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This paper describes and validates a novel framework using the Approximate Bayesian Computation (ABC) algo- 

rithm for parameter estimation and model selection in models of mesoscale brain network activity. We provide 

a proof of principle, first pass validation of this framework using a set of neural mass models of the cortico-basal 

ganglia thalamic circuit inverted upon spectral features from experimental, in vivo recordings. This optimiza- 

tion scheme relaxes an assumption of fixed-form posteriors (i.e. the Laplace approximation) taken in previous 

approaches to inverse modelling of spectral features. This enables the exploration of model dynamics beyond 

that approximated from local linearity assumptions and so fit to explicit, numerical solutions of the underlying 

non-linear system of equations. In this first paper, we establish a face validation of the optimization procedures 

in terms of: (i) the ability to approximate posterior densities over parameters that are plausible given the known 

causes of the data; (ii) the ability of the model comparison procedures to yield posterior model probabilities that 

can identify the model structure known to generate the data; and (iii) the robustness of these procedures to local 

minima in the face of different starting conditions. Finally, as an illustrative application we show (iv) that model 

comparison can yield plausible conclusions given the known neurobiology of the cortico-basal ganglia-thalamic 

circuit in Parkinsonism. These results lay the groundwork for future studies utilizing highly nonlinear or brittle 

models that can explain time dependant dynamics, such as oscillatory bursts, in terms of the underlying neural 

circuits. 
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. Introduction 

Models of mesoscale brain activity ( Vogels et al., 2005 ; Deco et al.,

015 ; Breakspear, 2017 ) provide ways to understand how interactions

etween: (a) the function of neurons (dictated by their intrinsic biophys-

cal properties); and (b) the structure of the synaptic network that con-

ects them, can modulate neural communication. Typically, the integra-

ion of activity across spatially distributed networks has been estimated

sing the tools of functional connectivity (i.e. determining the statistical

ependencies between brain activity; Friston, 2011 ). However, these ap-

roaches are descriptive and so are unable to explore the causes of cor-

elated neural activity that can be explained through changes in either

tructure, function, or a combination of both. 
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By building generative models of neural circuit dynamics and then

nverting them from data, it is possible to gain insight into the mech-

nisms underlying the rich spatiotemporal patterning of brain activity

 Horwitz et al., 2000 ). Inverse modelling not only allows for the pre-

iction of an individual model’s parameters, but also the comparison

f models, so allowing different hypotheses to be evaluated given some

ata ( Jaqaman and Danuser, 2006 ). In its simplest form, combining a
riori knowledge alongside hand tuning of unknown parameters has led

o a number of sophisticated models ( Traub et al., 1991 ; De Schutter

nd Bower, 1994 ). This approach can be formalized, using algorithmic

chemes for parameter estimation ( Rowe et al., 2004 ; Wendling et al.,

009 ). More recently, Bayesian optimization schemes provide a princi-

led way of including prior knowledge of a system when computing an

nverse model ( Moran et al., 2009 ; Hadida et al., 2018 ; Hashemi et al.,
rch 2021 
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018 ). These approaches can estimate the posterior distribution over

odel parameters (i.e. parameter estimation) as well as over a space of

odels (i.e. model evidence). 

Many approaches make assumptions to render a model amenable to a

articular optimization scheme. For instance, in Dynamic Causal Mod-

lling (DCM; Friston et al., 2012 ), the optimization algorithm (varia-

ional Bayes) makes an assumption of fixed form posteriors (the Laplace

pproximation). This simplifies the optimization problem by reducing

he description of the approximate posterior density to its first two mo-

ents but precludes the examination of highly nonlinear or stochastic

odels, where this is likely to be violated by the existence of multimodal

osteriors ( Daunizeau et al., 2009 ; Sengupta et al., 2016 ). To help en-

ure this assumption is met, a model can be linearized and its behaviour

pproximated by computing its transfer function around a fixed point

 Valdes et al., 1999 ; Robinson et al., 2001 ; Friston et al., 2012 ). This

elps to ensure that posterior densities conform to a multivariate normal

ut can limit the model dynamics that may be explored (although see

iscussion for existing approaches to this problem). Importantly, highly

onlinear or stochastic dynamics are thought to underpin significant

eatures observed in the functional organization of brain activity, such

s the transitions between resting-states ( Deco et al., 2009 , 2011 ) or

he transient bursting of synchronous activity (e.g. Palmigiano et al.,

017 ). In this work we describe a framework for the inverse modelling

f large-scale brain dynamics that avoids: (a) appeals to the Laplace ap-

roximation; and (b) approximating model dynamics from local linear

ehaviour. 

To these ends, we set up a framework using the Approximate

ayesian Computation algorithm (ABC; Beaumont et al., 2002 ) that pro-

ides a method of “simulation based ” inference ( Cranmer et al., 2020 )

nd is well suited to complex models which have a large state and/or

arameter space, exhibit stochastic or highly nonlinear dynamics, or re-

uire numerically expensive integration schemes to solve. This method

as been successfully employed and validated across a number of models

n systems biology ( Excoffier, 2009 ; Toni and Stumpf, 2009 ; Turner and

ederberg, 2012 ; Liepe et al., 2014 ), but is yet to see wide usage in neu-

oscience. Usefully, the scheme allows models to be inverted upon hy-

othetically any summary statistic of neural recordings such as spectra,

pike density, or measures of connectivity (although see discussion for a

escription of the risk of “insufficiency ” in these features). Specifically,

e use a variant of ABC called sequential-Monte Carlo ABC (ABC-SMC;

oni et al., 2009 ). 

We aim to provide a first-pass evaluation of the face validity of the

roposed framework. To do this, we build a set of examples using mod-

ls of Parkinsonian circuit dynamics. These examples are derived from a

reviously reported model of the cortical-basal ganglia-thalamic circuit

 van Wijk et al., 2018 ) and constrained using data from an experimen-

al, rodent model of Parkinsonism ( West et al., 2018 ). We use a reduced

et of data features (the magnitude of the power spectra and directed

unctional connectivity) that can be derived from the full complex cross-

pectra, and simplify the estimation of the observation model (see meth-

ds). Note that we retain relatively simple, time-averaged data features,

s well as a well-established generative model, in order focus our ex-

mination upon the validity of the optimization scheme itself. This then

aves the way for further validations of this method in terms of more

omplicated models and data (see discussion). 

Specifically, we first examine the properties of the inversion scheme,

nvestigating parameter estimates and convergence. We then take a sim-

lar approach to that used previously in the validation of methods such

s DCM by first testing the so-called face validity ( Moran et al., 2009 )

hrough examination of (a) the ability of the parameter estimation pro-

edure to yield plausible posterior distributions over parameters given

hose known to generate the data; (b) the robustness of the parameter

stimation method to the existence of local minima in the face of multi-

le realizations of the same data and different starting conditions; and

c) the ability of the model comparison procedures to recover plausible

odel architectures given that known to generate the data. Finally, we
2 
emonstrate that the scheme can yield neurobiologically plausible con-

lusions given the structure of the circuits known to underly oscillatory

ynamics in Parkinsonism. 

. Methods 

.1. Overview of sequential Monte Carlo approximate Bayesian 
omputation for inverse modelling of neural data 

We present an overview of the framework using ABC-SMC and its

daptations for applications to large scale neural models in Fig. 1 . The

lgorithm takes a form in which several processes are repeated mul-

iple times within their parent process ( Fig. 1 ; inset). The scheme is

ontingent on simulation of pseudo-data by a generative forward model

a description of the neural dynamics - ( Fig. 1 A; green box) given a

et of proposal parameters sampled from a prior (multivariate Gaus-

ian) distribution ( Fig. 1 C; turquoise box). This pseudo-data can then

e compared against the empirical data by first using a common data

ransform (i.e. a summary statistic of the data) and then assessing their

imilarity by computing the objective function (goodness-of-fit) ( Fig. 1 B;

lue box). This model fit provides a measure by which parameter sam-

les are either rejected or carried forward depending on a threshold on

he goodness-of-fit, in order to generate the next proposal distribution

n the sequence. When the process in Fig. 1 C is iterated with a shrink-

ng tolerance schedule, ABC can be used to approximate the posterior

arameter distribution at convergence ( Fig. 1 C; orange box). Finally, if

he process described above is repeated over several competing models

hen the approximate posterior distribution may be used to assess each

odel’s fitness via model comparison ( Fig. 1 D; purple box). The exact

etails of each process outlined in the figure are given in the text below.

he existing methods that form the basis for this work are outlined in

ppendix I. 

.2. Forward model for generation of neural pseudo-data 

The fitting algorithm is based upon sampling from a sequence of

roposal distributions over parameters to generate realizations of the

enerative process that we refer to as pseudo-data ( Fig. 1 A; green box).

 model 𝑀 is specified by the state equations of the dynamical system 𝐹 

nd observation model 𝐺: 

 ( 𝑥, 𝜃) = 𝐺 

(
𝐹 
(
𝑥, 𝜃𝐹 

)
, 𝜃𝐺 

)
. (1)

he equations of the model F describe the evolution of states x with

arameters 𝜃𝐹 . This model describes the underlying neuronal dynamics

hat give rise to the evolution of the states. The observation model G
escribes the effects upon the signals that are introduced by processes

uch as experimental acquisition or recording and is parameterized by
𝐺 . The observation model can account for confounds introduced be-

ond that of the generative model of the data such as changes in signal-

o-noise ratio (SNR), crosstalk, or other distortions of the underlying

enerative process. In the examples provided here, we use a simple ob-

ervation model that comprises a model of sensor noise in which the gain

n additive noise remains a free parameter to estimate differences in the

NR between signals. We use Gaussian white noise and assume identity

ovariance between the sensors. In this example, we avoided estimation

f the lead field parameters ( Kiebel et al., 2006 ) by our choice of sum-

ary statistic describing the interaction between sources (see section

irected Functional Connectivity). 

In general, model M could describe any dynamical system describ-

ng the time evolution of neural data such as spiking networks, con-

uctance models, or phenomenological models (e.g. phase oscillators,

arkov chains). In this paper we use coupled neural mass equations

 Jansen and Rit, 1995 ; David and Friston, 2003 ) to model population

ctivity of the cortico-basal-ganglia-thalamic circuit, of which the bio-

ogical and theoretical basis has been previously described ( Moran et al.,
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Fig. 1. Framework for application of Approximate Bayesian Computation for simulation-based inference of brain network dynamics. (Inset) This schematic 

gives an overview of the framework described in this paper. Individual generative models are specified as a set of state equations (yellow boxes) and prior distribution 

over parameters (turquoise boxes) that will be used to approximate the posterior density over the parameters (orange boxes) for the system generating the observed 

data (red boxes) with varying degrees of fit (dark blue boxes) using ABC. The approximate posterior distribution can then be used to compare models and decide on a 

winning model or family of models (purple box). (A) Generation of pseudo-data by integrating the state equations parameterized by a sample drawn from the prior 

or proposal distributions. Models can incorporate stochastic innovations as well as a separate observation model to produce samples of pseudo-data (green boxes). 

(B) Pseudo-data is compared against the real data using a common data transform that provides a summary statistic of the time series data (i.e. spectra and 

directed functional connectivity). The simulated and empirical data are then compared by computing the objective function that can be used to score the model fit 

(blue boxes). (C) ABC sequentially repeats the processes in boxes A and B by iteratively updating a proposal distribution formed from accepted samples. Samples 

are rejected depending on an adaptive threshold on the objective scores aiming to reduce the distance between summary statistics of the data and pseudo-data. This 

process iterates until the convergence criterion is met and the proposal distribution is taken as an approximation to the posterior distribution. (D) By repeating the 

ABC process in box (C) over multiple models , the approximate posteriors can be used to evaluate the model probabilities. This process samples from the posterior 

many times to compute the probability of each model exceeding the median accuracy of all models tested. This acceptance probability can then be used to compare 

the model’s ability to accurately fit the data and select the best candidate model given the data. (For interpretation of the references to colour in this figure legend, 

the reader is referred to the web version of this article.) 
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011 ; Marreiros et al., 2013 ; van Wijk et al., 2018 ). The original equa-

ions were adapted to explicitly incorporate stochastic inputs and finite

ransmission delays. This yielded a system of stochastic delay differen-

ial equations that could be solved using the Euler-Maruyama method.

or details of the modelling, as well as details of the integration of the

tate equations please see Supplementary Information I which gives de-

ails of the model formulation, state equations, and numerical solver. 

Parameters of both the generative and observational model can ei-

her be fixed or variable. In the case of variable parameters (parame-

ers to be fit), a prior density encoding a priori beliefs about the values

hat the parameters take must be specified. This is encoded through

he mean and variance for each parameter, with the variance encod-
3 
ng the inverse-precision of a prior belief. In this way fixed parameters

an be thought as being known with complete confidence. Note we as-

ume identity covariance of the priors. We take the majority of prior val-

es for parameters of the cortico-basal-ganglia-thalamic network from

 van Wijk et al., 2018 ) but set some delays and connection strengths

iven updated knowledge in the literature. A table of parameters can be

ound in Supplementary Information II. 

For results in Sections 3.1 through to the first part of Section 3.3 we

se a reduction of the full model comprising the reciprocally coupled

TN/GPe. This model can be again divided into separate models (for the

urposes of performing face validation and example model comparison)

y constraining priors on the connectivity between the STN and GPe.



T.O. West, L. Berthouze, S.F. Farmer et al. NeuroImage 236 (2021) 118020 

T  

c  

2

2
 

m  

u  

l  

r  

g  

v  

i  

s  

c

 

t  

a  

p  

n  

a  

𝜇  

r

 

s  

i  

d  

b  

t

 

r  

j  

t  

e  

s  

n  

r  

w  

i

2
 

c  

T  

d

𝜖  

w  

g

Δ  

w  

c  

s  

s  

a

b

i  

t  

c  

N  

t  

(

2
 

f  

t  

i  

f

𝑃  

w  

a  

m  

o  

(  

t  

T  

a  

b  

m  

(

 

c  

n  

t  

s  

d  

j

 

d  

l  

t  

t  

o  

p  

s  

d  

t

2

 

p  
he later part of Section 3.3 and Section 3.4 uses a wider model space

omprising a set of systematic variations upon the full model (see Fig. 5 ).

.3. Model inversion with sequential Monte Carlo ABC 

.3.1. Algorithm overview 

In order to estimate the parameters of the model M , given the infor-

ation provided by the empirical recordings we use an algorithm based

pon ABC-SMC ( Toni et al., 2009 ; Del Moral et al., 2012 ). ABC is a “like-

ihood free ” algorithm ( Marin et al., 2012 ). Most generally, the algo-

ithm forms a sample of draws taken from a prior distribution and then

oes on to estimate an intermediate sequence of proposal distributions

ia iterative rejection of the parameter draws. Given a suitable shrink-

ng tolerance schedule, the simulated pseudo-data (generated from the

ample-parameterized forward model) and the empirical data should

onverge as the proposal distribution approaches the true posterior. 

The ABC algorithm is illustrated in Fig. 1 C (orange box) and follows

he procedure below. Probability densities are given by 𝑃 ( ⋅) ; parameters

re indicated by 𝜃; models by M ; data by D; and distances by 𝜌. Sam-

les are indicated by hat notation (i.e. ̂⋅); subscripts indicate the sample

umber; proposal distributions are indicated by an asterisk (i.e. 𝑃 ( ⋅) ∗ );
nd subscripts equal to zero denote belonging to the empirical data (i.e.

1 and 𝜇0 are summary statistics of sample 1 and of the empirical data

espectively). 

1 Specify prior distribution of 

parameters, 𝑃 ( 𝜃) of the model M. 

(model prior) 

2 Randomly sample 𝑁 times from 

the prior to yield samples 𝜃̂𝑛 . 

(sampler) 

3 Simulate pseudo-data 𝐷̂ 𝑛 ~

𝑀( 𝑥 𝑛 , ̂𝜃𝑛 ). 

(simulation of joint distribution) 

4 Compute summary statistic of 𝜇𝑛 of 

pseudo-data 𝐷̂ 𝑛 . 

(data transform) 

5 Compute distance 𝜌 of 𝜇𝑛 from 𝜇0 . (assess model fit) 

6 Reject 𝜃̂𝑛 if distance 𝜌( 𝜇𝑛 , 𝜇0 ) ≥ 𝜖𝑞 . (rejection sampling) 

7 Form proposal distribution, 

𝑃 ∗ ( 𝜃|𝐷 0 ) , from the accepted 

parameter samples. 

(form proposal) 

8 Iterate for 𝑞 = 1 , … , 𝑄 , setting 

𝑃 ( 𝜃) = 𝑃 ∗ ( 𝜃|𝐷 0 ) , and shrinking the 

distance threshold. 

(adaptive tolerance schedule) 

9 At convergence criteria, accept 

proposal distribution as posterior: 

𝑃 ( 𝜃|𝐷 0 ) ≅ 𝑃 ∗ ( 𝜃|𝐷 0 ) , 

(estimation of approximate posterior) 

To avoid sample wastage across iterations, we store the samples from

tep (2) and their resulting distance from the data (step 5) across the Q
terations such that they are propagated through a sequence of interme-

iate distributions. In this way, at step (7) the updated proposal distri-

ution comprises samples from both current and past draws selected on

he basis of a threshold calculated over the current draw. 

We estimate the “distance ” or error of the pseudo-data from the

eal data using the pooled mean squared error (MSE pooled ) as an ob-

ective function 𝜌( 𝜇𝑛 , 𝜇0 ) (see supplementary information II for equa-

ion). Setting a shrinking distance threshold 𝜖 ensures that the posterior

stimates converge upon solutions that most accurately reproduce the

ummary statistics of the observed data ( Del Moral et al., 2012 ). With

on-negligible 𝜖𝑄 , the algorithm samples from an approximate poste-

ior distribution 𝑃 ( 𝜃|𝜌( 𝜇𝑛 , 𝜇0 ) < 𝜖𝑄 ) rather than the true posterior 𝑃 ( 𝜃|𝐷 )
hen 𝜖𝑄 → 0 . Thus the upper bound on the error of parameter estimates

s therefore determined by how far 𝜖𝑄 is from zero ( Dean et al., 2014 ). 
4 
.3.2. Adaptive tolerance schedule 
To facilitate incremental sampling from a sequence of increasingly

onstrained target distributions we set an adaptive tolerance schedule.

his is specified by determining a predicted gradient for the average

istance of the next set of samples: 

𝑞+1 = 𝜖𝑞 + Δ𝜖𝑞 (2)

here the expected change in the distance of the new samples Δ𝜖𝑞 is

iven by: 

𝜖𝑞 = { 
𝜖q − 𝜖𝑞−1 , 𝑁 𝑎𝑐 𝑐 𝑒𝑝𝑡 ≥ 𝛾

𝜖∗ 
𝑞 
− 𝜖𝑞−1 , 𝑁 𝑎𝑐 𝑐 𝑒𝑝𝑡 < 𝛾

(3)

here 𝑁 𝑎𝑐 𝑐 𝑒𝑝𝑡 is the number of accepted samples and 𝛾 is a minimum

riterion on the accepted sample size to carry forward the tolerance

hrinkage at its current gradient. If 𝑁 𝑎𝑐 𝑐 𝑒𝑝𝑡 < 𝛾 then this gradient is as-

umed to be too steep and the expected gradient is recalculated using

 modified tolerance 𝜖∗ 
𝑞 

that is computed using the median distance 𝜌

etween the sample pseudo-data from that real (i.e. 𝜖∗ 
𝑞 
= 𝜌̃, where ~

ndicates the median). Thus 𝛾 parameterizes the coarseness of the op-

imization. If 𝛾 is very large (e.g. > 99% of N ) then the algorithm will

onverge slowly but accurately, whereas if 𝛾 is very small (e.g. 1% of

 ) the algorithm will be inaccurate and biased. We set 𝛾 to be the two

imes the estimated rank of the parameter covariance matrix i.e. 𝑟𝑎𝑛𝑘 (Σ)

for details of estimation see Section 2.3.3 ). 

.3.3. Formation of proposal distributions 
Following rejection sampling, the proposal density 𝑃 ∗ ( 𝜃|𝐷 0 ) is

ormed from the accepted parameters sets. We use a density approxima-

ion to the marginals and a copula for the joint similar to that described

n Li et al. (2017) . We take the initial draw of samples from the prior

ormed with a multivariate normal: 

 

∗ ( 𝜃) = 𝑁 ( 𝜇, Σ) (4)

here 𝜇 is a vector of the prior expectations and Σ their covari-

nces. In subsequent iterations whereby a minimum sample is accu-

ulated, we use nonparametric estimation of the marginal densities

ver each parameter using a non-parametric kernel density estimator

 Silverman, 2003 ). This approach allows for free-form approximation

o probability densities (e.g. multimodal or long-tailed distributions).

his flexibility allows for sampling across multiple possible maxima

t once, particularly at intermediate stages of the optimization. The

andwidth (determining the smoothness) of the kernel density esti-

ator is optimized using a log-likelihood, cross-validation approach

 Bowman, 1984 ). 

We then form the multivariate proposal distribution using the t-

opula ( Nelsen, 1999 ). Copula theory provides a mathematically conve-

ient way of creating the joint probability distribution whilst preserving

he original marginal distributions. Data are transformed to the copula

cale (unit-square) using the kernel density estimator of the cumulative

istribution function of each parameter and then transformed to the

oint space with the t-copula. 

The copula estimation of the correlation structure of the parameter

istributions acts to effectively reduce the dimensionality of the prob-

em by binding correlated parameters into modes. The effective rank of

he posterior parameter space (used in the computation of the adaptive

olerance schedule and reported in the results as a post-hoc assessment

f parameter learning) can be estimated by taking the eigenvalues of the

arameter covariance matrix and normalizing the coefficients by their

um. Using a cumulative sum of the ordered coefficients we can then

etermine the number of modes that can explain 95% of the variance of

he parameter samples. 

.4. Model comparison 

In the process of model-based inference, hypotheses may be com-

ared in their capacity to explain the observed data. Models fit with ABC
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an be formally compared using either “joint-space ” or “marginal likeli-

ood ” based approaches ( Grelaud et al., 2009 ; Toni and Stumpf, 2009 ).

ere we use the latter approach which estimates the marginal likelihood

model evidence) for each j th model: 

 ( 𝐷 0 |𝑀 

𝑗 ) ≅
# 𝜌

(
𝜇𝑛 , 𝜇0 

)
≤ 𝜖

𝑁 

(5)

here 𝜖 is a threshold on the distance metric 𝜌 that is suitably small

o give an acceptable fit on the data and is common across models. We

efer to the outcome of Eq. (5) as the acceptance rate of a particular

odel. For derivation of the ABC-SMC approximation to the marginal

ikelihood, please see Toni and Stumpf (2009) . In practice we set 𝜖∗ to

e the median of the distances across of all sets of models. The marginal

osterior probability of a model is then given by combining marginal

odel likelihoods and prior model probability 𝑃 ( 𝑀 

𝑗 ) and then normal-

zing across the space of J models: 

 

(
𝑀 

𝑗 𝐷 0 
)
= 

𝑃 
(
𝐷 0 |𝑀 

𝑗 
)
𝑃 
(
𝑀 

𝑗 
)

∑𝐽 

𝑖 =1 𝑃 
(
𝐷 0 |𝑀 

𝑖 
)
𝑃 
(
𝑀 

𝑖 
) (6) 

n all cases described, we assume that prior model probabilities are uni-

orm. 

We provide a post-hoc estimation of model complexity terms of

he divergence of the posterior from the prior ( Friston et al., 2007 ;

enny, 2012 ). Specifically, we estimate the Kullback-Lieber divergence

 KL of the posterior density 𝑃 ( 𝜃|𝐷 0 ) from the prior density 𝑃 ( 𝜃) over F
iscretized bins of the density: 

 𝐾𝐿 ( 𝑃 ( 𝜃|𝐷 0 ) ||𝑃 ( 𝜃) ) = − 

𝐹 ∑
𝑖 =1 

𝑃 ( 𝜃) 𝑙𝑜𝑔 

( 

𝑃 ( 𝜃) ( 𝑖 ) 
𝑃 
(
𝜃|𝐷 0 

)
( 𝑖 ) 

) 

(8)

This is a simplification of the full multivariate divergence and ig-

ores the dependencies between variables encoded in the posterior co-

ariance. We use the full multivariate divergence (given in supplemen-

ary information IV) that uses a multivariate Gaussian approximation to

he ABC estimated posterior density (taking the mean and covariance of

 samples from the posterior). The D KL can then be used for a post-hoc

iscrimination of model performance. To do this we build a complexity-

djusted goodness-of-fit heuristic (accuracy-complexity score; ACS) sim-

lar in form to an information criterion such as the Bayesian Information

riterion, but refined to consider posterior divergence as a measure of

omplexity, rather than the absolute number of parameters: 

C 𝑆 

𝑗 = − log 10 
(
𝑃 
(
𝑀 

𝑗 |𝐷 0 
))

− log 10 

( 

𝐽 𝐷 

𝑗 

KL ∑𝐽 

𝑖 =1 𝐷 

𝑖 
KL 

) 

(9) 

here 𝐷 

𝑗 

𝐾𝐿 
is the divergence of posteriors from priors for the j th model

ormalized by the sum of divergences across the whole model space.

odels that contribute exactly 1/J of the summed divergence have zero

omplexity penalty. Please note that the ACS does not provide the ob-

ective function for optimization (which is the pooled MSE), but rather

 heuristic for post-hoc discrimination of models via the addition of an

ccam factor to account for model parsimony ( MacKay, 2003 ). 

.5. Empirical data: recordings from Parkinsonian rats 

Summary statistics are computed from empirical data and then

sed to fit the generative forward model. In the example implementa-

ion used in this paper we use multisite basal ganglia and single site

erebral cortex recordings in rats ( n = 9) that have undergone a 6-

ydroxydopamine (6-OHDA) induced dopamine depletion of the mid-

rain, a lesion model of the degeneration associated with Parkinson-

sm in humans ( Magill et al., 2004 , 2006 ). The animals were implanted

ith two electrodes to measure local field potentials (LFP) from multiple

tructures in the basal ganglia: dorsal striatum (STR), external segment

f the globus pallidus (GPe), and the subthalamic nucleus (STN). Addi-

ionally electrocorticography was measured over area M2 of the motor
5 
ortex, a homologue of the Supplementary Motor Area (SMA) in hu-

ans ( Paxinos and Watson, 2007 ). Animals were recorded under isoflu-

ane anaesthesia and during periods of “cortical-activation ” induced by

 hind-paw pinch ( Steriade, 2000 ). The details of the experimental pro-

edures were previously published ( Magill et al., 2004 , 2006 ). Experi-

ental procedures were performed on adult male Sprague Dawley rats

Charles River) and were conducted in accordance with the Animals

Scientific Procedures) Act, 1986 (UK), and with Society for Neuro-

cience Policies on the Use of Animals in Neuroscience Research. anaes-

hesia was induced with 4% v/v isoflurane (Isoflo; Schering-Plough)

n O2 and maintained with urethane (1.3 g/kg, i.p.; ethyl carbamate,

igma), and supplemental doses of ketamine (30 mg/kg, i.p.; Ketaset;

illows Francis) and xylazine (3 mg/kg, i.p.; Rompun, Bayer). 

Pre-processing of time series data (LFP and ECoG) was done as fol-

ows: data were 1) truncated to remove 1 second (avoid filter artefacts);

) mean corrected; 3) band-passed filtered 4–100 Hz with a finite im-

ulse response, two-pass (zero-lag) with optimal filter order; 4) data

ere split into 1 second epochs with each epoch subjected to a Z-score

hreshold criterion such that epochs with high amplitude artefacts were

emoved. 

.6. Computation of summary statistics 

We derive a set of summary statistics from signal analyses of the

xperimental and simulated time series. These statistics transform both

he data and pseudo-data into the same feature space such that they can

e directly compared ( Fig. 1 B; blue box). It is important to note that

he summary statistic is vital in determining the outcome of the inverse

odelling with ABC ( Beaumont et al., 2002 ; and see discission). The set

f statistics must effectively encode all phenomena of the original data

hat the experimenter wishes to be modelled. 

.6.1. Frequency spectra 
We use the autospectra to constrain the oscillatory activity of each

eural mass. Auto-spectral analyses were made using the averaged peri-

dogram method across 1 second epochs and using a Hanning taper to

educe the effects of spectral leakage. Frequencies between 49 and 51 Hz

ere removed so that there was no contribution from 50 Hz line noise.

/f background noise was removed by first performing a linear regres-

ion on the log-log spectra (at 4–48 Hz) and then subtracting the linear

omponent from the spectra ( Le Van Quyen et al., 2003 ; Nikulin and

rismar, 2006 ). Note that only empirical data underwent removal of the

/f background. This ensured that the inversion scheme was focused

pon fitting the spectral peaks in the data and not the profile of 1/f

ackground noise. To simplify observation modelling of differences in

xperimental recording gains between sites, all spectra were normalized

y dividing through by their summed power at 4–48 Hz. 

.6.2. Directed functional connectivity 
To quantify interactions between populations, we use non-

arametric directionality (NPD; Halliday 2015 ), a directed functional

onnectivity metric which describes frequency-resolved, time-lagged

orrelations between time series. The NPD was chosen as it makes it

ossible to remove the zero-lag component of coherence and so interac-

ions between signals are not corrupted by signal mixing/volume con-

uction, of which was predominant in the empirical data used here (see

est et al., 2018 ). Thus, using NPD simplifies the observation problem

y removing the need to estimate mixing terms or a lead field. 

Estimates of NPD were obtained using the Neurospec toolbox

 http://www.neurospec.org/ ). This analysis combines Minimum Mean

quare Error (MMSE) pre-whitening with forward and reverse Fourier

ransforms to decompose coherence estimates at each frequency into

hree components: forward, reverse and zero lag. These components are

efined according to the corresponding time lags in the cross-correlation

unction derived from the MMSE pre-whitened cross-spectrum. This ap-

roach allows the decomposition of the signal into distinct forward and

http://www.neurospec.org/
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everse components of coherence separate from the zero-lag (or instan-

aneous) component of coherence which can reflect volume conduction.

he method uses temporal precedence to determine directionality. For

 detailed formulation of the method see Halliday (2015) ; and for its

alidation see West et al. (2020b) . We ignored the instantaneous com-

onent of the NPD and use only the forward and reverse components

or all further analyses. Note that NPD accounts for the relative phase

etween activities by segregating the contribution to the cross-spectrum

nto either leading (forward) or lagging (reverse) components. 

.6.3. Data pooling and smoothing 
In all procedures using empirical data to constrain models, we used

he group-averaged statistics computed from recordings from a group of

nilaterally 6-OHDA lesioned animals. As a final processing step, both

he autospectra and NPD were smoothed to remove noise such that fit-

ing was focused on the dominant peaks of the features ( Rowe et al.,

004 ). This was achieved by convolving spectra with a 4 Hz wide Gaus-

ian kernel. Empirical and simulated data were transformed identically

o produce equivalent autospectra and NPD. We assume smoothness of

he spectral features as a way to separate actual features from noise.

pectral estimates in neuroscience (and in general) become increasingly

mooth with large sample sizes (with error decreasing relative to 
√

𝑛 ),

hus the smoothing can be considered a correction for finite time spec-

ral estimates. 

.6.4. Software availability 
All analyses and procedures were written in MATLAB (Math-

orks, Natick, MA). The toolbox is publicly available and main-

ained as a Github repository ( https://github.com/twestWTCN/

BCNeuralModellingToolbox.git ). For a list of external depen-

encies and their authors see appendix I. The procedures used

or constructing the figures in this paper can be run using the

West2021_Neuroimage_Figures.m’ script. Please see appendix IV for a

hort guide to the repository and its key scripts. 

.7. Validation of ABC procedures for parameter inference and model 
dentification 

.7.1. Testing the face validity of the model inversion procedures 
To test whether the ABC estimator will: a) yield parameter estimates

hat are unique to the data from which they have been optimized; and

) yield consistent estimation of parameters across multiple instances,

e performed two procedures of eight multi-starts using two separate

atasets. The datasets were created by first defining two forward models

ith different parameter sets: (1) the MAP estimate of a reciprocally

oupled STN/GPe after fitting to the empirical data and (2) the same

odel but with each parameter log scaling factors randomly adjusted

y ± 1. These models were then used to generate synthetic datasets by

imulating 256 s of data (with separate realizations for each multi-start).

e could then track the error of parameter estimates from the known

arameters of the original forward model to examine the accuracy of

he inference. 

When testing point (a), that parameter estimates are unique to the

ata from which they are fitted - we performed a eight-fold cross-

alidation procedure in which we used a one-sample Hotelling proce-

ure to test for significant difference of each fold’s mean from that of

he left-out sample. We report the probability of the folds that yielded a

ignificant test, with high probability indicating that the left-out MAP es-

imates are likely to deviate from the rest of the fold. In this way we can

dentify the probability of an ABC initialization yielding a non-consistent

ample. Secondly, we test (b), that MAP estimates are unique to the data

n which they have been fitted- using the Szekely and Rizzo energy test

 Aslan and Zech, 2005 ) between the samples from data A and B, with the

ull-hypothesis that the multi-start samples derived from different data

rise from the same distribution. Finally, we use a Multivariate Anal-
6 
sis of Variance (MANOVA) procedure to test for difference in means

etween the two multivariate samples. 

.7.2. Testing the face validity of the model comparison procedures 
To test the face validity of the model comparison framework, we con-

tructed a confusion matrix, an approach commonly used in machine

earning to examine classification accuracy. Three different models of

he STN/GPe network were fit to the empirical data and then using the

tted parameters three synthetic data sets were simulated. We chose a

odel with reciprocal connectivity: (1) STN ↔ GPe; and then two mod-

ls in which one connection was predominant: (2) STN → GPe and (3)

Pe → STN. The three models (with the original priors) were then fitted

ack onto the synthetic data. Model comparison was then performed to

ee whether it could correctly identify the original mode that had gen-

rated the data. The model comparison outcomes (accuracy of the fit;

 KL of posteriors from priors; and the combined ACS measure) were

hen plotted in a 3 × 3 matrix of data versus models. In the case of valid

odel selection, the best fitting models should lay on the diagonal of the

onfusion matrix. We also performed a second analysis in which more

omplex models were fitted (incorporating between 4 and 6 sources).

pecifically, we used models M1.1, M2.2, and 5.2 described in detail in

he next section (2.7.3). 

.7.3. Testing the scalability of the framework with application to the full 
odel space 

In order to demonstrate the scalability of the optimization and model

omparison framework, we used the space of 12 models described be-

ow. We individually fitted the models and then performed a (marginal

ikelihood-based; see methods) model comparison to select the best of

he candidate models. A set of null models were included which are

natomically implausible. If model selection performed correctly, then

t is expected that these models would perform poorly. 

To investigate the importance of known anatomical pathways in

econstructing the observed steady state statistics of the empirical lo-

al field potentials (i.e. autospectra and NPD), we considered a set of

ompeting models. Specifically, we looked at the role of five pathways

nd their interactions: the cortico-striatal indirect; the cortico-striatal

irect; the cortico-subthalamic hyperdirect; thalamocortical relay; and

he subthalamic-pallidal feedback. In total we tested 6 families of mod-

ls (presented later in the results section- Fig. 5 ): 

1 + indirect. 

2 + indirect / + hyperdirect. 

3 – indirect / + hyperdirect. 

4 + indirect / + direct / – hyperdirect / + thalamocortical. 

5 + indirect / + direct / + hyperdirect / + thalamocortical. 

6 - indirect / + direct / + hyperdirect / + thalamocortical. 

We considered these six families and further divided them into

wo sub-families that do or do not include the subthalamopallidal

STN → GPe) feedback connection. Family (1) investigates whether the

ndirect pathway alone can explain the pattern of observed spectra and

unctional connectivity. In the case of family (2), previous work has

ighlighted the importance of hyper-direct connections in the functional

onnectivity ( Jahfari et al., 2011 ; Nambu et al., 2015 ), yet anatomical

esearch has shown dopamine to weaken the density of synaptic pro-

ections ( Chu et al., 2017 ). Thus, family (2) provides an ideal set of

odels to examine the nonlinear mapping of anatomical to functional

onnectivity described in the introduction of this paper. Families (3)

nd (6) represent null models in which the indirect pathway is excluded

nd are used as implausible models to test whether the model com-

arison procedure yields valid results given the known neurobiology.

his is because the indirect pathway is thought to be vital in explaining

network activity following the dopamine depletion associated with PD

 Alexander et al., 1986 ; Albin et al., 1989 ; Bolam et al., 2000 ). The func-

ional role of the thalamocortical subnetwork is relatively unknown (but

ee recent work: Reis et al., 2019 ) and so families (4) and (5) provide

https://github.com/twestWTCN/ABCNeuralModellingToolbox.git
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n examination of whether the addition of the thalamic relay can better

xplain the empirical data. The second level of families (i.e. x.1–2) in-

estigates whether the reciprocal network formed by the STN and GPe

s required to explain observed patterns of connectivity in the data. This

etwork has been the subject of much study and is hypothesized to play

n important role in the generation and/or amplification of pathologi-

al beta rhythms ( Plenz and Kital, 1999 ; Bevan et al., 2002 ; Cruz et al.,

011 ). 

. Results 

.1. Properties of fitting procedure and convergence when applied to a 
imple model of the pallido-subthalamic subcircuit 

Fig. 2 shows the results of an example model inversion demonstrat-

ng how the ABC algorithm iteratively converges to yield an approx-

mation to the summary statistics of the empirical data. This exam-

le uses a simple model comprising the reciprocally connected sub-

halamic nucleus (STN) and external segment of the globus-pallidus

GPe) shown in Fig. 2 A. The autospectra and directed functional con-

ectivity were fit to the group averaged results originally reported in

est et al. (2018) which described an analysis of local field potentials

ecorded from a rodent model of Parkinsonism (see methods for exper-

mental details). By tracking the value of the objective function (i.e.

he MSE pooled ) over multiple iterations ( Fig. 2 B) we demonstrate a fast-

ising initial trajectory in the first 15 iterations that eventually plateaus

owards convergence. In Fig. 2 C and D the simulated features (autospec-

ra and NPD respectively) gradually move closer to the empirically es-

imated features with each iteration of the algorithm. 

The evolution of the proposed marginal densities ( Fig. 2 E) demon-

trates that over the optimization, parameter means, and variances de-

iate significantly from the prior. Estimation of some parameters are

etter informed by the data than for others, as indicated by the differ-

nt precision of the proposal densities. Additionally, learnt multivariate

tructure in the joint parameter densities is apparent in the parameter

orrelation matrices (see methods; Fig. 2 F). The evolution of these ma-

rices shows the emergence of distinct correlated modes. These modes

educe the dimensionality of the optimization problem: by estimating

he number of significant principal components of the parameters (see

ethods) we find that optimized models show a reduction of 50–70%

rom that of the prior. Note however, that due to the identity covari-

nce of the prior, increased correlation in parameters entails an increase

he complexity penalty in the ACS metric used to discriminate between

odels (see Methods and below). 

.2. Testing the internal consistency of data dependant estimation of ABC 

ptimized posteriors using a multi-start procedure 

This section of the results examines the face validity of parameter

stimation of ABC i.e. that the scheme will (a) make a consistent es-

imation of posterior model parameters across multiple realizations of

ptimization; and (b) yield posterior estimates of parameters that are

lausible given the known causes of the data. This is achieved using a

ulti-start procedure ( Baritompa and Hendrix, 2005 ) described in the

ethods ( Section 2.7.1 ) in which we initialize the algorithm eight times

or two separate datasets generated by different underlying models. The

esults of the multi-starts are shown in Fig. 3 . 

The evolution of the objective function (MSE pooled ) over the progress

f the optimization is presented in Fig. 3 A. Multi-starts of the optimiza-

ion for both dataset A and B exhibited consistent degrees of error in

he posterior summary statistics. In Fig. 3 B, the average log-precision of

he marginal densities is tracked over the progress of the optimization.

hese data show that across all initializations, the average precision of

he posterior densities (1/ 𝜎 = 20) was 2.5 times greater than those of

he priors (1/ 𝜎 = 8) demonstrating increased confidence in parameters

stimates that were constrained by the data. 
7 
In Fig. 3 C, we present the maximum a posterior (MAP) estimates for

ach parameter across the multi-starts. There are clear differences be-

ween parameters inverted upon the two separate sets of data (red versus

lue bars; asterisks indicate significant t-tests). For instance, the mean

Pe time constant (1st group of bars from the left) is smaller for data A

ompared to B. Other parameters were well-informed by the data, but

ot significantly different between either data sets (e.g. GPe sigmoidal

lope; 2nd set of bars from the left). The accuracy of the parameter opti-

ization procedure was assessed by comparing the MAP estimates to the

nown parameters of the underlying forward models. This can be seen

n Fig. 3 C where the parameter values are plot as crosses alongside the

BC posterior expectations. Estimates of STN and GPe time constants

nd the GPe → STN delay were well-recovered (the actual value falls

ithin the spread of multi-start estimates). The slope of the nonlinear

ctivation function however was poorly recovered showing consistent

ver-estimation, likely due to the real value falling far out of the bounds

f the prior. 

To estimate the internal-consistency of the parameter estimates, we

pplied a one-sample Hotelling test within an eight-fold, leave-one-out

ross-validation to each of the MAP estimates from the multi-start. For

oth samples of parameters estimated from data A and B we find there

o be a 0% rejection of the null hypothesis that the mean of the fold is

ignificantly different from that of the left-out sample. This result indi-

ates that every initialization of the multi-start fell within the variance

efined by the remainder of the multi-starts. This does not test whether

he variance is unacceptably large, we test this in part by examining

ii): that the posteriors were differentiated by the data on which they

ere estimated, using a Szekely and Rizzo energy test. We find there to

e a significant difference in the means of the two samples ( Φ = 5.13;

 = 0.001). This finding is supported by a MANOVA test that demon-

trates that the two data sets are significantly segregated by their poste-

ior parameter means ( D = 1, P < 0.001). This suggests that the spread of

stimates was, at least, sufficient to distinguish posteriors derived from

ifferent underlying generative models. Visualization of the parameter

pace using multidimensional scaling (MDS; Fig. 3 D) confirms the seg-

egation of the posterior samples into two clusters determined by the

atasets from which they are estimated. These results confirm that the

BC optimized posteriors are consistent across multiple initializations

nd that the output is determined by differences in the underlying model

enerating the given data. 

.3. Testing face validity of the model comparison approach 

To verify that the face validity of the model comparison approach

.e. that it can identify the correct structure of the generative model of

he data we constructed a confusion matrix (as detailed in the methods

ection 2.7.2 ), first using variations on the STN/GPe model presented in

he previous sections and shown in Fig. 4 A. In the case of correct model

dentification, the best model scores should lay along the diagonal of

he confusion matrix. 

In Fig. 4 B we present the posterior model probabilities P(M|D) (see

ethods for details of its calculation). When normalizing across the joint

pace to compute the marginal posterior probability of a model, we con-

ider only the three models tested per dataset (i.e. the sum of the prob-

bilities across each column of Fig. 4 B, C, F and G are equal to one).

his analysis demonstrates that, in terms of accuracy, the most proba-

le models lie on the diagonal of the confusion matrix showing that the

osterior accuracies are sufficient to correctly identify the generating

odel. In Fig. 4 C, we present the model complexity in terms of a pro-

ortion of the sum divergence across all models (i.e. the second term of

q. (9) ). These analyses show that the divergence of each model’s pos-

eriors from priors (so called complexity, measured in terms of the D KL ).

n the case of model 1 (which is the most flexible in terms of numbers of

ree parameters) there are inflated divergences in the first column that

esult from a large deviation of posteriors when attempting to fit the

ata generated from the alternative models. This shows that a post-hoc
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Fig. 2. Examining the convergence of 

ABC optimization upon summary statis- 

tics from recordings of the STN and GPe 

in Parkinsonian rats – Parameters of neu- 

ronal state space models were optimized us- 

ing the ABC method detailed in the text. 

Snapshots of the optimization are taken at 

the 1st, 15th, and 30th iteration at which the 

optimization converges. (A) Schematic of the 

STN/GPe neural mass model. (B) The itera- 

tion history of the ABC algorithm is presented 

as a sequence of box plots indicating the dis- 

tribution of fits (MSE pooled ) at each sampling 

step, with mean and interquartile range in- 

dicated by individual crosses and boxes. (C) 

Power spectra of the empirical data (bold) 

and simulated data (dashed) are shown. The 

best fitting parameter sample for each iter- 

ation is given by the bold dashed line. (D) 

Similarly, the functional connectivity (non- 

parametric directionality; NPD) is shown in 

red and blue with the same line coding. (E) 

Examples of the prior (dashed) and proposal 

(bold) marginal distributions for a selection 

of five parameters are shown (note some pri- 

ors have identical specifications and so over- 

lap). It is seen that over iterations the pro- 

posal and posterior deviate from the prior 

as the latent parameter densities are esti- 

mated. (F) Correlation matrices from copula 

estimation of joint densities over parameters. 

Colour bar at bottom indicates the correla- 

tion coefficient. Correlated modes appear be- 

tween parameters as optimization progresses. 

(For interpretation of the references to colour 

in this figure legend, the reader is referred to 

the web version of this article.) 
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Fig. 3. Multi-start analysis to test face validity of the ABC-based estimation of model parameters by demonstrating consistency of estimation and the data 

specificity of parameter estimates. A two-node model of the STN/GPe circuit (inset) was fit to two different data sets: dataset A (blue) and dataset B (red) that 

were generated by different underlying models. Each estimation was performed 10 times with identical specification of prior distributions for all initializations. (A) 

Tracking of the goodness-of-fit (shown as -log 10 (-MSE pooled )) over the iterations demonstrated consistent convergence. Posterior estimates of the summary statistic 

were on average more accurate for dataset A than for B but were consistent across multi-starts (B) Optimization showed a consistent increase in the average precision 

(equivalent to a decrease in the logarithm of the inverse standard deviation of the data) of the posteriors indicating that data was informative in constraining 

parameter estimates. (C) Examination of the MAP estimates demonstrated a consistent inference of parameter values. Some parameters were drawn to common 

values with both data A and B (e.g. GPe time constant), whilst others show differences informed by the data (e.g. STN time constant). MAP values are given as 

log scaling parameters of the prior mean. The prior values were set to equal zero. Error bars give the standard deviations of the estimates across initializations. 

Asterisks indicate significant t -test for difference in means between parameters estimated from data A and B . (D) To visualize trajectories of the multi-starts, the high 

dimensional parameter space was reduced to two dimensions using multi-dimensional scaling (MDS). Evolutions of the means of the proposal parameters exhibit a 

clear divergence between data sets A and B that were significantly different (MANOVA, see main text). (For interpretation of the references to colour in this figure 

legend, the reader is referred to the web version of this article.) 
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nalysis of divergence of the posterior (using D KL ) can be used to dis-

riminate models which have been overfitted. When combining these

wo measures into the ACS metric (summarising model accuracy minus

omplexity) in Fig. 4 D, it is seen that the best fitting models are still

orrectly identified even when accounting for the increased complex-

ty of posterior parameter densities. Note that the most flexible model

model 1) was unable to fit data from models 2 and 3, this occurred as

he required posteriors to achieve effectively decouple STN/GPe feed-
9 
ack were very far from the model 1 priors on connectivity. This is a

nown limitation of ABC, please see the discussion. 

To determine whether this face validation held for larger models, we

erformed an identical analysis with three models ranging in complexity

 Fig. 4 E). Model accuracy was again highest along the diagonal ( Fig. 4 F),

ith the complexity adjusted goodness-of-fit (ACS; Fig. 4 H) maintaining

orrect model identification. These results demonstrate that the model

omparison approach can properly identify models from which the data
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Fig. 4. Testing face validity of the ABC model comparison approach to model identification. Confusion matrices were constructed by fitting the three models 

of the STN/GPe circuit. Synthetic data was generated using the fitted models and then the three original models were fitted back to the synthetic data to test whether 

model comparison could identify the generating model. (A) Schematic of neural mass model to be fitted. Annotations of connections indicate the presence of each for 

models 1–3. (B) Matrix of posterior model probabilities 1- P(M|D) computed normalized across the joint model space (for each column demarcated by dashed lines). 

(C) Matrix of normalized divergences of posteriors from priors (see second term of Eq. (9) ). (D) Combined scoring to simultaneously account for model accuracies 

and divergence (ACS). Large values indicate better fits with more parsimonious posteriors (small D KL ). (E-F) Same as for (A-D) but for the more complex model set. 
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riginated, thus providing a face validation of the model comparison

rocedures. 

.4. Scaling up to larger model spaces: application to models of the 
ortico-basal ganglia-thalamic circuit 

Finally, we applied the ABC framework to a larger and more com-

lex model space to test the scalability of the methodology. Specifi-

ally, we devised a set of 12 models (illustrated in Fig. 5 ) incorporating

ombinations of pathways in the cortico-basal ganglia-thalamic circuit

mongst a set of six neural populations motor cortex (M2); striatum

STR), GPe, STN, and thalamus (Thal.). Models were split into sets in-

luding/excluding the indirect (M2 → STR → GPe → STN); hyperdirect

M2 → STN); and thalamocortical relay (M2 ↔Thal.). Models were fur-

her subdivided to include or exclude the subthalamo-pallidal feedback

onnection (STN → GPe; models prefixed M x .2 to denote inclusion of

he connection). For a full description and defence of the model choices

lease see methods Section 2.7.3 . These models were fit individually to

he empirical data and then model comparison used to determine the

est candidate model. 

In Fig. 6 we show the resulting model fits and then the subsequent

odel comparison done in order to determine the best model or set of

odels from the proposed model space. From visual inspection of the

ts to the data features in Fig. 6 A as well as the distribution of posterior

odel accuracies in Fig. 6 B there is a wide range of model performances

ith regards to accurate fitting of the models to the data. Inspection of

he posterior model fits to the data features in 6A shows the best fit-

ing model (M 5.2) was able to account for the multiple peaks in the

utospectra at around 20 Hz and 30 Hz. There was however a system-

tic underestimation of the directed functional connectivity (NPD) from

ubcortex to cortex. When the MSE pooled of the fitted models was segre-

ated between their autospectra and functional connectivity, we found

hat spectra were more accurately fit than for the power. 
10 
In all cases the models containing the subthalamopallidal excita-

ory connection (M x .2) performed better than those without (M x .1)

nd in good agreement with the known Parkinsonian electrophysiology

 Cruz et al., 2011 ). Notably we found that the model families (3) and (6)-

he null models- yielded poor accuracy with many of the posterior dis-

ributions of model MSE pooled falling far below the median of the whole

odel space ( Fig. 6 B) that translates to a reduced model probability

 Fig. 6 C). In the case of M 6.2 we see that this is accompanied by a high

L divergence ( Fig. 6 D). M 4.2 and 5.2 are the strongest models, with

istributions of fits tightly clustered around high values yielding high

odel evidences. This suggests the importance of including thalamo-

ortical feedback connections in the model. Scoring with ACS suggests

odel 4.2 is the best of the models due to the smaller model complexity

parameter divergence from prior). These results further underwrite our

ace validation of the ABC procedure by demonstrating that its posterior

stimates of model probability match well with the known neurobiology

f the circuit. 

. Discussion 

.1. Summary of the results 

In this paper we formulated a novel framework ( Fig. 1 ) for the in-

erse modelling of neural dynamics based upon the ABC-SMC algorithm

 Toni et al., 2009 ). We have provided a face validation of this method

hen applied to models and data types typically encountered in systems

euroscience. We first demonstrated that the algorithm converges to

ield best fit approximations to the summary statistics of empirical data

o yield posterior estimates over parameters ( Fig. 2 ). We assessed the ac-

uracy of parameter estimation by confirming that posterior estimates

ere plausible given the parameters that were known to generate the

ata ( Fig. 3 ). Additionally, we used a multi-start procedure to demon-

trate that the optimization was robust to local minima and thus gener-
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Fig. 5. Illustration of the model space of the cortico-basal-ganglia network fitted with ABC and compared with Bayesian model selection. The model space 

comprises six families which can be further subdivided into two subfamilies yielding 12 models in total. Family (1) models the indirect pathway; family (2) contains 

models with both the indirect and hyperdirect pathways; family (3) contains models with the hyperdirect pathway but not indirect pathway; family (4) contains 

models with the indirect, direct and thalamocortical pathways; family (5) contains models with indirect, direct hyperdirect, and thalamocortical pathways; family (6) 

contains models with hyperdirect, direct and thalamocortical pathway but no indirect pathway. Finally, each family comprises two sub-families that either exclude 

(Mx.1) or include (Mx.2) subthalamopallidal feedback excitation. Excitatory projections are indicated by ball-ended connections, whilst inhibitory connections are 

flat-ended. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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1 In appendix III we investigated whether the posterior models exhibited any 

of these dynamics for which we found no evidence. 
lizable across different realizations of the data. Next, we examined the

ace validity of the model selection procedures ( Fig. 4 ). These results

emonstrated that the model comparison approach can reliably identify

he model that generated the data, even in cases in which more com-

lex models (going up to 6 sources) were included. Finally, we demon-

trated the capacity for the framework to investigate the structure of

eal-world neuronal circuits using a set of models of the cortico-basal-

anglia-thalamic circuit fit to empirical data ( Fig. 5 ). Conclusions drawn

rom this model comparison matched well with the known neurobiology

nd further underwrite the feasibility of applying this method to answer

iologically relevant problems ( Fig. 6 ). 

.2. ABC for parameter estimation of neural circuit models 

ABC has established itself as a key tool for parameter estimation in

ystems biology ( Excoffier, 2009 ; Ratmann et al., 2009 ; Toni et al., 2009 ;

urner and Sederberg, 2012 ; Liepe et al., 2014 ) but is yet to see wide

doption in systems neuroscience. It is known that ABC will not per-

orm well under certain conditions (for a review see Sunnåker et al.,

013 ). Specifically, it has been shown that the simplest form of the

BC algorithm, based upon an rejection-sampling approach, is ineffi-

ient in the case where the prior densities lie far from the true posterior
11 
 Lintusaari et al., 2016 ). This problem is alleviated to some degree in

iological models where a good amount of a priori knowledge regarding

lausible model structures or parameter values exists. This motivates the

se of neurobiologically grounded models over phenomenological mod-

ls where often the ranges of potential parameter values are unknown. 

A caveat of simulation-based inverse modelling concerns the

imescale of the simulation and the data features to be fitted. Necessary

nite time observations can preclude the examination of slow modes or

witching behaviour 1 occurring at a time-scale beyond that captured in

he empirical recording or simulation duration (see also discussion be-

ow regarding sufficiency of the summary statistics). In the deployment

f ABC here, we use a model cast in a set of stochastic delay differen-

ial equations, in which the finite time realization of each noise process

ill lead to differences in the trajectory of the system between instances

i.e. forward uncertainty ). In these cases, optimization with ABC will be

rawn towards regions of parameter space where stochasticity does not

esult in large deviations between realizations as this will result in in-

reased uncertainty in the posterior parameter estimates. Corroborating
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Fig. 6. Scaling up the ABC model comparison framework – investigating models of the cortico-basal ganglia-thalamic network. 12 competing models (six 

families subdivided each into two sub-families) were fitted to empirical data from Parkinsonian rats. Models were fitted to summary statistics of recordings from the 

motor cortex (M2), striatum (STR), subthalamic nucleus (STN), and external segment of the globus pallidus (GPe). Models were first fit using ABC to estimate the 

approximate posterior distributions over parameters. To assess relative model performances, 1000 draws were made from each model posterior and corresponding 

data was simulated. (A) The posterior model fits for the top three performing models are shown, with autospectra on the diagonal and NPD on the off-diagonal 

(M 5.2 in light green; M 4.2 in turquois; and 1.2 in red). Bounds indicate the interquartile range of the simulated features. (B) Violin plots of the distributions of 

model accuracies (MSE pooled ) of the simulated pseudo-data from the empirical data. (C) The acceptance probability approximation to the model evidence 1- P(M|D) 

is determined by computing the number of samples from the posterior that exceed the median model accuracy (MSE pooled ). (D) The joint space normalized Kullback- 

Leibler divergence of the posterior from prior is shown for each model (for formulation see second term of Eq. (9) ). Large values indicate high divergence and 

overfitting. (E) Combined scores for accuracy and divergence from priors using ACS. (For interpretation of the references to colour in this figure legend, the reader 

is referred to the web version of this article.) 
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l  
his, it was found that independent realizations of the stochastic model

ed to highly consistent summary statistics (appendix III). 

Furthermore, the consistency in parameter estimates between multi-

tarts can also be taken as evidence of low inverse uncertainty as the

alues of estimated parameter did not deviate significantly between re-

lizations of the underlying generative process. It would be of interest

but beyond of the scope of this paper) to evaluate the extent to which

he variance between experimental samples (e.g. recordings from dif-

erent animals within the same experimental treatment, or changes in

ensor noise) can affect the consistency of parameter estimates (i.e. an

xamination of predictive validity). Schemes exist for DCM where data

eatures may be weighted in terms of the estimated noise term, a similar

xtension is likely to be of use for ABC inverted models, especially in the

ase where multiple types of summary statistics are combined. 

.3. Sufficiency of the summary statistic and ABC model selection 

The selection of summary statistics are known to be a vital factor in

etermining the outcomes of ABC estimated posterior ( Beaumont et al.,
12 
002 ; Sunnåker et al., 2013 ), as well as in model selection that where in-

ufficiency of the statistic can affect models non-uniformly ( Robert et al.,

011 ). Thus we can only interpret the results of a model comparison in

erms of each model’s capacity to explain the given summary statistic

s an abstraction to the complete data. The choice of summary statis-

ic will always introduce a degree of parameter non-identifiability, for

nstance an investigation of model behaviours involving switching or

haotic dynamics are unlikely to accurately identify the responsible pa-

ameters given a feature such as Fourier spectrum. In this work we used

he directed functional connectivity (NPD) as a data feature by which

o constrain our model(s) rather than the complex cross spectra (from

hich it can be derived). The NPD exhibits robustness to zero-lag effects

rising from volume conduction that in turn simplifies the estimation of

ixing terms in the observer model. In our validation here, we showed

hat the feature was sufficient to recover known parameters, but likely

ntails an increase in the degree of non-identifiability that could be ex-

mined in future work. 

Furthermore, sampling approaches to the estimation of marginal

ikelihoods in order to perform Bayesian model comparison are chal-
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enging to compute ( Chib, 1995 ) and common approximations have

een demonstrated to be poor ( Penny, 2012 ). Furthermore, sampling

pproximations to the model evidence such as that described here are

ighly dependant upon the distance from the true posterior and the suf-

ciency of the summary statistic. Further work would need to be done

n order to understand how the ABC estimates of model evidence are

imited by non-vanishing error tolerance (i.e. 𝜖 ≠ 0 ) in which posteriors

re only approximate ( Dean et al., 2014 ). 

.4. Future directions for ABC and mesoscale neural modelling 

This work follows on from a number of previous works that have

erformed inference from large scale models of brain activity and spec-

ral domain summary statistics of neural recordings such as their cross-

pectra or functional connectivity ( Valdes et al., 1999 ; Rowe et al.,

004 ; van Albada et al., 2010 ; Friston et al., 2012 ; Hadida et al.,

018 ; Hashemi et al., 2018 ). Whilst similar in their aims, the compu-

ational challenge of the inverse problem has meant that the techniques

dopted to solve it have dictated the types of questions to which they

an be applied. Previous approaches to constraining models from spec-

ral features have often bypassed finding explicit numerical solutions

o models, instead opting to approximate dynamics by estimating the

ystem’s transfer function around a local-linearization ( Valdes et al.,

999 ; Rowe et al., 2004 ). Beyond reducing the computational bur-

en of numerical integration, this approach also facilitates the use of

echniques such as variational Bayes ( Friston et al., 2012 ) by ensuring

hat posterior densities conform to a multivariate Gaussian (the Laplace

ssumption). 

Whilst this technique has proven powerful (e.g. Moran et al., 2011 ;

astos et al., 2015 ), it precludes the examination of highly nonlinear

odels that exhibit structural instabilities (i.e. bifurcations or phase

ransitions) that will result in a non-convex cost function, and are thus

nlikely to conform to the Laplace assumption. Importantly these bi-

urcations are known to exist in the neural mass models of the type

sed here ( Aburn et al., 2012 ) and have been demonstrated to yield

ultimodal posteriors ( Hadida et al., 2018 ). It would be of future in-

erest to systematically delineate the conditions for when the above

pproximations. For instance, a comparison of posterior parameter

stimates computed between ABC and DCM (i.e. a construct valida-

ion), in a model approaching a transition point would address the

uestion of what approach is best suited to a particular modelling

cenario. 

Current approaches to the inverse modelling phenomena such as

tate transitions or time dependant fluctuations with DCM discretize

hese phenomena into either sliding windows ( Rosch et al., 2018 ) or

 succession states that evolve according to a matrix of transition prob-

bilities ( Zarghami and Friston, 2020 ). This follows from an assump-

ion that time varying behaviour can be separated into fast local dy-

amics which are then under the control of some slow mode that dic-

ates the succession ( Rabinovich et al., 2012 ). Whilst this approach is

seful for understanding the states, it somewhat abstracts the mech-

nisms that lay behind the transitions, whether that be due to slow

hanges in connectivity or parameters (e.g. plasticity), evolution of a

low variable (c.f. an order-parameter; Haken et al., 1985 ), or switch-

ng induced by stochastic drives to a model. Examination of these tran-

itions are, for instance, important in models looking to interact with

ngoing brain states through stimulation (see for instance West et al.,

020a ). The framework described here provides an opportunity to in-

estigate the mechanism behind these transitions and paves the way for

uture studies investigating the types of mechanisms that underwrite

he statistics of for instance electrophysiological bursts ( Powanwe and

ongtin, 2019 ; Duchet et al., 2020 ) or neural microstates ( Baker et al.,

014 ). Previous work has shown that ABC is well suited to applications

sing highly nonlinear or stochastic systems (see Toni et al., 2009 for an

xample). 
13 
onclusions 

Overall, we have introduced a framework for parameter estimation

nd model comparison that draws upon a number of recent develop-

ents in simulation-based inference that make it attractive to the in-

erse modelling of large-scale neural activity. This framework provides

 robust method by which large scale brain activity can be understood

n terms of the underlying structure of the circuits that generate it. This

cheme avoids making appeals to local-linear behaviour and thus opens

he way to future studies exploring the mechanisms underlying itin-

rant or stochastic neural dynamics. We have demonstrated that this

ramework provides consistent estimation of parameters over multiple

nstances; can reliably identify the most plausible model that has gener-

ted an observed set of data; and given an example application demon-

trating the potential for this framework to answer neurobiologically

elevant questions. Whilst this paper constitutes a first validation and

escription of the method, more work will be required to establish its

alidity in the context of more complex models as well as statistics of

ime-dependant properties of neural dynamics. 
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