice with the semi-syn-

thetic bile acid and FXR agonist obeticholic acid

(OCA) improves liver histology and increases expres-

sion of M2 markers and the proportion of intrahepatic

anti-inflammatory monocytes [310]. In addition, non-

specific ligands for FXR also acting on another bile

acid receptor [311], reverse liver steatosis and fibrosis

along with markers of inflammation, shifting macro-

phage polarisation towards an M2-like phenotype

[311,312]. Whether these modulatory effects of the

hepatic immune system add to the metabolic effects of

FXR ligands in the clinic requires further investiga-

tions. Moreover, FXR activation suppresses the devel-

opment of hepatic fibrosis both by reducing fibrosis

and by inducing antifibrotic gene expression in HSCs.

HSC inactivation is also achieved by ligand-activated

FXR inducing a transcriptional regulatory cascade

involving other nuclear receptors, namely the small

heterodimeric partner SHP and PPARc [256,313,314].

Both steroidal and nonsteroidal FXR agonists have

been developed for the treatment of liver diseases.

Based on previous favourable results [315], OCA was

investigated in the phase IIb Farnesoid X Receptor

Ligand Obeticholic Acid in NASH Treatment

(FLINT) multicentre trial in patients with noncirrhotic

NASH [316]. OCA improved biochemical and histo-

logical features of NASH when compared with pla-

cebo without the worsening of fibrosis. Unfortunately,

no difference was observed on the resolution of NASH

and effects on ALP, lipids and blood glucose observed

in the placebo group associated with weight loss were

absent or even reversed in OCA-treated patients [317].

In addition, unfavourable dyslipidaemia occurred in

the OCA treatment group [316]. OCA, FDA approved

for biliary cholangitis therapy, was further evaluated

in a NASH phase III trial REGENERATE [318], with

a disappointing outcome [319]. Nevertheless, FXR

remains an attractive target for NAFLD. For instance,

safety and efficacy of the nonsteroidal FXR agonist

Cilofexor (GS-9674) was evaluated in a phase II study

for other liver conditions [320]. Cilofexor improved

inflammatory biomarkers alongside significant reduc-

tions in serum markers of liver injury [320]. In a phase

II trial in NASH noncirrhotic patients, Cilofexor sig-

nificantly improved hepatic steatosis, liver biochem-

istry and bile acids without affecting serum lipids

[321]. Moreover, Tropifexor significantly reduced

oxidative stress, steatosis, inflammation and fibrosis in

mouse models of NASH [322]. Time will tell whether

this nonsteroidal FXR agonist also proves beneficial in

NASH patients.

Closing remarks: Challenges and
future perspectives

NAFLD is extremely complex, due to its multiple aeti-

ologies and the large spectrum of liver states that

ranges from steatosis to inflammation and fibrosis.

The complexity of NAFLD is also present at the cellu-

lar and molecular levels, where we now know that

macrophages play an important role in both maintain-

ing normal physiology and in the pathophysiology of

NAFLD. As reviewed, liver macrophages are central

actors of NAFLD progression, they receive and

respond to signals from systemic circulation, such as

insulin or lipolysis products from adipose tissue, and

they are exposed to nutrient-rich blood from portal

circulation as well as a multitude of signals from the

liver microenvironment. As part of the innate immune

system, macrophages must act primarily as sentinels,
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keeping the peace then raising the alarm when home-

ostasis is disturbed. Raising this alarm is a tightly reg-

ulated process where a number of molecular actors

within the cell integrate afferent signals and coordinate

efferent responses. The responses of these very impor-

tant cells can dictate disease course in NAFLD. While

recent decades have accumulated a wealth of knowl-

edge, much is yet to be learned about how therapeuti-

cally target these cells in NAFLD.

In insulin dynamics, NAFLD and liver

macrophages

Strong mechanistic associations have been drawn

between insulin resistance and NAFLD, yet the physi-

ological and physiopathological adaptations of liver

macrophages remain to be fully understood. Insulin

levels oscillate from low levels when fasting, to higher

postprandial levels. Basal levels of insulin in the blood

are also different in healthy people compared with

people with prediabetes or diabetes (reviewed recently

[323]). An added layer of complexity for investigating

the physiological and pathophysiological levels of insu-

lin on liver macrophage function include the location

and action of the liver. The liver is immediately down-

stream of the pancreas and clears 40–80% of the insu-

lin [324,325]. The amplitude of insulin’s oscillations

are thought to be ~ 100-fold higher in the portal vein

than in the systemic circulation [326]. Therefore, even

in health, liver macrophages are exposed to higher

levels of insulin compared with other tissue-resident

macrophages which may have consequences, affecting

trained immunity in macrophages for example, these

effects of insulin have been recently reviewed [327].

Macrophage heterogeneity and challenges in

therapeutic targeting

The plasticity of macrophage terminal differentiation

is now widely recognised, similarly macrophage polari-

sation states and effector functions now exist on a slid-

ing scale with the classical and alternative states being

at the extremes. The technical advances of recent

years, namely single-cell sequencing and high-density

cytometric methods, have allowed this appreciation of

macrophage heterogeneity. Novel functional classifica-

tion of macrophage subsets is an area of active

research, booming in a number of fields and specially

in study of the liver and pathogenesis of NAFLD

[94,328]. Despite the currently wide application of

these technologies, one technical hurdle that has been

a long-standing subject of discussion in the field is the

in vivo modelling of NAFLD [31]. Given the range of

models available that reproduce the different compo-

nents of NAFLD, macrophage populations are also

very likely to vary across these numerous in vivo mod-

els. Future studies are working towards consistency

and specificity with regard to the different models

available and in the way that data are reported, with

the multiple models being increasingly applied as

mechanistic representations of different stages of dis-

ease. This trend enables a more thorough understand-

ing of the importance of different macrophage subsets

in NAFLD. Accordingly, it is necessary to decipher

macrophage heterogeneity across different models of

NAFLD and to understand cellular and molecular dri-

vers of this intra- and inter-model heterogeneity. The

respective role of embryonic KCs, inflammatory KCs

and Mo-MPs, and their different subsets, in liver dis-

ease can now be investigated with great precision.

Understanding macrophage heterogeneity in kinetic

studies will also be of value. Such an approach will

allow understanding of how cellular diversity arises,

leading to the therapeutic targeting of detrimental sub-

sets at the appropriate time without influencing other

potentially beneficial subsets.

Challenges in translatability and NAFLD clinical

evaluation

One of the most important milestones of research in

NAFLD was the proposal of the two-hit hypothesis in

1998. Since then, clear experimental evidence has

implicated insulin resistance, lipotoxicity and inflam-

mation in the pathogenesis of NAFLD. Yet a number

of well-known barriers exist in the field with regard to

the translatability of certain findings from basic

research to clinical practice, which in itself has clear

priorities to improve staging and diagnosis of

NAFLD.

The main barrier to translatability is in the complex

modelling of NAFLD. Today no single murine model

recapitulates the whole spectrum of NAFLD, the mod-

els applied will allow at best the integration of one or

two stages, taking into account one or two factors.

For example, a high-fat diet will robustly reproduce

insulin resistance; however, the liver is not affected

beyond simple steatosis. Diets deficient in certain

amino acids (methionine/choline) may induce moder-

ate steatohepatitis and when combined with high fat

will also induce obesity and insulin resistance; how-

ever, the depletion of amino acids reduces the physio-

logical relevance to human disease. Similarly, surgical

(bile-duct ligation) and toxic (CCl4) models that mimic

steatohepatitis and fibrosis are far from physiological.

Taking into account the above models and other
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genetic models, reviewed by [31,69], the scientific com-

munity can still gain a lot of mechanistic insight with

regard to discrete components of the disease that can

be currently reproduced. While challenging to encapsu-

late the entire spectrum of NAFLD as well as its

comorbidities, it is also of mechanistic value that these

models allow the isolated study of the different com-

ponents of NAFLD. The application of these models

must in future be interpreted as such, until a holistic

and physiologically relevant model is developed.

Two major clinical barriers that are areas of active

work are the noninvasive staging and the detection of

NAFLD. Currently, a very widely used and accepted

staging method is the SAF score, which histologically

grades steatosis, activity and fibrosis in NAFLD.

However, establishing a SAF score requires an inva-

sive biopsy and a recognised limit to this method is

considerable heterogeneity in the staging of advanced

fibrosis [329]. It is for this reason that a future priority

in the field is the development of sensitive noninvasive

virtual biopsies, notably through the application of

imaging techniques (CT, MRI) in conjunction with

serological and immunological parameters. A number

of large-scale trials are currently tackling this issue

(LITMUS, NIMBLE, QUID-NASH) [330–332].
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