
 

Journal Pre-proof

Inference of Brain Networks with Approximate Bayesian Computation
– assessing face validity with an example application in Parkinsonism

Timothy O. West ConceptualizationMethodologySoftwareValidationInvestigationWriting - Original DraftWriting - review & editingVisualization ,
Luc Berthouze MethodologyResourcesWriting - review & editingSupervisionFunding acquisition ,
Simon F. Farmer ConceptualizationWriting - review & editingSupervisionFunding acquisition ,
Hayriye Cagnan ResourcesWriting - review & editingSupervisionFunding acquisition ,
Vladimir Litvak ConceptualizationMethodologyResourcesWriting - review & editingSupervisionFunding acquisition

PII: S1053-8119(21)00297-4
DOI: https://doi.org/10.1016/j.neuroimage.2021.118020
Reference: YNIMG 118020

To appear in: NeuroImage

Received date: 27 August 2020
Revised date: 16 March 2021
Accepted date: 21 March 2021

Please cite this article as: Timothy O. West ConceptualizationMethodologySoftwareValidationInvestigationWriting - Original DraftWriting - review & editingVisualization ,
Luc Berthouze MethodologyResourcesWriting - review & editingSupervisionFunding acquisition ,
Simon F. Farmer ConceptualizationWriting - review & editingSupervisionFunding acquisition ,
Hayriye Cagnan ResourcesWriting - review & editingSupervisionFunding acquisition ,
Vladimir Litvak ConceptualizationMethodologyResourcesWriting - review & editingSupervisionFunding acquisition ,
Inference of Brain Networks with Approximate Bayesian Computation – assessing
face validity with an example application in Parkinsonism, NeuroImage (2021), doi:
https://doi.org/10.1016/j.neuroimage.2021.118020

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition
of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of
record. This version will undergo additional copyediting, typesetting and review before it is published
in its final form, but we are providing this version to give early visibility of the article. Please note that,
during the production process, errors may be discovered which could affect the content, and all legal
disclaimers that apply to the journal pertain.

Crown Copyright © 2021 Published by Elsevier Inc.
This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/)

https://doi.org/10.1016/j.neuroimage.2021.118020
https://doi.org/10.1016/j.neuroimage.2021.118020
http://creativecommons.org/licenses/by/4.0/


Inference of Brain Networks with Approximate Bayesian 

Computation – assessing face validity with an example 

application in Parkinsonism 

 

Timothy O. West*1,2,3, Luc Berthouze4,5, Simon F. Farmer6,7, Hayriye Cagnan1,2,3, Vladimir Litvak3 

 

1Nuffield Department of Clinical Neurosciences, Medical Sciences Division, University of Oxford, 

Oxford OX3 9DU 

2Medical Research Council Brain Network Dynamics Unit, University of Oxford, Oxford, OX1 3TH, 

United Kingdom. 

3Wellcome Trust Centre for Human Neuroimaging, UCL Institute of Neurology, Queen Square, 

London, WC1N 3BG, UK. 

4Centre for Computational Neuroscience and Robotics, University of Sussex, Falmer, UK. 

5UCL Great Ormond Street Institute of Child Health, Guildford St., London, WC1N 1EH, UK. 

6Department of Neurology, National Hospital for Neurology & Neurosurgery, Queen Square, London 

WC1N 3BG, UK. 

7Department of Clinical and Movement Neurosciences, Institute of Neurology, Queen Square, UCL, 

London, WC1N 3BG, UK. 

 

*Corresponding Author. 

                  



 

Abstract 

This paper describes and validates a novel framework using the Approximate Bayesian Computation 

(ABC) algorithm for parameter estimation and model selection in models of mesoscale brain 

network activity. We provide a proof of principle, first pass validation of this framework using a set 

of neural mass models of the cortico-basal ganglia thalamic circuit inverted upon spectral features 

from experimental in vivo recordings. This optimization scheme relaxes an assumption of fixed-form 

posteriors (i.e. the Laplace approximation) taken in previous approaches to inverse modelling of 

spectral features. This enables the exploration of model dynamics beyond that approximated from 

local linearity assumptions and so fit to explicit, numerical solutions of the underlying non-linear 

system of equations. In this first paper, we establish a face validation of the optimization procedures 

in terms of: (i) the ability to approximate posterior densities over parameters that are plausible given 

the known causes of the data; (ii) the ability of the model comparison procedures to yield posterior 

model probabilities that can identify the model structure known to generate the data; and (iii) the 

robustness of these procedures to local minima in the face of different starting conditions. Finally, as 

an illustrative application we show (iv) that model comparison can yield plausible conclusions given 

the known neurobiology of the cortico-basal ganglia-thalamic circuit in Parkinsonism. These results 

lay the groundwork for future studies utilizing highly nonlinear or brittle models that can explain 

time dependent dynamics, such as oscillatory bursts, in terms of the underlying neural circuits.  
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Introduction  

Models of mesoscale brain activity (Vogels et al., 2005; Deco et al., 2015; Breakspear, 2017) provide 

ways to understand how interaction between: (a) the function of neurons (dictated by their intrinsic 

biophysical properties); and (b) the structure of the synaptic network that connects them, can 

modulate neural communication. Typically, the integration of activity across spatially distributed 

networks has been estimated using the tools of functional connectivity (i.e. determining the 

statistical dependencies between brain activity; Friston, 2011). However, these approaches are 

descriptive are unable to explore the causes of correlated neural activity that can explained through 

changes in either structure, function, or a combination of both. 

By building generative models of neural circuit dynamics and then inverting them from  data, it is 

possible to gain insight into the mechanisms underlying the rich spatiotemporal patterning of brain 

activity (Horwitz et al., 2000). Inverse modelling not only allows for the prediction of an individual 

model’s parameters, but also the comparison of models, so allowing different hypotheses to be 

evaluated given some data (Jaqaman and Danuser, 2006). In its simplest form, combining a priori 

knowledge alongside hand tuning of unknown parameters has led to a number of sophisticated 

models (Traub et al., 1991; De Schutter and Bower, 1994). This approach can be formalized, using 

algorithmic schemes for parameter estimation (Rowe et al., 2004; Wendling et al., 2009). More 

recently, Bayesian optimization schemes provide principled way of including prior knowledge of a 

system when computing an inverse model (Moran et al., 2009; Hadida et al., 2018; Hashemi et al., 

2018). These approaches can estimate the posterior distribution over model parameters (i.e. 

parameter estimation) as well as over a space of models (i.e. model evidence). 

Many approaches make assumptions to render a model amenable to a particular optimization 

scheme. For instance, in Dynamic Causal Modelling (DCM; Friston et al., 2012), the optimization 

algorithm (variational Bayes) makes an assumption of fixed form posteriors (the Laplace 

approximation). This simplifies the optimization problem by reducing the description of the 

approximate posterior density to its first two moments but precludes the examination of highly 

nonlinear or stochastic models, where this is likely to be violated by the existence of multimodal 

posteriors (Daunizeau et al., 2009; Sengupta et al., 2016). To help ensure this assumption is met, a 

model can be linearized and its behaviour approximated by computing its transfer function around a 

fixed point (Valdes et al., 1999; Robinson et al., 2001; Friston et al., 2012). This helps to ensure that 

posterior densities conform to a multivariate normal but can limit the model dynamics that may be 

                  



explored (although see discussion for existing approaches to this problem). Importantly, highly 

nonlinear or stochastic dynamics are thought to underpin important features observed in the 

functional organization of brain activity, such as the transitions between resting-states (Deco et al., 

2009, 2011) or the transient bursting of synchronous activity (e.g. Palmigiano et al., 2017). In this 

work we describe a framework for inverse modelling of large-scale brain dynamics that avoids: (a) 

appeals to the Laplace approximation; and (b) approximating model dynamics from local linear 

behaviour.  

To these ends, we set up a framework using the Approximate Bayesian Computation optimization 

algorithm (ABC; Beaumont et al., 2002) that provides a method of “simulation based” inference 

(Cranmer et al., 2020) and is well suited to complex models which have a large state and/or 

parameter space, exhibit stochastic or highly nonlinear dynamics, or require numerically expensive 

integration schemes to solve. This method has been successfully employed and validated across a 

number of such models in systems biology (Excoffier, 2009; Toni and Stumpf, 2009; Turner and 

Sederberg, 2012; Liepe et al., 2014), but is yet to see wide usage in neuroscience. Usefully, the 

scheme allows models to be inverted upon hypothetically any summary statistic of neural recordings 

such as spectra, spike density, or measures of connectivity (although see discussion for a description 

of the risk of “insufficiency” in these features). Specifically, we use a variant of ABC called sequential-

Monte Carlo ABC (ABC-SMC; Toni et al., 2009). 

We aim to provide a first-pass evaluation of the face validity of the proposed framework. To do this, 

we build a set of examples using models of Parkinsonian circuit dynamics. These examples are 

derived from a previously reported model of the cortical-basal ganglia-thalamic circuit (van Wijk et 

al., 2018) and constrained using data from an experimental, rodent model of Parkinsonism (West et 

al., 2018). We use a reduced set of data features (the magnitude of the power spectra and directed 

functional connectivity) that can be derived from the full complex cross-spectra, and simplify the 

estimation of the observation model (see methods). Note that we retain relatively simple, time-

averaged data features, as well as a well-established generative model, in order focus our 

examination upon the validity of the optimization scheme itself. This then paves the way for further 

validations of this method in terms of more complicated models and data (see discussion). 

Specifically, we first examine the properties of the inversion scheme, investigating parameter 

estimates and convergence. We then take a similar approach to that used previously in the 

validation of methods such as DCM by first testing the so-called face validity (Moran et al., 2009) 

through examination of (a) the ability of the parameter estimation procedure to yield plausible 

posterior distributions over parameters given those known to generate the data; (b) the robustness 

                  



of the parameter estimation method to the existence of local minima in the face of multiple 

realizations of the same data and different starting conditions; and (c) the ability of the model 

comparison procedures to recover plausible model architectures given that known to generate the 

data. Finally, we demonstrate that the scheme can yield neurobiologically plausible conclusions 

given the structure of the circuits known to underly oscillatory dynamics in Parkinsonism. 

Methods 

Overview of Sequential Monte Carlo Approximate Bayesian Computation for Inverse 

Modelling of Neural Data 

We present an overview of the framework using ABC-SMC and its adaptations for applications to 

large scale neural models is figure 1. The algorithm takes a form in which several processes are 

repeated multiple times within their parent process (figure 1; inset). The scheme is contingent on 

simulation of pseudo-data by a generative forward model – a description of the neural dynamics - 

(figure 1A; green box) given a set of proposal parameters sampled from a prior (multivariate 

Gaussian) distribution (figure 1C; turquoise box). This pseudo-data can then be compared against 

the empirical data by first using a common data transform (i.e. a summary statistic of the data) and 

then assessing their similarity by computing the objective function (goodness-of-fit) (figure 1B; blue 

box). This model fit provides a measure by which parameter samples are either rejected or carried 

forward depending on a threshold on the goodness-of-fit, in order to generate the next proposal 

distribution in the sequence. When the process in figure 1C is iterated with a shrinking tolerance 

schedule, ABC can be used to approximate the posterior parameter distribution at convergence 

(figure 1C; orange box). Finally, if the process described above is repeated over several competing 

models then the approximate  

                  



 

Figure 1 – Framework for application of Approximate Bayesian Computation for simulation-based inference of brain 

network dynamics. (Inset) This schematic gives an overview of the framework described in this paper. Individual 

generative models are specified as a set of state equations (yellow boxes) and prior distribution over parameters (light blue 

boxes) that will be used to approximate the posterior density over the parameters (orange boxes) for the system 

generating the observed data (red boxes) with varying degrees of fit (blue boxes) using ABC. The approximate posterior 

distribution can then be used to compare models and decide on a winning model or family of models (purple box). (A) 

Generation of pseudo-data by integrating the state equations parameterized by a sample drawn from the prior or 

proposal distribution. Models can incorporate stochastic innovations as well as a separate observation model to produce 

samples of pseudo-data (green boxes). (B) Pseudo-data is compared against the real data using a common data transform 

that provides a summary statistic of the time series data (i.e. spectra and directed functional connectivity). The simulated 

and empirical data are then compared by computing the objective function that can be used to score the model fit (blue 

boxes). (C) ABC sequentially repeats the processes in boxes A and B by iteratively updating a proposal distribution formed 

from accepted samples. Samples are rejected depending on an adaptive threshold of the objective scores aiming to reduce 

the distance between summary statistics of the data and pseudo-data. This process iterates until the convergence criterion 

is met and the proposal distribution is taken as an approximation of the posterior distribution. (D) By repeating the ABC 

process in box (C) over multiple models, the approximate posteriors can be used to evaluate the model probabilities. This 

process samples from the posterior many times to compute the probability of each model exceeding the median accuracy 

of all models tested. This acceptance probability can then be used to compare the model’s ability to accurately fit the data 

                  



posterior distribution may be used to assess each model’s fitness via model comparison (figure 1D; 

purple box). The exact details of each process outlined in the figure are given below. The existing 

methods that form the basis for this work are outlined in appendix I. 

Forward Model for Generation of Neural Pseudo-Data 

The fitting algorithm is based upon sampling from a sequence of proposal distributions over 

parameters to generate realizations of the generative process that we refer to as pseudo-data 

(figure 1A; green box). A model   is specified by the state equations of the dynamical system   and 

observation model   : 

 (   )   ( (    )   )  

 Equation 1 

The equations of the model F describe the evolution of states x with parameters   . This model 

describes the underlying neuronal dynamics that give rise to the evolution of the states. The 

observation model G describes the effects upon the signals that are introduced by processes such as 

experimental acquisition or recording and is parameterized by   . The observation model can 

account for confounds introduced beyond that of the generative model of the data such as changes 

in signal-to-noise ratio (SNR), crosstalk, or other distortions of the underlying generative process. In 

the examples provided here, we use a simple observation model that comprises a model of sensor 

noise in which the gain on additive noise remains a free parameter to estimate differences in the 

SNR between signals. We use Gaussian white noise and assume identity covariance between the 

sensors. In this example, we avoided estimation of the lead field parameters (Kiebel et al., 2006) by 

our choice of summary statistic describing the interaction between sources (see section Directed 

Functional Connectivity).  

In general, model M could describe any dynamical system describing the time evolution of neural 

data such as spiking networks, conductance models, or phenomenological models (e.g. phase 

oscillators, Markov chains). In this paper we use coupled neural mass equations (Jansen and Rit, 

1995; David and Friston, 2003) to model population activity of the cortico-basal-ganglia-thalamic 

circuit, of which the biological and theoretical basis has been previously described (Moran et al., 

2011; Marreiros et al., 2013; van Wijk et al., 2018). The original equations were adapted to explicitly 

incorporate stochastic inputs and finite transmission delays. This yielded a system of stochastic delay 

differential equations that could be solved using the Euler-Maruyama method. For details of the 

and select the best candidate model given the data. 

 

                  



modelling, as well as details of the integration of the state equations please see Supplementary 

Information I which gives details of the model formulation, state equations, and numerical solver. 

Parameters of both the generative and observational model can either be fixed or variable. In the 

case of variable parameters (parameters to be fit), a prior density encoding a priori beliefs about the 

values that the parameters take must be specified. This is encoded through the mean and variance 

for each parameter, with the variance encoding the inverse-precision of a prior belief. In this way 

fixed parameters can be thought as being known with complete confidence. Note we assume 

identity covariance of the priors. We take the majority of prior values for parameters of the cortico-

basal-ganglia-thalamic network from (van Wijk et al., 2018) but set some delays and connection 

strengths given updated knowledge in the literature. A table of parameters can be found in 

Supplementary Information II. 

For results in sections 3.1 through to the first part of section 3.3 we use a reduction of the full model 

comprising the reciprocally coupled STN/GPe. This model can be again divided into separate models 

(for the purposes of performing face validation and example model comparison) by constraining 

priors on the connectivity between the STN and GPe. The later part of section 3.3 and section 3.4 

uses a wider model space comprising a set of systematic variations upon the full model (see figure 

5). 

Model Inversion with Sequential Monte Carlo ABC  

Algorithm Overview 

In order to estimate the parameters of the model M, given the information provided by the 

empirical recordings we use an algorithm based upon ABC-SMC (Toni et al., 2009; Del Moral et al., 

2012). ABC is a “likelihood free” algorithm (Marin et al., 2012). Most generally, the algorithm forms a 

sample of draws taken from a prior distribution and then goes on to estimate an intermediate 

sequence of proposal distributions via iterative rejection of the parameter draws. Given a suitable 

shrinking tolerance schedule, the simulated pseudo-data (generated from the sample-parameterized 

forward model) and the empirical data should converge as the proposal distribution approaches the 

true posterior. 

The ABC algorithm is illustrated in figure 1C (orange box) and follows the procedure below. 

Probability densities are given by  ( ); parameters are indicated by  ; models by M; data by D; and 

distances by ρ. Samples are indicated by hat notation (i.e.  ̂); subscripts indicate the sample number; 

proposal distributions are indicated by an asterisk (i.e.  ( ) ); and subscripts equal to zero denote 

                  



belonging to the empirical data (i.e.    and   are summary statistics of sample 1 and of the 

empirical data respectively). 

1. Specify prior distribution of parameters,  ( ) of the model M. (model prior) 

2. Randomly sample   times from the prior to yield samples  ̂ . (sampler) 

3. Simulate pseudo-data  ̂  ~  (    ̂ ). (simulation of joint 

distribution) 

4. Compute summary statistic of    of pseudo-data  ̂ . (data transform) 

5. Compute distance   of    from   .  (assess model fit) 

6. Reject  ̂  if distance  (     )      (rejection sampling) 

7. Form proposal distribution,   (    ), from the accepted 

parameter samples. 

(form proposal) 

8. Iterate for        , setting  ( )     (    ), and 

shrinking the distance threshold. 

(adaptive tolerance 

schedule) 

9. At convergence criteria, accept proposal distribution as 

posterior:  (    )   
 (    ),  

(estimation of 

approximate posterior) 

To avoid sample wastage across iterations, we store the samples from step (2) and their resulting 

distance from the data (step 5) across the Q iterations such that they are propagated through a 

sequence of intermediate distributions. In this way, at step (7) the updated proposal distribution 

comprises samples from both current and past draws selected on the basis of a threshold calculated 

over the current draw. 

We estimate the “distance” or error of the pseudo-data from the real data using the pooled mean 

squared error (MSEpooled) as an objective function  (     ) (see supplementary information II for 

equation). Setting a shrinking distance threshold   ensures that the posterior estimates converge 

upon solutions that most accurately reproduce the summary statistics of the observed data (Del 

Moral et al., 2012). With non-negligible   , the algorithm samples from an approximate posterior 

distribution  (   (     )    ) rather than the true posterior  (   ) when     . Thus the  

upper bound on the error of parameter estimates is therefore determined by how far    is from 

zero (Dean et al., 2014).  

                  



Adaptive Tolerance Schedule 

To facilitate incremental sampling from a sequence of increasingly constrained target distributions 

we set an adaptive tolerance schedule. This is specified by determining a predicted gradient for the 

average distance of the next set of samples: 

            

Equation 2 

where the expected change in the distance of the new samples     is given by: 

    {
                 

  
                

 

Equation 3 

where         is the number of accepted samples and   is a minimum criterion on the accepted 

sample size to carry forward the tolerance shrinkage at its current gradient. If           then this 

gradient is assumed to be too steep and the expected gradient is recalculated using a modified 

tolerance   
  that is computed using the median distance   between the sample pseudo-data from 

that real (i.e.   
    ̃, where ~ indicates the median). Thus    parameterizes the coarseness of the 

optimization. If   is very large (e.g. >99% of N) then the algorithm will converge slowly but 

accurately, whereas if   is very small (e.g. 1% of N) the algorithm will be inaccurate and biased. We 

set   to be the two times the estimated rank of the parameter covariance matrix i.e.     ( ) (for 

details of estimation see section 2.3.3).  

Formation of Proposal Distributions 

Following rejection sampling, the proposal density   (    )  is formed from the accepted 

parameters sets. We use a density approximation to the marginals and a copula for the joint similar 

to that described in Li et al., (2017). We take the initial draw of samples from the prior formed with a 

multivariate normal: 

  ( )   (   ) 

Equation 4 

where   is a vector of the prior expectations and   their covariances. In subsequent iterations 

whereby a minimum sample is accumulated, we use nonparametric estimation of the marginal 

densities over each parameter using a non-parametric kernel density estimator (Silverman, 2003). 

This approach allows for free-form approximation to probability densities (e.g. multimodal or long-

tailed distributions). This flexibility allows for sampling across multiple possible maxima at once, 

                  



particularly at intermediate stages of the optimization. The bandwidth (determining the 

smoothness) of the kernel density estimator is optimized using a log-likelihood, cross-validation 

approach (Bowman, 1984).   

We then form the multivariate proposal distribution using the t-copula (Nelsen, 1999). Copula 

theory provides a mathematically convenient way of creating the joint probability distribution whilst 

preserving the original marginal distributions. Data are transformed to the copula scale (unit-square) 

using the kernel density estimator of the cumulative distribution function of each parameter and 

then transformed to the joint space with the t-copula.  

The copula estimation of the correlation structure of the parameter distributions acts to effectively 

reduce the dimensionality of the problem by binding correlated parameters into modes. The 

effective rank of the posterior parameter space (used in the computation of the adaptive tolerance 

schedule and reported in the results as a post-hoc assessment of parameter learning) can be 

estimated by taking the eigenvalues of the covariance matrix and normalizing the coefficients by 

their sum. Using a cumulative sum of the ordered coefficients we can then determine the number of 

modes that can explain 95% of the variance of the parameter samples. 

Model Comparison 

In the process of model-based inference, hypotheses may be compared in their capacity to explain 

the observed data. Models fit with ABC can be formally compared using either “joint-space” or 

“marginal likelihood” based approaches (Grelaud et al., 2009; Toni and Stumpf, 2009). Here we use 

the latter approach which estimates the marginal likelihood (model evidence) for each jth model: 

 (    
 )  

   (     )   ̂

 
 

Equation 5 

where  ̂ is a threshold on the distance metric   that is suitably small to give an acceptable fit on the 

data and is common across models. We refer to the outcome of equation 5 as the acceptance rate of 

a particular model. For derivation of the ABC-SMC approximation to the marginal likelihood, please 

see Toni and Stumpf (2009). In practice we set    to be the median of the distances across of all sets 

of models. The marginal posterior probability of a model is then given by combining marginal model 

likelihoods and prior model probability  (  ) and then normalizing across the space of J models: 

 (  |  )  
 (  | 

 ) (  )

∑  (     ) (  ) 
   

 

Equation 6 

                  



In all cases described, we assume that prior model probabilities are uniform.  

We provide a post-hoc estimation of model complexity terms of the divergence of the posterior 

from the prior (Friston et al., 2007; Penny, 2012). Specifically, we estimate the Kullback-Lieber 

divergence DKL of the posterior density  (    ) from the prior density  ( ) over F discretized bins 

of the density: 

   ( (    )   ( ))   ∑ ( )    (
 ( )( )

 (    )( )
)

 

   

 

Equation 8 

This is a simplification of the full multivariate divergence and ignores the dependencies between 

variables encoded in the posterior covariance. We use the full multivariate divergence (given in 

supplementary information IV) that uses a multivariate Gaussian approximation to the ABC 

estimated posterior density (taking the mean and covariance of N samples from the posterior). The 

DKL can then be used for a post-hoc discrimination of model performance. To do this we build a 

complexity-adjusted goodness-of-fit heuristic (accuracy-complexity score; ACS) similar in form to an 

information criterion such as the Bayesian Information Criterion, but refined to consider posterior 

divergence as a measure of complexity, rather than the absolute number of parameters: 

            ( ( 
 |  ))       (

     
 

∑    
  

   

) 

Equation 9 

where    
 

 is the divergence of posteriors from priors for the jth model normalized by the sum of 

divergences across the whole model space. Models that contribute exactly 1/J of the summed 

divergence have zero complexity penalty. Please note that the ACS does not provide the objective 

function for optimization (which is the pooled MSE), but rather a heuristic for post-hoc 

discrimination of models via the addition of an Occam factor to account for model parsimony 

(MacKay, 2003).  

Empirical Data: Recordings from Parkinsonian Rats 

Summary statistics are computed from empirical data and then used to fit the generative forward 

model. In the example implementation used in this paper we use multisite basal ganglia and single 

site cerebral cortex recordings in rats (n = 9) that have undergone a 6-hydroxydopamine (6-OHDA) 

induced dopamine depletion of the midbrain, a lesion model of the degeneration associated with 

Parkinsonism in humans (Magill et al., 2004, 2006). The animals were implanted with two electrodes 

                  



to measure local field potentials (LFP) from multiple structures in the basal ganglia: dorsal striatum 

(STR), external segment of the globus pallidus (GPe), and the subthalamic nucleus (STN).  

Additionally electrocorticography was measured over area M2 of the motor cortex, a homologue of 

the Supplementary Motor Area (SMA) in humans (Paxinos and Watson, 2007). Animals were 

recorded under isoflurane anaesthesia and during periods of “cortical-activation” induced by a hind-

paw pinch (Steriade, 2000). The details of the experimental procedures were previously published 

(Magill et al., 2004, 2006). Experimental procedures were performed on adult male Sprague Dawley 

rats (Charles River) and were conducted in accordance with the Animals (Scientific Procedures) Act, 

1986 (UK), and with Society for Neuroscience Policies on the Use of Animals in Neuroscience 

Research. Anesthesia was induced with 4% v/v isoflurane (Isoflo; Schering-Plough) in O2 and 

maintained with urethane (1.3g/kg, i.p.; ethyl carbamate, Sigma), and supplemental doses of 

ketamine (30 mg/kg, i.p.; Ketaset; Willows Francis) and xylazine (3 mg/kg, i.p.; Rompun, Bayer). 

Pre-processing of time series data (LFP and ECoG) was done as follows: data were 1) truncated to 

remove 1 second (avoid filter artefacts); 2) mean corrected; 3) band-passed filtered 4-100 Hz with a 

finite impulse response, two-pass (zero-lag) with optimal filter order; 4) data were split into 1 second 

epochs with each epoch subjected to a Z-score threshold criterion such that epochs with high 

amplitude artefacts were removed.  

Computation of Summary Statistics 

We derive a set of summary statistics from signal analyses of the experimental and simulated time 

series. These statistics transform both the data and pseudo-data into the same feature space such 

that they can be directly compared (figure 1B; blue box). It is important to note that the summary 

statistic is vital in determining the outcome of the inverse modelling  with ABC (Beaumont et al., 

2002; and see discission). The set of statistics must effectively encode all phenomena of the original 

data that the experimenter wishes to be modelled.  

Frequency Spectra 

We use the autospectra to constrain the oscillatory activity of each neural mass. Auto-spectral 

analyses were made using the averaged periodogram method across 1 second epochs and using a 

Hanning taper to reduce the effects of spectral leakage. Frequencies between 49-51 Hz were 

removed so that there was no contribution from 50 Hz line noise. 1/f background noise was 

removed by first performing a linear regression on the log-log spectra (at 4–48 Hz) and then 

subtracting the linear component from the spectra (Le Van Quyen et al., 2003; Nikulin and Brismar, 

2006). Note that only empirical data underwent removal of the 1/f background. This ensured that 

the inversion scheme was focused upon fitting the spectral peaks in the data and not the profile of 

                  



1/f background noise. To simplify observation modelling of differences in experimental recording 

gains between sites, all spectra were normalized by dividing through by their summed power at 4-48 

Hz.  

Directed Functional Connectivity 

To quantify interactions between populations, we use non-parametric directionality (NPD; Halliday 

2015), a directed functional connectivity metric which describes frequency-resolved, time-lagged 

correlations between time series. The NPD was chosen as it makes it possible to remove the zero-lag 

component of coherence and so interactions between signals are not corrupted by signal 

mixing/volume conduction, of which was predominant in the empirical data used here (see West et 

al., 2018). Thus, using NPD simplifies the observation problem by removing the need to estimate 

mixing terms or a lead field. 

Estimates of NPD were obtained using the Neurospec toolbox (http://www.neurospec.org/). This 

analysis combines Minimum Mean Square Error (MMSE) pre-whitening with forward and reverse 

Fourier transforms to decompose coherence estimates at each frequency into three components: 

forward, reverse and zero lag. These components are defined according to the corresponding time 

lags in the cross-correlation function derived from the MMSE pre-whitened cross-spectrum. This 

approach allows the decomposition of the signal into distinct forward and reverse components of 

coherence separate from the zero-lag (or instantaneous) component of coherence which can reflect 

volume conduction. The method uses temporal precedence to determine directionality. For a 

detailed formulation of the method see Halliday, (2015); and for its validation see West et al., 

(2020b). We ignored the instantaneous component of the NPD and use only the forward and reverse 

components for all further analyses. Note that NPD accounts for the relative phase between 

activities by segregating the contribution to the cross-spectrum into either leading (forward) or 

lagging (reverse) components. 

Data Pooling and Smoothing 

In all procedures using empirical data to constrain models, we used the group-averaged statistics 

computed from recordings from a group of unilaterally 6-OHDA lesioned animals. As a final 

processing step, both the autospectra and NPD were smoothed to remove noise such that fitting 

was focused on the dominant peaks of the features (Rowe et al., 2004). This was achieved by 

convolving spectra with a 4 Hz wide Gaussian kernel. Empirical and simulated data were transformed 

identically to produce equivalent autospectra and NPD. We assume smoothness of the spectral 

features as a way to separate actual features from noise. Spectral estimates in neuroscience (and in 

                  



general) become increasingly smooth with large sample sizes (with error decreasing relative to   ), 

thus the smoothing can be considered a correction for finite time spectral estimates. 

Software Availability 

All analyses and procedures were written in MATLAB (Mathworks, Natick, MA). The toolbox is 

publicly available and maintained as a Github repository 

(https://github.com/twestWTCN/ABCNeuralModellingToolbox.git). For a list of external 

dependencies and their authors see appendix I. The procedures used for constructing the figures in 

this paper can be run using the ‘West2021_Neuroimage_Figures.m’ script. Please see appendix IV for 

a short guide to the repository and its key scripts.  

Validation of ABC Procedures for Parameter Inference and Model Identification 

Testing the Face Validity of the Model Inversion Procedures 

To test whether the ABC estimator will: a) yield parameter estimates that are unique to the data 

from which they have been optimized; and b) yield consistent estimation of parameters across 

multiple instances, we performed two procedures of eight multi-starts using two separate datasets. 

The datasets were created by first defining two forward models with different parameter sets: (1) 

the MAP estimate of a reciprocally coupled STN/GPe after fitting to the empirical data and (2) the 

same model but with each parameter log scaling factors randomly adjusted by ±1. These models 

were then used to generate synthetic datasets by simulating 256s of data (with separate realizations 

for each multi-start). We could then track the error of parameter estimates from the known 

parameters of the original forward model to examine the accuracy of the inference. 

When testing point (a), that parameter estimates are unique to the data from which they are fitted - 

we performed a eight-fold cross-validation procedure in which we used a one-sample Hotelling 

procedure to test for significant difference of each fold’s mean from that of the left-out sample. We 

report the probability of the folds that yielded a significant test, with high probability indicating that 

the left-out MAP estimates are likely to deviate from the rest of the fold. In this way we can identify 

the probability of an ABC initialization yielding a non-consistent sample. Secondly, we test (b), that 

MAP estimates are unique to the data on which they have been fitted- using the Szekely and Rizzo 

energy test (Aslan and Zech, 2005) between the samples from data A and B, with the null-hypothesis 

that the multi-start samples derived from different data arise from the same distribution. Finally, we 

use a Multivariate Analysis of Variance (MANOVA) procedure to test for difference in means 

between the two multivariate samples.  

                  



Testing the Face Validity of the Model Comparison Procedures 

To test the face validity of the model comparison framework, we constructed a confusion matrix, an 

approach commonly used in machine learning to examine classification accuracy. Three different 

models of the STN/GPe network were fit to the empirical data and then using the fitted parameters 

three synthetic data sets were simulated. We chose a model with reciprocal connectivity: (1) STN ↔ 

GPe; and then two models in which one connection was predominant: (2) STN → GPe and (3) GPe → 

STN. The three models (with the original priors) were then fitted back onto the synthetic data. 

Model comparison was then performed to see whether it could correctly identify the original mode 

that had generated the data. The model comparison outcomes (accuracy of the fit; DKL of posteriors 

from priors; and the combined ACS measure) were then plotted in a 3 x 3 matrix of data versus 

models. In the case of valid model selection, the best fitting models should lay on the diagonal of the 

confusion matrix. We also performed a second analysis in which more complex models were fitted 

(incorporating between 4 to 6 sources). Specifically, we used models M1.1, M2.2, and 5.2 described 

in detail in the next section (2.7.3). 

Testing the Scalability of the Framework with Application to the Full Model Space 

In order to demonstrate the scalability of the optimization and model comparison framework, we 

used the space of 12 models described below. We individually fitted the models and then performed 

a (marginal likelihood-based; see methods) model comparison to select the best of the candidate 

models. A set of null models were included which are anatomically implausible. If model selection 

performed correctly, then it is expected that these models would perform poorly. 

To investigate the importance of known anatomical pathways in reconstructing the observed steady 

state statistics of the empirical local field potentials (i.e. autospectra and NPD), we considered a set 

of competing models. Specifically, we looked at the role of five pathways and their interactions: the 

cortico-striatal indirect; the cortico-striatal direct; the cortico-subthalamic hyperdirect; 

thalamocortical relay; and the subthalamic-pallidal feedback. In total we tested 6 families of models 

(presented later in the results section- figure 5): 

1. + indirect. 

2. + indirect / + hyperdirect. 

3. – indirect / + hyperdirect.  

4. + indirect / + direct / – hyperdirect / + thalamocortical. 

5. + indirect / + direct / + hyperdirect / + thalamocortical. 

6.  - indirect / + direct / + hyperdirect / + thalamocortical. 

                  



We considered these six families and further divided them into two sub-families that do or do not 

include the subthalamopallidal (STN → GPe) feedback connection. Family (1) investigates whether 

the indirect pathway alone can explain the pattern of observed spectra and functional connectivity. 

In the case of family (2), previous work has highlighted the importance of hyper-direct connections 

in the functional connectivity (Jahfari et al., 2011; Nambu et al., 2015), yet anatomical research has 

shown dopamine to weaken the density of synaptic projections (Chu et al., 2017). Thus, family (2) 

provides an ideal set of models to examine the nonlinear mapping of anatomical to functional 

connectivity described in the introduction of this paper. Families (3) and (6) represent null models in 

which the indirect pathway is excluded and are used as implausible models to test whether the 

model comparison procedure yields valid results given the known neurobiology. This is because it is 

thought that the  

                  



 

Figure 2 – Examining the convergence of ABC optimization upon summary statistics from recordings of the STN and 

GPe in Parkinsonian rats – Parameters of neuronal state space models were optimized using the ABC method detailed 

in the text. Snapshots of the optimization are taken at the 1st, 15th, and 30th iteration at which the optimization 

converges. (A) Schematic of the STN/GPe neural mass model. (B) The iteration history of the ABC algorithm is presented 

as a sequence of box plots indicating the distribution of fits (MSEpooled) at each sampling step, with mean and 

interquartile range indicated by individual crosses and boxes. (C) Power spectra of the empirical data (bold) and 

simulated data (dashed) are shown. The best fitting parameter sample for each iteration is given by the bold dashed 

line. (D) Similarly, the functional connectivity (non-parametric directionality; NPD) is shown in red and blue with the 

same line coding. (E) Examples of the prior (dashed) and proposal (bold) marginal distributions for a selection of five 

parameters are shown (note some priors have identical specifications and so overlap). It is seen that over iterations the 

proposal and posterior deviate from the prior as the latent parameter densities are estimated. (F) Correlation matrices 

from copula estimation of joint densities over parameters. Colour bar at bottom indicates the correlation coefficient. 

                  



indirect pathway is vital to explain activity within the network following dopamine depletion 

associated with PD (Alexander et al., 1986; Albin et al., 1989; Bolam et al., 2000). The functional role 

of the thalamocortical subnetwork is relatively unknown (but see recent work: Reis et al. 2019) and 

so families (4) and (5) provide an examination of whether the addition of the thalamic relay can 

better explain the empirical data. The second level of families (i.e. x.1-2) investigates whether the 

reciprocal network formed by the STN and GPe is required to explain observed patterns of 

connectivity in the data. This network has been the subject of much study and is hypothesized to 

play an important role in the generation and/or amplification of pathological beta rhythms (Plenz 

and Kital, 1999; Bevan et al., 2002; Cruz et al., 2011). 

Results  

Properties of Fitting Procedure and Convergence when Applied to a Simple Model of 

the Pallido-Subthalamic Subcircuit 

Figure 2 shows the results of an example model inversion demonstrating how the ABC algorithm 

iteratively converges to yield an approximation to the summary statistics of the empirical data. This 

example uses a simple model comprising the reciprocally connected subthalamic nucleus (STN) and 

external segment of the globus-pallidus (GPe) shown in figure 2A. The autospectra and directed 

functional connectivity were fit to the group averaged results originally reported in West et al., 

(2018) which described an analysis of local field potentials recorded from a rodent model of 

Parkinsonism (see methods for experimental details). By tracking the value of the objective function 

(i.e. the MSEpooled) over multiple iterations (figure 2B) we demonstrate a fast-rising initial trajectory 

in the first 15 iterations that eventually plateaus towards convergence, that is well approximated by 

a logistic function (shown by purple dashed line). In figure 2C and D the simulated features 

(autospectra and NPD respectively) gradually move closer to the empirically estimated features with 

each iteration of the algorithm. 

The evolution of the proposed marginal densities (figure 2E) demonstrates that over the 

optimization, parameter means, and variances deviate significantly from the prior. Estimation of 

some parameters is better informed by the data than for others, as indicated by the different 

precision of the proposal densities. Additionally, learnt multivariate structure in the joint parameter 

densities is apparent in the parameter correlation matrices (see methods; figure 2F). The evolution 

of these matrices shows the emergence of distinct correlated modes. These modes reduce the 

Correlated modes appear between parameters as optimization progresses. 

                  



dimensionality of the optimization problem: by estimating the number of significant principal 

components of the parameters (see methods) we find that optimized models show a reduction of 

50-70% from that of the prior. Note however, that due to the identity covariance of the prior, 

increased correlation in parameters entails an increase the complexity penalty in the ACS metric 

used to discriminate between models (see Methods and below). 

Testing the Internal Consistency of Data Dependent Estimation of ABC Optimized 

Posteriors Using a Multi-start Procedure 

This section of the results examines the face validity of parameter estimation of ABC i.e. that the 

scheme will (a) make a consistent estimation of posterior model parameters across multiple 

realizations of optimization; and (b) yield posterior estimates of parameters that are plausible given 

the known causes of the data. This is achieved using a multi-start  procedure (Baritompa and 

Hendrix, 2005) described in the methods (section 2.7.1) in which we initialize the algorithm eight 

times for two separate datasets generated by different underlying models. The results of the multi-

starts are shown in Figure 3. 

The evolution of the objective function (MSEpooled) over the progress of the optimization is presented 

in figure 3A. Multi-starts of the optimization for both dataset A and B exhibited consistent degrees of 

error in the posterior summary statistics. In figure 3B, the average log-precision of the marginal 

densities is tracked over the progress of the optimization. These data show that across all 

initializations, the average precision of the posterior densities (1/σ = 20) was 2.5 times greater than 

those of the priors (1/σ = 8) demonstrating increased confidence in parameters estimates that were 

constrained by the data.  

In figure 3C, we present the maximum a posterior (MAP) estimates for each parameter across the 

multi-starts. There are clear differences between parameters inverted upon the two separate sets of 

data (red versus blue bars; asterisks indicate significant t-tests). For instance, the mean GPe time 

constant (1st group of bars from the left) is smaller for data A compared to B. Other parameters were 

well-informed by the data, but not significantly different between either data sets (e.g. GPe 

sigmoidal slope; 2nd set of bars from the left). The accuracy of the parameter optimization procedure 

was assessed by comparing the MAP estimates to the known parameters of the underlying forward 

models. This can be seen in figure 3C where the parameter values are plot as crosses alongside the 

ABC posterior expectations. Estimates of STN and GPe time constants and the GPe → STN delay 

were well-recovered (the actual value falls within the spread of multi-start estimates). The slope of 

the nonlinear activation function however was poorly recovered showing consistent over-

estimation, likely due to the real value falling far out of the bounds of the prior. An 8-fold cross-

                  



validated, Hotelling test found and 75% and 62.5% null-rate for datasets A and B respectively, 

indicating the majority of parameter estimates were consistently distributed with the underlying 

forward model.  

 

 

Figure 3 – Multi-start analysis to test face validity of the ABC-based estimation of model parameters by 

demonstrating consistency of estimation and the data specificity of parameter estimates. A two-node model of the 

STN/GPe circuit (inset) was fit to two different data sets: dataset A (blue) and dataset B (red) that were generated by 

different underlying models. Each estimation was performed 10 times with identical specification of prior distributions 

for all initializations. (A) Tracking of the goodness-of-fit (shown as -log10(-MSEpooled)) over the iterations demonstrated 

consistent convergence. Posterior estimates of the summary statistic were on average more accurate for dataset A than 

for B but were consistent across multi-starts (B) Optimization showed a consistent increase in the average precision 

(equivalent to a decrease in the logarithm of the inverse standard deviation of the data) of the posteriors indicating that 

data was informative in constraining parameter estimates. (C) Examination of the MAP estimates demonstrated a 

consistent inference of parameter values. Some parameters were drawn to common values with both data A and B (e.g. 

GPe time constant), whilst others show differences informed by the data (e.g. STN time constant). MAP values are given 

as log scaling parameters of the prior mean. The prior values were set to equal zero. Error bars give the standard 

deviations of the estimates across initializations. Asterisks indicate significant t-test for difference in means between 

                  



parameters estimated from data A and B. (D) To visualize trajectories of the multi-starts, the high dimensional 

parameter space was reduced to two dimensions using multi-dimensional scaling (MDS). Evolutions of the means of the 

proposal parameters exhibit a clear divergence between data sets A and B that were significantly different (MANOVA, 

see main text). 

To estimate the internal-consistency of the parameter estimates, we applied a one-sample Hotelling 

test within an eight-fold, leave-one-out cross-validation to each of the MAP estimates from the 

multi-start. For both samples of parameters estimated from data A and B we find there to be a 0% 

rejection of the null hypothesis that the mean of the fold is significantly different from that of the 

left-out sample. This  

result indicates that every initialization of the multi-start fell within the variance defined by the 

remainder of the multi-starts. This does not test whether the variance is unacceptably large, we test 

this in part by examining (ii): that the posteriors were differentiated by the data on which they were 

estimated, using a Szekely and Rizzo energy test. We find there to be a significant difference in the 

means of the two samples (Φ = 5.13; P = 0.001). This finding is supported by a MANOVA test that 

demonstrates that the two data sets are significantly segregated by their posterior parameter means 

(D = 1, P < 0.001). This suggests that the spread of estimates was, at least, sufficient to distinguish 

posteriors derived from different underlying generative models. Visualization of the parameter 

space using multidimensional scaling (MDS; figure 3D) confirms the segregation of the posterior 

samples into two clusters determined by the datasets from which they are estimated. These results 

confirm that the ABC optimized posteriors are consistent across multiple initializations and that the 

output is determined by differences in the underlying model generating the given data. 

Testing Face Validity of the Model Comparison Approach 

To verify that the face validity of the model comparison approach i.e. that it can identify the correct 

structure of the generative model of the data we constructed a confusion matrix (as detailed in the 

methods section 2.7.2), first using variations on the STN/GPe model presented in the previous 

sections and shown in figure 4A. In the case of correct model identification, the best model scores 

should lay along the diagonal of the confusion matrix.  

In figure 4B we present the posterior model probabilities P(M|D) (see methods for details of its 

calculation). When normalizing across the joint space to compute the marginal posterior probability 

of a model, we consider only the three models tested per dataset (i.e. the sum of the probabilities 

across each column of figure 4B, C, F and G are equal to one). This analysis demonstrates that, in 

terms of accuracy, the most probable models lie on the diagonal of the confusion matrix showing 

that the posterior accuracies are sufficient to correctly identify the generating model. In figure 4C, 

                  



we present the model complexity in terms of a proportion of the sum divergence across all models 

(i.e. the second term of equation 9).  These analyses show that the divergence of each model’s 

posteriors from priors (so called complexity measured in terms of the DKL). In the case of model 1 

(which is the most flexible in terms of numbers of free parameters) there are inflated divergences in 

the first column that result from a large deviation of posteriors when attempting to fit the data 

generated from the alternative models. This shows that a post-hoc analysis of divergence of the 

posterior (using DKL) can be used to discriminate models which have been overfitted. When 

combining these two measures into the ACS metric (summarising model accuracy minus complexity) 

in figure 4D, it is seen that the best fitting models are still correctly identified even when accounting 

for the increased complexity of posterior parameter densities. Note that the most flexible model 

(model 1) was unable to fit data from models 2 and 3, this occurred as the required posteriors to 

achieve effectively decouple STN/GPe feedback were  

 

Figure 4 – Testing face validity of the ABC model comparison approach to model identification. Confusion matrices 

were constructed by fitting the three models of the STN/GPe circuit. Synthetic data was generated using the fitted 

models and then the three original models were fitted back to the synthetic data to test whether model comparison 

could identify the generating model. (A) Schematic of neural mass model to be fitted. Annotations of connections 

indicate the presence of each for models 1-3. (B) Matrix of posterior model probabilities 1-P(M|D) computed 

normalized across the joint model space (for each column demarcated by dashed lines).  (C) Matrix of normalized 

divergences of posteriors from priors (see second term of equation 9). (D) Combined scoring to simultaneously account 

for model accuracies and divergence (ACS). Large values indicate better fits with more parsimonious posteriors (small 

DKL). (E-F) Same as for (A-D) but for the more complex model set. 

 

                  



very far from the model 1 priors on connectivity. This is a known limitation of ABC, please see the 

discussion.  

To determine whether this face validation held for larger models, we performed an identical analysis 

with three models ranging in complexity (figure 4E). Model accuracy was again highest along the 

diagonal (figure 4F), with the complexity adjusted goodness-of-fit (ACS; figure 4H) maintaining 

correct model identification. These results demonstrate that the model comparison approach can 

properly identify models from which the data originated, thus providing a face validation of the 

model comparison procedures. 

Scaling up to Larger Model Spaces: Application to Models of the Cortico-Basal Ganglia-

Thalamic Circuit 

Finally, we applied the ABC framework to a larger and more complex model space to test the 

scalability of the methodology. Specifically, we devised a set of 12 models (illustrated in figure 5) 

incorporating combinations of pathways in the cortico-basal ganglia-thalamic circuit amongst a set 

of six neural populations motor cortex (M2); striatum (STR), GPe, STN, and thalamus (Thal.). Models 

were split into sets including/excluding the indirect (M2 → STR → GPe → STN); hyperdirect (M2 → 

STN); and thalamocortical relay (M2↔Thal.). Models were further subdivided to include or exclude 

the  

 

                  



subthalamo-pallidal feedback connection (STN → GPe; models prefixed M x.2 to denote inclusion of 

the connection). For a full description and defence of the model choices please see methods section 

2.7.3. These models were fit individually to the empirical data and then model comparison used to 

determine the best candidate model. 

In figure 6 we show the resulting model fits and then the subsequent model comparison done in 

order to determine the best model or set of models from the proposed model space. From visual 

inspection of the fits to the data features in figure 6A as well as the distribution of posterior model 

accuracies in figure 6B there is a wide range of model performances with regards to accurate fitting 

of the models to the data. Inspection of the posterior model fits to the data features in 6A shows the 

best fitting model (M 5.2) was able to account for the multiple peaks in the autospectra at around 20 

Hz and 30 Hz. There was however a systematic underestimation of the directed functional 

connectivity (NPD) from subcortex to cortex. When the MSEpooled
 of the fitted models was segregated 

between their autospectra and functional connectivity, we found that spectra were more accurately 

fit than for the power. 

Figure 5 – Illustration of the model space of the cortico-basal-ganglia network fitted with ABC and compared with 

Bayesian model selection. The model space comprises six families which can be further subdivided into two subfamilies 

yielding 12 models in total. Family (1) models the indirect pathway; family (2) contains models with both the indirect 

and hyperdirect pathways; family (3) contains models with the hyperdirect pathway but not indirect pathway; family (4) 

contains models with the indirect, direct and thalamocortical pathways; family (5) contains models with indirect, direct 

hyperdirect, and thalamocortical pathways; family (6) contains models with hyperdirect, direct and thalamocortical 

pathway but no indirect pathway. Finally, each family comprises two sub-families that either exclude (Mx.1) or include 

(Mx.2) subthalamopallidal feedback excitation. Excitatory projections are indicated by ball-ended connections, whilst 

inhibitory connections are flat-ended.   

                  



In all cases the models containing the subthalamopallidal excitatory connection (M x.2) performed 

better than those without (M x.1) and in good agreement with the known Parkinsonian 

electrophysiology (Cruz et al., 2011). Notably we found that the model families (3) and (6), the null 

models, yielded poor accuracy with many of the posterior distributions of model MSEpooled falling far 

below the median of the whole model space (figure 6B) that translates to a reduced model 

probability (figure 6C). In the case of M 6.2 we see that this is accompanied by a high KL divergence 

(figure 6D). M 4.2 and 5.2 are the strongest models, with distributions of fits tightly clustered around 

 

Figure 6 – Scaling up the ABC model comparison framework – investigating models of the cortico-basal ganglia-

thalamic network. 12 competing models (six families subdivided each into two sub-families) were fitted to empirical 

data from Parkinsonian rats. Models were fitted to summary statistics of recordings from the motor cortex (M2), 

striatum (STR), subthalamic nucleus (STN), and external segment of the globus pallidus (GPe). Models were first fit using 

ABC to estimate the approximate posterior distributions over parameters. To assess relative model performances, 1000 

draws were made from each model posterior and corresponding data was simulated. (A)  The posterior model fits for 

the top three performing models are shown, with autospectra on the diagonal and NPD on the off-diagonal (M 5.2 in 

light green; M 4.2 in turquois; and 1.2 in red). Bounds indicate the interquartile range of the simulated features. (B)  

Violin plots of the distributions of model accuracies (MSEpooled) of the simulated pseudo-data from the empirical data. 

(C) The acceptance probability approximation to the model evidence 1-P(M|D) is determined by computing the number 

of samples from the posterior that exceed the median model accuracy (MSEpooled). (D) The joint space normalized 

Kullback-Leibler divergence of the posterior from prior is shown for each model (for formulation see second term of 

equation 9). Large values indicate high divergence and overfitting. (E) Combined scores for accuracy and divergence 

from priors using ACS.  

                  



high values yielding high model evidences. This suggests the importance of including thalamocortical 

feedback connections in the model. Scoring with ACS suggests model 4.2 is the best of the models 

due to the smaller model complexity (parameter divergence from prior). These results further 

underwrite our face validation of the ABC procedure by demonstrating that its posterior estimates of 

model probability match well with the known neurobiology of the circuit.  

Discussion 

Summary of the Results 

In this paper we formulated a novel framework (figure 1) for the inverse modelling of neural 

dynamics based upon the ABC-SMC algorithm (Toni et al., 2009). We have provided an face 

validation of this method when applied to models and data types typically encountered in systems 

neuroscience. We first demonstrated that the algorithm converges to yield best fit approximations 

to the summary statistics of empirical data to yield posterior estimates over parameters (figure 2). 

We assessed the accuracy of parameter estimation by confirming that posterior estimates were 

plausible given the parameters that were known to generate the data (figure 3). Additionally, we 

used a multi-start procedure to demonstrate that the optimization was robust to local minima and 

thus generalizable across different realizations of the data. Next, we examined the face validity of 

the model selection procedures (figure 4). These results demonstrated that the model comparison 

approach can reliably identify the model that generated the data, even in cases in which more 

complex models (going up to 6 sources) were included. Finally, we demonstrated the capacity for 

the framework to investigate the structure of real-world neuronal circuits using a set of models of 

the cortico-basal-ganglia-thalamic circuit fit to empirical data (figure 5). Conclusions drawn from this 

model comparison matched well with the known neurobiology and further underwrite the feasibility 

of applying this method to answer biologically relevant problems (figure 6). 

ABC for Parameter Estimation of Neural Circuit Models 

ABC has established itself as a key tool for parameter estimation in systems biology (Excoffier, 2009; 

Ratmann et al., 2009; Toni et al., 2009; Turner and Sederberg, 2012; Liepe et al., 2014) but is yet to 

see wide adoption in systems neuroscience. It is known that ABC will not perform well under certain 

conditions (for a critical review see Sunnåker et al., 2013). Specifically, it has been shown that the 

simplest form of ABC algorithm based upon an rejection-sampling approach is inefficient in the case 

where the prior densities lie far from the true posterior (Lintusaari et al., 2016). This problem is 

alleviated to some degree in biological models where a good amount of a priori knowledge regarding 

plausible model structures or parameter values exists. This motivates the use of neurobiologically 

                  



grounded models over phenomenological models where often the ranges of potential parameter 

values are unknown. 

A caveat of simulation-based inverse modelling concerns the timescale of the simulation and the 

data features to be fitted. The necessary finite time investigation precludes the examination of slow 

modes or switching behaviour1 occurring at time-scale beyond that captured in the empirical 

recordings or simulation duration (see also discussion below regarding sufficiency of the summary 

statistics). In the deployment of ABC here, we use a model cast in a set of stochastic delay 

differential equations, in which the finite time realization of each noise process will lead to 

differences in the trajectory of the system between instances (i.e. forward uncertainty). In these 

cases, optimization with ABC will be drawn towards regions of parameter space where stochasticity 

does not result in large deviations between realizations as this will result in increased uncertainty in 

the posterior parameter estimates. Corroborating this, it was found that independent realizations of 

the stochastic model led to highly consistent summary statistics (appendix III).  

Furthermore, the consistency in parameter estimates between multi-starts can also be taken as 

evidence of low inverse uncertainty as the values of estimated parameter did not deviate 

significantly between realizations of the underlying generative process. It would be of interest (but 

beyond of the scope of this paper) to evaluate the extent to which the variance between 

experimental samples (e.g. recordings from different animals within the same experimental 

treatment, or changes in sensor noise) can affect the consistency of parameter estimates (i.e. an 

examination of predictive validity). Schemes exist for DCM where data features may be weighted in 

terms of the estimated noise term, a similar extension is likely to be of use for ABC inverted models, 

especially in the case where multiple types of summary statistics are combined.  

Sufficiency of the Summary Statistic and ABC Model Selection  

The selection of summary statistics are well known to be a vital factor in determining the outcomes 

of ABC estimated posterior (Beaumont et al., 2002; Sunnåker et al., 2013), as well as in model 

selection that where insufficiency of the statistic can affect models non-uniformly (Robert et al., 

2011). Thus we can only interpret the results of a model comparison in terms of each model’s 

capacity to explain the given summary statistic as an abstraction of the complete data. The choice of 

summary statistic will always introduce a degree of parameter non-identifiability, for instance an 

investigation of model behaviour exhibiting switching or chaotic dynamics are unlikely to accurately 

identify the responsible parameters by a feature such as the finite time estimated spectrum. In this 

                                                             
1 In appendix III we investigated whether the posterior models exhibited any of these dynamics for which we 
found no evidence. 

                  



work we used the directed functional connectivity (NPD) as a data feature by which to constrain our 

model(s) rather than the complex cross spectra (from which it can be derived). The NPD exhibits 

robustness to zero-lag effects arising from volume conduction that in turn simplifies the estimation 

of mixing terms in the observer model. In our validation here, we showed that the feature was 

sufficient to recover known parameters, but likely entails an increase in the degree of non-

identifiability that could be examined in future work. 

Furthermore, sampling approaches to the estimation of marginal likelihoods in order to perform 

Bayesian model comparison are challenging to compute (Chib, 1995) and common approximations 

have been demonstrated to be poor (Penny, 2012). Furthermore, sampling approximations to the 

model evidence such as that described here are highly dependent upon the distance from the true 

posterior and the sufficiency of the summary statistic. Further work would need to be done in order 

to understand how the ABC estimates of model evidence are limited by non-vanishing error 

tolerance (i.e.    ) in which posteriors are only approximate (Dean et al., 2014).  

Future Directions for ABC and Mesoscale Neural Modelling 

This work follows on from a number of previous works that have performed inference from large 

scale models of brain activity and spectral domain summary statistics of neural recordings such as 

their cross-spectra or functional connectivity (Valdes et al., 1999; Rowe et al., 2004; van Albada et 

al., 2010; Friston et al., 2012; Hadida et al., 2018; Hashemi et al., 2018). Whilst similar in their aims, 

the computational challenge of the inverse problem has meant that the techniques adopted to solve 

it have dictated the types of questions to which they can be applied. Previous approaches to 

constraining models from spectral features have often bypassed finding explicit numerical solutions 

to models, instead opting to approximate dynamics by estimating the system’s transfer function 

around a local-linearization (Valdes et al., 1999; Rowe et al., 2004). Beyond reducing the 

computational burden of numerical integration, this approach also facilitates the use of techniques 

such as variational Bayes (Friston et al., 2012) by ensuring that posterior densities conform to a 

multivariate Gaussian (the Laplace assumption).  

Whilst this technique has proven powerful (e.g. Moran et al., 2011; Bastos et al., 2015), it precludes 

the examination of highly nonlinear models that exhibit structural instabilities (i.e. bifurcations or 

phase transitions) that will result in a non-convex cost function, and are thus unlikely to conform to 

the Laplace assumption. Importantly these bifurcations are known to exist in the neural mass models 

of the type used here (Aburn et al., 2012) and have been demonstrated to yield multimodal 

posteriors (Hadida et al., 2018). It would be of future interest to systematically delineate the 

conditions for when the above approximations. For instance, a comparison of posterior parameter 

                  



estimates computed between ABC and DCM (i.e. a construct validation), in a model approaching a 

transition point would address the question of what approach is best suited to a particular modelling 

scenario. 

Current approaches to the inverse modelling phenomena such as state transitions or time 

dependent fluctuations with DCM discretize these phenomena into either sliding windows (Rosch et 

al., 2018) or a succession states that evolve according to a matrix of transition probabilities 

(Zarghami and Friston, 2020). This follows from an assumption that time varying behaviour can be 

separated into fast local dynamics which are then under the control of some slow mode that dictates 

the succession (Rabinovich et al., 2012). Whilst this approach is useful for understanding the states, 

it somewhat abstracts the mechanisms that lay behind the transitions, whether that due to slow 

changes in connectivity or parameters (e.g. plasticity), evolution of a slow variable (c.f. an order-

parameter; Haken et al., 1985), or switching induced by stochastic drives to a model. Examination of 

these transitions are, for instance, important in models looking to interact with ongoing brain states 

through stimulation (see for instance West et al., 2020a). The framework described here provides an 

opportunity to investigate the mechanism behind these transitions and paves the way for future 

studies investigating the types of mechanisms that underwrite the statistics of for instance 

electrophysiological bursts (Powanwe and Longtin, 2019; Duchet et al., 2020) or neural microstates 

(Baker et al., 2014). Previous work has shown that ABC is well suited to applications using highly 

nonlinear or stochastic systems (see Toni et al. 2009 for an example). 

Conclusions 

Overall, we have introduced a framework for parameter estimation and model comparison that 

draws upon a number of recent developments in simulation-based inference that make it attractive 

to the inverse modelling of large-scale neural activity. This framework provides a robust method by 

which large scale brain activity can be understood in terms of the underlying structure of the circuits 

that generate it. This scheme avoids making appeals to local-linear behaviour and thus opens the 

way to future studies exploring the mechanisms underlying itinerant or stochastic neural dynamics. 

We have demonstrated that this framework provides consistent estimation of parameters over 

multiple instances; can reliably identify the most plausible model that has generated an observed set 

of data; and given an example application demonstrating the potential for this framework to answer 

neurobiologically relevant questions. Whilst this paper constitutes a first validation and description 

of the method, more work will be required to establish its validity in the context of more complex 

models as well as statistics of time-dependent properties of neural dynamics.  
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