Preparation and Structure of the Ion-Conducting Mixed Molecular Glass Ga$_2$I$_{3.17}$

Alfred Amon,* M. Emre Sener, Alexander Rosu-Finsen, Alex C. Hannon, Ben Slater, and Christoph G. Salzmann

ABSTRACT: Modern functional glasses have been prepared from a wide range of precursors, combining the benefits of their isotropic disordered structures with the innate functional behavior of their atomic or molecular building blocks. The enhanced ionic conductivity of glasses compared to their crystalline counterparts has attracted considerable interest for their use in solid-state batteries. In this study, we have prepared the mixed molecular glass Ga$_2$I$_{3.17}$ and investigated the correlations between the local structure, thermal properties, and ionic conductivity. The novel glass displays a glass transition at 60 °C, and its molecular make-up consists of GaI$_4^-$ tetrahedra, Ga$_2$I$_6^{2-}$ heteroethane ions, and Ga$^+$ cations. Neutron diffraction was employed to characterize the local structure and coordination geometries within the glass. Raman spectroscopy revealed a strongly localized nonmolecular mode in glassy Ga$_2$I$_{3.17}$, coinciding with the observation of two relaxation mechanisms below T_g in the AC admittance spectra.

INTRODUCTION

Glasses belong to the earliest materials utilized and produced by humanity and have been rediscovered as modern materials based on diverse novel glass-forming precursors and the concomitant functional properties.¹ Recent examples are flexible semiconducting oxide glasses,² multinary chalcogenide glasses for infrared optics and data-storage media,³ bulk metallic glasses with superior mechanical and magnetic properties,⁴ and metal–organic framework glasses.⁵,⁶ Ion-conducting glasses are promising electrolytes for the next-generation of all-solid-state batteries, as they display isotropic behavior, absence of grain boundaries, and often higher ionic conductivity than their ordered crystalline counterparts.⁷ In addition to amorphous organic polymers, mixed phosphate, oxide, sulﬁde, and halide glasses show high ionic conductivities at ambient temperature, combined with enhanced chemical stability and glass-forming ability.⁸⁻¹⁰

Molecular glasses are typically comprised of small organic molecules¹¹,¹² and have been investigated for applications in photolithography, organic electronics,¹³⁻¹⁵ and for amorphous pharmaceuticals where their improved dissolution behavior can be exploited.¹⁶,¹⁷ The small molecular mass and well-defined composition make molecular glasses attractive for the production of printed organic circuits.¹⁸ However, low glass-transition temperatures T_g and strong tendencies for crystallization remain the major challenges in the design of molecular glasses and hinder long-term applications, in particular, at elevated temperatures.¹⁹

The general design guidelines for molecular glasses include nonplanar molecular structures, increased molecular size, and bulky substituents,²⁰ as observed in a series of molecular glasses, based on triphenylamine derivatives, tris-(oligoarylenyl)amines or tris(oligoarylenyl)boranes.²¹ Tuning the glass-transition temperature, long-term stability, and optical and transport properties has been achieved by side-group substitution and variation in molecular size but still relies often on trial-and-error.¹¹,²² More recent avenues to molecular glass design include the use of atomistic simulations or machine-learning-based algorithms to predict the properties and compositions of possible glass-forming liquids.²³⁻²⁵ For organic electronics, interest has shifted from one-component glasses to mixed molecular glasses, containing two or more molecular species.²⁶ For applications such as organic LEDs, the combination of light-emitting species with conductive molecules can lead to increased emission eﬃciency and provides more design flexibility.²⁷

Contrary to the glass-forming organic liquids, inorganic oxide, chalcogenide, or halide glasses typically feature a network structure, characterized by the formation of strong directional bonds during the transition from the liquid to the

Received: January 7, 2021
the above phases and has found use as a gallium source in organic synthesis.39,40

Two early reports noted a possible glass formation in the Ga—I system without providing further details.37,41 Our study is the first investigation of the gallium halide glass with the composition Ga2I3.17, describing the local structure and chemical properties of the liquid and glassy states in detail. The reported structures of the crystalline phases, c-Ga2I4 and c-Ga2I6, were taken as starting points for the analysis of glassy and liquid Ga2I3.17. The crystalline compounds contain gallium in nominal oxidation states Ga(I), Ga(II), and Ga(III). In c-Ga2I3 and c-Ga2I6, Ga(I) cations coordinate with Ga(II)2I6− heteroetheane ions (idealized point symmetry D3d) and tetrahedral Ga(III)I4− anions, respectively (cf. Figure 1A). The reported covalent bond lengths in the molecular anions are 2.39 Å for the Ga(II)−Ga(II) single bond and 2.54−2.61 Å for Ga(I)−I bonds.

EXPERIMENTAL METHODS

Gallium iodide samples were prepared in a highly exothermic reaction by carefully heating stoichiometric amounts of gallium metal (Aldrich, 99.99%) and iodine powder (VWR Rectapur GR, ≥99%) up to 300 °C, forming a dark red melt. Samples of the gallium iodide glass were prepared by air quenching a melt of composition Ga2I3.17 (i.e., Ga38.7I61.3), from 400 °C to room temperature. This composition corresponds to the solubility limit of Ga in the melt at 400 °C. The composition of the glass was determined as Ga2I3.17 by back-weighing the residual Ga metal from samples with Ga metal excess. Differential scanning calorimetry (DSC) data were collected on a PerkinElmer DSC 8000 system at a rate of 10 K min−1. Raman and Fourier transform infrared (FTIR) spectra were recorded under an inert atmosphere on a Renishaw Ramascope (HeNe laser, 633 nm) and a Bruker INVENIO-R spectrometer, respectively. Time-of-flight neutron diffraction data were recorded on the GEM instrument (RAL-ISIS, UK) in the range Q = 0.1−60 Å−1. The DC conductivity and AC admittance data were recorded in a two-probe mode using a UNI-T 61C ohmmeter and an Agilent HP 4294A precision impedance analyzer, respectively. Further experimental details and data evaluation are provided in the Supporting Information.

RESULTS AND DISCUSSION

During the preparation of g-Ga2I3.17, a remarkable color change was observed from the yellowish crystalline solid to a dark red liquid, which then gives an optically transparent orange g-Ga2I3.17 upon quenching (inset to Figure 1B). The galluim nature of g-Ga2I3.17 was confirmed by DSC of glassy Ga2I3.17. Heating of the air-quenched glass reveals a glass transition at Tg = 60.0 °C with a kinetic overshoot followed by a strong exothermic crystallization of the glass with onset at Tc ≈ 90 °C at 10 K min−1 (Figure 1B). The glass transition displays a step in specific heat ΔCp = 83.5 J K−1 mol−1 of glassy Ga2I3.17 (curve 1 in Figure 1C). The glass-transition temperature was found as Tg = 57.7 °C in the second heating cycle after cooling the sample at a rate of 10 K min−1 (curve 3 in Figure 1C). The strong kinetic overshoot observed in the air-quenched material indicates a more relaxed sample which was reduced in the second heating cycle, suggesting that the cooling rate of the air-quenched material was significantly lower due to the large thermal mass. Sub-Tg annealing of the sample for 1 h at 50 °C led to the recovery of the kinetic overshoot and a glass transition with Tg = 60.0 °C and ΔCp = 83.7 J K−1 mol−1 (curve S in Figure 1C).

The temperature-dependent Raman spectra of g-Ga2I3.17 were recorded to determine the molecular make-up of the
glass and follow the structural changes upon heating from room temperature to 410 °C, covering the glassy, supercooled liquid, crystalline, and liquid states (Figure 2). The reported crystal structures and Raman spectra of Ga2I6, Ga2I4, and a series of A2[Ga2X6] compounds, together with the calculated Raman spectrum of c-Ga2I6, serve as a starting point for assigning the Raman lines to the molecular modes (cf. Table S1 in the Supporting Information). The composition of the melt and the resulting glass, Ga2I3.17, lies between that of c-Ga2I3 and c-Ga2I4, suggesting a mixture of Ga ions with both Ga2I62− and GaI4− molecular ions in the glass.

The Raman spectrum of g-Ga2I17 at 20 °C displays four distinct peaks centered at 106, 118, 283, and 310 cm−1 (Figure 2A). Modes below 80 cm−1 can be assigned to I−Ga−I and I−Ga−Ga bending modes of GaI4 and Ga2I62− molecules, respectively. Upon close inspection, two very weak broadened features are found at 184 and 244 cm−1 due to the Ga−I asymmetric stretch vibrations of Ga2I62−. The peaks at 118 and 283 cm−1 can be identified as the in-phase (A1g) and out-of-phase (A2g) stretch vibrations of the Ga−Ga bond within the Ga2I62− ions, as observed in A2[Ga2I6] (A = H+, Me4N+) compounds and the calculated Raman spectrum for c-Ga2I3 (Table S1). The peak at 142 cm−1 can be assigned to the tetrahedral breathing mode (A1g) of GaI4− molecules, the band of the highest intensity in Ga2I4 (cf. Figure S1 in the Supporting Information). The presence of GaI4− molecules is consistent with the determined sample composition of Ga2I3.17, which corresponds to an approximate ratio of 0.4 GaI4− molecules per Ga2I62− molecule. Following this analysis, the overall composition of g-Ga2I17 can also be represented as [GaI4−]0.32[Ga2I62−]0.68[GaI4−]10.5, reflecting the molecular makeup.

At 106 cm−1, a strong mode is observed in glassy Ga2I17 which cannot be attributed to any molecular mode of Ga2I62− or GaI4− units and therefore requires further examination. The peak is of comparable intensity and width to the identified molecular modes, suggesting a localized nature (20 °C curve in Figure 2A). The mode was not observed in the infrared spectra of g-Ga2I17 (Figure S2) and hence is only Raman-active.

Two phenomena are observed for (i) the molecular modes of Ga2I62− and GaI4− and (ii) the unidentified mode at 106 cm−1 upon heating:

(i) The Raman shift and peak width for the Ga−Ga stretch modes at 118 and 283 cm−1 and the GaI4− tetrahedral breathing mode at 142 cm−1 show a remarkable temperature dependence (cf. Figure S3). All three modes display an overall red shift with increasing temperature, as expected for the thermal expansion behavior of an anharmonic oscillator. Across the glass transition around 60 °C, both the Ga−Ga stretch modes of the Ga2I62− unit experience a rapid but continuous blue shift which stops once the sample crystallizes at around 80 °C.

Contrarily, the GaI4− breathing mode at 142 cm−1 displays a red shift, simultaneous with the above-mentioned blue shift. The opposite behavior in Raman shift agrees well with the separation of Ga2I62− and GaI4− molecules due to the crystallization of g-Ga2I17 forming the phases c-Ga2I3 and c-Ga2I4. During melting of the two phases, which begins for c-Ga2I4 at 170 °C and for c-Ga2I3 around 230 °C (cf. Figures 2 and S3), the change in Raman shift is reversed for all three modes.

Extrapolation of the peak positions from the glassy state to higher temperatures coincides well with the observed peak positions in the liquid state, suggesting that the interactions in glass and liquid are of similar nature. The changing line widths of all three modes reflect the narrowing and broadening distributions of the coordination environments for Ga2I62− and GaI4− molecules upon crystallization and melting, respectively.

(ii) Approaching Tg, the peak at 106 cm−1 drastically loses intensity and is completely absent once the sample crystallizes at Tc (100 °C curve in Figure 2A). Upon melting, the peak reappears as a broad shoulder and gains intensity as the temperature increases (curves for 245 and 410 °C in Figure 2A). The mode is only present in the disordered glassy and liquid states, which contain both Ga2I62− and GaI4− molecules but not after crystallization when the two types of molecules are separated in two phases. Heating of g-Ga2I17, from room temperature across Tg and subsequent cooling, while avoiding crystallization, reveal the reversibility of the intensity loss across Tc. The intensity of the 106 cm−1 peak drops steeply above 60 °C, relative to the highest intensity Ga−Ga stretch mode at 118 cm−1, but regains nearly full initial intensity upon cooling (cf. Figure S4).

The amorphous nature of the material was further corroborated by time-of-flight neutron measurements recorded on glassy (30 °C) and liquid (310 and 400 °C) Ga2I3.17 (GEM diffractometer, RAL-ISIS, UK). The total structure factor S(Q) for glassy Ga2I3.17, presented as a function of the scattering vector Q in Figure 3A, shows broadened features characteristic of amorphous materials and is dominated by three main peaks in the low-Q region (Table S2). A small but well-defined first sharp diffraction peak (FSDP) is observed at Qf = 0.96 Å−1. The FSDP can be related to intermediate-range order (IRO) on the length scale of 2π/Qf ≈ 6.5 Å. In c-Ga2I3, no intramolecular correlations exist beyond this length scale.
marking the transition to purely intermolecular pair correlations. Comparing $S(Q)$ of g-Ga$_2$I$_{17}$ with the liquid state, an overall broadening of the features is observed at higher temperatures. Interestingly, the positions of the first and second peaks barely change upon melting, and the FSDP is sharpened, suggesting enhanced IRO. The oscillations of $S(Q)$ at high Q are dampened more strongly at high temperatures, as expected, due to thermal broadening.

The total pair distribution function $G(r)$ for glassy and liquid Ga$_2$I$_{17}$ (Figure 3B) was obtained by Fourier transformation of the total structure factor. The close correspondence of $G(r)$ for g-Ga$_2$I$_{17}$, l-Ga$_2$I$_{17}$, and c-Ga$_2$I$_3$ (cf. Figure S6) corroborates the suspected presence of Ga$_2$I$_6$ molecules in glassy and liquid Ga$_2$I$_{17}$. Below $r = 2$ Å, $G(r)$ of g-Ga$_2$I$_{17}$ shows small irregular oscillations around zero, attributed to Fourier truncation artifacts, and no contributions to $G(r)$ are expected at this range. A comparison with interatomic distances observed in crystalline gallium iodides and the simulated total pair distribution function for crystalline Ga$_2$I$_3$ (Figure S6) allows the assignment of the peaks in $G(r)$ to interatomic distances between atom pairs up to $r = 5$ Å (Figure 3B,C).

The first peak centered around 2.56 Å contains overlapping contributions of the covalently bound Ga(II)–Ga(II) (~2.39 Å) pair in Ga$_2$I$_6$ and Ga–I pairs within Ga$_2$I$_6$ and GaI$_4$ molecules (~2.5–2.6 Å). The contribution of the Ga–Ga pairs to $G(r)$ is quite small due to the high relative abundance of Ga–I bonds and the smaller neutron scattering length of gallium. The third peak in $G(r)$ shows a maximum at $r = 4.14$ Å in good agreement with the longer nonbonded Ga(II)–iodine distances within Ga$_2$I$_6$ (~4.1 Å) and intramolecular iodine–iodine (4.2–4.3 Å, geminal) distances within the Ga$_2$I$_6$ and GaI$_4$ units. The asymmetry at high r arises from intramolecular 1–1 (vicinal) and also intermolecular 1–1 distances between neighboring molecules, contributing between $r = 4.1$ and 4.5 Å in the crystalline compounds. The second peak centered at 3.30 Å can then be assigned to the distances between iodine in the Ga$_2$I$_6$/GaI$_4$ units and the surrounding Ga(I) ions, as observed in c-Ga$_2$I$_3$ and c-Ga$_3$I$_4$ ($d_{Ga(I)-I} \approx 3.3–3.7$ Å). This distribution is significantly broader than the intramolecular contributions as a result of the relaxed bonding constraints. The Ga(I)–I distribution is also significantly broadened compared to the simulated $G(r)$ of c-Ga$_2$I$_3$ (Figure S6).

For the liquid l-Ga$_2$I$_{17}$, at 310 and 400 °C, $G(r)$ shows a similar overall shape as for g-Ga$_2$I$_{17}$. Upon melting, the first and third peaks in $G(r)$ are slightly broadened, which is enhanced at 400 °C. Overall, the magnitude of the oscillations in $G(r)$ at larger distances decays faster with increasing temperature. The strongest change is observed for the second peak, around 3.3 Å. While this peak is well defined in the glassy solid, it is significantly broadened in the melt at 310 °C and turns into a nearly flat contribution to $G(r)$ at 400 °C. This observation can be well reconciled with the above peak assignment, distinguishing intramolecular Ga(II)–Ga(II) (2.39 Å), Ga(II/III)–I (2.59 Å), and I–I (4.1 Å) distances from the intermolecular Ga(I)–I distances. While the intramolecular distances show only moderate peak broadening upon melting, the distribution of the noncovalently bound Ga(I)–I pairs around $r = 3.3$ Å is strongly affected, suggesting enhanced mobility and disorder of the Ga(I) ions.

The partial coordination numbers $C_N^{(Ga(I))}$, $C_N^{(Ga(II))}$, $C_N^{(Ga(III))}$, and $C_N^{(I)}$ for the peaks up to $r = 5$ Å were determined following the formalism derived in the Supporting Information. The fit results from Gaussian contributions to $r^2 G(r)$ (Figures 3C and S7) were weighted by the corresponding stoichiometric coefficients and neutron scattering lengths to obtain an estimate for the partial coordination numbers (Tables 1, S3, and S4).

![Figure 3. Neutron diffraction data for Ga$_2$I$_{17}$ in the glassy (30 °C) and liquid (310, 400 °C) states. Data are vertically shifted for visibility. (A) Total structure factors $S(Q)$ after the correction of raw data. (B) Pair distribution functions $G(r)$ obtained by Fourier transformation of the diffraction data. (C) Gaussian least-squares fit to the function $r^2 G(r)$ for glassy Ga$_2$I$_{17}$. Peaks are labeled with atom pair assignments.](https://doi.org/10.1021/acs.inorgchem.1c00049)
Ga$_2$I$_{3.17}$ compared to crystalline Ga$_2$I$_6$ where eight iodine atoms form the closest coordination shell. Upon melting, the distribution broadens, and $CN_{Ga(I)}$ decreases to 4.2(1) at 400 °C (Tables S3 and S4). At a higher temperature and above $r = 4$ Å, the coordination numbers are less robust due to the increased overlap of partial contributions and the simplistic approximation as symmetric Gaussian contributions.

The effect of structural changes on the transport properties of Ga$_2$I$_{3.17}$ was observed in the temperature-dependent crystallization temperature T_c. Above T_g a-Ga$_2$I$_{3.17}$ displays a linear trend of $\ln(\sigma)$ versus $1/T$, suggesting a thermally activated process for the mobility of Ga(I) ions. The behavior is well described by the Arrhenius law $\sigma(T) = \sigma_0 e^{-E_a/kT}$, with the fit parameters $\sigma_0 = 156.6$ S cm$^{-1}$ and the activation energy $E_a = 0.59$ eV.

Above the glass transition, which has a lower onset than in DSC due to the lower heating rate, $\ln[\sigma(T)]$ deviates strongly from the linear behavior, that is, from exponential relaxation, and increases at an accelerated rate. Such behavior is typically observed for glass systems containing mobile ionic species and indicates the onset of a cooperative mechanism for the conduction of Ga(I) ions as Ga$_{2}$I$_{6}^{2-}$, and GaI$_4$$^-$ units gain structural freedom. Conductivity enhancement due to a cooperative mechanism was recently also reported for the molecular glass Li$_3$PS$_4$. The supercooled liquid region $T_c < T < T_g$ can be well fitted using the empirical Vogel–Fulcher–Tammann (VFT) expression $\sigma(T) = \sigma_{VFT}e^{-E_{VFT}/(T-T_0)}$. This yields the fit parameters $E_{VFT} = 0.014$ eV, $T_0 = 296$ K, and $\sigma_{VFT} = 1.36 \times 10^{-4}$ S cm$^{-1}$.

The real part $Y_{Re}(\omega)$ of the spectral ac admittance (i.e., the inverse of the complex electrical impedance) in the glassy state presents a wide low-frequency plateau, extending to higher frequencies as the ionic mobility increases with temperature (Figure 4B). This corresponds to the bulk ionic conductivity, and the extrapolated values $Y_{Re}(\omega = 0)$ (inset to Figure 4B) follow the observed increase in the dc conductivity of a-Ga$_2$I$_{3.17}$, reproducing a comparable activation energy of 0.8 eV below T_g. A high-frequency limit is not observed within the recorded range (40 Hz – 50 MHz), as data above 3 MHz are influenced by the strong pickup from wiring contributions.

The respective imaginary part $-Y_{Im}(\omega)$ of ac admittance is characterized by a broad minimum centered around $\omega_{\text{mean}} \approx 10^6$ Hz at 23 °C (Figure 4C). With increasing temperature, the relaxation time decreases and the broad minimum splits into two individual contributions around $T_g \approx 37$–41 °C, before ending in a single narrow minimum at 0.5–1.4 $\times 10^6$ Hz above 44 °C, indicating a single relaxation process.

The clear observation of two relaxation processes around T_g with distinct time constants is intriguing and raises questions about their structural origins. In amorphous polymers and glass-forming liquids, the primary or structural α-relaxation determines the glass transition and has been related to cooperative molecular rearrangements. For many materials, a secondary β-relaxation, or Johari–Goldstein relaxation, has been observed in their dielectric or impedance spectra, which manifests as a high-frequency contribution on an individual timescale and temperature dependence. Its exact nature is still debated but has been associated with hindered noncooperative reorientations or translations in the local regions of low mobility.

Within this model, the two observed minima may be attributed to the above-described structural primary and secondary β-relaxation. The timescale of the primary relaxation is observable as a low-frequency contribution close to the glass-transition temperature but is indistinguishable from the β-relaxation above T_g. The exact temperature dependence of the low-frequency contribution is hard to determine within the narrow observation window.

The narrowing of the minimum at low temperatures may be attributed to the freeze-out and decrease in magnitude of the primary relaxation mechanism. Thus, the primary relaxation may be understood as cooperative translations and reorientations of Ga(I), Ga$_{2}$I$_{6}^{2-}$, and GaI$_4$ ions in a-Ga$_2$I$_{3.17}$. Below T_g, the movement of molecular units freezes out, and the Ga(I) migration follows pure Arrhenius behavior. A third contribution, corresponding to the slow time constant of the molecular glass Li$_3$PS$_4$. The supercooled liquid region $T_c < T < T_g$ can be well fitted using the empirical Vogel–Fulcher–Tammann (VFT) expression $\sigma(T) = \sigma_{VFT}e^{-E_{VFT}/(T-T_0)}$. This yields the fit parameters $E_{VFT} = 0.014$ eV, $T_0 = 296$ K, and $\sigma_{VFT} = 1.36 \times 10^{-4}$ S cm$^{-1}$.

The real part $Y_{Re}(\omega)$ of the spectral ac admittance (i.e., the inverse of the complex electrical impedance) in the glassy state presents a wide low-frequency plateau, extending to higher frequencies as the ionic mobility increases with temperature (Figure 4B). This corresponds to the bulk ionic conductivity, and the extrapolated values $Y_{Re}(\omega = 0)$ (inset to Figure 4B) follow the observed increase in the dc conductivity of a-Ga$_2$I$_{3.17}$, reproducing a comparable activation energy of 0.8 eV below T_g. A high-frequency limit is not observed within the recorded range (40 Hz – 50 MHz), as data above 3 MHz are influenced by the strong pickup from wiring contributions.

The respective imaginary part $-Y_{Im}(\omega)$ of ac admittance is characterized by a broad minimum centered around $\omega_{\text{mean}} \approx 10^6$ Hz at 23 °C (Figure 4C). With increasing temperature, the relaxation time decreases and the broad minimum splits into two individual contributions around $T_g \approx 37$–41 °C, before ending in a single narrow minimum at 0.5–1.4 $\times 10^6$ Hz above 44 °C, indicating a single relaxation process.

The clear observation of two relaxation processes around T_g with distinct time constants is intriguing and raises questions about their structural origins. In amorphous polymers and glass-forming liquids, the primary or structural α-relaxation determines the glass transition and has been related to cooperative molecular rearrangements. For many materials, a secondary β-relaxation, or Johari–Goldstein relaxation, has been observed in their dielectric or impedance spectra, which manifests as a high-frequency contribution on an individual timescale and temperature dependence. Its exact nature is still debated but has been associated with hindered noncooperative reorientations or translations in the local regions of low mobility.

Within this model, the two observed minima may be attributed to the above-described structural primary and secondary β-relaxation. The timescale of the primary relaxation is observable as a low-frequency contribution close to the glass-transition temperature but is indistinguishable from the β-relaxation above T_g. The exact temperature dependence of the low-frequency contribution is hard to determine within the narrow observation window.

The narrowing of the minimum at low temperatures may be attributed to the freeze-out and decrease in magnitude of the primary relaxation mechanism. Thus, the primary relaxation may be understood as cooperative translations and reorientations of Ga(I), Ga$_{2}$I$_{6}^{2-}$, and GaI$_4$ ions in a-Ga$_2$I$_{3.17}$. Below T_g, the movement of molecular units freezes out, and the Ga(I) migration follows pure Arrhenius behavior. A third contribution, corresponding to the slow time constant of the molecular glass Li$_3$PS$_4$. The supercooled liquid region $T_c < T < T_g$ can be well fitted using the empirical Vogel–Fulcher–Tammann (VFT) expression $\sigma(T) = \sigma_{VFT}e^{-E_{VFT}/(T-T_0)}$. This yields the fit parameters $E_{VFT} = 0.014$ eV, $T_0 = 296$ K, and $\sigma_{VFT} = 1.36 \times 10^{-4}$ S cm$^{-1}$.
orcid.org/0000-0000-60

High ionic LiGaCl3 described as a mixture of the molecular anions Ga2I6 and liquid Ga2I3.17, which is absent in the spectra of the related compounds, rendering especially the lithium analogues interesting for application. The electrical ac admittance in the observed frequency range.

The sharp peak shape suggests the resonance in glassy and liquid Ga2I3.17 and the structural relaxation at the glass transition. The strong Raman mode at 106 cm−1 was observed for glassy and liquid Ga2I3.17, which is absent in the spectra of the crystalline phases Ga3I and Ga3I4 and indicative of strong intermolecular interactions at the glass transition. Temperature-dependent Raman and admittance spectroscopy show that the new mode is strongly connected to the local structure in glassy and liquid Ga2I3.17 and the structural relaxation at the glass transition. The sharp peak shape suggests the resonance of a well-defined local molecular arrangement possible only in the presence of both GaI62− and GaI4− units.

Comparison of the extrapolated dc conductivity of the crystallized mixture Ga3I4/Ga3I4 suggests a conductivity increase by several orders of magnitude in glassy Ga2I3.17 compared to the ordered crystalline phases. The existence of the related crystalline compounds LiGaI3, LiGaBr3, and LiGaCl3 hints that g-Ga2I3.17 may be the first representative of a whole family of mixed molecular glasses with substituential flexibility, heralding the advent of new ion-conducting glasses for lithium- or sodium-based energy storage concepts.

CONCLUSIONS
A high glass-forming tendency was found for melts with composition Ga2I3.17, located between the two binary crystalline compounds Ga3I and Ga3I4. Raman spectroscopy and neutron scattering revealed that the Ga2I3.17 glass can be described as a mixture of the molecular anions GaI62− and GaI4− coordinated by Ga+ cations. Remarkably, the glass contains gallium in three formal oxidation states, and its molecular make-up can be summarized by the formula [GaI6]2+3[GaI62−]28.5[GaI4]18.5.

A strong Raman mode at 106 cm−1 was observed for glassy and liquid Ga2I3.17, which is absent in the spectra of the crystalline phases Ga3I and Ga3I4 and indicative of strong intermolecular interactions at the glass transition. Temperature-dependent Raman and admittance spectroscopy show that the new mode is strongly connected to the local structure in glassy and liquid Ga2I3.17 and the structural relaxation at the glass transition. The sharp peak shape suggests the resonance of a well-defined local molecular arrangement possible only in the presence of both GaI62− and GaI4− units.

Comparison of the extrapolated dc conductivity of the crystallized mixture Ga3I4/Ga3I4 suggests a conductivity increase by several orders of magnitude in glassy Ga2I3.17 compared to the ordered crystalline phases. The existence of the related crystalline compounds LiGaI3, LiGaBr3, and LiGaCl3 hints that g-Ga2I3.17 may be the first representative of a whole family of mixed molecular glasses with substituential flexibility, heralding the advent of new ion-conducting glasses for lithium- or sodium-based energy storage concepts.

ASSOCIATED CONTENT
Supporting Information The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acs.inorgchem.1c00049.

Full experimental details on synthesis, characterization, and evaluation of neutron diffraction data; detailed Raman, infrared, and neutron diffraction data; Raman/ infrared modes; and results of neutron diffraction data (PDF)

AUTHOR INFORMATION
Corresponding Author
Alfred Amon — Department of Chemistry, University College London, WC1H 0AJ London, U.K.; orcid.org/0000-0002-5301-8867; Email: aamon@ucl.ac.uk

Authors
M. Emre Sener — Department of Chemistry, University College London, WC1H 0AJ London, U.K.
Alexander Rosu-Finsen — Department of Chemistry, University College London, WC1H 0AJ London, U.K.; orcid.org/0000-0001-5165-7940
Alex C. Hannon — ISIS Facility, Rutherford Appleton Laboratory, OX11 0QX Didcot, U.K.; orcid.org/0000-0001-5914-1295
Ben Slater — Department of Chemistry, University College London, WC1H 0AJ London, U.K.
Christoph G. Salzmann — Department of Chemistry, University College London, WC1H 0AJ London, U.K.; orcid.org/0000-0002-0714-7342

Complete contact information is available at: https://pubs.acs.org/10.1021/acs.inorgchem.1c00049

Author Contributions
A.A. wrote the manuscript and performed DSC, Raman, FTIR, conductivity, and neutron diffraction experiments. M.E.S. performed conductivity measurements, optical spectroscopy, and data evaluation. A.R.-S. and A.C.H. performed neutron diffraction measurements. B.S. performed computational analyses. A.A. and C.G.S. developed the concept of this study. All authors have given approval to the final version of the manuscript.

Funding
The authors are grateful for the financial support through a Schrödinger Fellowship (A.A.) from the Austrian Science Fund (FWF): J4325 and grateful to RAL-ISIS for granting access to the GEM instrument. M.E.S. is grateful for the financial support through an EPSRC grant (no EP/N509577/1).

Notes
The authors declare no competing financial interest.

ACKNOWLEDGMENTS
The authors are grateful for the support from the pressure and furnace team at ISIS and grateful to Steve Firth (UCL) for granting access to the equipment.

REFERENCES

