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Abstract—People with Type 1 diabetes (T1D) require regular
exogenous infusion of insulin to maintain their blood glucose
concentration in a therapeutically adequate target range. Al-
though the artificial pancreas and continuous glucose monitoring
have been proven to be effective in achieving closed-loop control,
significant challenges still remain due to the high complexity of
glucose dynamics and limitations in the technology. In this work,
we propose a novel deep reinforcement learning model for single-
hormone (insulin) and dual-hormone (insulin and glucagon)
delivery. In particular, the delivery strategies are developed by
double Q-learning with dilated recurrent neural networks. For
designing and testing purposes, the FDA-accepted UVA/Padova
Type 1 simulator was employed. First, we performed long-term
generalized training to obtain a population model. Then, this
model was personalized with a small data-set of subject-specific
data. In silico results show that the single and dual-hormone
delivery strategies achieve good glucose control when compared
to a standard basal-bolus therapy with low-glucose insulin
suspension. Specifically, in the adult cohort (n=10), percentage
time in target range [70, 180] mg/dL improved from 77.6% to
80.9% with single-hormone control, and to 85.6% with dual-
hormone control. In the adolescent cohort (n=10), percentage
time in target range improved from 55.5% to 65.9% with single-
hormone control, and to 78.8% with dual-hormone control. In all
scenarios, a significant decrease in hypoglycemia was observed.
These results show that the use of deep reinforcement learning
is a viable approach for closed-loop glucose control in T1D.

Index Terms—Deep learning, reinforcement learning, neural
networks, dual-hormone delivery, artificial pancreas, diabetes.

I. INTRODUCTION

Diabetes is a chronic disease which affects millions of
people worldwide. It is characterised by elevated blood glucose
(BG) which in the long term can lead to complications
such as cardiovascular disease, retinopathy and nephropathy.
Its global prevalence rate has reached epidemic proportions,
doubling in the last 20 years [1]. There are two main types of
diabetes, Type 1 and Type 2. Type 2 diabetes is characterised
by the body ineffectively using insulin and can be usually
treated with lifestyle interventions and oral medication. Type
1 diabetes (T1D) however is distinguished by insufficient
insulin production by the pancreatic β-cell and therefore re-
quires exogenous insulin administration. The standard insulin
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replacement therapy for T1D includes a bolus of fast-acting
insulin to compensate the fast glucose increase after meal
ingestion, and a basal insulin delivery through an injection
of slow-acting insulin to keep glucose levels within target
range in fasting conditions. Alternatively, basal insulin can
be delivered through continuous infusion using an insulin
pump with fast-acting insulin. Although software tools such
as bolus calculators exist to support people with T1D to
self-administer insulin, they still fall short to achieve optimal
glycemic control [2]. Therefore, realising an automated system
to deliver optimal insulin doses is one of the long-standing
challenges in glucose management over the past decades [3].

Recent improvements in accuracy and reliability of continu-
ous glucose monitoring (CGM) systems has allowed the devel-
opment of a closed-loop insulin delivery system, also known
as the artificial pancreas (AP), to automatically control BG
levels in T1D [4]. An AP consists of, at least, a CGM sensor, a
control algorithm, and an insulin pump. Additionally, some AP
systems might also incorporate a glucagon pump to counter-
regulate the action of insulin [5] and an activity monitor
to quantify physical exercise [6]. Glucose measurements are
captured by the CGM device every five minutes and are sent
to the control algorithm which calculates the corresponding
dose of insulin aiming at maintaining glucose level in a target
range, which is then delivered by the infusion device. To
date, most existing AP systems that have been evaluated in
clinic have used a control engineering approach [7], such as
the model predictive control [8], [9], and proportional integral
control [10]. Other groups have also employed a bio-inspired
approach [11] and an artificial intelligence approach (fuzzy
logic) [12]. In particular, two of them, the Medtronic 670G and
the Tandem Control-IQ have reached the commercialization
stage. However, although these systems have been proven to
improve glycemic control [10], [13], challenges remain, and
further work is needed to achieve optimal therapeutic targets.

In recent years, powered by the large scale of available
medical data and the rapid advances in computational power,
machine learning, in particular deep learning, has increasingly
been used in many healthcare applications that were out of
reach in the past [14], especially in diagnostics and medical
imaging [15], [16].

In the field of diabetes, the use of machine leaning has
also attracted significant attention [17]. In particular, neural
networks (NN) have achieved success in glucose forecasting
[18] (fully-connected neural networks), [19], [20] (convolu-



2

tional neural networks), [21]–[23] (recurrent neural networks
(RNN)), and [24] (physiological-based networks). Of note,
dilated RNN (DRNN) has performed particularly well in
processing long-term dependencies and future glucose pre-
diction [21], [23], [25]. Recently, another technique under
the spotlight in the field of automatic insulin delivery is
reinforcement learning (RL) [26]. RL is a machine learn-
ing framework for learning sequential decision-making tasks.
Combining the techniques of RL and deep learning, deep RL
improved the state of the art in various high-dimensional tasks
[27], [28]. Many healthcare problems, such as drug delivery,
and in particular, insulin delivery, can be seen as closed-
loop sequential action-selection problems, which is what RL
focuses on [27]. In the recent systematic review by Tejedor
et al. on the application of RL to blood glucose control [26],
almost all the included studies (i.e., 29 out of 30) employed
traditional RL approaches, except for a recent work using a
deep RL algorithm [29], which is compared with our work
in Section IV-A. In our work, many of the latest deep RL
advancements are applied for the first time to the problem of
glycemic control. In fact, the use of deep RL in healthcare has
been limited by several practical issues. Unlike successful deep
RL applications in the virtual world, such as Atari video-games
[27] or board-game Go [28], where an agent dynamically inter-
acts with a virtual environment, performing such exploration
on human subjects can be dangerous without proper safety
supervision. Alternatively, deep RL algorithms can learn from
existing collected data using experience replay. This process
is called off-policy learning and plays an important role in
practical RL algorithms. However, collecting the training data
required is expensive and time consuming [30]. Fortunately,
an FDA-accepted T1D simulator developed in collaboration
between the University of Virginia (US) and the University
of Padova (Italy) is available for developing and evaluating
insulin and glucagon delivery strategies [31].

In this paper, we explore, in silico, the use of deep RL
for closed-loop control of BG levels in T1D. The paper is
organized as follows. Section II describes the architecture and
algorithms of the proposed deep RL framework for glucose
control. The performance of the proposed method is evaluated
in Section III. Section IV compares the results with existing
work and discusses the future work. Finally, we summarize
the work in Section V.

II. METHODOLOGY

In this section, we state the problem of basal blood glucose
closed-control in terms of deep RL. Then, we introduce a two-
step framework, adapted from transfer learning, to develop,
in silico, single and dual-hormone glucose controllers to be
potentially used in clinical practice.

In particular, a deep Q-learning model [27] is employed to
optimize insulin and glucagon delivery. Insulin and glucagon
dose deliveries are treated as actions (a) taken by a stochastic
policy, glycemic outcomes (e.g. percentage time in glucose
target) are considered as rewards (r), and physiological vari-
ables are seen as states (s). A deep neural network (DNN)
is used as a non-linear function approximator to estimate

action-values, also referred to as a deep Q-network (DQN).
Unlike previous artificial pancreas systems using traditional
RL, our proposed method does not require prior knowledge of
the glucose-insulin-glucagon metabolism. Instead, a stack of
recurrent layers is used for processing multi-dimensional time
series data. According to our previous studies [21], [23], the
dilated connections improved RNNs performance in terms of
BG level prediction with supervised learning and similar multi-
dimensional input. Hence, in this work, we exploited DRNN
layers to develop DQNs for glycemic control with deep RL.
Because of its enlarged receptive field, the DRNN is able to
capture the complexity of glucose-insulin-glucagon dynamics.
Section VII-A in the Appendix also explains how the DRNN
model was selected over other neural network architectures.

Fig. 1 depicts an overview of the system architecture used
to develop the DQN controllers evaluated on the T1D in
silico environment and to be potentially used in clinical trials.
Algorithm 1 and Algorithm 2 correspond to the two-step
learning framework in Section II-B.

A. Problem Formulation
The problem of basal glucose closed-loop control in T1D

can be formulated as an infinite-state Markov decision process
with noise, which is defined by a tuple 〈S,P, A,R, γ〉 con-
sisting of a state S (i.e., physiological state), a state transition
function P (i.e., physiological model), an action A (i.e., insulin
and glucagon control actions), a reward function R (i.e.,
glycemic outcomes), and a discount factor γ ∈ [0, 1] (i.e.,
the importance of future glycemic outcomes). The agent in the
environment takes an action a ∈ A at each time step (i.e., each
CGM measurement), and then its state s ∈ S turns into the
successor state s′ according to P . The policy to select action
for given states is denoted by π. Maximizing the accumulation
of expected reward rt = R(st, at) at each time step t is the
target of RL. An action-value (Q-function) Qπ(s, a) can be
defined to computed this reward:

Qπ(s, a) = E[
∞∑
t′=t

γt
′−trt′ |st = s, at = a, π]. (1)

The optimal action-value function Q∗(s, a) = maxπ Q
π(s, a)

offers the maximal values, which can be determined by solving
the Bellman equation defined by

Q∗(s, a) = Es′
[
R(s, a) + γmax

a′
Q∗(s′, a′)

]
, (2)

The optimal action-value at the current state s is obtained by
selecting the action that maximizes expected return with the
optimal Q∗(s′, a′) at the next state s′. Although this recursive
equation can be estimated by an iterative update, linear and
non-linear approximators are commonly used in RL for better
generalization [27]. In this paper, DQNs are employed to
approximate the action-values Q(s, a; θ) ≈ Q∗(s, a) where
θ represents the parameters of the neural networks.

1) Agent states: In the closed-loop glucose control prob-
lem, we collect the multi-modal data from the control system,
as shown in Fig. 1, to form a multi-dimensional input vector
D to approximate physiological state S. Specifically, D com-
prises the real-time continuous blood glucose levels G (mg/dL)
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Fig. 1: The system architecture to implement deep RL on T1D in the simulator (black arrows) and clinical trials (red arrows).

measured with a CGM sensor, the carbohydrate estimation
of meal ingestion M (g) recorder through a smartphone
application, and hormone doses delivered by the infusion
pumps, including the meal bolus insulin B, basal insulin Bas,
and glucagon dose C. Thus, we have D = {G,M, I, C} =
[dt+1−L, · · · , dt]T ∈ RL×4, where L is the length of the
time steps vector, I = B + Bas (Unit) represents the sum
of meal bolus insulin and basal insulin. The approximated
observation ot = st + et takes into account the errors or
miss-estimations et in glucose measurements G, carbohydrate
meal estimation M , and the meal insulin bolus B. Here B is
computed from M with a standard bolus calculator [32]. From
a deep RL perspective, the problem can be seen as an agent
interacting with an environment over sequential time steps.
Every five minutes, an observation ot can be obtained from
the environment, and an action at can be taken according to
the agent’s policy. We choose a five-minute time scale because
this is the common sampling frequency for many commercial
CGMs (e.g. Dexcom G6; Medtronic Guardian) and a typical
setting for AP systems [4]. Please not that glucose-insulin-
glucagon dynamics are quite slow; hence a shorter sampling
period is unlikely to improve the outcomes of an artificial
pancreas system.

2) Actions: Following the same framework, we provide two
types of delivery strategies for different pump settings. For
people with T1D wearing insulin pumps, the action space is
defined by modifying the basal insulin rate (BR) as follows:
{suspension of BR, 0.5*BR, BR, 1,5*BR, 2*BR}. For those
wearing dual-hormone pumps, the action space is defined
by the following options: {suspension of BR, 0.5*BR, BR,
1,5*BR, 2*BR, delivering glucagon}. Note that the value
of BR is subject-specific and is known in advance. Based
on previous works, we fix glucagon doses to 0.3 µg/kg for
all individuals and constraint the total amount of delivered
glucagon to a maximum of one mg per day [33]. This dosage
has also been tested in clinical trials with two formulations of
glucagon, which demonstrates efficacy and safety [34].
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Fig. 2: Visualization of the employed reward function in terms
of the glucose level (mg/dL) in the next state.

3) Rewards: The desired performance of closed-loop glu-
cose control is to maintain BG in a target range of 70-180
mg/dL. By using an empirical approached aiming at maximis-
ing time in range (TIR) and minimising hypoglycemia, the
following piece-wise reward function was selected.

rt =


1, 90 ≤ Gt+1 ≤ 140
0.1, 70 ≤ Gt+1 < 90 & 140 < Gt+1 ≤ 180
−0.4− (Gt+1 − 180)/200, 180 < Gt+1 ≤ 300
−0.6 + (Gt+1 − 70)/100, 30 ≤ Gt+1 < 70
−1, else.

(3)
As depicted in Fig. 2, the agent receives a positive reward if
the BG level for the next state is in the target range and a
negative reward otherwise. If the BG is below 30 mg/dL or
above 300 mg/dL, we terminate exploration and restart the
simulator. Different evaluated reward functions are presented
in Section VII-B of the Appendix.

B. Two-step Learning Framework

First, we perform long-term generalized training to obtain a
population model for the hormone delivery strategies. We use
dilated recurrent neural networks [21] for modeling the multi-
dimensional time series including glucose levels, hormone
doses, and meal intake. Note that other inputs affecting glucose
levels, such as physical exercise, could also be considered. To
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Fig. 3: The diagram of the propose double DQN. The structure
of the neural network is the same for both action selection and
value evaluation, which consists of an input layer, a stack of
DRNN layers, a fully-connected (FC) layer and output. The
input data includes BG series from CGM G, meal M , insulin
I and glucagon C.

train the model, each basal hormone delivery (at five-minute
intervals) is regarded as an action taken by the agent, while
the glucose level on the next time step is set to the reward
by the criteria of time in range (Equation 3). Secondly, by
initializing the weights obtained from the population model,
we have a model with good initial performance. With a transfer
learning process, we individualize the DQNs according to
personal characteristics and safety constraints with a small
subject-specific data-set. Safety constraints in the AP refer
to a set of safety measures based on the observations by
monitoring systems (e.g., CGM measurements), estimation of
the metabolic state of the subject (e.g. insulin on board),
and meal ingestion, to prevent or mitigate possible harmful
BG events [35]. A safety supervision system can comprise
multiple safety constraints tasked with potentially dangerous
events that may arise in a clinical setting (e.g. manual inputs
constraints, glucose sensor saturations, insulin and glucagon
delivery limits).

During clinical trials, the data for training is usually very
limited, thus we aim at fast learning performance. Therefore,
we use a double DQN with modified importance sampling
to further optimize approximated action values. A state-of-art
technique is employed to accelerate learning processes, where
prioritized experience replay samples important transitions
more frequently [36], [37]. To avoid overestimating the action
values, a double DQN decouples action selection and value
evaluation by two separate neural networks [38], as shown in
Fig. 3. The second step is suitable for a clinical trial setting,
where the model is able to adjust itself in a relatively short
period of time.

C. Generalized DQN Training

In the first step, we use the simulator to generate an
environment by using the average T1D subject for each one
of the virtual cohorts (i.e. adult and adolescent). Compared to
standard RNNs, DRNNs are preferred as DQNs for learning
the delivery strategies. The large receptive field brought by
dilation is powerful to extract features from glucose time

series, where the dilated skip connection can be represented
as

c
(l)
t = f

(
n
(l)
t , c

(l)

t−d(l)

)
, (4)

where c
(l)
t is the cell in layer l at time t, n(l)t is the input

to layer l at time t, d(l) denotes the dilation of layer l, and
f (·) represents the output function of RNN cells. As shown
in Fig. 3, we use three DRNN layers with exponentially
increasing dilation, to process the multi-dimensional time-
aligned sequence and extract high-level features. Then training
is carried out in the simulator with double DQN weights
θ1, θ2, where action selections θ1 and value evaluations θ2
are obtained from two separate neural networks. According to
Equation (2), the action-selection networks are trained with
the loss as

JDQ(Q) = E(o,a,r,o′)∼ρ[(r+

γQ(o′, a′; θ2)−Q(o, a; θ1))
2
],

(5)

where ρ is a mini-batch with transitions (o, a, r, o′) sampled
from the memory pool, and a′ = arg max′aQ(o′, a′; θ1) is
chosen by the action selection DQN in Fig. 3. Thus, the Q-
function can be updated as

Qθ1(o, a)← Qθ1(o, a) + α(r+

γQθ2(o
′, arg maxaQθ1(o

′, a))−Qθ1(o, a)),
(6)

where α is the learning rate, and the weights of θ1 are copied to
θ2 with a fixed period. We optimize the learning rate by Adam
method at each iteration [39]. The corresponding pseudo-code
is presented in Algorithm 1.

Algorithm 1 Generalized DQN Training

1: Input: the environment E with average T1D subject
parameters Is provided by the simulator, update period
TG, ε-greedy

2: Initialize DQNs with random weights θ1, θ2, replay mem-
ory B

3: for steps t∈ 1, 2, ..k do
4: Sample action from a ∼ π(Qθ1 , ε), observe o′ in EIs,

calculate r, store (o, a, r, o′) into B
5: end for
6: repeat
7: Sample action from a ∼ π(Qθ1 , ε), observe o′ in EIs,

calculate r, store (o, a, r, o′) into B
8: Sample a mini-batch uniformly from B and calculate

loss JDQ(Q)
9: Perform a gradient descent to update θ1

10: if t mod TG = 0 then θ2 ← θ1 end if
11: until converge

For each meal, a standard dose of bolus insulin is delivered,
and the agent explores random hormone delivery actions
(single or dual) under policy π that is ε-greedy with respect
to Qθ1 . Human intervention could reduce training time and
improve initial performance, but it would cause potential bias
during the training process [40]. For in silico trials, random
actions are tested with great flexibility and no safety concerns,
as a great advantage of using a simulation environment. In
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this case, we can train the agent for a long time until the loss
converges, so human intervention is not necessary. At the end
of the generalized training, a population model consisting of
a double DQN with weights θ1 and θ2 is obtained.

D. Personalized DQN Training

After developing a generalized model, we fine-tune the
model by transfer learning with regards to the personal charac-
teristic. We fetch the weights and features from the generalized
model, then train the personalized DQNs within a data-set
corresponding to a short period of time with safety constraints.
We can choose to fine-tune all layers of the generalized model
or to retain the weights of some of the earlier layers and only
fine-tune a higher-level portion of the network to avoid over-
fitting. In experiments, we found that earlier layers contain
more generic features (e.g. insulin suspension during the trend
of hypoglycemia) that should be useful for all the subjects with
T1D.

Here a method modified from [37] is used for calculating
the loss of policy-generated data. Specifically, Jn(Q) has an
n-step returns (n= 12) to propagate values of actions to earlier
states rt + γri+1 + · · · + γn−1ri+n−1 + maxaQ(oi+n, a),
and JL2

(Q) is an L2 regularization loss applied to θ to
mitigate over-fitting. Prioritized experience replay samples
the transitions with a probability Pri proportional to its
importance priority [36], which is computed from previous
data and normalized afterwards,

Pri =
pαi∑
i p
α
i

, pi = |δi|+ ε′, (7)

where α ∈ [0, 1] determines the level of using prioritization,
pi is the priority of transition i calculated from last temporal-
difference (TD) error δi and ε′ is a small positive constant. It
allows the DQN to more frequently replay transitions with
higher TD error. In addition, to ensure that hormones are
delivered safely in the clinical trial, constraints C are applied
to the suggested action before execution. Here we use a simple
strategy for the safety constraints: suspending basal insulin or
glucagon when the current BG level is below 80 mg/dL or over
160 mg/dL, respectively. In practice, the trend and prediction
of BG levels can also be used in the safety constraints for
early interventions. With proper training of the generalized
model and adequate safety constraints, this algorithm can be
adopted in a clinical trial setting. The corresponding pseudo-
code detailing the algorithm is presented in Algorithm 2.

III. EXPERIMENTS

Following the architecture evaluation setup depicted in
Fig 1, we conducted experiments to evaluate, in silico,
the effectiveness of proposed deep RL framework with the
UVA/Padova T1D Simulator [31]. As stated in Section II-A2,
we use two settings of control actions in the proposed deep
RL (DRL) algorithm: single-hormone (DRL-SH) and dual-
hormone delivery (DRL-DH). Following a transfer learning
strategy, we started with a long-term exploration with 1,500
simulated days to obtain a stable generalized model using
Algorithm 1, then, we performed personalized training for

Algorithm 2 Personalized DQN Training

1: Input: replay memory B and DQNs weights θ′1, θ′2 from
generalized training; individual environment E, safety
constraints C, update period TP , parameter λ1, λ2,

2: Initialize personalized DQNs weights θ1 ← θ′1, θ2 ← θ′2
3: Initialize replay memory D, merging B with priorities
4: for steps i∈ 1, 2, ..N do
5: Sample action from policy a ∼ π(Qθ1),
6: if a subject to C then execute a end if
7: Observe (o′, r) in E
8: Store (o, a, r, o′) in D, overwriting the samples previ-

ously merged from B
9: Sample a mini-batch from D by modified importance

sampling Pr and update the transition priority
10: Calculate loss J(Q) = JDQ(Q) + λ1Jn(Q) +

λ2JL2
(Q)

11: Perform a gradient descent to update θ1
12: if t mod TP = 0 then θ2 ← θ1 end if
13: end for

each individual in the cohort (i.e. adult and adolescent) with
30 simulated days using Algorithm 2. Due to the significant
amount of data required, the generalized model is meant to
be trained in the simulator, whereas the personalized model
training has the potential to be done in a clinical setting.
Finally, the personalized models were tested in a period of
90 days.

A. Experimental Setup

1) In Silico environment: The UVA/Padova T1D simulator
provides an interactive environment for the agent to explore
and learn the policy. We introduced additional intra-subject
variability in the meal protocol scenario and the parameters
of the T1D model [41]. In particular, we selected four meals
as the daily pattern (average cases: 7 am (70 g), 10 am (30
g), 2 pm (110 g), 9 pm (90 g)) with meal-time variability
(STD = 60 min) and meal-size variability (CV = 10%).
The meal-duration was set to 15 minutes. A misestimation of
carbohydrate amount between −30% and +10% with uniform
distribution was applied. The reason we used this skewed
distribution is that the underestimation of carbohydrate content
is more common than overestimation in real-life conditions,
according to a cross-sectional study with 50 T1D subjects [42].
Variability for meal absorption and carbohydrate bioavailabil-
ity were set to 30% and 10%, respectively. The variability
of insulin sensitivity was considered to be 30% for adult
cohort and 20% for adolescent cohort, which are created
by the scenario function in the subjects’ own profile. These
values of variability were selected based on available phys-
iological knowledge and to achieve the glycemic outcomes
commonly observed in such populations when treated with
standard therapy [43]. We saved intra-day and intra-person
variability for each subject and used the same scenarios for all
the evaluated methods, i.e. same daily events and variability
time series, in order to have a fair comparison. We utilized
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TABLE I: The testing performance of glucose control on the adult virtual cohort

Method TIR (%) Hypo (%) Hyper (%) Mean (mg/dL) RI

LGS 77.55±6.78 2.87±1.38 19.58±5.79 140.78±8.23 2.52±0.89
DRL-SH 80.94±7.00∗ 2.06±1.33∗ 17.00±5.82 140.36±5.98 2.28±0.72
DRL-DH 85.55±7.33∗∗,† 1.92±1.90∗ 13.81±6.67∗∗,† 140.12±8.13 2.16±0.65†

Symbol ∗ indicates statistical significance (p ≤ 0.05 ) with with respect to the low-glucose suspension (LGS) and † indicates statistical significance
(p ≤ 0.05) with with respect to the single-hormone DRL (DRL-SH). A double symbol (e.g. ‡) indicates statistical significance (p ≤ 0.01).

TABLE II: The testing performance of glucose control on the adolescent virtual cohort

Method TIR (%) Hypo (%) Hyper (%) Mean (mg/dL) RI

LGS 55.50±14.68 6.93±4.69 37.57±11.64 162.15±20.46 4.76±2.70
DRL-SH 65.85±16.30∗∗ 5.51±3.37 28.63±14.36∗∗ 151.18±18.26∗∗ 3.99±2.43∗∗
DRL-DH 78.83±6.60∗∗,† 2.64±1.96∗∗,‡ 18.53±6.48∗∗,† 149.96±8.83∗∗ 2.94±0.99∗∗,‡

Symbol ∗ indicates statistical significance (p ≤ 0.05 ) with with respect to the low-glucose suspension (LGS) and † indicates statistical significance
(p ≤ 0.05) with with respect to the single-hormone DRL (DRL-SH). A double symbol (e.g. ‡) indicates statistical significance (p ≤ 0.01).
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Fig. 4: Visualization of the experiment results for T1D subjects. (a) and (b): Performance of the three methods on an adult
subject and an adolescent subject over the three-month testing period: (Top-to-bottom) LGS, DRL-SH, DRL-DH, carbohydrate
distribution. The average BG levels are shown in solid blue lines, and the hypo/hyperglycemia thresholds are shown in dotted
green/red lines. Blue shaded regions show the 95% confidence interval (CI), and the purple shaded regions indicate the standard
deviation. (c): The control variability grid analysis (CVGA) plot for the adult (Top) and the adolescent (Bottom). The blue,
orange and green dots represent the LGS, DRL-SH and DRL-DH results, respectively.

the 10 virtual adults and 10 virtual adolescents, plus the
corresponding average subjects, for generalized training.

2) Baseline method: As a baseline method, a low-glucose
insulin suspension (LGS) strategy, commonly found in sensor-
augmented insulin pumps, was employed [44]. LGS systems
have been proven to reduce hypoglycemia by suspending basal
insulin delivery [45]. For meal bolus calculation, a standard
bolus calculator was used [32].

B. Results

To evaluate the performance of the proposed algorithms
and compare them against the baseline method, we selected
five standard glycemic metrics commonly employed by the
diabetes technology community [46]. These include: percent-

age time in the glucose target range of [70, 180] mg/dL
(TIR), percentage time below 70 mg/dL (i.e. hypoglycemia)
(Hypo), percentage time above 180 mg/dL (i.e. hyperglycemia)
(Hyper), mean BG levels (Mean), and risk index (RI). Results
are expressed by mean values and standard deviations (mean
±SD).

Table I and Table II shows the results of the three tested
methods evaluated on the adult and adolescent cohorts, re-
spectively. Compared to LGS therapy, both single-hormone
and dual-hormone DRL models improve the glucose control
performance by reducing hypoglycemia, hyperglycemia and
increasing TIR in the two cohorts. Of note, the dual-hormone
DRL model significantly increases the mean TIR with a
notable decrease of risk index, achieving the best performance.
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Mean BG levels are maintained in the adult cohort, while the
improvement is significant in the adolescent cohort.

For demonstration purposes, Fig. 4 graphically displays the
performance of the three evaluated methods for a chosen adult
and a chosen adolescent over a three-month testing period.
In particular, the glucose profile over 24 hours (mean ±SD)
(i.e. ambulatory glucose profile) and the control variability
grid analysis (CVGA), a commonly used tool for evaluating
closed-loop insulin delivery techniques, were employed [47].
Note that the displayed results in Fig. 4 are consistent with
the numerical results corresponding to the overall population
presented in Tables I and II. Regarding the CVGA, it is
worth noting the significant improvement achieved by DRL-
DH when compared to LGS. In particular, the percentage of
points in the A+B zones increases from 26% to 94% for the
adult cohort and from 27% to 76% for the adolescent cohort.

IV. DISCUSSION

A. Comparison with State-of-the-art

In the presented in silico experiments, when compared
against a low-glucose insulin suspension technique, the pro-
posed methodology based on deep RL achieves superior
performance in terms of glycemic outcomes. Comparing the
proposed technique with existing closed-loop insulin delivery
techniques, although interesting, is a challenging task due to
the difficulty in replicating the testing scenarios and the tuning
of the controllers. Hence, a head-to-head comparison has not
been performed. However, although not directly comparable,
an informal comparison with existing works in the literature
on RL for insulin and glucagon delivery has been done.
In [48], the authors propose an RL-based controller and
achieve the adult TIR of 89% on the UVA/Padova simulator,
which is close to the performance achieved by our DRL-DH
model. Note that in this previous work both basal and bolus
insulin delivery are optimized, while in our work only basal
insulin delivery is optimized using different variability in the
simulator. In [49], Ngo and colleges use RL to optimize control
parameters in glycemic models without providing comparable
TIR results. In a later paper [29], the authors propose a DQNs
algorithm to control single hormone (insulin) delivery and
they evaluate it on the previous version of the UVA/Padova
simulator (version S2008). However, no comparable glycemic
outcomes are provided. Therefore, our work not only proposes
a novel deep RL algorithm for insulin and glucagon delivery
but also serves as a benchmark for the future evaluation of
other control algorithms. In W3PHIAI-20 workshop [50], we
briefly reported some preliminary results corresponding to the
dual-hormone delivery configuration. In this paper, we extend
this preliminary work by developing a new model for single-
hormone delivery, improve the previous algorithms, use more
realistic scenarios, and introduce a new baseline method for
comparison purposes. To the best of our knowledge, this is the
first study that systematically evaluates, in silico, a deep RL
algorithm to control blood glucose levels with single-hormone
and dual-hormone delivery, using the latest T1D simulator
(version S2013) [31] and additional intra-subject variability.

B. Limitations and Future Work

Although the DQN models achieved superior control perfor-
mance in silico, clinical validation is still required. There are
many uncertainties and perturbations in real-world scenarios,
and the main limitation of the simulator is over-estimating
the efficacy of glycemic interventions. Despite being able to
reliably model glucose-insulin dynamics in T1D, the current
version of FDA-accepted version of the UVA/Padova simulator
[31] lacks the effect of physical exercise and health conditions
(e.g., recurrent illness), which are known to significantly
influence insulin sensitivity in people with T1D. In particular,
the effect of physical activity has been proven to be very com-
plicated to model. Thus, the modelling of the insulin-mediated
and non-insulin-mediated effect on muscle glucose need to be
further assessed and developed through more research [51].
Therefore, in this work, physical activity and heath conditions
have not yet been taken into account. However, in future work,
if new features become available in the simulator, we will
incorporate them with the proposed models. Meanwhile, there
is rapid development in deep RL, and we plan to explore the
latest advances in this area, such as model-based RL [52],
which have the potential to further improve glycemic outcomes
and accelerate the training process. Although we selected DNN
architectures following the steps in Section VII-A (Appendix),
it is worthy to test alternative DNNs in the future, such
as one-dimensional convolutional neural networks (CNNs),
convolutional RNNs, and bidirectional RNNs. Following the
proposed setup and framework, it is convenient to implement
other deep learning or RL techniques in basal glucose control.

C. Towards Clinical Trials

In the past years, the technological advances in the field
of diabetes technology and mobile phones have increased the
connectivity between mobile apps, CGM and insulin pumps.
As a result, many researchers have integrated control algorithm
(single-hormone and dual-hormone) into apps to automatically
administer or recommend hormone delivery and have evalu-
ated them in clinical trials [11], [53]–[56] .

We have developed the deep RL models using TensorFlow,
hence it is easy to implement such models on smartphones,
or embedded devices, by means of TensorFlow Lite converter.
This has been previously done by our group for implementing
a DNN model on an app for T1D management [20], [22].
This algorithm has the potential to be continuously be trained
and refined by the new incoming data from devices (e.g. CGM,
pump, activity monitor) and user input (e.g. meals). Therefore,
the algorithm proposed in this work can be implemented in a
mobile app without much extra work (Fig. 1).

V. CONCLUSION

With the aim of overcoming the challenge of blood glucose
control in T1D, we propose a novel deep RL algorithm for
optimizing basal insulin and glucagon delivery. Dilated RNNs
are applied to the structure of double DQNs to develop per-
sonalized models through a two-step framework that involves
transfer learning. When compared to the baseline method with
low-glucose insulin suspension, the proposed methodology
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significantly improves glycemic outcomes in a virtual adult
and adolescent population. This works shows that the proposed
approach has the potential to be adopted in a clinical setting.
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VII. APPENDIX

A. Neural Network Selection

Fig. 5 shows the TIR results achieved with the differ-
ent neural network architectures that we evaluated in the
experiments. Considering that the input data is a multi-
dimensional time-aligned sequence, we assumed that an RNN-
based model would be a good candidate to map the multiple-
step historical data. Therefore, we explored conventional long
short-term memory (LSTM), NNs with five fully-connected
layers and DRNNs as the potential structure of DQNs. The
LSTM architecture has recently achieved great success in time-
aligned tasks, but in our case, it obtains lower TIR results
than the DRNN. NNs are commonly used in DQNs as a
basic structure. However, the NN curve in Fig. 5 shows large
variability and lower mean TIR. Less variability indicates
a better capability to account for within-subject variability.
Thus, the NN structure was discarded. Regarding the DRNNs,
the generalized model achieves a good initial performance
at the beginning of personalized training. In addition, the
DRNN curve has a positive trend and small variability, which
indicates its effectiveness at adjusting the models for a specific
subject through a short period of time. Finally, DRNN predic-
tion models ranked top in Blood Glucose Level Prediction
Challenge in 2018 [21], outperforming various DNNs (e.g.
one-dimensional CNNs and bidirectional RNNs). Therefore,
DRNNs were naturally selected as the DQN modules for this
work.

B. Reward Function

GL Range
(mg/dL)

Reward
Scheme 1

Reward
Scheme 2

Reward
Scheme 3

Reward
Scheme 4

0-30 -10 -1 -1 -1
30-70 -1 -0.5 −0.5 + GL−70

80
−0.6 + GL−70

100
70-90 +0.1 +0.1 +0.1 +0.1

90-140 +1 +1 +1 +1
140-180 +0.1 +0.1 +0.1 +0.1
180-300 -1 -0.5 −0.5− GL−180

240
−0.4− GL−180

200
300+ -10 -1 -1 -1

TIR Score (%) 75 88 86 93

TABLE III: Reward functions and corresponding scores

Crafting reward functions for RL models is one of the most
crucial factors determining the model performance. Note that
this performance evaluation is only applicable when the TIR
score converges to a fixed value through the training stage for
the adult with Algorithm 1 and dual-hormone. Different re-
ward schemes tested, together with their corresponding model
scores, can be seen in Table III. In experiments, we started
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(b) Adolescent cohort

Fig. 5: TIR results (mean, 95% CI) corresponding to DRL-DH
during the personalized training for the adult and adolescent
cohorts. The blue, orange and green lines show the results of
DRNN, LSTM and NN models, respectively.

with a piece-wise step function referred to as Reward Scheme
1, then we constrained the reward function range within [-
1, 1] to improve stability (Reward Scheme 2). Afterwards, we
introduced slopes into the reward function to make the agent’s
response to glucose changes smoother (Reward Scheme 2).
Note that the agent faces an increasing penalty as glucose
moves up in the hyperglycemic range, or down in the hypo-
glycemic range. Finally, with minor adjustments on the slopes,
the best TIR score was obtained by Reward Scheme 4, where
a TIR of 93% can be achieved after 1.3 million training steps.

C. Hyper-parameters

In Table IV, we list the hyper-parameters that have been
used in this work. For each parameter, we performed limited
tuning based on the state-of-art DQN [57]. All the parameters
are identical across all the virtual subjects.
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