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ABSTRACT
Background/Aims  To investigate the utility of a data-
driven deep learning approach in patients with inherited 
retinal disorder (IRD) and to predict the causative 
genes based on fundus photography and fundus 
autofluorescence (FAF) imaging.
Methods  Clinical and genetic data from 1302 subjects 
from 729 genetically confirmed families with IRD 
registered with the Japan Eye Genetics Consortium 
were reviewed. Three categories of genetic diagnosis 
were selected, based on the high prevalence of their 
causative genes: Stargardt disease (ABCA4), retinitis 
pigmentosa (EYS) and occult macular dystrophy (RP1L1). 
Fundus photographs and FAF images were cropped in 
a standardised manner with a macro algorithm. Images 
for training/testing were selected using a randomised, 
fourfold cross-validation method. The application 
program interface was established to reach the learning 
accuracy of concordance (target: >80%) between the 
genetic diagnosis and the machine diagnosis (ABCA4, 
EYS, RP1L1 and normal).
Results  A total of 417 images from 156 Japanese 
subjects were examined, including 115 genetically 
confirmed patients caused by the three prevalent 
causative genes and 41 normal subjects. The mean 
overall test accuracy for fundus photographs and 
FAF images was 88.2% and 81.3%, respectively. The 
mean overall sensitivity/specificity values for fundus 
photographs and FAF images were 88.3%/97.4% and 
81.8%/95.5%, respectively.
Conclusion  A novel application of deep neural 
networks in the prediction of the causative IRD 
genes from fundus photographs and FAF, with a high 
prediction accuracy of over 80%, was highlighted. These 
achievements will extensively promote the quality of 
medical care by facilitating early diagnosis, especially 
by non-specialists, access to care, reducing the cost of 
referrals, and preventing unnecessary clinical and genetic 
testing.

INTRODUCTION
Inherited retinal disorders (IRDs) are an important 
cause of irreversible blindness worldwide, partic-
ularly among working-age adults and children.1–3 
In England and Wales, an epidemiological survey 

reported that IRD accounted for 20.2% of blind-
ness in working-age adults in 2009–2010.2 The 
provision of accurate diagnosis of IRD is still diffi-
cult or unavailable in most of the world due to the 
limited access to multidisciplinary teams of special-
ists who can perform specific clinical investigations, 
including retinal imaging as well as genetic testing, 
interpretation of genetic results (ie, genetic diag-
nosis), and counselling.4 There are currently few 
approved treatment approaches for IRD.5 6 Thus, it 
is widely recognised that the development of accu-
rate gene-specific diagnosis and novel therapeutic 
interventions is crucial to meet the urgent unmet 
needs of people suffering from blindness due to 
IRD.5–7

Recently, deep learning techniques have been 
successfully applied in various medical fields, and 
the utilisation of machine learning-assisted diag-
nosis has been extensively promoted.8–10 A deep 
convolutional neural network (CNN) was first 
reported in 2012.11 Since then, several software 
frameworks have been developed for CNNs, 
which include TensorFlow, PyTorch, Caffe and 
Theano.9

In particular, deep learning based on clinical 
images has been rapidly developed to predict diag-
nosis of common ocular disorders such as diabetic 
retinopathy and age-related macular degenera-
tion.8 9 12 13 Abràmoff et al13 reported an artificial 
intelligence (AI) system with high diagnostic accu-
racy (sensitivity: 87.2%, specificity: 90.7%) for 
automated detection of diabetic retinopathy and 
diabetic macular oedema, based on fundus photo-
graphs and spectral-domain optical coherence 
tomographic (SD-OCT) images, demonstrating 
AI’s ability to bring specialty-level diagnostics to 
primary care settings.

In contrast, AI-oriented bioinformatic engi-
neering had never been applied to ophthalmic 
orphan diseases such as IRD until 2019, even 
though IRD is the most prevalent cause of blind-
ness and requires the largest number of hospital 
visits,14 which leads to major health burden and 
high economic costs (£523.3 million in the UK).15 
Our team first published the utility of the AI-guided 
diagnostic system in IRD based on SD-OCT images 
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in 2019, illustrating a high test accuracy (98.5%) for predicting 
prevalent causative IRD genes.16

The purpose of this study was to investigate the utility of deep 
learning and establish an AI-guided automatic diagnosis system 
mainly targeting non-specialists from fundus photographs and 
fundus autofluorescence (FAF) images in a large Japanese cohort 
with IRD.

MATERIALS AND METHODS
Informed consent was obtained to undergo clinical and genetic 
testing and to use medical data for the current study.

Participants
Participants with a clinical diagnosis of IRD and available genetic 
data were studied until 2020 as part of the Japan Eye Genetics 
Consortium studies. A total of 1302 subjects from 729 fami-
lies were enrolled for which genotype–phenotype association 
analyses were completed.17–20 Clinical diagnosis was performed 
based on comprehensive clinical investigations. A genetic diag-
nosis was obtained based on whole-exome sequencing with 
targeted analysis of 301 retinal diseases-associated genes.

The most common retinal diseases caused by the three majors 
genes were selected. EYS (Mendelian Inheritance in Man [MIM]: 
612424), RP1L1 (MIM: 608581) and ABCA4 (MIM: 601691) 
were the major genes. The proportions of EYS-associated retinal 
disease (EYS retinopathy; retinitis pigmentosa (RP) and others), 
RP1L1 retinopathy (occult macular dystrophy) and ABCA4 reti-
nopathy (Stargardt disease and others) among all Japanese cases 
of IRD were 16%, 8% and 5%, respectively.18 20

Fundus photography and FAF imaging
Fundus photography and FAF imaging were performed with 
the following equipment: TRC-50DX (Topcon, Tokyo, Japan), 
TRC-NW8 (Topcon), CR-2 PLUS AF Digital Non-Mydriatic 
Retinal Camera (Canon, Tokyo, Japan) and HRA II (excitation 
light 488 nm, barrier filter 500 nm; Heidelberg Engineering, 
Heidelberg, Germany).

Categories of genetic diagnosis
The fundus photographs and FAF images of four categories of 
patients were extracted. Encrypted clinical images, including 
fundus photographs and FAF images, were accessed by a certi-
fied ophthalmic genetic expert (KF). The categories, defined by 
genetic diagnosis, were as follows: category 1: ABCA4 retinop-
athy; category 2: RP1L1 retinopathy; category 3: EYS retinop-
athy; and category 4: normal. Typical images for each category 
were selected by a certified ophthalmic genetic expert.

Processes for training and testing
Fundus photographs and FAF images of both eyes were auto-
matically or manually cropped into a standardised square shape 
(with aligning of the fovea at the centre) and adjusted to a spatial 
resolution of 72 pixels (pix)/inch (500×500 pix2). The images 
were cropped in a standardised way with the macro algorithm 
of the software (Adobe Photoshop CC V.20.0.4, San Jose, Cali-
fornia). One image per eye at the latest examination was selected 
for the learning/testing processing by a certified ophthalmic 
genetic expert (KF). The algorithm for pipeline analyses was 
a web-based deep learning platform (MedicMind) which uses 
TensorFlow Inception V.3 (Alphabet, Mountain View, Cali-
fornia). A CNN with an applied data set determined the learning 
parameters.

Four categories based on clinical and genetic diagnoses were 
applied: ABCA4 retinopathy, EYS retinopathy, RP1L1 retinop-
athy and normal (figure  1). After preparation of images for 
the four-gene categories, patients/subjects were randomly split 
into a training set and a test set at a 3:1 ratio (online supple-
mental figure 1). This random split for creating a training/test 
set was based on patients/subjects to avoid a confounding effect 
of the similarity between the eyes of the same patient/subject. 
Evaluations were conducted with a randomised, four-fold cross-
validation method, and the accuracy of concordance (target: 
>80%) between the genetic diagnosis and the machine diagnosis 
was calculated through training to fix the application program 
interface (API) for further testing. Saliency maps of characteristic 
features based on fundus photographs and FAF images detected 
by API were investigated both in concordant and discordant 
cases between the machine diagnosis and the original genetic 
diagnosis.

Integrative assessment of learning performance
Integrative assessment of learning performance was conducted 
based on each diagnostic category by sensitivity/specificity 
prediction results from fundus photographs and FAF images. 
The area under the curve (AUC) was calculated with the proba-
bilities for overall prediction results of fundus photography and 
FAF imaging (JMP, SAS Institute, Cary, North Carolina).

Figure 1  Representative cases from the four categories. Fundus 
photographs and fundus autofluorescence (FAF) images showing 
characteristic phenotypical features of the four categories are 
demonstrated: ABCA4 retinopathy, EYS retinopathy, RP1L1 retinopathy 
and normal. Fundus photographs: ABCA4 retinopathy: macular atrophy 
and yellowish flecks at the level of RPE; EYS retinopathy: peripheral 
retinal atrophy, vessel attenuation and pigmentation at the level of 
RPE; RP1L1 retinopathy: normal fundus appearance; normal: normal 
appearance. FAF images: ABCA4 retinopathy: an area of low AF 
density at the macula and foci of abnormal AF; EYS retinopathy: diffuse 
abnormality of low AF in the peripheral retina and a ring of AF 
enhancement at the macula; RP1L1 retinopathy: abnormal AF density 
at the fovea; normal: normal appearance. FAF, fundus autofluorescence; 
RPE, retinal pigment epithelium.
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RESULTS
Participants
A total of 417 images from 156 Japanese subjects were exam-
ined, including 115 molecularly proven patients caused by the 
three major causative genes and 41 normal subjects. The detailed 
filtration/selection flow of the examined images is presented in 
online supplemental figure 2.

Fundus photography
From 149 probands, 1107 images were reviewed in total. 
Adequate data quality of 200 images from 102 probands 
(68.5%) was confirmed. Forty-seven probands were excluded 
from the analyses due to the inadequate data set/quality detected 
by the certified ophthalmic genetic expert; the exclusion criteria 
included missing data, presence of recording artefacts and so 
on. Images of both eyes were included for 98 probands, and 
images of one eye were included in 4 probands (1 patient with 
ABCA4 retinopathy, 2 with EYS retinopathy and 1 with RP1L1 
retinopathy).

The median age at examination of the 102 probands was 49.5 
years (range, 11–89 years). There were 58 females (56.9%) and 
44 males (43.1%). All 102 probands were originally from Japan 
(East Asia). Fifty-nine images from 30 age-matched control 
subjects without ocular disorders were selected for the analysis. 
One image from one normal subject was unavailable.

In total, a data set containing 259 images from 132 patients/
subjects was applied for deep learning; this data set comprised 

41 images of ABCA4 retinopathy, 94 images of EYS retinopathy, 
65 images of RP1L1 retinopathy and 59 normal images.

The training and test results of deep learning performance 
based on fundus photographs for prediction of the three caus-
ative genes (ABCA4, EYS, RP1L1) are presented in table 1.

The results for training accuracy are summarised in online 
supplemental table 1. Sufficient training accuracy over 87.5% 
was obtained. The mean training accuracy of the four repeated 
experiments was 91.8%. The mean sensitivity per gene category 
was 88.2% for ABCA4 retinopathy, 97.8% for EYS retinop-
athy, 95.6% for RP1L1 retinopathy and 80.2% for normal. The 
mean specificity was 98.2% for ABCA4 retinopathy, 97.5% for 
EYS retinopathy, 94.8% for RP1L1 retinopathy and 98.5% for 
normal.

The detailed test accuracy is shown in table 1. The mean test 
accuracy of the four repeated experiments was 88.2%. The 
mean sensitivity was 88.2% for ABCA4 retinopathy, 88.4% for 
EYS retinopathy, 94.4% for RP1L1 retinopathy and 82.9% for 
normal. The mean specificity was 100% for ABCA4 retinopathy, 
98.1% for EYS retinopathy, 92.9% for RP1L1 retinopathy and 
96.7% for normal, according to the four replications of the 
experiment.

Overall, considerably high specificity (>95%) was revealed 
for ABCA4 retinopathy, EYS retinopathy and normal. High spec-
ificity (>90%) was identified in RP1L1 retinopathy. High sensi-
tivity (>90%) was detected in RP1L1 retinopathy.

Table 1  Detailed training and test results based on fundus photography images for predicting the causative genes in inherited retinal disorder

Original classification 
with genetic diagnosis

Learning results Predicted results

Training 
images (n)

Testing 
images (n) Total

ABCA4 
images (n)

EYS images 
(n)

RP1L1 
images (n)

Normal 
images (n)

Sensitivity
(%)

Specificity
(%)

Accuracy
(%)

Trial 1

ABCA4 30 11 41 8 – 3 – 73 100 –

EYS 70 24 94 1 22 1 – 92 98 –

RP1L1 49 16 65 – – 16 – 100 88 –

Normal 43 16 59 1 1 2 12 75 100 –

Total 192 67 259 10 23 22 12 – – 87

Trial 2

ABCA4 31 10 41 9 1 – – 90 100 –

EYS 73 21 94 2 18 1 – 86 98 –

RP1L1 47 18 65 – – 16 2 89 85 –

Normal 43 16 59 – – 6 10 63 96 –

Total 194 65 259 11 19 23 12 – – 82

Trial 3

ABCA4 31 10 41 10 – – – 100 100 –

EYS 66 28 94 1 24 – 3 86 100 –

RP1L1 47 18 65 – – 16 2 89 98 –

Normal 42 17 59 – – 1 16 94 91 –

Total 186 73 259 12 9 12 14 – – 90

Trial 4

ABCA4 31 10 41 9 1 – – 90 100 –

EYS 73 21 94 2 19 – – 90 97 –

RP1L1 52 13 65 – – 13 – 100 100 –

Normal 49 10 59 – – – 10 100 100 –

Total 205 54 259 11 20 13 10 – – 94

In total, 132 subjects with molecularly confirmed inherited retinal disorders or no ocular diseases were ascertained: 21 with ABCA4 retinopathy, 48 with EYS retinopathy, 33 with 
RP1L1 retinopathy and 30 normal subjects. Subjects were randomly split following a 3:1 ratio into training and test sets.
The commercially available deep learning tool, MedicMind, was applied to this four-class classification program.
The accuracy for each trial and the sensitivity and specificity for each category of each trial were calculated during the learning process, and this procedure was repeated four 
times with randomly assigned training/test sets to control for selection bias.
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Saliency maps of the characteristic features of eight represen-
tative fundus photographs detected by the API are presented in 
figure 2. Characteristic features of each category were identified 
in the concordant cases: macular atrophy and flecks in ABCA4 
retinopathy, peripheral atrophic area and attenuated vessels in 
EYS retinopathy, macular vessels in RP1L1 retinopathy, and no 
particular findings in the normal category. The discordant cases 
demonstrated atypical features: peripheral atrophic changes in 
ABCA4 retinopathy, depigmented changes at the macula in EYS 
retinopathy, no particular findings in RP1L1 retinopathy and 
macular vessels in a normal subject.

FAF imaging
From 149 probands, 1002 images were reviewed. Adequate 
data quality of 115 images from 59 probands (39.6%) was 
confirmed. Ninety probands were excluded from the anal-
ysis due to the inadequate data set/quality detected by the 
certified ophthalmic genetic expert; the exclusion criteria 
included missing data, presence of recording artefacts and so 
on. Images of both eyes were included for 56 probands, and 
images of one eye were included for 4 probands (1 patient with 
ABCA4 retinopathy, 1 with EYS retinopathy and 1 with RP1L1 
retinopathy).

Figure 2  Saliency maps of the characteristic features of eight representative fundus photographs and eight fundus autofluorescence images 
detected by the application program interface. Saliency maps of characteristic features based on fundus photographs detected by the application 
program interface developed with deep learning are presented, indicating concordant and discordant results between the machine diagnosis 
and the original genetic diagnosis. (A) Fundus photography. Characteristic features of macular atrophy and flecks in ABCA4 retinopathy and 
peripheral atrophic areas and attenuated vessels in EYS retinopathy were demonstrated in concordant cases. Macular vessels in RP1L1 retinopathy 
and no particular findings in the normal category were identified in the concordant cases. Peripheral atrophic changes in ABCA4 retinopathy and 
depigmented changes at the macula in EYS retinopathy were featured in the discordant cases. Macular vessels in a normal subject and no particular 
findings in RP1L1 retinopathy were noted in the discordant cases. (B) Fundus autofluorescence (FAF) imaging. Characteristic features of an area of 
low AF density at the macula and foci of abnormal AF in ABCA4 retinopathy and diffuse abnormality of low AF in the peripheral retina and a ring of 
AF enhancement at the macula in EYS retinopathy were demonstrated in the concordant cases. Vessels are intensively featured in RP1L1 retinopathy, 
and vessels and macular pigment are prominent in normal category. A widespread area of low AF in ABCA4 retinopathy and an area of low AF at 
the macula and diffuse peripheral atrophies of low AF in EYS retinopathy were featured in the discordant cases. Vessels and macular pigment were 
featured in RP1L1 retinopathy, and vessels were prominent in a normal subject in discordant cases.
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The median age at examination of the 59 probands was 47.0 
years (range, 11–85 years). There were 31 females (52.5%) and 
28 males (47.5%). All 59 probands were originally from Japan 
(East Asia). Forty-three images from 23 age-matched control 
subjects without no ocular disorders were selected for the anal-
ysis. Three images from three normal subjects were unavailable.

In total, a data set containing 158 images of 82 patients/
subjects was applied for deep learning, comprising 37 images of 
ABCA4 retinopathy, 35 images of EYS retinopathy, 43 images of 
RP1L1 retinopathy and 43 normal images.

The training and test results for FAF-based prediction of the 
three causative genes (ABCA4, EYS, RP1L1) are presented in 
table 2.

The results for training accuracy are summarised in online 
supplemental table 2. Sufficient training accuracy over 81.3% 
was obtained. The mean training accuracy of the four repeated 
experiments was 90.7%. The mean sensitivity per gene category 
was 100% for ABCA4 retinopathy, 80.7% for EYS retinopathy, 
85.0% for RP1L1 retinopathy and 85.7% for normal. The mean 
specificity was 95.1% for ABCA4 retinopathy, 100% for EYS reti-
nopathy, 98.9% for RP1L1 retinopathy and 93.2% for normal.

The detailed test accuracy is shown in table 2. The mean test 
accuracy of the four repeated experiments was 81.3%. The mean 
sensitivity was 97.5% for ABCA4 retinopathy, 70.7% for EYS reti-
nopathy, 64.9% for RP1L1 retinopathy and 92.9% for normal. 
The mean specificity was 94.8% for ABCA4 retinopathy, 99.2% 

for EYS retinopathy, 96.3% for RP1L1 retinopathy and 84.3% 
for normal, according to the four replications of the experiment.

Overall, a considerably high level of sensitivity (>95%) was 
revealed in ABCA4 retinopathy, and high sensitivity (>90%) was 
identified in RP1L1 retinopathy. Considerably high specificity 
(>95%) was detected in ABCA4 retinopathy, EYS retinopathy 
and RP1L1 retinopathy. Low sensitivity (<80%) was found 
in EYS retinopathy. Considerably low sensitivity (<70%) was 
observed in RP1L1 retinopathy.

Saliency maps of the characteristic features of eight repre-
sentative FAF images detected by API are presented in figure 2. 
Characteristic features of each category were identified in the 
concordant cases: an area of low AF density at the macula and 
foci of abnormal AF in ABCA4 retinopathy, diffuse abnormality 
of low AF in the peripheral retina and a ring of AF enhance-
ment at the macula in EYS retinopathy, retinal vessels in RP1L1 
retinopathy, and vessels and macular pigment in the normal 
category. The discordant cases demonstrated atypical features: a 
widespread area of low AF in ABCA4 retinopathy, an area of low 
AF at the macula and diffuse peripheral atrophies of low AF in 
EYS retinopathy, vessels and macular pigment in RP1L1 retinop-
athy, and vessels in normal category.

Integrative assessment of learning performance
Integrative assessment of learning performance was conducted 
based on each diagnostic category by using the sensitivity and 

Table 2  Detailed training and test results based on fundus autofluorescence images for predicting the causative genes in inherited retinal 
disorder

Original 
classification with 
genetic diagnosis

Learning results Predicted results

Training 
images (n)

Testing 
images (n) Total

ABCA4 images 
(n)

EYS images 
(n)

RP1L1 images 
(n)

Normal 
images (n)

Sensitivity
(%)

Specificity
(%)

Accuracy
(%)

Trial 1

ABCA4 27 10 37 10 – – – 100 100 –

EYS 25 10 35 – 7 – 3 70 100 –

RP1L1 33 10 43 – – 7 3 70 97 –

Normal 31 12 43 – – 1 11 92 80 –

Total 116 42 158 10 7 8 17 – – 83

Trial 2

ABCA4 27 10 37 9 1 – – 90 100 –

EYS 27 8 35 – 8 – – 100 97 –

RP1L1 31 12 43 – – 9 3 75 97 –

Normal 32 11 43 – – 1 10 91 90 –

Total 117 41 158 9 9 10 13 – – 88

Trial 3

ABCA4 28 9 37 9 – – – 100 91 –

EYS 25 10 35 3 7 – – 70 100 –

RP1L1 32 11 43 – – 6 5 55 100 –

Normal 32 11 43 – – – 11 100 83 –

Total 117 41 158 12 7 6 16 – – 81

Trial 4

ABCA4 29 8 37 8 – – – 100 89 –

EYS 28 7 35 3 3 1 – 43 100 –

RP1L1 33 10 43 – – 6 4 60 92 –

Normal 34 9 43 – – 1 8 89 84 –

Total 124 34 158 11 3 8 12 – – 74

In total, 82 subjects with molecularly confirmed inherited retinal disorders or no ocular diseases were ascertained: 19 with ABCA4 retinopathy, 18 with EYS retinopathy, 22 with 
RP1L1 retinopathy and 23 normal subjects. Subjects were randomly split following a 3: 1 ratio into training and test sets.
The commercially available deep learning tool, MedicMind, was applied to this four-class classification program.
The accuracy for each trial and the sensitivity and specificity for each category of each trial were calculated during the learning process, and this procedure was repeated four 
times with randomly assigned training/test sets to control for selection bias.
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specificity of the prediction results from the two clinical imaging 
modalities (table 3).

High specificity (>90%) was identified for both fundus 
photography and FAF imaging in ABCA4 retinopathy, EYS reti-
nopathy and RP1L1 retinopathy. High sensitivity (>90%) for 
FAF imaging in ABCA4 retinopathy, for fundus photography in 
RP1L1 retinopathy and for FAF imaging in normal category was 
detected. Low sensitivity (<80%) was identified in EYS retinop-
athy, and considerably low sensitivity (<70%) was detected in 
RP1L1 retinopathy.

The AUC for the overall prediction results was 0.708 for 
fundus photography and 0.703 for FAF imaging (online supple-
mental figure 3).

DISCUSSION
The performance of a deep learning method to establish 
AI-guided automatic diagnosis systems based on fundus photog-
raphy and FAF imaging was evaluated in a large Japanese cohort 
of patients with IRD. The accuracy of the automatic prediction 
of classification for each major causative gene was obtained 
based on 417 clinical images, with a mean overall sensitivity and 
specificity of 85.0% and 95.3%.

Potential efficacy of AI-guided prediction
The potential efficacy of this automatic screening/diagnostic 
system for major IRD genes based on fundus photography and 
FAF imaging was illustrated. Fundus photographs and FAF images 
demonstrated high specificity (>90%) in the identification of 
ABCA4, EYS and RP1L1 retinopathies. The high sensitivity of 
fundus photographs for RP1L1 retinopathy and FAF images for 
ABCA4 retinopathy was also identified. These favourable results 
support the utility of the AI-guided diagnostic API in IRD.

This is the first report using deep learning technology for 
fundus photographs and FAF images in molecularly proven retinal 
orphan disorders. Since IRD exhibits strong gene-characteristic 
retinal features not strongly influenced by environmental factors, 
these cases present an ideal application of AI to assist clinical and 
genetic diagnoses. Recently, Miere et al21 reported the high gross 
accuracy (0.95) of AI-guided prediction of four phenotypic cate-
gories based on FAF images: RP, Best disease, Stargardt disease 
and normal. Together with this previous result, clinical imaging 
should be powerful to automatically predict the phenotypic cate-
gory or the major causative genes in IRD. The three causative 
genes selected based on the disease prevalence in the current 
study typically show different clinical presentations described as 
Stargardt disease, RP and ocular macular dystrophy. This selec-
tion bias should give the advantage in predicting the causative 
gene. However, the phenotypic spectra of these three genes 

overlap. It is challenging to establish perfect genotype–pheno-
type correlations in some cases, which supports the rationale of 
categorisation-based deep learning to predict the causative genes 
in these heterogeneous disease groups.

In addition, deducing the presence of IRD is difficult due to 
the very limited experience of general ophthalmologists; hence, 
AI-guided assessment could assist in the accurate identification 
of patients. Furthermore, given the high specificity in distin-
guishing between the normal category (96.7%) and the other 
abnormal categories, fundus photography can be considered a 
first screening method.

The API established in the current study is able to provide a 
real-time AI-guided diagnosis accessible from anywhere, which is 
promising to improve the quality of medical care by facilitating 
early diagnosis, reducing the cost for referrals, and preventing 
unnecessary clinical and genetic testing.

Interpretation of AI-guided diagnosis
ABCA4 retinopathy
The high specificity of both fundus photography and FAF 
imaging and the high sensitivity of fundus photography were 
identified. These prediction results are in accord with two 
previously reported clinical features of ABCA4 retinopathy: 
(1) the preceding abnormalities can only be detected by FAF 
imaging22 23; and (2) the fundus appearance in the end stage 
mimics RP.24–26 Subtle changes in FAF are crucial for early detec-
tion of the abnormal metabolic activity caused by the failure 
of ABCA4 protein function.23 27 Morphological changes in the 
photoreceptor often occur in the central retina in the early 
stage.28 Cases of ABCA4 retinopathy in the end stage show 
entire drastic depigmented or pigmented changes, resembling 
the changes during the end stage of EYS retinopathy.24–26 29–31

EYS retinopathy
The high specificity of both fundus photography and FAF 
imaging and the low sensitivity of fundus photography were 
identified. The prediction results for EYS retinopathy based on 
fundus photographs in the current study were compatible with 
previously reported features,19 32 while the prediction results 
based on FAF were not. The characteristic feature of periph-
eral retinal atrophy with vessel attenuation and pigmentation 
is frequently detected by fundus photographs.19 32 Some of the 
characteristic features were beyond the scope of the images, 
which were cropped in the process of standardisation; this 
limitation may have led to low sensitivity, with some diagnostic 
features missing from the fundus photographs. In the current 
study, the cropping process was mandatory. Expanding the use 
of a wide-field fundus/FAF recording could improve the sensi-
tivity and specificity of the method for detecting abnormalities 
located in the peripheral retina.

RP1L1 retinopathy
The high specificity of both fundus photography and FAF 
imaging and the considerably low sensitivity of FAF imaging 
were identified. The prediction results of RP1L1 retinopathy 
based on fundus photographs were more accurate than expected 
because the absence of fundus abnormality is one of the diag-
nostic criteria of autosomal dominant RP1L1 retinopathy.33 In 
general, it is assumed to be challenging to distinguish patients 
with RP1L1 retinopathy from normal subjects based on fundus 
photographs. The prediction results for RP1L1 retinopathy based 
on FAF are consistent with previously reported features34 35: 
weak or subtle abnormalities are found in half of the patients. In 

Table 3  Integrative assessment of overall prediction results of 
fundus photography and fundus autofluorescence (FAF) imaging

ABCA4 EYS RP1L1 Normal

Fundus photography Sensitivity (%) 88 88 94 83

Specificity (%) 100 98 93 97

Fundus autofluorescence 
imaging

Sensitivity (%) 98 71 65 93

Specificity (%) 95 99 96 84

High specificity (>90%) was identified for both fundus photography and FAF 
imaging in ABCA4 retinopathy, EYS retinopathy and RP1L1 retinopathy. High 
sensitivity (>90%) of FAF imaging in ABCA4 retinopathy, of fundus photography 
in RP1L1 retinopathy and of FAF imaging in the normal category was detected. 
Low sensitivity (<80%) was identified in EYS retinopathy, and considerably low 
sensitivity (<60%) was detected in RP1L1 retinopathy.
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a previous study, 9 of 23 patients (39.1%) with occult macular 
dystrophy showed FAF abnormalities, while 14 patients (60.9%) 
exhibited no FAF abnormalities.20 One unique feature of RP1L1 
retinopathy is the presence of intact retinal pigment epithelium, 
which is a potential reason why patients with RP1L1 retinopathy 
do not present marked FAF abnormalities even with photore-
ceptor dysfunction at the macula.34 36

Intriguingly, saliency maps demonstrated characteristic find-
ings of macular vessels on fundus photographs and macular and 
arcade vessels on FAF images in the current study. These striking 
findings imply potential characteristic features of RP1L1 reti-
nopathy on retinal images that have not been reported, although 
confounding factors such as age and hypertension could not 
be completely excluded. Further comprehensive analyses with 
annotation data may elucidate the novel features of RP1L1 reti-
nopathy (figure 2).

Limitations
The current study involved several limitations that should be 
considered. The cohort size was relatively small both in the 
affected groups and the control group. Patients with IRD can be 
subcategorised into more detailed subsets based on the charac-
teristic features by identifying the presence/absence of macular/
mid-peripheral/peripheral atrophies, flecks, and functional dete-
rioration of the macula and/or generalised rod/cone system. 
As an alternative, subdivision into typical or atypical could be 
useful for clinicians to interpret the quality of machine learning. 
AI-guided prediction of causative genes based on these pheno-
typic subcategories/subdivisions would improve the quality of 
diagnosis of ophthalmic genetic experts and provide opportuni-
ties to discover novel genotype–phenotype associations/correla-
tions through the study processes. However, due to the limited 
cohort size, the phenotypic subcategory/subdivision-based 
machine learning was unavailable in the current study. In addi-
tion, the phenotypic subcategorisation/subdivision is challenging 
to perform before application of the API for non-specialists, who 
are the main target of the established diagnostic system in the 
current study. Thus, expanding the cohort size by including East 
Asian patients could allow us to further design/conduct deep 
learning of detailed phenotypic data for ophthalmic genetic 
experts to delineate the disease mechanism.

The severity of disease was not classified in the current study. 
Therefore, a selection bias may have existed. More extensive 
cohort studies with standardised data including demographics 
(family history, inheritance, symptoms and so on) and ocular 
conditions (visual acuity, visual field and so on) from subjects 
of various ethnicities could potentially expand the utility of our 
approach.

There are over 300 genes that can cause IRD; therefore, the 
four-class classifier developed in the current study cannot be 
usefully applied in practice to predict the status of a specific 
gene from fundus photographs and FAF images in patients with 
other retinal disease-associated gene diagnoses or a novel gene 
diagnosis. A more clinically applicable approach may be to train 
several one-versus-rest classifiers to distinguish one gene from 
all other genes.

There is also a current interpretability limitation to AI classi-
fiers that use deep learning. The accuracy of training was variable 
among the training groups; thus, improving training accuracy in 
any training group set could potentially improve the quality of 
API in future studies. Moreover, future comparison studies of 
the quality between the machine diagnosis and the diagnosis by 
various human experts (eg, ophthalmic genetic experts, retinal 

specialists, general ophthalmologists, ophthalmology residents, 
ophthalmic technicians, clinical geneticists and others) could 
prove the performance of AI-guided machine diagnosis in the 
real world.

CONCLUSION
This study illustrated a novel application of deep neural networks 
in the prediction of the major causative genes (30%) in IRD reti-
nopathies from fundus photographs and FAF, with high accuracy 
for fundus photographs and relatively high accuracy for FAF. 
These achievements will extensively promote the improvement 
of medical care quality, reduce cost, enrich the education of non-
specialists and support the application of personalised medicine.
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Supplemental Table 1. Summary of training accuracy results 

based on fundus photography 

Trial 1. Accuracy Sensitivity Specificity 

ABCA4 - 100% 96% 

EYS - 91% 100% 

RP1L1 - 94% 92% 

Normal - 73% 98% 

Total 89% 90% 96% 
     

Trial 2. Accuracy Sensitivity Specificity 

ABCA4 - 75% 100% 

EYS - 100% 95% 

RP1L1 - 94% 92% 

Normal - 73% 98% 

Total 88% 100% 100% 
     

Trial 3. Accuracy Sensitivity Specificity 

ABCA4 - 100% 100% 

EYS - 100% 100% 

RP1L1 - 100% 96% 

Normal - 88% 100% 

Total 97% 97% 99% 
     

Trial 4. Accuracy Sensitivity Specificity 

ABCA4 - 78% 96% 

EYS - 100% 95% 

RP1L1 - 100% 100% 

Normal - 87% 100% 

Total 94% 91% 98% 

Evaluations were conducted with a randomised 4-fold cross-validation 

method, and the accuracy of concordance (aimed >80%) between the 

genetic diagnosis and the machine diagnosis was calculated through the 

training to the fixed application program interface (API) for further testing. 
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Supplemental Table 2. Summary of training accuracy results 

based on fundus autofluorescence imaging 

Trial 1. Accuracy Sensitivity Specificity 

ABCA4 - 100% 100% 

EYS - 100% 100% 

RP1L1 - 100% 100% 

Normal - 100% 100% 

Total 100% 100% 100% 
     

Trial 2. Accuracy Sensitivity Specificity 

ABCA4 - 100% 89% 

EYS - 57% 100% 

RP1L1 - 70% 100% 

Normal - 100% 87% 

Total 81% 82% 94% 
     

Trial 3. Accuracy Sensitivity Specificity 

ABCA4 - 100% 96% 

EYS - 86% 100% 

RP1L1 - 100% 96% 

Normal - 86% 100% 

Total 94% 93% 98% 
     

Trial 4. Accuracy Sensitivity Specificity 

ABCA4 - 100% 96% 

EYS - 80% 100% 

RP1L1 - 70% 100% 

Normal - 100% 86% 

Total 88% 88% 95% 

Evaluations were conducted with a randomised 4-fold cross-validation 

method, and the accuracy of concordance (aimed >80%) between the 

genetic diagnosis and the machine diagnosis was calculated through 

the training to the fixed API for further testing. 
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