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Abstract 18 

Acute Myeloid Leukaemia (AML) is a phenotypically and genetically heterogenous blood cancer 19 

characterised by very poor prognosis, with disease relapse being the primary cause of treatment failure.  20 

 21 

AML heterogeneity arise from different genetic and non-genetic sources, including its proposed 22 

hierarchical structure, with leukemic stem cells (LSCs) and progenitors giving origin to a variety of 23 

more mature leukemic subsets. Recent advances in single-cell molecular and phenotypic profiling have 24 

highlighted the intra and inter-patient heterogeneous nature of AML, which has so far limited the 25 

success of cell-based immunotherapy approaches against single targets. 26 

 27 

Machine Learning (ML) can be uniquely used to find non-trivial patterns from high-dimensional 28 

datasets and identify rare sub-populations. Here we review some recent ML tools that applied to single-29 

cell data could help disentangle cell heterogeneity in AML by identifying distinct core molecular 30 

signatures of leukemic cell subsets. We discuss the advantages and limitations of unsupervised and 31 

supervised ML approaches to cluster and classify cell populations in AML, for the identification of 32 

biomarkers and the design of personalised therapies. 33 

 34 

1 Introduction 35 

AML is an aggressive and fast-progressing leukaemia characterised by the accumulation of myeloid 36 

progenitors (Tenen, 2003). Although most patients achieve remission after first line chemotherapy and 37 
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haematopoietic stem cell transplantation, about 40% later relapse (Tsirigotis et al., 2016). Long-term 38 

survival following relapse is below 20% with a median survival of 4-6 months, an outcome that has 39 

not improved over the last two decades with conventional approaches (Tsirigotis et al., 2016; Medeiros, 40 

2018; Lonetti et al., 2019) and novel therapies are therefore urgently needed (Lonetti et al., 2019).  41 

 42 

AML is a molecularly heterogeneous group of diseases with a complex mutational landscape, 43 

characterized by intra- and inter-patient variation (Figure 1A). Advances in next-generation sequencing 44 

and single-cell technologies have revealed that AML cells display genetic and epigenetic heterogeneity 45 

in different patients and even within the same patient multiple sub-clones co-exist, each carrying its 46 

own hierarchical structure and possessing distinct immunophenotypes (Miles et al., 2020).  47 

 48 

A non-genetic source of heterogeneity in AML is its proposed hierarchical structure, mimicking the 49 

cellular hierarchy in normal hematopoietic development (Figure 1B). In healthy individuals, this 50 

involves a stepwise differentiation process, with hematopoietic stem cells (HSCs) giving rise to 51 

progressively more mature blood cells (Velten et al., 2017; Karamitros et al., 2018; Liggett & Sankaran, 52 

2020). LSCs lie at the top of AML cellular hierarchies, and carry an unlimited ability to self-renew as 53 

well as giving origin to a variety of more mature leukemic subsets (Tenen, 2003), each expressing 54 

characteristic patterns of cell surface markers. LSCs can persist in a dormant state, making them 55 

selectively unresponsive to conventional chemotherapies and allowing them to eventually fuel disease 56 

relapse. For these reasons, the effective targeting of LSCs underpins any successful treatment for AML.  57 

 58 

A promising approach is to target LSCs using immunotherapy with autologous T cells genetically 59 

redirected to express Chimeric Antigen Receptors (CARs). In fact, CAR-T cells can effectively target 60 

tumour cells irrespectively of their quiescent status. However, the lack of surface markers preferentially 61 

expressed on LSCs as opposed to healthy HSCs has hindered the development of cell-based 62 

immunotherapy strategies for AML, given the high risk of on-target off-tumour toxicity (Perna et al., 63 

2017; Lamble & Tasian, 2019). In addition, some of the targets tested so far (e.g. CD33 or CD123) 64 

have heterogenous expression in the LSC compartment, with the risk of relapse due to their incomplete 65 

targeting (Mardiana & Gill, 2020). Upon relapse, genetic and immunophenotypic heterogeneity in 66 

AML LSCs further increases, complicating the discovery of ‘one fits all’ drug target (Ho et al., 2016). 67 

 68 

As a result of AML’s heterogenous nature, CAR-T cell approaches against a single target are unlikely 69 

to be effective, thus the design of combinations of CAR-T cells against multiple targets requires a 70 

systematic characterization of the expression levels of surface antigens in AML cell populations at 71 

single-cell resolution (Figure 1C) (Perna et al., 2017).  72 

 73 

The unprecedented resolution achieved with single-cell technologies has enabled the dissection of cell 74 

populations, including tumour and rare cell types that could not be identified using conventional bulk 75 

sequencing (Giustacchini et al., 2017; Aldridge & Teichmann, 2020). In AML, the quantitative 76 

phenotyping of leukemic cell profiles has allowed the identification of leukemic subsets without prior 77 

knowledge of phenotypic markers for their prospective isolation, opening up new analytical challenges 78 



Machine learning for taming cell heterogeneity in AML 

 

 
3 

for their clinical interpretation (Van Galen et al., 2019; Petti et al., 2019; Miles et al., 2020; Wu et al., 79 

2020; Velten et al., 2021; Triana et al., 2021). 80 

 81 

Despite Machine Learning (ML) techniques having shown prognostic utility in classifying patients at 82 

high risk of relapse and having been applied to risk-adapted treatments (review by Eckardt et al. 83 

(2020)), they have only been recently applied to resolve heterogeneity in single-cell datasets from AML 84 

patients (Van Galen et al., 2019; Triana et al., 2021). Fortunately, there has been an explosion of new 85 

algorithms based on ML for the characterization of cell populations in single-cell datasets (Table 1) 86 

that could be applied to identify molecular markers specific to AML subpopulations.  87 

 88 

Here, we review some recent state-of-the-art ML methods with the potential to shed light into cell 89 

heterogeneity in AML and identify biomarkers for specific cell populations in single-cell datasets. 90 

Benchmarking of some recent methods has been done by Abdelaal et al. (2019) and Zhao et al. (2020). 91 

Rather than an extensive discussion of algorithms, we provide a general overview of tools available to 92 

identify cell populations in single-cell studies, highlighting ones that have the potential to reveal new 93 

and rare cell types in AML and aid the design of personalised treatments. 94 

2 Machine learning for cell type identification in single-cell datasets and biomarker 95 

discovery for personalized immunotherapy 96 

Single-cell high-throughput techniques, such as scRNA-seq, quantitatively characterise cell types 97 

within a tissue (Trapnell, 2015). Typical workflows in single-cell transcriptional profiling include 98 

dimensionality reduction and clustering of cells based on their gene expression patterns followed by 99 

manual annotation of cell clusters from known cell type markers (Kolodziejczk et al., 2015). In the 100 

context of AML and other cancers, transcriptionally similar malignant cells are expected to group 101 

together, and can be unambiguously identified by the expression of certain feature genes that can be 102 

used as biomarkers for designing personalised treatments. 103 

 104 

The identification of cell types using typical workflows has several drawbacks: first, rare cell types are 105 

easily missed and grouped together with some more prevalent ones; second, cell identity is often not 106 

discrete but lies in a continuum (for instance, cells with mixed identities or in transition); and third, the 107 

clustering can reflect other sources of variability unrelated to cell types (Kiselev et al., 2019). To 108 

address these issues, ML tools have recently been developed allowing quantitative identification and 109 

probabilistic assignment of cell types, thus aiding the identification of rare and heterogeneous cell 110 

populations.  111 

 112 

In general, ML approaches are either unsupervised or supervised (Figure 1D). The main difference 113 

being the use of prior knowledge. Supervised methods are trained on an annotated reference with 114 

known classes of cell types, whereas unsupervised models identify patterns in the data without prior 115 

knowledge. A summary of recent methods is shown in Table 1. 116 

 117 

2.1 Recent ML unsupervised methods 118 
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A common task for unsupervised methods is to use the intrinsic structure of the data to find clusters of 119 

cells. The advantage of these approaches is that cells can be grouped in an automatic and unbiased 120 

manner and thus, have the potential to discover unknown cell populations. 121 

 122 

The popular single-cell processing packages Seurat (Butler et al., 2018) and Scanpy (Wolf et al., 2018) 123 

use a graph-based clustering approach combined with modularity optimization to group 124 

transcriptionally-similar cells together. Markers differentially expressed in each cluster can be found 125 

using different methods, including logistic regression. The cell identity of each cluster is assigned 126 

manually according to previous knowledge of cell-type specific markers. The main disadvantage of 127 

this approach is that the number of clusters depends on a resolution parameter assigned by the user 128 

(higher values will lead to a greater number of clusters) and thus, they may not faithfully reflect cell 129 

types. 130 

 131 

The recently developed Single-Cell Clustering Assessment Framework (SCCAF) (Miao et al, 2020) 132 

generates an optimal number of clusters automatically. After the data has been clustered, SCCAF builds 133 

an ML classifier (logistic regression) using part of the data (training). By applying this model to the 134 

rest of the dataset (test), it iteratively merges clusters that appear indistinguishable to the ML classifier 135 

to produce the final optimum clustering. The output of the model is a weighted list of feature genes 136 

characteristic of every cluster that often include known markers for a given cell type and could 137 

potentially be used to detect common biomarkers of leukemic cell subsets from AML patients.  138 

 139 

Another unsupervised method, single-cell consensus clustering (SC3) uses the first 4-7% * N (number 140 

of cells) eigenvectors to build multiple k-means clustering solutions (Kiselev et al., 2017). After 141 

hierarchical grouping, the final clustering is driven by the combination of multiple clustering solutions. 142 

The output is a list of marker genes that define each consensus cluster. While SC3 may not be the most 143 

sensitive method to find rare populations (such as LSCs), SC3 was successful in identifying clusters of 144 

prevalent genetic subclones with different mutations in myeloproliferative neoplasms (Kiselev et al., 145 

2017). A disadvantage of this method is that it does not scale well for datasets with more than 5,000 146 

cells (Andrews et al., 2021). 147 

 148 

A recent unsupervised method, weighted-nearest neighbour (WNN), was used to cluster cells using 149 

multiple data modalities (e.g. surface proteins and transcriptomes) measured in the same cell (Hao et 150 

al., 2020). This method uses k-nearest neighbours (kNN) to learn cell-specific modality “weights”. 151 

When applied to a multiomics dataset generated from human bone marrow samples (Stuart et al., 2019), 152 

it showed that the combination of surface proteins and gene expression was superior for identifying 153 

cell populations than using one data modality alone. Multiomic single-cell technologies quantifying 154 

both surface proteins and transcriptomes of individual cells (e.g. CITE-seq), could be ideally applied 155 

to the identification of surface targets for the design of cell based immunotherapies (Stoeckius et al., 156 

2017). 157 

 158 

 159 
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Other unsupervised methods rely on Non-negative matrix factorization (NMF) methods (Kotliar et al., 160 

2019; Stein-O’Brien et al., 2019). These methods allow for the identification of cell types and, 161 

simultaneously, cell states. Given the great transcriptional heterogeneity seen in AML even within 162 

clonal populations carrying the same mutational patterns (Petti et al., 2019), it may be helpful to 163 

consider cell identities and activities separately when clustering leukemic populations. Moreover, NMF 164 

is potentially useful to identify LSC populations in AML, where the classical surface proteins defining 165 

primitive cell types are present in highly similar patterns to healthy HSCs, but a ‘malignant stem-like’ 166 

profile can still be identified (Levine et al., 2015). 167 

 168 

2.2 Recent ML supervised methods 169 

Supervised methods to classify cell types exploit previously identified cell types and use either known 170 

marker genes or annotated reference datasets as an input to probabilistically assign new cells to a given 171 

category.  172 

 173 

Some methods take a list of markers for each cell type as input (Lee & Hemberg, 2019). For example, 174 

CellAssign (Zhang et al., 2019) uses predefined cell types input as a marker gene list to build a 175 

hierarchical model that produces a statistical classification of cells. This approach was used to delineate 176 

the composition of the tumour microenvironment in serial samples (treatment and relapse) from 177 

follicular lymphoma. Garnett (Pliner et al., 2019) also takes as input a list of markers. The format of 178 

the input list permits accounting for cellular hierarchy (i.e, cell subtypes) and can include positive and 179 

negative markers to define cell types (Pliner et al., 2019).  180 

 181 

Other supervised methods use an annotated reference dataset to classify cell types but differ in the 182 

features and the ML methods used to train models (see Table 1). For instance, SingleCellNet (Tan et 183 

al., 2019) uses the most discriminative gene pairs  (top pair transformation) to build a random forest 184 

classifier while methods such as scPred (Alquicira-Hernandez et al., 2019) and Moana (Wagner & 185 

Yanai, 2018) use principal components as features to fit a support vector machine (SVM). Some 186 

methods rely on one or several similarity metrics (such as SingleR Aran et al. (2019)) and k-nearest 187 

neighbours (kNN) to map query datasets into a known reference (e.g. scmap (Kiselev et al., 2018) and 188 

scClassify (Lin et al., 2020)). Other methods use the training dataset to build an Artificial Neural 189 

Network (ANN) model such as SuperCT (Xie et al., 2019) and ACTINN (Ma & Pellegrini, 2019) with 190 

an input layer containing as many nodes as the number of genes in the training set and an output layer 191 

with nodes equal to the number of cell types. Interestingly, both ANN methods provide pre-trained 192 

models that could be used to classify new AML datasets. 193 

 194 

An advantage of supervised ML approaches is that cell types are assigned probabilistically and some 195 

approaches allow for the possibility of an “unassigned” category (Kiselev et al., 2018, Zhang et al., 196 

2019, Tan et al., 2019, Pliner et al., 2019, Ma & Pellegrini, 2019). The unassigned label for cells that 197 

are absent or are very different in the reference dataset is key to limit misclassification and to allow the 198 

discovery of new cell types. 199 
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  200 

Algorithms such as CHETAH (de Kanter et al., 2019) and scClassify (Lin et al., 2020) allow for 201 

intermediate categories that can highlight populations with a mixture of identities as previously 202 

reported in AML (Smith et al., 1983). These methods are based on hierarchal correlation trees to 203 

classify test datasets (de Kanter et al., 2019, Lin et al., 2020). 204 

 205 

As more annotated single-cell datasets become available, the primary advantage of supervised methods 206 

is leveraging previous knowledge. Reference datasets of human bone marrow cells from healthy 207 

individuals are available from resources such as the Human Cell Atlas (Regev et al., 2017). Distinct 208 

cell populations or patient-specific tumour clones could be identified as unknown (because they are 209 

very different or absent in the reference data sets). As AML single-cell datasets become more abundant, 210 

they can be integrated with healthy single or multimodal references using ML methods (Hao et al., 211 

2020). 212 

 213 

A disadvantage of supervised methods is that they rely on known markers or accurate cell type 214 

annotations to build classification models. Often, markers for rare cell populations, such as LSCs, are 215 

unknown, not robust (Pollyea & Jordan, 2017) or can be expressed by more than one cell type (Van 216 

Galen et al., 2019). Further, in many cases, annotation of single-cell datasets requires additional 217 

standardisation (de Kanter et al., 2019). 218 

 219 

3 Discussion  220 

 221 

ML techniques are able to find non-trivial patterns in high-dimensional data (Geron, 2019). In fact, 222 

ML has already proven useful in identifying markers in bulk studies in prospectively isolated  leukemic 223 

sub-populations (Ng et al., 2016; Li et al., 2020). However, ML has not reached its full potential for 224 

the characterisation of AML cell populations at single-cell resolution, partly due to the recent 225 

development of large datasets (Van Galen et al., 2019; Petti et al., 2019; Miles et al., 2020; Triana et 226 

al., 2021; Velten et al., 2021).  227 

 228 

Here we have reviewed tools to aid biomarker discovery using ML at single-cell level resolution. Many 229 

ML models explicitly quantify the contribution of individual features (genes) for a given classification. 230 

Importantly, genes identified in microarray data as important for classifying samples into “AML” or 231 

“no-AML” were not always differentially expressed (Warnat-Herresthal et al., 2020). This means that 232 

traditional differential expression analysis could fail to identify biomarkers that are good predictors for 233 

assigning a given group of cells (Alquicira-Hernandez et al., 2019). Thus, ML algorithms can find 234 

biomarkers that otherwise will be missed, expediting the design of suitable target combinations for 235 

immunotherapy.  236 

 237 

Recently, it was shown that single-cell transcriptomics is capable of dissecting genetic subclones in 238 

AML, such as GATA2R361C, which cluster separately from normal hematopoietic cell types (Petti et 239 

al., 2019). This observation suggests that subclonal diversity in AML could be associated with distinct 240 

gene expression profiles which ML techniques can leverage to identify mutated populations. Some 241 

AML mutations create subtle differences in expression profiles (Van Galen et al., 2019; Petti et al., 242 
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2019; Velten et al., 2021) and isolating these populations represents an analytical challenge 243 

contemporary ML methods could address.  244 

 245 

Moreover, recent experimental innovations allowing for the simultaneous quantitative assessment of 246 

cellular and molecular information at single-cell resolution promise to better dissect cell heterogeneity 247 

in AML. Particularly important is the ability to detect mutations in single cells combined with their 248 

transcriptional profiling, offering an unprecedent opportunity to identify specific leukemic cell 249 

populations (Giustacchini et al., 2017; Rodriguez-Meira et al., 2019; Van Galen et al., 2019; Petti et 250 

al., 2019; Ludwig et al., 2019; Velten et al., 2021). For instance, the combination of single-cell 251 

transcriptomics and mutational profiles allowed the distinction of pre-leukemic clones, LSC and 252 

healthy HSC (Velten et al., 2021). ML such as SVM could be used next to identify molecules that 253 

maximise this classification as done before for bulk RNA-seq and microarray data (Li et al., 2020). 254 

 255 

In addition, the identification of mutant and non-mutant cells allows for applying ML methods to both 256 

all and only mutated cells to further characterise subpopulations (Petti et al., 2019), and can be used to 257 

fine-tune ML classification algorithms. For instance, a two-step ML classification strategy was applied 258 

to bone marrow samples of AML patients (Van Galen et al., 2019). First, a fraction of mutant cells was 259 

identified by genotyping and these were classified into one of six normal haematopoietic cell types 260 

(monocyte-like, progenitor-like, etc.). Subsequently, these malignant cell types were incorporated as 261 

additional classes in a second classifier that successfully identified mutant and normal cells from their 262 

transcriptome profiles.  263 

 264 

The simultaneous characterization of surface proteins at single-cell resolution (Stoeckius et al., 2017) 265 

is especially important for isolation of heterogeneous cell populations. There are some analytical 266 

challenges with the integration of multiple data modalities (Efremova & Teichmann, 2020), but 267 

combining different data types from the same cell has already shown to improve cell population 268 

identification in AML datasets (Petti et al., 2019; Triana et al., 2021) and healthy bone marrow samples 269 

(Hao et al., 2020), thus we anticipate that multimodal datasets will improve the performance of ML 270 

models in isolating specific cell populations and may facilitate the identification of relevant surface 271 

targets for precision immunotherapy. 272 

 273 

All the methods reviewed here will incur a certain degree of underfitting and overfitting. Thus, it is 274 

wise to compare algorithms in the initial cell composition assessment. Some, such as hierarchical 275 

methods, are potentially more suitable for AML samples, where there is an intrinsic hierarchy shared 276 

with normal hematopoietic development (Figure 1B). Also, methods that enable the recognition of 277 

intermediate cell types, mixed identities or different cell states would be more suitable for the 278 

identification of abnormally differentiated leukemic cells, known to be characteristic of AML (Smith 279 

et al., 1983).  280 

 281 

Finally, we anticipate that single-cell resolution phenotyping will be important for the design of cell-282 

based immunotherapy combinatorial strategies accounting for clonality and differentiation states of 283 
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AML populations, with ML likely playing a pivotal role in the selection of optimal therapeutic targets 284 

for the design of personalised workflows tailored to each patient. 285 

 286 
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 476 

9 Figure legend 477 

Figure 1. The high cell-to-cell heterogeneity in AML tumours can be dissected using machine 478 

learning methods. A) The schematic representing clonal diversity in two putative AML patients 479 

highlights the complex intra and inter-patient variation of cell diversity (schematics adapted from Petti 480 

et al., 2019). Importantly, each clone carries its own hierarchical structure (here shown for one clone 481 

as an example). B) Leukemic populations share the hierarchical organization of normal hematopoietic 482 

development, where hematopoietic stem cells (HSCs) differentiate into multiple cell lineages, giving 483 

rise to all mature blood cells (blue lineages). Genetic mutations induce malignant transformation and 484 

give rise to leukemic stem cells (LSCs) that share some characteristics of their normal counterparts 485 

such as unlimited ability to self-renew and the potential to give origin to a variety of more mature 486 

leukemic subsets (red lineages). C) Ideal targets for immunotherapy with engineered T cells are those 487 

present in both leukemic blast and LSC cells and absent in healthy cell types. Targets that are 488 

ubiquitously expressed will fail to target specific leukemic populations and will be toxic for normal 489 

cells (on target off, tumour toxicity). Targets that are absent from LSC will render the treatment prone 490 

to relapse. Due to the high cell heterogeneity in AML more than one molecule is likely to fulfil these 491 

requirements. D) Machine learning methods to identify cell populations can be unsupervised and 492 

supervised. The former uses the intrinsic structure of the data to cluster cells in an automatic fashion. 493 

The second uses a predefined set of groups to classify unknown cells, leveraging previous knowledge.   494 

 495 

10 Tables 496 

Table 1. Summary of recent ML-based methods to identify cell types.  497 

 

Algorithm 

name  

 

Classification 

type 

 

Method 

 

Input data 

 

Important 

contribution 

 

Reference 

 

SC3 

 

Unsupervised  

 

Consensus 

clustering 

and 

hierarchical 

clustering 

 

Normalised 

expression 

matrix 

 

 

Transcriptome-based 

identification of 

genetic subclones in 

myeloproliferative 

neoplasms 

 

 

Kiselev et 

al. (2017) 
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cNMF 

 

 

Unsupervised 

 

Non-negative 

matrix 

factorization 

 

Expression 

matrix and 

several 

parameters 

 

 

Identification of  

previously 

misclassified 

immature skeletal 

muscle cells in a 

published dataset 

from brain organoids  

 

 

Kotliar et 

al. (2019) 

 

scCOGAPS  

 

Unsupervised 

 

Non-negative 

matrix 

factorization 

 

Normalised 

and log-

scaled 

expression 

matrix  

 

Identification of 

gene expression 

signatures 

characteristic of 

discrete cell types in 

the developing retina 

 

 

Stein-

O’Brien et 

al. (2019) 

 

 

 

SCCAF 

 

 

 

Unsupervised 

 

Logistic 

Regression 

and self-

projection 

 

 

 

Expression 

matrix and 

several 

parameters 

 

 

Identification of cell 

states associated 

with different stages 

of erythroid 

maturation in mouse  

 

 

 

Miao et al. 

(2020) 

 

 

 

 

WWN 

 

Unsupervised 

 

K-nearest 

neighbours 

and Jaccard 

distance 

 

Expression 

matrix and 

protein 

matrix (or 

any other 

single-cell 

measurement) 

 

Single-cell 

multimodal analysis 

improves resolution 

of cell states in the 

immune system and 

identify previously 

unreported 

subpopulations  

 

 

Hao et al. 

(2020) 

 

 

CellAssign 

 

Supervised  

 

 

Expectation-

Maximization 

hierarchical 

model 

 

 

List of cell 

markers, 

subset of 

expression 

matrix 

containing 

the marker 

 

Resolution of 

malignant and non-

malignant cells and 

their molecular 

dynamics during 

disease progression 

 

Zhang et 

al. (2019) 
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genes and 

some 

parameters 

in follicular 

lymphoma 

 

Garnett 

 

Supervised  

 

Multinomial 

elastic-net 

regression 

 

Hierarchical 

list of cell 

markers 

(positive and 

negative) and 

expression 

matrix 

 

 

The model trained 

on a mouse lung 

dataset is 

successfully applied 

to detect both 

healthy cell types 

and tumor cells in a 

human lung cancer 

dataset  

 

 

Pliner et 

al. (2019) 

 

scmap 

 

Supervised 

 

k-means 

(scmap-

cluster) and 

k-nearest-

neighbour 

(scmap-cell) 

 

Annotated 

reference 

dataset 

and query 

expression 

matrix 

 

 

Cell types in a test 

datasets are 

annotated with high 

accuracy 

irrespectively of 

batch effect 

 

 

Kiselev et 

al. (2018) 

 

CHETAH 

 

Supervised  

 

 

Hierarchical 

Spearman 

correlation 

 

Annotated 

reference 

dataset and 

query 

expression 

matrix (both 

normalised 

and log –

scaled) 

 

The cell type 

identification 

algorithm correctly 

identifies 

cancer cells absent 

in the reference 

dataset as 

“unassigned” or 

“intermediate” 

 

 

de Kanter 

et al. 

(2019) 

 

 

 

 

scClassify 

 

 

 

 

Supervised 

 

Hierarchical 

ordered 

partitioning, 

ensemble 

learning and 

weighted k-

nearest-

neighbour  

 

Annotated 

reference 

dataset and 

query 

expression 

matrix (both 

log –

transformed) 

 

Identification of cell 

types from the 

Tabula Muris single 

cell dataset that were 

unidentified in the 

original publication, 

including very rare 

populations  

 

 

 

 

 

Lin et al. 

(2020) 
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SingleR Supervised Correlation to 

training set 

Annotated 

reference 

dataset and 

query 

expression 

matrix (both 

normalised 

and log-

transformed) 

 

Identification of a 

subgroup of 

macrophages whose 

molecular markers 

are upregulated in 

samples from 

patients with 

idiopathic 

pulmonary fibrosis. 

 

Aran et al. 

(2019) 

 

 

SingleCellNet 

 

 

Supervised  

 

 

 

 

Random 

Forest 

 

Annotated 

reference 

dataset and 

expression 

matrix (both 

raw) 

 

Cells from 

pancreatic tissue that 

were “unclassified” 

in the original study 

are identified as 

Schwann cells and 

gamma cells 

 

 

Tan, and 

Cahan 

(2019) 

 

SuperCT 

 

Supervised 

 

 

Artificial 

Neural 

Network  

 

 

Pre-trained 

ANN model 

and a query 

expression 

matrix 

 

The model predicts 

cell types with high 

accuracy in multiple 

single cell test 

datasets including 

cord blood 

mononuclear cells 

and mouse 

pancreatic cancer. 

 

 

Xie et al. 

(2019) 

 

ACTINN 

 

 

Supervised  

 

Artificial 

Neural 

Network  

 

 

Annotated 

reference 

dataset and 

query 

expression 

matrix  

 

Model trained on a T 

cell subtype 

reference accurately 

predicts T cell 

subtypes from an 

independent 

peripheral blood 

mononuclear cells 

dataset 

 

Ma, and 

Pellegrini 

(2019) 
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Moana 

 

Supervised 

 

Support 

Vector 

Machine  

 

 

Pre-trained 

model and 

raw query 

expression 

matrix 

 

 

Identification of 

common and cell 

type-specific gene 

expression responses 

to IFN-B treatment 

in peripheral blood 

cells 

 

Wagner, 

and Yanai 

(2018) 

scPred Supervised 

 

Support 

Vector 

Machine 

Annotated 

reference 

dataset and 

query 

expression 

matrix (both 

normalised) 

 

 

Prediction of 

pathological cell 

states in gastric and 

colorectal cancer  

  

Alquicira-

Hernandez 

et al. 

(2019) 
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A glossary is included as a Supplementary Material.  501 
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