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Public, private, and not-for-profit organizations find advanced technology and product development projects

challenging to manage due to the time and budget pressures, and turn to their development partners and

suppliers to address their development needs. We study how dynamic development contests with enriched

rank-based incentives and carefully-tailored information design can help these organizations leverage their

suppliers for their development projects while seeking to minimize project lead time by stimulating compe-

tition among them. We find that an organization using dynamically-adjusted flexible rewards can achieve

the minimum expected project lead time at a significantly lower cost than a fixed-reward policy. Impor-

tantly, the derived flexible-reward policy pays the minimum expected reward (i.e., achieves the first best).

We further examine the case where the organization may not have sufficient budget to offer a reward that

attains the minimum expected lead time. In this case, the organization uses the whole reward budget and

supplements it with strategic information disclosure. Specifically, we derive an optimal information disclosure

policy whereby any change in the state of competition is disclosed immediately with some probability that is

weakly increasing over time. Our results indicate that dynamic rewards and strategic information disclosure

are powerful tools to help organizations fulfill their development needs swiftly and cost effectively.
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1. Introduction

Organizations worldwide face the challenges of developing advanced technologies and products

under time and budget pressures. These pressures are more pronounced in time-sensitive devel-

opment endeavors with concerns such as national security, critical health care, and first-mover

advantage (Stalk 1988). To overcome time and budget pressures, organizations increasingly lever-

age their supply base to tackle demanding problems that require rigorous work with multiple major

milestones at the shortest lead time. For instance, the US Department of Defense (DoD) seeks to

develop hypersonic (faster than five times the speed of sound) missiles as swiftly as possible by

leveraging suppliers like Lockheed Martin and Raytheon. Similarly, Tesla induces major battery

suppliers such as Panasonic, LG, and Samsung to develop the next generation 4680 Battery Cell at
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the earliest lead time to stay ahead of the electric vehicle (EV) industry (INSIDE EVs 2021).1 The

main challenge of such development settings is to respond to competitive and market pressures

with demanding milestones and compressed timelines by inducing suppliers to make significant

resource investments. In this paper, we study how organizations can go beyond contractual devel-

opment, and benefit from a “development contest” approach and its advanced elements such as

rank-based incentives and strategic information disclosure to stimulate development effort from

competing suppliers to minimize project lead time while keeping the cost of incentives in check.

To see the important needs and challenges of development contests, consider the development

of weapon systems by DoD, which we studied closely. While individual DoD programs have their

own unique contextual adaptations, we discern an archetypal program abstracted from the hyper-

sonic weapons development program. Driven by the success of rival nations in demonstrating their

hypersonic missiles with recent tests, DoD is racing to develop its own hypersonic weapons such

as missile and interceptor systems (The Washington Post 2022).2 The development process of such

weapons, however, is quite complex and requires the successful completion of major phases such as

the development of a proof of concept and system validation (CRS Report 2023). To economize on

resources and to accelerate launch, DoD leverages major defense industrial base (DIB) firms such

as Lockheed Martin and Raytheon, engaging them in winner-takes-all competitions and rewarding

the winner of each contest with a substantial supply contract. Each contest has a clear scope:

achieve hypersonic speed and sufficient height and range. DIB firms participate in such a contest

and race to complete the development project at the earliest lead time with the hope of winning

the DoD supply contract that can be worth billions of dollars. While managing such a contest, DoD

needs to be mindful of contestants’ intellectual property and cannot share any technical details of

the deliverables with any third party (CRS Report 2022). However, DoD also holds the authority

to fully control the information flow about whether and when certain milestones are completed

in the interest of balancing confidentiality and competition (CNN 2022b). While there are minor

variations in how these contests are implemented in different contexts, the overarching goal seems

to be achieving the targets in the shortest time possible.

There are a number of key distinguishing aspects of development contests as exemplified above:

1. Lead-Time Minimization as a Key Goal in a Contest Setting. The development organi-

zation (hereafter, “principal”) is responding to a market or competitive imperative and engaged

in sourcing a product (e.g., a hypersonic missile or an EV battery) at a quality level acceptable

1 According to Larson and Gray (2014), in moderate to high-technology industries, a six-month delay in a new product
launch time can result in a 35% loss of market share.

2 In the backdrop of rival nations creating a “Sputnik moment” by launching hypersonic weapons before the US, Vice
Admiral Johnny Wolfe, director of the Navy’s Strategic Systems program remarked: “The need was not there. The
need is now there, which is why we’ve got a sense of urgency to get after this” (CNN 2022a).
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to the use case (e.g., with hypersonic speed and suitable for the proposed combat setting) and is

focused on minimizing project lead time while keeping the cost of incentives in check. Lead-time

minimization may not be a major priority for exploratory innovation contests, where the focus

is to leverage the contestants to maximize the quality of the best solution(s) or contestants’

total efforts. In addition, the use of the contest approach in minimizing lead time goes beyond

traditional operations research (scheduling) approaches focused on complex internal projects.

2. Expert-Sourcing. Due to complexity of problems and the enormity of investments necessary,

the principal in a development contest typically works with a few strategic suppliers (hereafter,

“agents”) that have a proven expertise in the specific technologies and are able to make signifi-

cant resource investments. While such expert sourcing is involved in its own ways, it also offers

the principal some additional commitment power and flexibility to control the information flow.

Specifically, the principal who adjudicates the completion of certain milestones has the ability

to decide whether, when, and how to disclose this information.3 For example, DoD strategically

withheld information about a successful test by Lockheed Martin in the hypersonic weapons

program (CNN 2022b). The long-term relationship between the principal and suppliers also

induces the principal to share credible and truthful information, because any attempt to fool

the suppliers may be detrimental to the principal’s reputation, the quality of the relationship

with suppliers, and long-run profits (Fudenberg and Levine 2009).

3. Complex Multi-Phase Structure. The development setting described above (such as hyper-

sonic missiles or EV batteries) goes beyond simpler projects such as designing logos, so effective

management entails incentivizing agents through a development process with multiple major

milestones (such as proof of concept and system validation in hypersonic missiles). Importantly,

each agent has to complete these milestones independently and cannot bypass a certain mile-

stone, and the principal cannot bring any of these agents “up to speed,” either. Specifically,

due to complexity involved in development settings, suppliers often draw on their proprietary

knowledge to achieve ambitious functional targets. As sharing of their deliverables may also spill

over this proprietary knowledge, a principal such as DoD has an obligation to keep the technical

details or technologies used by agents to complete a milestone confidential (CRS Report 2022).

Due to these characteristics, development contests are fundamentally different from more

exploratory innovation contests. Yet, they also share the common property of all contests: the

3 The principal can easily prevent agents from sharing information by asking them to sign confidentiality agreements.
Even when the principal does not impose such restrictions, in most development settings, only the principal can
credibly verify the successful completion of a milestone and any information revealed by agents will be cheap talk.
In certain development settings such as vaccine development, however, the completion of certain milestones (e.g.,
preclinical) may be published by agents. This situation can be captured using the full information disclosure policy in
our model framework. We shall show that it is in the best interest of the principal to control the flow of information
by imposing appropriate restrictions in order to strategically manage agents’ incentives.
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tendency to engage in and benefit from competition among contestants without having to pay

all of them. We extend and adapt the contest paradigm to development settings and contribute

additional novel features such as enriched rank-based incentives and carefully-tailored information

design to stimulate competitive effort from suppliers.

Although development contests have the potential for significant economic and societal impact,

they are not without challenges. First, as agents tackle a difficult problem, there is a danger that

some agents will lose interest in the absence of sufficient progress. Thus, an effective mechanism

should dynamically keep agents’ incentives alive to minimize the development lead time. Second,

major development projects require substantial investment from agents so the cost of incentivizing

effort from agents is significant. Considering that cost of incentives is usually covered by taxpayers’

money or donations, an effective mechanism should avoid overpaying agents. Therefore, we aim to

understand how contest organizers can design such contests for maximum efficiency – to minimize

lead time of development while keeping the cost of incentives in check.

To capture the key characteristics of a dynamic development contest, we seek to build a parsi-

monious stylized model where two agents compete to complete a two-stage development project

by exerting costly effort over a continuous time frame (we show in the Online Appendix how our

results scale to more than two agents). Successful completion of a stage (success) for an agent

arrives at a random point in time where the rate of arrival for each success increases with the

agent’s effort. An agent’s success is not observable by another agent so it is up to the principal

whether and when to share this information. The contest ends when one of the agents achieves two

successes at which point this winning agent is given a pre-determined reward. The principal com-

mits to a reward schedule about how this reward changes over time and an information disclosure

policy which specifies how the principal will disclose information throughout the contest (e.g., no

or full information sharing, probabilistic information sharing) at the beginning of the contest.

We first focus on the problem of a principal with no budget constraint. We establish that such

a principal can utilize a fixed-reward dynamic contest that does not change the reward over time

to solicit agents to exert their best efforts and attain the absolute minimum expected lead time.

Yet, we also find that such a principal significantly overpays agents. Specifically, by utilizing a

carefully designed flexible-reward schedule that increases the reward over time, the principal can

still achieve the absolute minimum expected lead time with 20% less cost of incentives/reward

on average, which could mean substantial savings in development settings that can cost hundreds

of millions of dollars. Better yet, a principal who conditions the contest’s reward on the state in

which the contest ends can simplify the reward schedule tremendously while reaping all the benefits

of the flexible-reward design. Specifically, under any information disclosure policy, the principal

can organize an optimal flexible-reward contest consisting of just two reward levels — a smaller
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(resp., larger) reward if the loser of the contest has not achieved (resp., also achieved) partial

progress (we use the terms “partial progress” and “first success” interchangeably) — to attain the

absolute minimum expected lead time by paying the absolute minimum expected reward (i.e., the

first best).4 Importantly, we prove that the first-best outcome can be achieved if and only if the

principal’s budget is greater than a certain threshold.

We next analyze a budget-constrained principal that cannot set a sufficiently large reward to

achieve the absolute minimum expected lead time. In this case, the principal can organize a fixed-

reward contest that uses all of the reward budget and utilize information as a strategic commodity

to motivate suppliers. We first show that either too much or too little information is disclosed by

canonical information disclosure policies proposed in the extant literature such as no information

disclosure, full information disclosure (e.g., Halac et al. 2017), cyclic information disclosure with

periodic updates about the state of partial progress every fixed periods of time (e.g., Bimpikis

et al. 2019, Ely et al. 2022), and deterministic delay policy that commits to share partial progress

after a fixed delay (e.g., Ely 2017). By harnessing insights generated from the above analysis and a

dynamic Bayesian persuasion approach, we propose a probabilistic state disclosure policy, which we

call PSD, wherein the principal commits to disclose the state of partial progress (stochastically) at

a constant rate after a pre-determined initial silent period where no information is disclosed. PSD

improves upon the above mainstream policies as it provides the ideal amount of incentives after

the initial silent period. While this policy helps us tease out the benefit of probabilistic disclosure,

it still shares a common shortcoming of the mainstream policies: it wastes incentives early in the

contest because it utilizes the same approach of state-based information disclosure.

By taking a fundamentally different approach, we characterize an optimal information disclosure

policy, which we call PCSD, that minimizes the expected lead time of the contest by optimally cal-

ibrating the flow of information and smoothing agents’ incentives over time. As a novel approach,

PCSD probabilistically discloses the change of state in the competition rather than the state itself.

Specifically, the principal commits to disclose any change in the state of partial progress imme-

diately with some weakly increasing time-dependent probability (and no other time). In addition

to proposing PCSD, we find that by utilizing a flexible-reward schedule on top of PCSD, the

principal can reduce the cost of incentives without hindering project lead time. Our results suggest

that enriched rank-based incentives and carefully-tailored information design can be powerful tools

to incentivize development efforts of suppliers without overpaying them. Accordingly, we generate

useful managerial insights in terms of when information disclosure and flexible rewards are most

effective and how these instruments can be utilized to motivate suppliers.

4 We further extend these results in §EC.2 of the Online Appendix by characterizing an optimal flexible-reward contest
that minimizes the project lead time at the first-best cost to a setting with more than two agents and show that its
cost savings benefits over the optimal fixed-reward contest is increasing with the number of agents.
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Besides these important managerial insights, our work makes significant technical contributions

by bringing together the already involved frameworks of dynamic contests and dynamic informa-

tion design. While dynamic information design in itself is involved, Ely (2017) designs optimal

information disclosure policies in single-agent settings without competition. Yet, as emphasized in

the survey by Horner and Skrzypacz (2017) and a concurrent recent study by Ely et al. (2022),

characterizing fully optimal information disclosure policies in dynamic environments involving com-

petition is not an easy endeavor as the disclosure policy is a high-dimensional object. Probably

for that reason, prior dynamic contest studies (e.g., Halac et al. 2017, Bimpikis et al. 2019) focus

on well-performing disclosure policies without claiming any optimality. We contribute to this lit-

erature by proposing an optimal information disclosure policy that harnesses a dynamic Bayesian

persuasion approach with a unique feature of using probabilistic change-of-state disclosures. Our

analysis uncovers several important tradeoffs and insights that may be of use to future studies in

other applications of dynamic information design.

Finally, our paper makes some conceptual contributions by expanding the scope and applications

of contests to go beyond exploratory innovation contests, which have largely focused on maximiz-

ing the number and quality of solutions for a broadly defined problem given a fixed time frame.

Unlike the more open-ended exploration settings, development project settings have tighter focus

and scope, and the goal is to complete the project in the least amount of time. Therefore, the

development setting involves less exploration of uncertain domains and more exploitation of fun-

damental knowledge to develop cutting-edge products and services (March 1991). We demonstrate

how the contest approach can be effectively utilized in development settings.

2. Related Literature

Our paper is related to four streams of literature: (i) races with no scope for information design, (ii)

innovation contests with no scope for information sharing, (iii) contests with one-time or dynamic

information sharing, and (iv) Bayesian persuasion.

Our work relates to the race literature in the sense that agents compete in time. Following the

early work of Loury (1979), Dasgupta and Stiglitz (1980), and Lee and Wilde (1980) on static R&D

races, Harris and Vickers (1987) present a model of dynamic race as a discrete time tug-of-war

with uncertainty between two agents where a prize is won by the first agent to achieve a given

lead over her rival. Cao (2014) considers a similar problem in continuous time with two agents

and shows that effort provision increases in competition intensity. Our results echo similar effort

provision behavior by agents in a dynamic contest which ends as soon as the first agent completes

a multi-stage task. In particular, the supplier with no progress loses incentives to exert any effort if

she realizes that her competitor has progressed to the second stage. One key distinguishing factor
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between our work and the above literature is that in our model the principal controls the flow of

information mid-contest whereas in the above papers the agents fully observe each other’s progress.

A majority of papers in the race literature apply the dynamic race framework to study patent

races with a high-level social planner (e.g., government) comparing some general patent rules rather

than optimizing a specific race (e.g., Perry and Vincent 2002, Fershtman and Markovich 2010, Judd

et al. 2012). Thus, a major difference between a dynamic race and a dynamic development contest is

the presence of a principal organizer that determines specific contest rules to optimize the latter. As

discussed in §1, organizations such as DoD act as principal organizers in their dynamic development

contests by determining the reward schedule and information disclosure policies. Accordingly, our

setting allows the use of enriched rank-based incentives and carefully-tailored information design

that cannot exist in a race environment.

Our work has some connection to the innovation contest literature in the sense that a principal

organizer incentivizes a group of agents with rank-based incentives. This literature is pioneered by

Taylor (1995) and Terwiesch and Xu (2008) who study how many participants to let in a contest. In

a more general framework, Ales et al. (2017, 2021) derive conditions for the optimality of winner-

takes-all and open-entry contests. Extensions to heterogeneous agents, internal innovation contests,

and multiple attributes are considered by Körpeoğlu and Cho (2018), Nittala et al. (2022), and Hu

and Wang (2021), respectively. More recent work investigates procurement decisions (Chen et al.

2022), participation (Stouras et al. 2022), duration (Korpeoglu et al. 2021), curation (Khorasani

et al. 2020a), supplier collaboration (Shalpegin et al. 2020), teamwork (Candoğan et al. 2020), and

the impact of running parallel contests (Körpeoğlu et al. 2022, Stouras et al. 2020). While this

literature has provided valuable insights on innovation contests that aim to crowdsource the best-

quality solution to a problem, we are interested in analyzing a dynamic development contest that

differs from innovation contests in three key properties discussed in §1. These distinct properties

allow us to consider new degrees of freedom available to development organizations including

flexible rewards and information design due to their dynamic strategic interactions with a small

number of development partners. Moreover, we study the design of incentives in a dynamic multi-

stage framework to show how an organization can encourage its suppliers and development partners

to reduce project lead time by exerting their best efforts without overpaying them.

To study the role of information sharing in contests, a relatively recent stream of research has

been focusing on how to provide interim performance feedback in a two-period, two-agent frame-

work (e.g., Aoyagi 2010, Ederer 2010, Goltsman and Mukherjee 2011). Mihm and Schlapp (2019)

apply this framework to innovation contests and add to this stream by considering a private dis-

closure policy in addition to full and no information disclosure policies. Schlapp and Mihm (2018)

build on this work and prove that, in a wide class of feedback policies, there can be no feedback
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policy that outperforms pre-committed truthfulness. Private feedback in the form of screening

intermediate submissions of n≥ 2 solvers is considered by Khorasani et al. (2020b) who show that

different contest environments require different ways of balancing screening specificity and sensi-

tivity. Our continuous-time framework enables us to add to this literature by uncovering insights

on how an organization should choose the rate and timing of information disclosure, rather than

giving a one-time interim feedback, in order to dynamically manage incentives of suppliers.

Our model is closer to a few papers that study dynamic information disclosure in contests using a

continuous-time framework. Halac et al. (2017) consider an exploratory experimentation framework

similar to the one in Bonatti and Horner (2011) (who examine moral hazard in teams) to study

a dynamic contest where agents compete to obtain a single-stage innovation whose feasibility is

initially unknown and the principal wishes to maximize the probability of obtaining the innovation.

They show that in a setting with full information disclosure, a winner-takes-all policy dominates

others. Building on this framework, Bimpikis et al. (2019) study a two-stage exploratory innova-

tion contest with a separate reward for each stage where two agents compete and the feasibility

of the first stage is initially unknown. They show that allocating the reward across stages can aid

the principal in disseminating positive news regarding the project’s feasibility to agents, thereby

encouraging increased effort in the contest.5 They also show that full information disclosure after

an initial silent period outperforms no, full, or constant probabilistic disclosure under certain con-

ditions. Unlike the uncertain exploratory environments mentioned above, our paper concentrates

on development settings that prioritize utilizing existing knowledge to swiftly and cost-effectively

create products and services. We study if, when (Theorem 1), and how (Theorems 1 and 2) flexible

rewards and strategic dynamic information disclosure can optimally manage incentives. Bimpikis

et al. (2019) also examine a winner-takes-all setting with one final reward and no uncertainty about

first-stage feasibility (similar to our environment) and show that a cyclic disclosure policy may

dominate no or full disclosure. We expand on their work by obtaining a novel optimal information

disclosure policy in this case without imposing any restriction on the disclosure policy.

Recently, Ely et al. (2022) study a fixed-reward contest where agents exert effort to obtain a

single success, and derive mechanisms that maximize the expected total effort over the duration of

the contest. Their mechanisms do not necessarily minimize lead time though because prolonging

the contest to collect larger total effort may be in the best interest of the principal.

We make three key contributions to this scant literature. First, we show that using carefully-

designed flexible rewards not only leads to substantial savings compared to fixed rewards, it also

5 Unlike Bimpikis et al. (2019), we consider a single reward given to the first agent to complete both stages. However,
we extend our results in §EC.2.1 to a case where the principal gives rewards in two stages, and show that our fully
optimal information disclosure policy can be easily extended and remains optimal in this setting. We then numerically
verify that allocating the entire budget to the final reward is optimal in multi-stage development settings.
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helps the principal achieve the absolute minimum expected lead time by paying the absolute

minimum expected reward (i.e., the first best). This result has important implications in any

development setting where time and budget are of the essence. Second, we demonstrate the value

of strategic probabilistic disclosure as a non-monetary incentive instrument in competitive set-

tings by proposing a mechanism PSD that combines probabilistic disclosure with the intuition of

mechanisms proposed in the literature. Third, and most importantly, we characterize an optimal

information disclosure policy (i.e., PCSD) that minimizes project lead time when the principal

is budget-constrained. Importantly, this optimal policy only discloses the change in the state of

partial progress as opposed to disclosing the state of competition as in prior contest studies.

Lastly, our work is related to the growing literature of Bayesian persuasion pioneered by Rayo

and Segal (2010) and Kamenica and Gentzkow (2011). The bulk of the work on Bayesian persua-

sion focuses on static information design where a principal shares information with each agent only

once (e.g., Rayo 2013, Bergemann and Morris 2019, Kamenica 2019). Indeed, there is a growing

literature that applies this static framework to operational problems (see de Véricourt et al. 2021,

Drakopoulos et al. 2021, Küçükgül et al. 2022, Candogan 2020, and references therein). Recently,

Ely (2017) introduces a dynamic persuasion mechanism where the principal dynamically shares

information with agent(s) based on an exogenously given state of a stochastic process.6 Our frame-

work is much more complex because the state of the stochastic process (i.e., the belief of each agent

about her opponent’s partial progress) that the principal bases its information design on is not

exogenous. Instead, it is endogenously determined by actions of both agents as well as any prior

information shared with them. In addition, in Ely (2017), the (short-lived) agent chooses to work

at any instant myopically. As a result, the deterministic delay policy is optimal since it maximizes

the principal’s instantaneous payoff in every period. However, in our model, agents are long-lived

vying to complete a two-stage task. This implies that their incentives must be kept alive dynami-

cally as they determine their efforts by considering available information and both instantaneous

and forward-looking incentives which depend on their future efforts and their opponent’s efforts.

3. Model Development

Consider a setting where an organization (“principal”) aims to incentivize a small group of expert

firms (“agents”) to complete a difficult multi-stage task as fast as possible by rewarding the agent

who completes the task (i.e., all stages) first. Here we are interested in analyzing the impact of

partial progress (see §1 for examples) on agents’ incentives, so as common in the related literature

(e.g., Bimpikis et al. 2019, Mihm and Schlapp 2019), we take the minimal model with two stages

6 The key idea in dynamic Bayesian persuasion is to examine how an informed principal can persuade a set of players
over time to take desirable actions (in our case, exert their best efforts) by influencing their beliefs.
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and two agents {i,−i}. This setting fits our dynamic development contest framework well because

such contests feature a small number of expert suppliers and a few major milestones (see §1). Time

(indexed by t) runs continuously, and the contest can last over a potentially infinite horizon.

As is standard in the contest literature reviewed in §2, we consider a winner-takes-all contest

where the first agent to complete both stages wins the contest and is given a reward Rt. Unlike

the standard contest framework where this reward is fixed (i.e., Rt = R), we consider a more

general rank-based mechanism where the reward can potentially change over time. We refer to the

“standard” contest mechanism as a fixed-reward contest and ours as a flexible-reward contest.

For an agent, successful completion of a stage (hereafter, “success”) arrives with a Poisson

process, and the agent can boost the arrival rate by exerting costly effort. Specifically, agent i who

has achieved k ∈ {0,1} successes while her opponent has achieved l ∈ {0,1} successes (if known by

agent i) privately chooses effort xik,l,t ∈ [0,1] at each instant t with an instantaneous cost cxik,l,t

for a constant c > 0 (e.g., Bonatti and Horner 2011, Ely 2017, Halac et al. 2017, Bimpikis et al.

2019), and a success in a stage arrives with a Poisson process with instantaneous probability λxik,l,t,

where λ is the “achievability” parameter that is inversely proportional to how difficult a stage is.7

(In §EC.2.4 of the Online Appendix we show how our model can accommodate different Poisson

arrival rates for different stages of the contest.) The contest ends upon the arrival of the second

success (i.e., completion of the second stage) for an agent at any time t and the winner receives

the current posted reward Rt. We denote by T the random date at which the contest ends.

Denote by V i
k,l,t the expected utility (hereafter “continuation payoff”) of agent i who has achieved

k ∈ {0,1} successes while her opponent has achieved l ∈ {0,1} successes (if known by agent i) at

any moment t. Then at any time t, each agent i anticipates the efforts of her opponent and chooses

her effort levels from time t onward to maximize her expected utility

V i
k,l,t = max

xi
k,l,τ

E
[
RT .1{i wins}−

∫ T

t

cxik,l,τdτ

]
. (1)

As is common in the contest literature, we assume that all parties are risk-neutral (e.g., Halac

et al. 2017, Bimpikis et al. 2019, Ely et al. 2022). We also assume that agents do not discount time

because considering discounting complicates the expressions without providing any new insights

(e.g., Halac et al. 2017, Mihm and Schlapp 2019, Ely et al. 2022). However, in §EC.2.3 of the Online

Appendix, we show how our results can be generalized to a setting where all parties discount future

payoffs. Also, we normalize the agents’ outside option to zero without loss of generality.

Consistent with the literature on dynamic contests with information disclosure (e.g., Halac et al.

2017, Bimpikis et al. 2019, Ely et al. 2022), we assume that successful completion of a stage by an

7 Alternatively, we can assume a model where at each instant t of continuous time, each agent decides whether to work
(xk,l,t = 1) or shirk (xk,l,t = 0). Then, any intermediate effort level between 0 and 1 in our model can be interpreted
as a randomization between the two pure strategies in the new model.
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Assumptions References

Two stages, two agents, winner-takes-all
Ederer (2010), Goltsman and Mukherjee
(2011), Mihm and Schlapp (2019)

Poisson arrival rate, linear cost of effort
Bonatti and Horner (2011), Ely (2017),
Halac et al. (2017), Bimpikis et al. (2019),
Ely et al. (2022)

Principal has commitment power
and observes successes

Halac et al. (2017), Bimpikis et al. (2019),
Ely et al. (2022)

Table 1 Summary of the main assumptions in our model.

agent is only observable to that agent and the principal, and that only the principal can credibly

disclose information about the status of agents’ progress (i.e., whether each agent is in the first or

second stage). This assumption is sensible given that an agent can easily misrepresent her partial

progress (i.e., success in the first stage) to other agents. As a result, the only party who can

credibly confirm the completion of a stage is the principal.8 To ensure that agents can interpret

the presence (or lack) of any information, the principal specifies its information disclosure policy to

agents at the outset of the contest (e.g., Halac et al. 2017, Bimpikis et al. 2019, Ely et al. 2022). We

begin by analyzing several mainstream information disclosure policies including full information

disclosure where the principal commits to disclose any success upon its arrival, no information

disclosure where the principal does not share any information, cyclic information disclosure where

the principal stays silent during fixed-length cycles and discloses full information at the end of

each cycle, and more strategic disclosure policies with deterministic or stochastic delay before

characterizing an optimal policy. Note that whenever an agent does not know her opponent’s state

under a disclosure policy, we drop the corresponding index l (e.g., xik,l,t becomes xik,t). Table 1

summarizes the key assumptions in our model, which are also standard in the literature.

The principal aims to minimize the expected lead time of the contest while also minimizing

the reward necessary to achieve this goal. The standard approach in the contest literature is

to assume that the principal can boil down agents’ performance and reward components into a

single dimensional profit function. Although this assumption makes sense in settings where agents

compete in solution quality, generating such a single dimensional profit function may be hard

to achieve when agents compete in time. Thus, instead of assuming such a single dimensional

profit function, we take a lexicographic approach that focuses on the expected lead time first

and the expected reward second.9 Minimizing the expected project lead time in the context of

8 As we show in §4.2, an agent always prefers her partial progress (i.e., success in the first stage) to be disclosed to
her opponent because her opponent is discouraged by this information. Therefore, there is no cause for an agent to
conceal partial progress from the principal. For the same reason, an agent has an incentive to falsely disclose partial
progress to her opponent so without the approval of the principal, such information is not credible.

9 This approach captures the context of our development applications discussed in §1. For example, promptly sourcing
hypersonic systems are among the highest priorities of DoD to ensure battlefield dominance (DOD News 2021).
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managing internal R&D operations has been studied in the Operations literature by considering

various operational aspects such as overlapping product development (e.g., Ha and Porteus 1995,

Krishnan et al. 1997). Here, we seek to understand how the principal can achieve the same goal in

development settings by incentivizing external suppliers with appropriate reward and information

policies. Specifically, we check if the principal can achieve the absolute minimum expected lead

time T by inducing both agents to exert full effort throughout the contest. If T is achievable, we

aim to find a reward schedule that yields T at the minimum expected reward by solving

min
Rt

E
[
RT .1{i or −i wins at T}

]
s.t. E

[
T.1{i or −i wins at T}

]
= T . (2)

We show in §4 that T is achievable if and only if the principal has sufficient funds. If the principle

is budget-constrained (formally defined in §5) with a low reward budget R, then it is not possible

to achieve T . We cover this case in §5, where we compare different information disclosure policies

and then characterize the one that yields the minimum expected lead time E
[
T.1{i or −i wins at T}

]
by using the whole reward budget. We study a principal with sufficient funds in §4 and a budget-

constrained principal in §5. All proofs are presented in the Online Appendix.

4. A Principal with Sufficient Funds

In §4.1, we present a benchmark (first best) under which the principal achieves the absolute mini-

mum expected lead time at the lowest possible cost by assuming observable and contractible effort.

In the following sections, we use this benchmark to measure the performance of our contest mech-

anisms with unobservable effort. In §4.2, we characterize the optimal fixed-reward contest under

full information disclosure. In §4.3 and §4.4, we derive optimal (first best) flexible-reward contests

under full and no information disclosure policies, respectively. In §4.5, we present a simple necessary

and sufficient condition for achieving the first-best outcome using rank-based incentives.

4.1. First-Best Contract with Observable Effort

As a form of benchmark, we first identify the absolute minimum reward the principal should give

to achieve the absolute minimum expected lead time. Consider a case wherein the principal can

observe agents’ efforts and specify their effort path as long as it is individually rational (i.e., each

agent’s expected utility when exerting the designated effort is weakly higher than her outside

option normalized to zero). In this case, instead of organizing a contest, the principal can offer

each agent an individually rational contract that pays for her cost of effort, and hence induce both

agents to exert full effort until one agent completes both stages. This contract achieves the absolute

minimum expected lead time T ≡ 5/(4λ) as derived in (EC.1) of the Online Appendix. As a result,

if the principal offers each agent 5c/(4λ), then it will be individually rational for agents to accept

such a contract and exert full effort until one achieves two successes. Thus, the minimum required

compensation to agents to achieve T can be calculated by multiplying 5c/(4λ) with 2.
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Proposition 1. There exists an individually rational “first-best” contract that achieves the min-

imum expected lead time T with the minimum required compensation of R≡ 5c/(2λ) to agents.

Proposition 1 characterizes the lower bound for the budget required to induce both agents to

exert full effort at all times. Yet, this lower bound is achieved under the assumption that agents’

efforts are observable, which is rarely the case in practice. Thus, in the remainder of this section,

we assume that agents’ efforts are unobservable, and investigate how much reward is needed to

complete a two-stage task in a development contest in the shortest possible time.

4.2. Full Information Disclosure with Fixed Reward

In this section, we analyze a contest where the principal gives a fixed reward R and commits to

disclose any success upon its arrival. Here, each agent knows her opponent’s progress at any instant.

We analyze the agent’s problem by moving backward on the state of the game where the states are

defined by the number of successes of the agents. If both agents have already achieved one success,

agent i’s continuation payoff from any time t onward is:

V i
1,1,t = max

xi1,1,τ

∫ ∞
t

xi1,1,τ (λR− c)e
−
∫ τ
t λ(x

i
1,1,s+x

−i
1,1,s)dsdτ. (3)

The intuition of (3) is as follows. If agent i chooses effort xi1,1,τ during interval (τ, τ + dτ), she

incurs a cost cxi1,1,τdτ , and achieves a success with probability λxi1,1,τdτ earning the fixed reward

R. This is conditional on no agent yet achieving the second success by time τ , which happens with

probability e−
∫ τ
t λ(x

i
1,1,s+x

−i
1,1,s)ds. If the principal aims to induce both agents to exert full effort at all

times to attain the absolute minimum expected lead time T , then we shall have V i
1,1,t = 1

2
(R− c

λ
).

Next, consider the state of the game with a leader (an agent with one success) and a laggard

(an agent with no success). The laggard’s continuation payoff from any time t onward is given by:

V i
0,1,t = max

xi0,1,τ

∫ ∞
t

xi0,1,τ (λV1,1,τ − c)e−
∫ τ
t λ(x

i
0,1,s+x

−i
1,0,s)dsdτ. (4)

Here, the laggard anticipates to receive a continuation payoff V1,1,τ if she achieves a success (hence

progresses to the second stage) and zero if her opponent achieves a success (hence wins the contest).

Obviously, the laggard is willing to exert any effort only if her continuation payoff upon achieving

a success compensates her cost of effort. Therefore, the principal needs to specify a fixed reward

weakly greater than 3c/λ (so that V1,1,t ≥ c/λ) to keep the laggard working. We next show that

this minimum fixed reward is enough to encourage full effort by both agents at all times.

Proposition 2. Under full information disclosure, the minimum fixed reward needed to achieve

the minimum expected lead time T is R= 3c/λ.

Without a sufficiently large reward, an agent in the first stage is at risk of being discouraged when

her opponent proceeds to the second stage, because her chance of winning the reward declines.
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Therefore, the principal has to offer the minimum fixed reward 3c/λ to keep the laggard’s con-

tinuation payoff upon success at c/λ. Yet, with this large fixed reward, the principal overpays the

leader and she receives a continuation payoff V1,0,t = 3c/(2λ) as derived in the Online Appendix.

This large reward also delivers an ex-ante expected surplus V0,0,0 = c/(4λ) to each agent, which

shows that the principal leaves money on the table as compared to the first-best contract.

In the next section, we investigate whether the principal can do better than the fixed-reward

contest by designing a flexible-reward contest instead.

4.3. Full Information Disclosure with Flexible Reward

One can deduce from the previous section that under full information disclosure, each agent’s effort

provision decision and continuation payoff depend solely on the state of agents’ successes in the

contest (we show this formally in the proof of Proposition 3). Observe that a contest may end

under two states of the game: (i) a case where the leader obtains the second success before the

laggard obtains any success and (ii) a case where both agents have already obtained one success

and one of them achieves the second success. Let R2,0 and R2,1 denote the contest reward in each

case. We next show how the principal can achieve the first-best outcome using a flexible-reward

contest by giving sufficient incentives to the laggard without overpaying the leader.

Proposition 3. Under full information disclosure, a flexible-reward contest with R2,0 = 2c/λ and

R2,1 = 3c/λ achieves the minimum expected lead time T by paying the first-best expected reward R.

From §4.2, we know that the principal must set R2,1 = 3c/λ to encourage the laggard to exert

effort. However, with flexible rewards, the leader does not need to be overpaid. Specifically, the

reward the leader will receive before the laggard achieves any success (i.e., before the leader loses

her lead, see case (i) above) is R2,0 = 2c/λ. On the other hand, the reward a winner will receive

after both agents achieve the first success is R2,1 = 3c/λ (i.e., after the leader loses her lead, see

case (ii) above). This reward schedule achieves the absolute minimum expected lead time T by

eliciting full effort at all times from both agents and gives the minimum necessary reward.10

To see why the reward schedule in Proposition 3 offers the first-best expected reward 5c/(2λ),

note that with probability 1/2, the contest ends before the arrival of any success for the laggard and

the principal pays R2,0 = 2c/λ; and with probability 1/2, the contest ends after the arrival of the

first success for the laggard and the principal pays R2,1 = 3c/λ. A key feature of this design which

makes it practically appealing is its simplicity. The policy can easily be implemented by offering

10 It is worth noting that a lead-time minimizing contest induces agents to work as much as possible as early as
possible (i.e., without delay). Note that this design is different from an effort-maximizing contest (e.g., Ely et al.
2022) where the principal may benefit from inducing the leader to pause effort and resume later once the laggard
catches up in order to elicit larger total effort from agents.
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a guaranteed reward of 2c/λ with the option to increase the reward if multiple agents progress to

the second stage. The flexible-reward schedule is quite impactful as well because the fixed-reward

schedule spends at least 20% more money on average than the flexible-reward schedule to achieve

the same contest outcome. It is worth noting that the dominance of flexible-reward schedule is not

restricted to the case with two agents. In fact, as we show in §EC.2.5 of the Online Appendix, the

flexible-reward contest provides even larger cost savings when there are more than two agents.

4.4. No Information Disclosure with Flexible Reward

We next characterize the optimal flexible-reward contest when the principal does not disclose any

information. Here, each agent forms a belief about her rival’s progress and updates this belief over

time. Let pit be the probability that agent i assigns at time t to the event that her opponent has

already achieved first success. As time passes, the only information agent i receives is whether the

contest is still ongoing as her rival has yet to achieve the second success. Thus, by Bayes’ rule, pit

evolves according to (for derivation, see the proof of Proposition 4 in the Online Appendix)

dpit = λ(1− pit)(x−i0,t− pitx−i1,t)dt, (5)

with the boundary condition pi0 = 0 where x−i0,t denotes the opponent’s effort at time t conditional

on not having achieved a success yet, and x−i1,t denotes her effort at time t conditional on having

achieved the first success. Intuitively, and as shown in (5), the probability that each agent’s oppo-

nent already advanced to the second stage, pit, is increasing in the opponent’s anticipated first-stage

effort x−i0,t and decreasing in the opponent’s anticipated second-stage effort x−i1,t.

Recall that V i
k,t is the continuation payoff of each agent i who has achieved k ∈ {0,1} successes

by time t. Then, the maximization problem for agent i after obtaining the first success is given by:

V i
1,t = max

xi1,τ

∫ ∞
t

xi1,τ (λRτ − c)e
−
∫ τ
t λ(x

i
1,s+p

i
sx
−i
1,s)dsdτ, (6)

where Rτ is the specified reward if the contest ends at time τ . (6) can be interpreted as follows.

If agent i chooses effort xi1,τ during interval (τ, τ + dτ), she incurs a cost cxi1,τdτ and achieves a

success with probability λxi1,τdτ , earning Rτ . This is conditional on the probability that none of the

agents yet achieved a second success by time τ ; i.e., e−
∫ τ
t λ(x

i
1,s+p

i
sx
−i
1,s)ds. Anticipating a continuation

payoff of V i
1,τ upon achieving the first success at time τ , agent i’s continuation payoff from time t

onward before achieving any success can be expressed as follows:

V i
0,t = max

xi0,τ

∫ ∞
t

xi0,τ (λV
i
1,τ − c)e

−
∫ τ
t λ(x

i
0,s+p

i
sx
−i
1,s)dsdτ. (7)

The above expression can be interpreted similar to (6). As derived in condition (EC.21) in the

Online Appendix, an agent with no success finds it optimal to exert full effort if and only if her

additional utility upon the arrival of her first success is weakly greater than c/λ. Proposition 4

characterizes the optimal flexible-reward schedule under no information disclosure.
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Proposition 4. Under no information disclosure, a flexible-reward contest with Rt = (2 + pt)c/λ

where pt = λt/(1 +λt) achieves the minimum expected lead time T by paying the first-best expected

reward R.

Under no information disclosure, an agent i who is failing to achieve any success will strengthen

the belief that her rival has already achieved one success. This reduces the expected utility of

progressing to the second stage over time, and hence reduces the incentives for this agent to spend

effort in the first stage. To restore incentives, the principal offers a gradually increasing flexible-

reward schedule Rt = (2+pt)c/λ, where pt is the equilibrium belief of each agent about the progress

of her rival. This enables the principal to achieve the first-best outcome (expected lead time T by

paying the expected reward R) for two reasons. First, it gives the minimum necessary reward to

persuade the agent with no success to work when her rival (is likely to have) progressed to the

second stage. Second, it avoids overpaying agents when they have sufficient incentives to work.

4.5. A Necessary and Sufficient Condition to Achieve First Best

We now generalize our findings in the previous sections and present the main result of §4.

Theorem 1. Under any information disclosure policy, there exists a first-best flexible-reward con-

test that attains the minimum expected lead time T by paying the minimum expected reward R if

and only if the principal’s budget R≥ 3c
λ

.

Theorem 1 shows that a principal with a sufficiently large budget achieves the first-best outcome

using an appropriate flexible-reward scheme irrespective of the information disclosure policy. Specif-

ically, as we show in the proof of Theorem 1, the principal can achieve the first best by making the

reward contingent on the state where the contest ends: (i) with a reward R2,0 = 2c/λ if the leader

wins before the laggard achieves first success and (ii) R2,1 = 3c/λ if an agent wins after both agents

achieve first success. While proving that this policy works under any information disclosure policy

is more nuanced, the intuition is similar to that of Proposition 3.

Theorem 1 also shows that when the principal’s budget R is strictly less than 3c/λ (i.e., prin-

cipal is budget-constrained), the first-best outcome is not attainable. This is because under any

information disclosure policy, an agent with no success eventually builds a strong enough belief

that her opponent is in the second stage so that exerting full effort for such an agent is no longer

incentive compatible due to insufficient reward. In this case, the principal can utilize information

disclosure as a non-monetary incentive mechanism to minimize the expected lead time of the con-

test by keeping such an agent working as long as possible. Therefore, we next focus on the role of

information disclosure policy to help a budget-constrained principal.
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5. Using Information Design for Development Contests

In this section, we study the use of information design, another potential lever for principals

engaging in development contests. Such an approach can come in handy for a budget-constrained

principal who may fall short of the optimal reward amount derived in the previous section. Observe

that, with no competition, the principal needs a minimum budget of 2c/λ for the second success to

be attainable (c/λ for each success), and 3c/λ is the necessary budget to achieve first best with two

competing agents. For the rest of the analysis, we assume 2c/λ<R< 3c/λ, and we name a principal

facing this limitation a budget-constrained principal. By holding the reward fixed, we study how

the principal can use information disclosure to incentivize agents. In §5.1, we examine the role of

strategic information disclosure. In §5.2, we discuss how and why a probabilistic disclosure policy

improves upon mainstream disclosure policies. In §5.3, we characterize a fully optimal information

disclosure policy that minimizes the project expected lead time when the principal is budget-

constrained. Finally, in §5.4 we show how flexible rewards can be combined with our optimal

probabilistic disclosure policy to further reduce the project cost without hindering its lead time.

5.1. Information as a Strategic Commodity

We shall start our discussion with the observation that an agent who has already achieved one

success is easy to incentivize because she is already encouraged by the fact that she needs only one

more success to obtain the reward. As we shall see throughout this section, such an agent always

exerts full effort irrespective of the information disclosure policy. In contrast, an agent with no

success is at risk of becoming discouraged over time once she realizes (or believes) that her rival

has already progressed to the second stage. To understand the impact of partial progress on the

incentives of agents and establish the strategic value of information disclosure, we first analyze

the problem faced by a budget-constrained principal that discloses no information throughout the

contest. Notice that unlike §4.4, the principal does not have sufficient funds to gradually increase

the reward up to 3c/λ to mitigate an agent’s reduced incentives caused by the threat that her rival

is in the second stage. Therefore, in the unique symmetric equilibrium of the contest, an agent

with no success only exerts full effort as long as monetary incentives are sufficient, and lowers her

effort level after a while when incentives are missing. The equilibrium is characterized below.

Proposition 5. When the principal is budget-constrained, and under no information disclosure,

there exists a unique symmetric equilibrium in which an agent with no success exerts full effort

until time tr = pr
λ(1−pr) where pr = λR

c
−2. After tr, she reduces her effort level to pr(< 1). An agent

who has achieved one success exerts full effort until the end.
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Condition (EC.21) in the Online Appendix implies that exerting full effort is incentive compatible

for an agent with no success if and only if she earns an additional utility of at least c/λ upon the

arrival of her first success. While the agent is working, the expected utility of progressing to the

second stage diminishes over time as she strengthens her belief that her opponent already achieved

one success. It turns out that, a budget-constrained principal can only induce an agent with no

success to exert full effort until time tr where her belief reaches pr = λR
c
− 2. After that, monetary

incentives are not sufficient to justify full effort, so each agent with no success reduces her effort

to pr and keeps this effort level. To see why the equilibrium effort becomes pr, note that pr is the

belief level that keeps an agent indifferent between exerting any effort level. When the agent’s belief

is below pr (which happens if the opponent exerts effort smaller than pr after tr), she exerts full

effort but when it is above pr (which happens if the opponent exerts effort larger than pr after tr),

she exerts zero effort. Thus, after tr, the unique symmetric equilibrium effort is pr, which keeps the

agent’s belief at the threshold and holds her expected continuation payoff after obtaining the first

success at c/λ such that the agent remains indifferent between exerting any effort at each instant.

It is worth noting that the time threshold tr and the belief threshold and reduced effort level pr

are increasing in the size of the budget R and the achievability parameter λ, and decreasing in the

marginal cost of effort c. Also, as we discuss above, each agent has sufficient incentives to exert full

effort until the end after obtaining the first success (see (EC.23) in the Online Appendix).

While no information disclosure elicits full effort before time tr, the reduced effort provision by

an agent with no success after time tr hints the benefit of using information strategically to reduce

the project lead time. Let us therefore consider the full information disclosure policy. Recall from

§4.3 that the principal should offer a reward of 3c/λ to the laggard once she realizes that her

opponent is in the second stage. Obviously, a budget-constrained principal does not have access to

such a high reward. Therefore, upon the arrival of the first success, the laggard quits immediately

(see Proposition EC.1 in the Online Appendix). This is in contrast to no information disclosure

policy where the principal never loses the laggard, but an agent with no success reduces her effort

level to pr < 1 after time tr even if her opponent has not achieved any partial progress. Our results

echo the empirical findings of Lemus and Marshall (2021) who study extreme disclosure policies (no

versus full), and find that disclosing information discourages a laggard, but the lack of information

creates uncertainty regarding how much effort is needed to remain competitive.

In a recent study, Bimpikis et al. (2019) build on this intuition and suggest a cyclic information

disclosure policy comprising cycles of silent periods during which no information is disclosed with

full disclosure at the end of each cycle. This design somehow blends the key benefits of the two

extreme cases by: i) hiding any partial progress during each silent period where incentives are

sufficient to elicit full effort, and ii) disclosing full information at the end of each cycle to replenish
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agents’ incentives (in case both agents have zero success) and to avoid reduced effort levels. We

next present the equilibrium under the cyclic information disclosure policy in our setting.

Proposition 6. When the principal is budget-constrained, and commits to cyclic information dis-

closure with silent periods of length tr = pr
λ(1−pr) where pr = λR

c
−2, there exists a unique symmetric

equilibrium in which both agents exert full effort until time tr. At the end of the first cycle:

(i) If no agent has made any partial progress by time tr, the contest resets and the next silent period

with length tr begins in which both agents exert full effort.

(ii) If only one agent has made partial progress at the end of one cycle, the agent with no success

quits and the agent with one success exerts full effort until the end.

(iii) If both agents have made partial progress at the end of one cycle, both agents exert full effort

until the end.

While the cyclic information policy improves upon the full information policy by delaying the

laggard’s stopping time with the help of silent periods, it does not necessarily improve upon the

no information policy (see Figure 2). Indeed, no information policy provides too little information

after tr, and cyclic information policy disseminates too much information at the end of each cycle,

which may hurt the principal by inducing the laggard to quit after learning her rival’s partial

progress. Thus, information is a strategic commodity whose flow must be carefully managed.

5.2. Probabilistic Information Disclosure Policy

In this section, we discuss how we can improve upon the above information disclosure policies by

combining the insights from the previous section with a dynamic Bayesian persuasion approach

(e.g., Ely 2017, Orlov et al. 2020, Ely et al. 2022). The idea is to calibrate the flow of information

to dynamically keep agents’ incentives alive. In that sense and to address the issue of too little

(much) information under no (full/cyclic) disclosure policy, we can consider a “probabilistic state

disclosure” policy (hereafter PSD) as follows. The principal discloses no information to agents (i.e.,

implements a silent period) until time tr = pr
λ(1−pr) where agents’ beliefs hit a threshold pr = λR

c
−2.

At any instant (t+ dt) for time t≥ tr, if the first success has arrived by t, the principal commits

to disclose this information with probability γdt, where γ ≡ λ(1−pr)/pr = 1/tr. Here, γ represents

the constant rate at which the principal (stochastically) discloses the state of partial progress in

the competition after the silent period. In this setting, the belief of an agent i who has not achieved

any success about her rival’s progress after the silent period evolves according to

dpit = (1− pit)(x−i0,tλ− pitx−i1,tλ− pitγ)dt. (8)

This law of motion, which is derived in the proof of Proposition 7, illustrates how the principal can

hold the agent’s belief constant once it reaches the threshold pr by promising to probabilistically
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disclose partial progress using γ while granting a continuation payoff of c/λ upon success to evoke

full effort from this agent until partial progress is disclosed. Proposition 7 describes the equilibrium.

Proposition 7. When the principal is budget-constrained and commits to PSD, an agent who

has not achieved a success exerts full effort until she obtains her first success, or her opponent

obtains her second success, or the principal discloses the opponent’s partial progress. An agent who

has achieved one success exerts full effort until the end.

PSD enables the principal to tune the rate of information disclosure after tr to persuade an agent

with no success to spend full effort for a longer period of time, on average. The principal is indeed

facing a trade-off by sharing information regarding partial progress. A higher rate of disclosure

stimulates greater effort from an agent with no success which reduces the expected lead time of

the contest, but it also increases the probability of losing a laggard and prolonging the contest’s

expected lead time if partial progress is disclosed. PSD disseminates information such that the

bare minimum of incentives are provided to sustain full effort after tr by granting the minimum

continuation payoff of c/λ upon achieving a success. This way the principal does not disclose too

much information as in the case of full/cyclic information disclosure and can substantially improve

the reduced effort level of the agents under no information disclosure.

Proposition 8. PSD yields an expected lead time of (5 + e−2λtr)/(4λ), which is strictly lower

than the expected lead times under no, full or cyclic information disclosure policies.

A key benefit of PSD is that it probabilistically delays the disclosure of partial progress. Specif-

ically, once the silent period is over, the principal discloses partial progress after a stochastic delay

with rate γ to keep an agent with no success incentivized for longer. Naturally, one might wonder

if deterministic delay in information sharing can also have the same effect. The short answer is no.

We discuss the details in §EC.2.2 of the Online Appendix and summarize the intuition here.

To elicit full effort from agents in the deterministic delay policy, the principal must commit to

disclose any progress at most td periods after its arrival, where td is characterized in (EC.50) of the

Online Appendix. Thus, the principal is effectively setting an initial silent period of td. Yet, the

duration of silent period is shorter than the one under PSD (i.e., td < tr, see Proposition EC.3 of

the Online Appendix). To understand why, consider an agent i with no success choosing her effort

at the end of the silent period. This agent trades off the benefit of achieving partial progress with

the cost of additional effort. The more likely it is for agent i’s opponent to give up after agent i’s

partial progress, the more agent i benefits from partial success. Under PSD, there is a chance that

the principal discloses agent i’s partial progress at any instant after tr whereas under deterministic

delay, agent i knows that there is no such chance until td periods after its arrival. This implies PSD
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enables the principal to increase the benefit of success and extend the silent period by providing

larger incentives for an agent i who has not achieved any success early in the contest. At the same

time, PSD grants a lower surplus to an agent who obtains partial progress early in the contest by

reducing the benefit of success as the principal informs the laggard to quit (stochastically) only

after tr, whereas under deterministic delay, the laggard will quit after td (< tr) periods of delay.

The key insight of this section is that probabilistic state disclosure helps the principal smoothen

incentives over time and extend the period over which agents are willing to work. But, how can

the principal optimally manage the flow of information during the contest to provide the bare

minimum of incentives at each instant? We characterize the optimal information disclosure next.

5.3. Optimal Information Disclosure Policy

So far, we have shown that PSD outperforms all other canonical information disclosure policies

by probabilistically disclosing the state of partial progress (using γ). While this design provides

the bare minimum of surplus (c/λ) after time tr to persuade an agent with no success to work, it

provides too much incentives for an agent who succeeds before tr. Specifically, by committing to

disclose the state of partial progress (and hence informing the laggard to quit) after time tr using

γ, the principal increases the benefit of an early success in the competition. In other words, this

design wastes some incentives that may otherwise be used in other states to incentivize effort.

To address this problem caused by the state disclosure policy, we consider a “probabilistic change-

of-state disclosure” policy (hereafter PCSD) characterized by a time-dependent parameter φt ∈

[0,1] where the principal has the following commitment. If the first success arrives during interval

(t, t+dt), then the principal discloses this information at instant (t+dt) with probability φt. Here,

φt represents the probability of announcing any change in the state of partial progress. In this

setting, the law of motion for the belief of an agent i who has not achieved any success about her

rival’s progress is given by (for derivation, see the proof of Theorem 2 in the Online Appendix)

dpit = (1− pit)[x−i0,tλ− pitx−i1,tλ− (1− pit)x−i0,tλφt]dt. (9)

The principal aims to choose φt at each instant to provide the optimal amount of information to

induce agents to make their best efforts. It turns out that the optimal information disclosure policy

must grant agents the minimum continuation payoff upon achieving partial progress that respects

agents’ incentive compatibility constraints. This, in turn, induces agents to exert full effort for a

longer period of time, on average, and minimizes the project expected lead time. The main theorem

of this section shows how the principal can tune φt to optimally manage incentives over time.
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Theorem 2. The following probabilistic change-of-state disclosure policy, which we call PCSD,

minimizes the expected lead-time of the contest when the principal is budget-constrained:

(Phase 1) The principal discloses no information to the agents up to time t=
p

λ(1−p) where

p=


0 if

2c

λ
<R≤ 7c

3λ
,

3R− 7c/λ

R− c/λ
if

7c

3λ
<R<

3c

λ
.

(10)

(Phase 2) At each instant (t+ dt) after t, the principal discloses partial progress with probability

φ∗t =


4c/λ

R−c/λ − 3 + pt

1− pt
if t≤ t < t,

1 if t≥ t,

(11)

if it arrived during interval (t, t+ dt) where pt is the unique solution to the ordinary differential

equation (ODE)

ṗt = λ(1− pt)2(1−φ∗t ) = λ(1− pt)(4− 2pt−
4c/λ

R− c/λ
), (12)

with boundary conditions pt = p and pt = p≡ 2(R−2c/λ)
R−c/λ .

(Equilibrium) Under PCSD, an agent who has not achieved a success exerts full effort until she

obtains her first success, or her opponent obtains her second success, or the principal discloses the

opponent’s partial progress. An agent who has achieved one success exerts full effort until the end.

We now explain the mechanism of our optimal design using Figure 1. The optimal disclosure

policy starts with a silent period of length t (phase 1). During this phase, if an agent i achieves

the first success, her partial progress will never be disclosed (φ∗t = 0 for t < t). Despite anticipating

this behavior, agent i is still willing to exert full effort in phase 1 as incentives are sufficiently high

early in the contest. To see this, observe in Figure 1 that the expected continuation payoff upon

achieving the first success at time t can be expressed as V1,t = ptV1,1,t + (1−pt)V1,0,t. At time t < t,

it is more likely that the rival is in the first stage (pt is low) and the expected utility of progressing

to the second stage is closer to V1,0,t. Therefore, even if the laggard keeps working until the end

(which makes V1,0,t = 3
4
(R− c

λ
)> c

λ
if and only if R> 7c

3λ
), agent i still earns an additional utility

greater than her cost of effort (i.e., V1,t − V0,t >
c
λ

for t < t) upon first success. Thus, agents keep

working in phase 1. Note that a principal with a larger budget can keep agents incentivized for a

longer period of time so the length of phase 1 increases with R (t= 0 if R≤ 7c
3λ

).

In phase 2 (after t), the principal commits to inform the agents of any change in the state of

partial progress with probability φ∗t which is increasing over time since the agents put more weight
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Figure 1 How optimal disclosure manages incentives. Setting: c= λ= 1, R= 2.4, t= 0.17 and t= 6.55.

on their rival’s partial progress probability (both pt and φ∗t are increasing on [t, t). After t, φ∗t = 1

which holds pt = p). This way the principal gives the bare minimum of incentives to an agent i

with no success to exert full effort by promising to immediately inform her rival with probability

φ∗t (and hence ensuring payoff V1,t = c
λ

upon first success). If this happens and the rival has yet

to achieve first success, the rival quits and agent i receives V1,0,t|rival quits = (R− c
λ
). Otherwise, her

rival keeps spending full effort until the end, leaving agent i with an expected continuation payoff

of V1,1,t = 1
2
(R− c

λ
) or V1,0,t|rival works = 3

4
(R− c

λ
) depending on whether the rival has obtained any

success by t or not, respectively. Probability φ∗t is chosen such that agent i weakly prefers to exert

full effort at any instant. Finally, after t and when agent i becomes very pessimistic about her

chances of winning the reward, the principal commits to disclose any change of state immediately

(φ∗t = 1). This holds the agent’s belief about her rival’s progress constant while providing sufficient

incentives for this agent to keep spending full effort by anticipating that if she succeeds and her

rival has yet to achieve first success, her rival will quit immediately.

The above analysis reveals how PCSD relinquishes the minimum expected continuation payoff

to each agent at any instant during the contest — a property that any state disclosure policy fails

to achieve. As illustrated in Figure 1, for all t≥ t where the first success arrived, V1,t = c
λ

which

is the minimum necessary continuation payoff to stimulate first-stage effort and for all t < t where

V1,t >
c
λ
, the principal induces both agents to keep spending full effort until the task is complete.

Therefore, the minimum continuation payoff is granted. By optimally managing incentives at all

times and extracting more surplus from the agents without discouraging them, the principal can

stimulate competition and minimize the development project lead time as depicted in Figure 2.
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Figure 2 Optimal probabilistic change-of-state disclosure minimizes expected project lead time. Setting: c= λ= 1.

Theorem 2 provides several key technical contributions and managerial insights. First, prior

literature reviewed in §2 mainly considers the disclosure of state rather than immediate change

of state. For instance, the cyclic policies proposed by Bimpikis et al. (2019) or Ely et al. (2022)

disclose the history (state) of the contest outside silent periods. We utilize this idea in PSD and

show that adding probabilistic disclosure leads to significant improvement. However, by adopting

a novel disclosure strategy in PCSD, we characterize a fully optimal information disclosure policy

which strategically discloses change of state (captured by φ∗t in our optimal design) and minimizes

the expected lead time of a multi-stage development contest. We hope this novel approach can

guide future research in dynamic Bayesian persuasion applications.

Second, Theorem 2 shows that probabilistic change-of-state disclosure can optimally smoothen

incentives over time. To see this, note that by committing to disclose the change of state at time

t with probability φ∗t , the principal does not increase the benefit of obtaining a success before t

because past partial progress will never get disclosed. PSD, deterministic delay, and other canonical

information disclosure policies fail to achieve this property, hence relinquish more surplus to agents.

It is worth noting that in characterizing PCSD, we assume the principal can commit to the

information disclosure policy (which is standard in the information design literature, see Ely et al.

2022). This commitment power results from the long-term relationship between the principal and
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the expert development partners as discussed in §1.11 Building strong partnership with strategic

suppliers helps the principal benefit from additional levers such as information design.

5.4. Probabilistic Change-of-State Disclosure with Flexible Reward

In §5.3, we obtain an optimal disclosure policy by holding the reward fixed to focus on the role

of information disclosure. We can further improve our fixed-reward PCSD design by reducing the

expected reward of the contest with no impact on the agents’ equilibrium behavior by incorporating

flexible rewards. Recall that under PCSD and when R> 7c
3λ

, the principal discloses no information

up to time t where monetary incentives are sufficient to motivate full effort. Only after phase 1, the

principal starts disclosing information to satisfy each agent’s incentive compatibility constraint. In

other words, in phase 1, agents earn an excess of surplus which can be extracted using flexible

rewards without any impact on their incentives. Proposition EC.2 in the Online Appendix states

that the principal can achieve the same equilibrium outcome as in the fixed-reward PCSD with a

flexible-reward schedule according to R2,1 =R and R2,0,t = 7c/λ−R−pt(R+c/λ)

2(1−pt)
if t < t, and R2,0,t =R

if t≥ t, where t is the time at which the first success is obtained and pt = λt/(1 +λt).

The goal is to not overpay agents during the early stages of the contest where incentives are

sufficiently high. In our proposed design, the reward the leader will receive before the laggard

achieves any success is less than R and increasing in the arrival time of the first success (t) if

t < t and is equal to the budget constraint R if t ≥ t. On the other hand, the reward a winner

will receive after both agents achieve the first success is R2,1 =R. This reward schedule provides

some cost-saving opportunities for the principal when R> 7c
3λ

as indicated in Figure 3. Notice that

the expected lead time is strictly decreasing in R as a higher reward budget helps the principal

postpone the probabilistic disclosure phase (phase 2). For the same reason, the principal benefits

from allocating her entire budget after time t. Combining probabilistic disclosure with flexible

reward can help the principal reduce both the expected lead time and the expected cost of reward

in the contest.

6. Conclusion

Organizations worldwide face the challenges of developing advanced technologies and products

under time and budget pressures, and turn to their expert suppliers to tackle complex problems.

In this paper, we study how such an organization can effectively organize a dynamic development

contest to stimulate development effort from a small set of competing suppliers to minimize the

lead time of a multi-stage project while keeping the incentive budget in check.

11 In the absence of such commitment, a budget-constrained principal would be unable to credibly communicate with
agents mid-contest due to the principal’s interest in agents working until the task is complete. Then, the unique
symmetric equilibrium of the resulting game would be identical to the one in Proposition 5.
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Figure 3 Percentage of cost savings under PCSD with flexible reward over fixed reward. Setting: c= λ= 1.

Inspired by the current literature and practice, we sought to build a parsimonious stylized model

of a dynamic development contest where two agents compete to complete a two-stage development

project by exerting costly effort over a continuous time frame. Successful completion of a stage

for an agent arrives at a random point in time where the rate of arrival for each success increases

with the agent’s effort. An agent’s success is not observable by another agent so it is up to the

principal whether, when, and how to share this information. The contest ends when one of the

agents successfully completes both stages and hence wins a pre-determined reward. At the outset

of the contest, the principal commits to a reward schedule that determines how the reward will

change over time and an information disclosure policy which specifies how the principal will disclose

information throughout the contest.

We establish that a principal with no budget constraint can utilize a flexible-reward schedule to

achieve the absolute minimum expected lead time by giving 20% less reward on average than a fixed-

reward schedule. Under any information disclosure policy, it is optimal for the principal to adopt

a flexible-reward schedule by setting a guaranteed reward amount upfront with the promise of a

larger reward if multiple agents achieved partial progress.12 Importantly, this lead-time minimizing

flexible-reward schedule pays the minimum expected reward (i.e., achieves the first-best outcome).

We next analyze how a budget-constrained principal can utilize information as an incentive tool.

By harnessing a dynamic Bayesian persuasion approach, we characterize an optimal (lead-time

minimizing) information disclosure policy in which the principal does not share any information

for a pre-determined initial time window (which may not exist if budget is low); and then discloses

12 While we see examples in practice where reward varies based on time or state of a competition (e.g., Google Lunar
XPrize contest featured a time-contingent prize for the first private firm to land a vehicle on the Moon, and later
increased the prize purse from $30 to $40 million after observing some promising progress from participants), our
research of the practice did not reveal any development contest where the winner reward varies based on the state
in which the competition ends. Our paper offers a normative recommendation about the potential of adopting such
a state-based reward policy which may not be all that difficult to implement with only two possible reward levels.
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Figure 4 Managerial framework for designing dynamic development contests with two suppliers.

any change in the state of partial progress with some weakly increasing time-dependent probability.

We then find that by utilizing a flexible-reward policy during the initial no-disclosure period, the

principal can reduce the cost of incentives without hindering project lead time.

Our results, summarized in Figure 4, indicate that enriched rank-based incentives and carefully-

tailored information design can be powerful tools to incentivize development efforts of suppliers

without overpaying them. With development contests such as hypersonic missiles running into

billions of dollars and racing against time, the flexible reward coupled with information disclosure

can potentially achieve substantial savings in lead time as well as project budget (to the tune of

hundreds of millions of dollars).

Our analysis opens up several interesting future research directions. First, as a first step to

understanding dynamic development contests, we have abstracted away from features such as skills

heterogeneity, learning by doing, or the uncertainty regarding the feasibility of the first or second

stage, but extending our work by containing such features can be interesting research avenues.

Adding these features would make the analysis more involved but can provide useful further insights

on designing development contests. Second, an interesting research to pursue would be to see how

our proposed methods work when success has a quality measure that can be improved over time

rather than taking the form of a breakthrough. Third, while we focus on the expected lead time

and reward, considering the variability in such metrics could be an interesting future research

avenue. Fourth, our optimal policy characteristics also provide new opportunities for empirical and

experimental research. Recently Mostagir et al. (2021) run a laboratory experiment to investigate

the impact of full and no information disclosure policies on the agents’ behavior and the principal’s

outcome. In our model, besides considering full and no information, we analyze and compare cyclic,

deterministic delay and probabilistic policies to show the value of information design and highlight

its impact on incentives. Studying these policies experimentally could be an interesting research

direction. Finally, we take the perspective of the principal and aim to improve the principal’s

objective as much as possible. This requires keeping agents working as much as possible as early

in the contest as possible. This also means that any effort for a non-winning solution will end up

being wasted. From this perspective, our contest design may not necessarily be socially efficient.
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An interesting future research avenue is to find a mechanism that considers the social welfare,

including both the principal’s and agents’ objectives.
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Ersin Körpeoğlu is an Associate Professor of Operations and Technology at University College

London School of Management. His research focuses on theoretical, empirical, and experimental

analysis of operational issues in conventional and innovative businesses in application areas such

as online marketplaces (e.g., crowdsourcing, crowdfunding, hospitality), healthcare, product devel-

opment, and supply chain management.

Vish V. Krishnan is a Professor of Engineering and Management at the University of California,

San Diego where he holds the Jacobs Family Endowed Chair. His research focuses on characteriz-

ing and formalizing innovation and entrepreneurship with analytical, empirical, and experimental

methods to make innovation effective, inclusive, and efficient.

https://www.washingtonpost.com/business/hypersonic-weapons-who-has-them-and-why-it-matters/2022/04/05/1f6d0280-b557-11ec-8358-20aa16355fb4_story.html
https://www.washingtonpost.com/business/hypersonic-weapons-who-has-them-and-why-it-matters/2022/04/05/1f6d0280-b557-11ec-8358-20aa16355fb4_story.html
https://www.washingtonpost.com/business/hypersonic-weapons-who-has-them-and-why-it-matters/2022/04/05/1f6d0280-b557-11ec-8358-20aa16355fb4_story.html
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Online Appendix

EC.1. Proofs

Proof of Proposition 1: We first calculate the expected duration of a contract in which both

agents exert full effort at all times. We solve the problem by backward induction on the state of

the game where the states are defined by the number of success for each agent. First, consider the

state when both agents have already achieved one success, then the expected arrival time for the

second success is given by:∫ ∞
0

2λte−2λtdt=−te−2λt
∣∣∣∣∞
0

+

∫ ∞
0

e−2λtdt=− 1

2λ
e−2λt

∣∣∣∣∞
0

=
1

2λ
.

Next, consider the state of the game with a leader (an agent with one success) and a laggard (an

agent with no success). Then the expected arrival time for the second success can be expressed as:∫ ∞
0

[
λt+λ

(
t+

1

2λ

)]
e−2λtdt=

1

2λ
+

∫ ∞
0

1

2
e−2λtdt=

1

2λ
+

1

4λ
=

3

4λ
,

where with instantaneous probability λ the leader may obtain the second success at time t or the

laggard may hit the first success at time t (proceeding to the above-mentioned state) in which case

the expected duration of the contract is t+ 1/(2λ). Finally, considering the state when neither of

the agents has one success, the expected duration of the contract is as follows:∫ ∞
0

2λ(t+
3

4λ
)e−2λtdt=

1

2λ
+

∫ ∞
0

3

2
e−2λtdt=

1

2λ
+

3

4λ
=

5

4λ
. (EC.1)

Clearly, given the cost of effort at each instant, the principal has to offer each agent at least 5c/(4λ)

so that each agent’s ex-ante expected payoff is non-negative. �

Proof of Proposition 2: To derive the symmetric pure-strategy Nash equilibrium with full

effort, let us fix agent −i’s effort x−ik,l,t = 1 for all k, l, and t and find conditions under which agent

i optimally chooses xik,l,t = 1 for all k, l, and t. For notational simplicity, we drop the superscript

i. Consider the state of the game where both agents have already achieved one success, using (3)

we can write:

V1,1,t = max
x1,1,τ

∫ ∞
t

x1,1,τ (λR− c)e−
∫ τ
t λ(x1,1,s+1)dsdτ.

The agent’s problem is an infinite horizon problem, so it is stationary. Thus, we can drop the

subscript t and write the equivalent Bellman equation for the agent’s problem as follows:

V1,1 = max
x1,1
{x1,1(λR− c)dt+ (1−λx1,1dt−λdt)V1,1} ,

Note that −cx1,1dt denotes the agent’s cost of effort within the time interval (t, t+dt), while x1,1λdt

denotes the probability that a success arrives within (t, t+ dt), in which case the agent receives

R. On the other hand, the probability that her opponent achieves the second success in that time

interval is λdt, and in this case, the agent receives zero reward. With probability (1−λx1,1dt−λdt),
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neither the agent nor her opponent achieves the second success, in which case the contest continues

and the agent anticipates to receive a continuation payoff of V1,1 due to stationarity. Simplifying the

above expression and dividing both sides by dt, we obtain the following Hamilton-Jacobi- Bellman

(hereafter HJB) equation for the agent’s problem:

0 = max
x1,1

−cx1,1︸ ︷︷ ︸
cost

+λx1,1 (R−V1,1)︸ ︷︷ ︸
benefit

− λV1,1︸ ︷︷ ︸
externality

 . (EC.2)

First, second, and third terms reflect the agent’s flow cost of effort, her flow benefit from effort, and

the externality imposed by her opponent’s effort, respectively. Since the HJB in (EC.2) is linear in

x1,1, it can be concluded that x1,1 = 1 is optimal if and only if

R−V1,1 ≥
c

λ
. (EC.3)

The above condition implies that each agent finds it optimal to work if the principal rewards the

agent with an additional utility of at least c/λ upon the arrival of a success.

Next, consider the state of the game where agent i is the leader with one success and agent −i

is the laggard with no success. Bellman and HJB equations for agent i can be expressed as follows:

V1,0 = max
x1,0
{x1,0(λR− c)dt+λV1,1dt+ (1−λx1,0dt−λdt)V1,0}

⇒ 0 = max
x1,0
{x1,0 (λR− c−λV1,0) +λ (V1,1−V1,0)} , (EC.4)

The first line admits a similar interpretation as in the previous case, except that if the laggard

(agent −i) obtains a success, the leader agent i receives a continuation payoff equal to V1,1. From

(EC.4), we can derive the Incentive Compatibility (hereafter IC) constraint for agent i which tells

us that x1,0 = 1 is incentive compatible if and only if

R−V1,0 ≥
c

λ
. (EC.5)

When agent i is the laggard with no success and agent −i is the leader with one success, we can

rewrite agent i’s problem in (4) as follows:

V0,1 = max
x0,1
{x0,1(λV1,1− c)dt+ (1−λx0,1dt−λdt)V0,1}

⇒ 0 = max
x0,1
{x0,1 (λV1,1− c−λV0,1)−λV0,1} , (EC.6)

which implies that exerting full effort for the laggard is optimal if and only if the following IC

constraint holds:

V1,1−V0,1 ≥
c

λ
. (EC.7)

Finally, before the arrival of any success, the continuation payoff of agent i is given by:

V0,0 = max
x0,0
{x0,0(λV1,0− c)dt+λV0,1dt+ (1−λx0,0dt−λdt)V0,0}

⇒ 0 = max
x0,0
{x0,0 (λV1,0− c−λV0,0) +λ (V0,1−V0,0)} . (EC.8)
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From (EC.8), exerting x0,0 = 1 is incentive compatible for agent i if and only if

V1,0−V0,0 ≥
c

λ
. (EC.9)

We are now ready to show that R = 3c/λ is the minimum required fixed reward to induce

agent i (and by symmetry agent −i as well) to exert full effort at all times, hence achieving the

minimum expected lead time T . From (EC.7), V1,1 ≥ c/λ since V0,1 has to be non-negative. Also,

from (EC.2), under full effort, one can verify that V1,1 = 1
2

(
R− c

λ

)
. Combining these together, we

require 1
2

(
R− c

λ

)
≥ c

λ
, which boils down to R≥ 3c/λ. Thus, we need R= 3c/λ at the minimum to

ensure that (EC.7) is satisfied, and hence it is incentive compatible for the laggard to exert full

effort.

It remains to show that R= 3c/λ satisfies all IC constraints. It is straightforward to check that

(EC.3) is satisfied, that is R− V1,1 = 3c
λ
− c

λ
> c

λ
. Plugging in the value of V1,1 = c/λ into (EC.6),

we find that V0,1 = 0 and so the IC constraint in (EC.7) for the laggard is binding. Similarly,

plugging in the value of V1,1 = c/λ into (EC.4), it can be concluded that V1,0 = 3c/(2λ) and so the

IC constraint in (EC.5) for the leader is satisfied since R−V1,0 = 3c
λ
− 3c

2λ
= 3c

2λ
> c

λ
. Finally, plugging

in the values of V1,0 = 3c/(2λ) and V0,1 = 0 into (EC.8), one can verify that V0,0 = c/(4λ) and so

the IC constraint in (EC.9) for each agent is satisfied as V1,0−V0,0 = 3c
2λ
− c

4λ
= 5c

4λ
> c

λ
. �

Proof of Proposition 3: Consider a flexible-reward contest with R2,0 = 2c/λ and R2,1 = 3c/λ

where the principal commits to disclose any success upon its arrival. Similar to the previous case,

we analyze the problem by moving backward on the state of the game where the states are defined

by the number of successes of the agents. Let us fix agent −i’s effort x−ik,l,t = 1 for all k, l, and t

and find conditions under which agent i optimally chooses xik,l,t = 1 for all k, l, and t. Consider

the state of the game where both agents have already achieved one success. The Bellman equation

and the corresponding HJB for agent i’s problem can be expressed as follows:

V1,1 = max
x1,1
{x1,1(λR2,1− c)dt+ (1−λx1,1dt−λdt)V1,1}

⇒ 0 = max
x1,1
{x1,1 (λR2,1− c−λV1,1)−λV1,1} , (EC.10)

where we use the fact that the winner receives R2,1 in this state of the game. From (EC.10), we

can derive that x1,1 = 1 is optimal if and only if

R2,1−V1,1 ≥
c

λ
. (EC.11)

Next, consider the state of the game with a leader and a laggard. The Bellman equation and the

corresponding HJB for the leader’s problem (which we assume to be agent i) can be written as:

V1,0 = max
x1,0
{x1,0(λR2,0− c)dt+λV1,1dt+ (1−λx1,0dt−λdt)V1,0}

⇒ 0 = max
x1,0
{x1,0 (λR2,0− c−λV1,0) +λ (V1,1−V1,0)} , (EC.12)
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where we use the fact that the winner receives R2,0 in this state of the game. From (EC.12), we

can derive the IC constraint for the leader which tells us that x1,0 = 1 is incentive compatible if

and only if

R2,0−V1,0 ≥
c

λ
. (EC.13)

Similarly, we can express the Bellman equation and the corresponding HJB for the laggard’s prob-

lem (assuming to be agent i) as follows:

V0,1 = max
x0,1
{x0,1(λV1,1− c)dt+ (1−λx0,1dt−λdt)V0,1}

⇒ 0 = max
x0,1
{x0,1 (λV1,1− c−λV0,1)−λV0,1} , (EC.14)

which implies that exerting full effort for the laggard is optimal if and only if the following IC

constraint holds

V1,1−V0,1 ≥
c

λ
. (EC.15)

Finally, before the arrival of any success, the continuation value of each agent is given by:

V0,0 = max
x0,0
{x0,0(λV1,0− c)dt+λV0,1dt+ (1−λx0,0dt−λdt)V0,0}

⇒ 0 = max
x0,0
{x0,0 (λV1,0− c−λV0,0) +λ (V0,1−V0,0)} . (EC.16)

From (EC.16), exerting x0,0 = 1 is incentive compatible for each agent if and only if

V1,0−V0,0 ≥
c

λ
. (EC.17)

We now verify that the proposed flexible-reward schedule in Proposition 3 satisfies all of the

above IC constraints and spends the minimum first-best expected reward. Given (EC.15), we can

see that V1,1 = c/λ is the minimum required continuation payoff to incentivize the laggard to put

full effort. From (EC.10), we know that V1,1 = 1
2

(
R2,1− c

λ

)
. Thus, the principal has to specify a

reward R2,1 = 3c/λ in order to satisfy V1,1 = c/λ. Given these values, it is straightforward to check

that the IC constraint in (EC.11) is satisfied, that is R2,1 − V1,1 = 3c
λ
− c

λ
> c

λ
. Also, plugging in

the value of V1,1 = c/λ into (EC.14), we obtain that V0,1 = 0 and so the IC constraint for the

laggard is binding. Next, from (EC.17), we can conclude that V1,0 = c/λ is the minimum required

continuation payoff to motivate the agents to exert effort. Plugging in this value into (EC.12),

R2,0 = 2c/λ is needed to satisfy the HJB. It follows that the IC constraint in (EC.13) is indeed

binding for the leader as R2,0−V1,0 = 2c
λ
− c

λ
= c

λ
. Finally, given V1,0 = c/λ and V0,1 = 0, we conclude

by (EC.16) that V0,0 = 0 which shows that the last IC constraint in (EC.17) is also binding, that

is V1,0 − V0,0 = c
λ
− 0 = c

λ
. Therefore, full effort is incentive compatible at all times and T can be

achieved.

To calculate the expected reward of this flexible-reward contest, note that when both agents

have already obtained one success, the expected reward of the contest is R2,1 = 3c/λ. When there

is a leader and a laggard, the expected reward can be computed as follows:∫ ∞
t

λ

(
2c

λ
+

3c

λ

)
e−2λ(τ−t)dτ =

5c

2λ
.
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To interpret the above equation note that if the leader obtains her second success, the reward is

R2,0 = 2c/λ and if the laggard obtains her first success, the state of the game transitions to the

case where both agents have already obtained one success and the reward is adjusted upward to

R2,1 = 3c/λ. Finally, the ex-ante expected reward of the contest is given by:∫ ∞
0

2λ

(
5c

2λ

)
e−2λtdt=

5c

2λ
.�

Proof of Proposition 4: First, we derive (5). Note that, by Bayes’ rule, the probability that

agent i assigns at time t+ dt to the event that her opponent has succeeded once, given pit, can be

expressed as follows:

pit+dt =
pit(1−x−i1,tλdt) + (1− pit)x−i0,tλdt

pit(1−x−i1,tλdt) + 1− pit
,

where the numerator is the probability that the game has not ended yet given that the opponent is

in the second stage, and the denominator is the total probability that the contest has not finished

yet. The law of motion can be obtained by subtracting pit from both sides, dividing by dt, and

taking the limit as dt→ 0.

To derive the symmetric pure-strategy Nash equilibrium with full effort, we shall fix the oppo-

nent’s effort x−ik,t = 1 for all k and t and try to find conditions under which agent i best-responds

by choosing xik,t = 1 for all k, t.

Consider the problem faced by an agent who has not yet achieved a success. Dropping the

superscript i in (7) by using the symmetry of agents, the equivalent Bellman equation for the

agent’s problem is as follows:

V0,t = max
x0,t
{−cx0,tdt+x0,tλV1,tdt+ (1−x0,tλdt− ptλdt)V0,t+dt} . (EC.18)

Note that cx0,tdt denotes the agent’s cost of effort within the time interval (t, t+dt), while x0,tλdt

denotes the probability that a success arrives within (t, t+ dt), in which case the agent receives a

continuation payoff, V1,t. On the other hand, the probability that her opponent is in the second

stage and achieves a success in this time interval is ptλdt, and in that case, the agent receives

a continuation value of zero. With probability (1− x0,tλdt− ptλdt), neither the agent achieves a

success, nor does her opponent achieve the second success, in which case the contest continues

and the agent anticipates to receive her continuation payoff, V0,t+dt. Given that we have an infinite

horizon dynamic model with no deadline, from (EC.18) one can verify that the continuation payoff

solely depends on the probability pt rather than time itself. Thus, we can define a stationary

Bellman function Vk,p for k ∈ {0,1} that does not depend on time but depends on the current state

of pt. Let p be a state variable that corresponds to the probability that each agent assigns to the

fact that her opponent is in the second stage under no information disclosure. Then, we can express

each agent’s continuation payoff as Vk,p. Thus, we can rewrite (EC.18) as follows:

V0,p = max
x0,p
{−cx0,pdt+x0,pλV1,pdt+ (1−x0,pλdt− pλdt)V0,p+dp} . (EC.19)
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Using a Taylor expansion (Ito’s Lemma), we have

V0,p+dp ' V0,p +V
′

0,pdp= V0,p +λ(1− p)2V
′

0,pdt,

where we have used that x−ik,t = 1 and dp= λ(1−p)2dt according to (5). Substituting this expression

into (EC.19), dropping the terms of the order dt2 (since dt2 ' 0), canceling terms and dividing

both sides by dt, we obtain the following HJB equation for the agent’s problem:

0 = max
x0,p

−cx0,p︸ ︷︷ ︸
cost

+x0,pλ (V1,p−V0,p)︸ ︷︷ ︸
benefit

−λ
[
pV0,p− (1− p)2V ′0,p

]︸ ︷︷ ︸
externality

 . (EC.20)

Note that the first term reflects the agent’s flow cost of effort, the second term reflects her flow

benefit from effort, and the third term captures the externality imposed by her opponent’s effort.

Since the HJB in (EC.20) is linear in x0,p, we conclude that x0,p = 1 is optimal if and only if

V1,p−V0,p ≥
c

λ
. (EC.21)

The above IC constraint implies that an agent with no success finds it optimal to work if the

principal rewards the agent with additional utility of at least c/λ upon the arrival of a success.

Next, consider the problem faced by an agent who has achieved one success as formulated in

(6). Since the continuation payoffs of agents depend on the state variable p rather than time, the

principal’s problem is also stationary (i.e., independent of t) and hence it is optimal for the principal

to choose a reward schedule that depends only on p. In other words, an agent who achieves two

successes first is rewarded Rp, where p is her belief about her opponent’s progress. As a result,

after dropping the superscript i in (6) by using the symmetry of agents, the corresponding Bellman

equation for the agent’s problem is given by:

V1,p = max
x1,p
{−cx1,pdt+x1,pλRpdt+ (1−x1,pλdt− pλdt)V1,p+dp}

which using the previous techniques gives us the following HJB eqution

0 = max
x1,p

−cx1,p︸ ︷︷ ︸
cost

+x1,pλ (Rp−V1,p)︸ ︷︷ ︸
benefit

−λ
[
pV1,p− (1− p)2V ′1,p

]︸ ︷︷ ︸
externality

 . (EC.22)

Since the HJB in (EC.22) is linear in x1,p, we conclude that x1,p = 1 is optimal if and only if

Rp−V1,p ≥
c

λ
. (EC.23)

We are now ready to prove that full effort is incentive compatible at all times given the proposed

flexible-reward schedule in Proposition 4. First, notice that when we fix the opponent’s effort

x−ik,t = 1 for all t and solve (5) with initial condition pi0 = 0, we obtain pt = λt/(1 + λt) as stated

in the proposition. Second, note that if an agent with no success receives a continuation payoff

V1,p = c/λ, ∀p, by substituting this value into the integral form of the agent’s problem in (7),

we obtain V0,p = 0. Hence, (EC.21) is always binding. Moreover, if V1,p = c/λ, the flexible-reward

schedule Rp = (2 +p)c/λ always satisfies (EC.23). Plugging in Rp = (2 +p)c/λ into (EC.22), it can
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be verified that V1,p = c/λ for all p is a solution. Finally, plugging in V1,p = c/λ into (EC.20), one

can verify that V0,p = 0 for all p is a solution. Therefore, the design is incentive compatible at all

times and achieves T .

Finally, we can verify that this design spends the first-best expected reward. To show this, we

compute the expected reward that the principal has to pay under this design. Denote by Rk,l the

principal’s expected payout conditional on the first agent having achieved k ∈ {0,1} successes, and

the second agent having achieved l ∈ {0,1} successes. Let us consider the state of the game when

both agents have already achieved one success, then the expected payout is given by:

R1,1,t =

∫ ∞
t

2λ

(
2 +

λτ

1 +λτ

)
c

λ
e−2λ(τ−t)dτ =

3c

λ
− 2c

λ
e2(1+λt)

∫ ∞
2(1+λt)

e−x

x
dx,

where the first equality can be interpreted as follows: if any agent obtains the second success during

interval (τ, τ + dτ) which happens with probability 2λdτ , the principal has to pay (2 + pτ )c/λ to

the winner, provided that none of the agents have already obtained the second success by time τ

which is captured by the term e−2λ(τ−t), and the second equality is obtained by change of variables.

Next, consider the state of the game with a leader and a laggard. Then the expected payout can

be computed as follows:

R1,0,t =

∫ ∞
t

λ

[(
2 +

λτ

1 +λτ

)
c

λ
+R1,1,τ

]
e−2λ(τ−t)dτ

=

∫ ∞
t

(
2 +

λτ

1 +λτ

)
ce−2λ(τ−t)dτ +

∫ ∞
t

λR1,1,τe
−2λ(τ−t)dτ

=
1

2
R1,1,t +

∫ ∞
t

λ

[
3c

λ
− 2c

λ
e2(1+λτ)

∫ ∞
2(1+λτ)

e−x

x
dx

]
e−2λ(τ−t)dτ

=
3c

λ
− c

λ
e2(1+λt)

∫ ∞
2(1+λt)

e−x

x
dx− 2ce2(1+λt)

∫ ∞
t

∫ ∞
2(1+λτ)

e−x

x
dxdτ

=
2c

λ
+
c

λ
e2(1+λt)(1 + 2λt)

∫ ∞
2(1+λt)

e−x

x
dx.

Finally, starting from time zero, the expected reward of the contest is given by:

R0,0,0 =

∫ ∞
0

2λR1,0(t)e
−2λtdt

=

∫ ∞
0

[
4ce−2λt + 2ce2(1 + 2λt)

∫ ∞
2(1+λt)

e−x

x
dx

]
dt

=
2c

λ
+

c

2λ
=

5c

2λ
.�

Proof of Theorem 1: We first prove that under any information disclosure policy, there exists

a flexible-reward contest that attains the absolute minimum expected lead time at the first-best

cost if R≥ 3c
λ

. To see this, note that the principal can achieve this goal by organizing a flexible-

reward contest similar to the one in Proposition 3 by committing to pay the winner R2,0 = 2c/λ

when one agent achieves the second success before the other agent obtaining any success and

R2,1 = 3c/λ if the second success is obtained when both agents have already succeeded once. Since
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the principal has commitment power and observes successes, conditioning the reward schedule on

the state of the contest in which it ends under any information disclosure policy is feasible. To

verify that this reward schedule induces both agents to spend full effort at all times under any

information disclosure policy, we fix agent −i’s effort to 1 at all times, and prove that agent i

best-responds by playing the same strategy. Notice that an agent i with one success holding a

belief p about her rival’s partial progress finds it optimal to spend full effort if and only if [pR2,1 +

(1−p)R2,0]− [pV1,1 +(1−p)V1,0]≥ c/λ (similar to condition (EC.23)), where V1,1 = 1
2
(R2,1− c

λ
) and

V1,0 = 1
2
(R2,0− c

λ
) + 1

4
(R2,1− c

λ
) if she spends full effort in equilibrium. Under this reward schedule,

we obtain V1,1 = V1,0 = c
λ

and hence the incentive compatibility condition for this agent is indeed

slack, implying that full effort is incentive compatible at all times. Next, consider an agent i with

no success holding a belief p about her rival’s progress. Spending full effort for agent i is optimal

if and only if V1,p − V0,p ≥ c/λ (similar to condition (EC.21)), where V1,p = pV1,1 + (1− p)V1,0 = c
λ

under this flexible-reward schedule. In addition, V0,p = pV0,1 + (1 − p)V0,0 = 0 given that V0,1 =

1
4
(R2,1− c

λ
)− c

2λ
= 0 and V0,0 = 1

4
(R2,0− c

λ
)+ 1

4
(R2,1− c

λ
)− 3c

4λ
= 0 under full effort provision and this

reward schedule. Thus, the incentive compatibility condition for this agent is binding. Putting these

together, in equilibrium, both agents exert full effort at all times which minimizes the contest’s

expected lead time. Moreover, this contest spends the first-best expected reward as the principal

pays 2c/λ or 3c/λ each with probability 1/2 in this design.

Next, we prove that given an information disclosure policy, if there exists a first-best (flexible-

reward) contest that attains the absolute minimum expected lead time T at the minimum cost R,

we must have that R ≥ 3c
λ

. Suppose not, that is R < 3c
λ

, and there exists a lead-time minimizing

first-best contest which we denote by C. Start with the observation that agents should always exert

full effort in C because otherwise it is not possible to achieve the absolute minimum expected lead

time T . We first claim that if a contest achieves the absolute minimum expected lead time T by

paying the first-best reward, it must be the case that, in equilibrium, each agent’s ex-ante expected

payoff is zero. To see this, note that the sum of agents’ surplus in every first-best contest is

V i
0,0,0 +V −i0,0,0 =E

[
RT .1{i or −i wins}

]
− 2cT

⇔E
[
RT .1{i or −i wins}

]
= V i

0,0,0 +V −i0,0,0 + 2cT , (EC.24)

where T is the random termination time of the contest. Notice that the left-hand side in (EC.24)

admits its minimum value R (i.e., the first-best expected reward) if and only if the right-hand

side admits its lower bound which implies that each agent, in contest C, must earn zero ex-ante

expected utility. Following this observation, consider an agent i with no success holding a belief pt

at time t > 0 about her rival’s partial progress. We claim that 0< pt < 1. If not, then this means

that agent i receives full information about her rival’s partial progress at time t. But then if the
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opponent obtains a success by t, agent i quits immediately, contradicting first-best assumption,

because her continuation payoff under the full effort provision in the first-best contest would be

V0,1,t =

∫ ∞
t

(λV1,1,τ − c)e−2λ(τ−t)dτ < 0. (EC.25)

The inequality above follows because R< 3c
λ

and hence V1,1,τ = 1
2
E[RT ]− c

2λ
< 1

2
× 3c

λ
− c

2λ
= c

λ
owing

to the fact that each agent wins the expected reward with equal probability and the second success

is arrived after 1
2λ

periods of time, on average, which costs each agent c
2λ

.

Let V0,t be agent i’s continuation payoff under contest C at time t (where she holds a belief

pt about her rival’s progress). We next prove that V0,t = 0 for all t > 0. Recall from (EC.24) that

V0,0,0 = 0. If V0,t > 0 at some t, there is a profitable deviation for agent i where she exerts no effort

until time t and then starts exerting full effort and receives a strictly positive expected utility than

the equilibrium under C, which is a contradiction. Similarly, we can argue that in contest C and at

any t, V1,t = c
λ
. To see this note that c

λ
is the minimum necessary continuation payoff to induce an

agent with no success to work. Now suppose there is an interval (t′, t′+dt) during which E[V1,t]>
c
λ
.

Then, agent i with no success can again deviate and earn strictly positive surplus by exerting full

effort only during this interval and shirking at all other times (if the agent succeeds, she earns

λE[V1,t]− c > 0). Hence, a contradiction. Thus, in contest C, we have V0,t = 0 and V1,t = c
λ

for all t.

Finally, under full effort provision in contest C we can write

V0,t = (λV1,t− c)dt+λ(pt× 0 + (1− pt)×V0,1,t)dt+ (1− 2λdt)V0,t+dt.

To understand the above expected continuation payoff for an agent i with no success, note that

if agent i exerts full effort during (t, t+ dt), she receives (λV1,t − c)dt and if her opponent exerts

full effort and obtains a success, the contest ends if this is her second success or agent i receives

V0,1,t if this is her first success. Otherwise, the contest continues. Plugging in V0,t = V0,t+dt = 0 and

V1,t = c
λ

in the above equation, we obtain V0,1,t = 0 which cannot be true by (EC.25). Thus, we

have a contradiction, and a first-best contest C cannot exist if R< 3c
λ

. �

Proof of Proposition 5: We prove the proposition in multiple steps.

Step 1: We first verify that the strategy of the agents in the proposition forms a symmetric

equilibrium.

To check this, we fix the strategy of agent −i to the proposed one in the proposition and verify

that agent i best-responds by playing the same strategy. First, using condition (EC.23), it is easy

to verify that exerting full effort is incentive compatible for an agent with one success for all p since

V1,p can not exceed R− c/λ. Given that agent −i exerts effort x−i0,t = pr for t≥ tr, and x−i1,t = 1, by

(5) we obtain ṗit = 0. As a result, pit = pr for t≥ tr. Following this observation, note that if agent i

with no success, holding a belief pr, receives a continuation payoff V1,pr = c/λ, by substituting this

value into the integral form of the agent’s problem in (7), we get V0,pr = 0. Hence, the incentive
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compatibility condition in (EC.21) is binding for all t ≥ tr implying that agent i is indifferent

between any level of effort and so exerting x0,pr = pr is optimal. Plugging in R= (2 + pr)c/λ into

(EC.22), it can be verified that V1,p = c/λ is a solution for all t≥ tr where pt = pr. Finally, to prove

that exerting full effort is optimal for agent i with no success for all p < pr, we move backward

from time tr associated with belief pr and prove that if the agent finds it optimal to exert strictly

positive effort at any belief p′ where p ≤ p′ ≤ pr (i.e., if V1,p′+dp − V0,p′+dp ≥ c/λ), then we have

V1,p− V0,p ≥ c/λ implying that exerting full effort is optimal at belief p− dp. This can be seen by

the following analysis:

V1,p−V0,p =

−cdt+λRdt+ (1−λdt− pλdt)V1,p+dp + cdt−λV1,pdt− (1−λdt− pλdt)V0,p+dp ≥

λRdt+ (1−λdt− pλdt) c
λ
−λV1,pdt≥

c

λ
,

where the last inequality results from the fact that

V1,p =

∫ ∞
t

(λR− c)e−
∫ τ
t λ(1+ps)dsdτ ≤

∫ ∞
t

(λR− c)e−λ(1+p)(τ−t)dτ

=
λR− c
λ(1 + p)

≤R− (1 + p)
c

λ
,

where the first line results from the fact that pt is weakly increasing and the second line holds if

and only if (2+p)c/λ≤R which is satisfied for p≤ pr. This verifies the equilibrium. Next, we prove

the uniqueness of the symmetric equilibrium.

Step 2: Let pr solve (2 + pr)c/λ=R. Under no information disclosure, there is no symmetric

equilibrium in which an agent with no success exerts full effort at some p > pr.

First note that x0,p < 1 for some p. This is because as p approaches 1, V1,p approaches V1,1 =

1
2
(R−c/λ)< c/λ given the budget constraint, where we use the fact that an agent with one success

exerts full effort at all times. Then, suppose t is the first time at which the belief of an agent with

no success reaches its maximum level (pmax) in a symmetric equilibrium, and pmax > pr. Let us

focus on a region where the belief is strictly increasing and reaches pmax for the first time. If the

agent exerts full effort at pmax, by (5) p strictly increases which is a contradiction. Therefore, we

must have V1,pmax+dp−V0,pmax+dp ≤ c/λ. This condition implies that exerting zero effort is optimal

at belief pmax. Then, we consider the following two cases:

• V1,pmax+dp−V0,pmax+dp = c/λ: To find the agent’s optimal effort at belief pmax−dp, given that

x0,pmax = 0, we write the following:

V1,pmax −V0,pmax =

(λR− c)dt+ (1−λdt− pmaxλdt)V1,pmax+dp− (1− pmaxλdt)V0,pmax+dp =

V1,pmax+dp−V0,pmax+dp +
[
λR− c−λV1,pmax+dp− pmaxλ (V1,pmax+dp−V0,pmax+dp)

]
dt

=
c

λ
+ (λR− c−λV1,pmax+dp− pmaxc)dt <

c

λ
,
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where the last inequality results from the fact that V1,pmax+dp ≥ c/λ and R = (2 + pr)c/λ <

(2 +pmax)c/λ. Thus, an agent with no success exerts zero effort at belief pmax−dp and by (5)

p decreases which is a contradiction.

• V1,pmax+dp−V0,pmax+dp < c/λ: From the previous case, we know that an agent with no success

must exert full effort at belief pmax− dp which requires V1,pmax −V0,pmax ≥ c/λ. By continuity

of V1,p−V0,p, we conclude that V1,pmax −V0,pmax = c/λ. Doing the same analysis as before, we

find that the agent finds it optimal to put zero effort at belief pmax− 2dp which violates the

assumption that the agent’s belief is strictly increasing in this region.

Step 3: Let pr solve (2 + pr)c/λ=R. Under no information disclosure, there is no symmetric

equilibrium in which an agent with no success does not exert full effort at some p < pr.

Suppose τ is the first time that the agent with no success does not exert full effort. Let t > τ

be the first time at which the belief of an agent with no success in the equilibrium reaches its

minimum level (pmin) and pmin < pr. Let us focus on a region where the agent’s belief is strictly

decreasing and reaches pmin for the first time. If the agent exerts zero effort at belief pmin, by (5) p

strictly decreases which is a contradiction. Therefore, we must have V1,pmin+dp− V0,pmin+dp ≥ c/λ.

This condition implies that exerting full effort is optimal at belief pmin. Then we consider two

cases:

• V1,pmin+dp−V0,pmin+dp = c/λ: To find the agent’s optimal effort at belief pmin− dp, given that

x0,pmin = 1, we can write the following:

V1,pmin −V0,pmin =

(λR−c)dt+(1−λdt−pminλdt)V1,pmin+dp−(λV1,pmin+dp−c)dt−(1−λdt−pminλdt)V0,pmin+dp =

V1,pmin+dp−V0,pmin+dp +
[
λR−λV1,pmin+dp− (1 + pmin)λ (V1,pmin+dp−V0,pmin+dp)

]
dt=

c

λ
+
[
λR−λV1,pmin+dp− (1 + pmin) c

]
dt >

c

λ
,

where the last inequality results from the fact that

V1,p =

∫ ∞
t

(λR− c)e−
∫ τ
t λ(1+ps)dsdτ ≤

∫ ∞
t

(λR− c)e−λ(1+pmin)(τ−t)dτ

=
λR− c

λ(1 + pmin)
≤R− (1 + pmin)

c

λ
,

where the first line results from the fact that pmin is the minimum belief in the equilibrium

and the second line holds since (2 + pmin)c/λ ≤ R. Therefore, the agent exerts full effort at

belief pmin− dp and by (5) p strictly increases which is a contradiction.

• V1,pmin+dp−V0,pmin+dp > c/λ: From the previous case, we know that an agent with no success

must exert zero effort at belief pmin− dp which requires V1,pmin −V0,pmin ≤ c/λ. By continuity

of V1,p−V0,p, we conclude that V1,pmin −V0,pmin = c/λ. Doing the same analysis as before, we

find that the agent finds it optimal to put full effort at belief pmin − 2dp which violates the

assumption that the agent’s belief is strictly decreasing in this region.
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From steps 2 and 3, we conclude that the symmetric equilibrium in the proposition is unique. �

Proof of Proposition 6: We build on the proofs of Propositions 5 and EC.1. As before, let

us fix the strategy of agent −i to the proposed one in the proposition and verify the best response

of agent i. Consider the very last instant of the first cycle at which the belief of agent i reaches pr.

The IC condition (EC.21) implies that full effort is optimal for an agent with no success if and only

if V1,p−V0,p ≥ c/λ. We can rewrite this condition at time tr associated with belief pr as follows:

prV1,1 + (1− pr)V1,quit− (1− pr)V0,0 ≥ c/λ. (EC.26)

The above condition can be interpreted as follows: if agent i obtains her first success at tr, her

expected continuation payoff is given by prV1,1 + (1 − pr)V1,quit anticipating that the principal

discloses full information at the end of the cycle. Therefore, with probability pr her opponent

has already made partial progress which in that case they keep working until the end and the

continuation payoff is V1,1, or her opponent quits if she has not obtained any success and the

continuation payoff is V1,quit. On the other hand, if agent i does not succeed at tr, she quits if her

opponent has progressed to the second stage. Otherwise, the contest and the beliefs reset and a

new cycle begins with a continuation payoff of V0,0.

Given that an agent with one success always puts full effort until the end, we know V1,1 =

1
2
(R− c/λ) and V1,quit = R− c/λ. Moreover, the upper bound for V0,0 is given by V F

0,0, where F

stands for full information, which is the continuation payoff if full information is provided during

each cycle. To see this, suppose that full information is provided during each cycle. We consider

two cases: i) if agent i obtains the first success, her opponent immediately quits. This leads to a

higher continuation payoff than the case of silent period where the opponent keeps working until

the end of the cycle; ii) if agent i’s opponent obtains the first success, agent i’s best response is

to quit. However, in a silent period, agent i earns a negative ex-post payoff. Therefore, the upper

bound for V0,0 is given by V F
0,0 = 1

2
(R− 2c/λ). Plugging in these values into (EC.26), it is easy to

verify that the condition is binding implying that full effort is optimal.

Finally, to prove that exerting full effort is optimal for agent i with no success during each cycle

where p < pr, we can show that if the agent finds it optimal to exert strictly positive effort at any

belief p′ where p≤ p′ ≤ pr (i.e., if V1,p′+dp−V0,p′+dp ≥ c/λ), then we have V1,p−V0,p ≥ c/λ implying

that exerting full effort is optimal at belief p− dp. This can be seen by the following analysis:

V1,p−V0,p =∫ tr

t

(λR− c)e−
∫ τ
t λ(1+ps)dsdτ + [prV1,1 + (1− pr)V1,quit]e

−
∫ tr
t λ(1+ps)ds

−
∫ tr

t

(λV1,τ − c)e−
∫ τ
t λ(1+ps)dsdτ − (1− pr)V0,0e

−
∫ tr
t λ(1+ps)ds
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=

∫ tr

t

λ
(
R−V1,τ

)
e−
∫ τ
t λ(1+ps)dsdτ + [prV1,1 + (1− pr)V1,quit− (1− pr)V0,0]e

−
∫ tr
t λ(1+ps)ds ≥ c

λ
,

where the last inequality can be verified after plugging in the values of V1,p, V1,1, V1,quit, and V0,0

into the above expression, computing the above integral and some tedious algebra. �

Proof of Proposition 7: We already show that an agent with one success finds it optimal to

put full effort if and only if

R−V1,p ≥
c

λ
, (EC.27)

which always holds as V1,p ≤R− c/λ for all p. Next, consider the continuation payoff of an agent i

with no success from any time t (after the silent period) onward as follows:

V i
0,t = max

xi0,τ

∫ ∞
t

xi0,τ (λV
i
1,τ − c)e

−
∫ τ
t [xi0,sλ+p

i
sx
−i
1,sλ+p

i
sγ]dsdτ, (EC.28)

where by choosing effort xi0,τ during interval (τ, τ + dτ), the agent incurs a cost cxi0,τdτ and if a

success arrives, she enters the second stage and enjoys a continuation payoff of V i
1,τ . If her opponent

completes the task during interval (τ, τ+dτ), agent i receives zero reward. Moreover, if the principal

discloses partial progress of agent i’s opponent, agent i quits and receives zero utility because her

continuation payoff upon the arrival of her first success falls below c/λ. To see the evolution of

belief in (8) note that, by Bayes’ rule, the probability that agent i assigns at time t+ dt to the

event that her opponent has succeeded once, given pit, can be expressed as follows:

pit+dt =
pit(1−x−i1,tλdt− γdt) + (1− pit)x−i0,tλdt

pit(1−x−i1,tλdt− γdt) + 1− pit
,

where the numerator is the probability that the game has not ended yet and no information is

received given that the opponent is in the second stage, and the denominator is the total probability

that the contest has not finished yet and no information is disclosed. The law of motion can be

obtained by subtracting pit from both sides, dividing by dt, and taking the limit as dt→ 0.

Let us fix the strategy of agent −i to the proposed one in the proposition and verify that agent

i best-responds by playing the same strategy if t≥ tr. Using p as the state variable, consider the

Bellman equation for the maximization problem of agent i with no success as follows:

V0,p = max
x0,p
{−cx0,pdt+x0,pλV1,pdt+ [1−x0,pλdt− pλdt− pγdt]V0,p+dp} .

Using the same techniques as before, we can derive the following HJB equation:

0 = max
x0,p
{−cx0,p +x0,pλ (V1,p−V0,p)− pλV0,p− pγV0,p + (1− p)[λ− pλ− pγ]V ′0,p}.

Therefore, the IC constraint for an agent with no success implies that x0,p = 1, if and only if

V1,p−V0,p ≥ c/λ, (EC.29)

which is similar to (EC.21). To derive the expected continuation payoff of agent i, holding a belief

p, upon the arrival of her first success, we can write:

V1,p = pV1,1 + (1− p)V1,0. (EC.30)
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where V1,1 = 1
2
(R− c/λ) is the expected continuation payoff if the opponent has already progressed

to the second stage, and V1,0 is the expected continuation payoff if the opponent has not progressed

to the second stage. Given the value of γ = λ(1− pr)/pr under PSD, by (8) we obtain pt = pr

remains constant after the initial silent period. Therefore, at any threshold belief pr, we have:

V1,0 =

∫ ∞
t

[(
λR− c

)
+λ

1

2

(
R− c

λ

)
+ γ

(
R− c

λ

)]
e−(2λ+γ)(τ−t)dτ,

given that during interval (τ, τ+dτ), the leader puts full effort and earns in expectation (λR−c)dτ ,

or the laggard may achieve her first success (given her full effort strategy in equilibrium) in which

case agent i’s continuation payoff is 1
2
(R− c/λ), or partial progress may be disclosed, in that case

the leader gets (R− c/λ). Taking the above integral, we obtain:

V1,0 =
3λ+ 2γ

2(2λ+ γ)

(
R− c

λ

)
. (EC.31)

Therefore, to verify that (EC.29) holds at any t≥ tr, it is enough to verify this condition at the

threshold belief pr as follows:

V1,pr = prV1,1 + (1− pr)V1,0 = pr
1

2

(
R− c

λ

)
+ (1− pr)

3λ+ 2γ

2(2λ+ γ)

(
R− c

λ

)
=
c

λ
, (EC.32)

where the last equality results from substituting γ = λ(1− pr)/pr and R= (2 + pr)c/λ. Also using

(EC.28), we obtain V0,pr = 0 for t≥ tr and hence spending full effort is incentive compatible for all

t≥ tr. It remains to show that full effort is incentive compatible for an agent with no success for

t < tr. To prove this, we can move backward in time to show that if an agent with no success finds

it optimal to spend full effort at any belief p′ where p≤ p′ ≤ pr, then exerting full effort is optimal

at belief p− dp. This can be seen from the following:

V1,p−V0,p =−cdt+λRdt+ (1−λdt− pλdt)V1,p+dp + cdt−λV1,pdt− (1−λdt− pλdt)V0,p+dp

≥ λRdt+ (1−λdt− pλdt) c
λ
−λV1,pdt≥

c

λ
.

To show the last inequality, we need to show that

V1,p<pr ≤R− (1 + p)
c

λ
.

We prove this in two steps. First, we prove that

V1,p<pr ≤
1

1 + p

(
R− c

λ

)
⇔ V1,p = pV1,1 + (1− p)V1,0 = p

1

2

(
R− c

λ

)
+ (1− p)

(
3

4
+

γ

4(2λ+ γ)
e−2λ(tr−t)

)(
R− c

λ

)
≤ 1

1 + p

(
R− c

λ

)
⇔ p

1

2
+ (1− p)

(
3

4
+

γ

4(2λ+ γ)
e−2λ(tr−t)

)
≤ 1

1 + p
.

To show the last inequality, we can drop the term e−2λ(tr−t) and substitute for γ to see that

p
1

2
+ (1− p)

(
3

4
+

γ

4(2λ+ γ)
e−2λ(tr−t)

)
≤ p1

2
+ (1− p)

(
3

4
+

λ(1− pr)/pr
4(2λ+λ(1− pr)/pr)

)
≤ p1

2
+ (1− p)

(
3

4
+

λ(1− p)/p
4(2λ+λ(1− p)/p)

)
=

1

1 + p
.
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In the second step, we prove that

1

1 + p

(
R− c

λ

)
≤R− (1 + p)

c

λ
which holds if and only if (2 + p)c/λ≤R which is satisfied for p≤ pr. Therefore, an agent with no

success puts full effort until she succeeds, or the contest ends, or partial progress is disclosed. �

Proof of Proposition 8: We prove the theorem in multiple steps. To gain insights for why our

proposed PSD improves upon other canonical disclosure policies, we prove a more general result.

Suppose the principal commits to disclose information about any partial progress at constant rate

λ(x0− pr)/pr after tr so that in equilibrium an agent with no success reduces her effort to x0 ≥ pr
for all t≥ tr. Notice that no information disclosure is a special case with x0 = pr and γ = 0, and

PSD is a special case with x0 = 1 and γ ≡ λ(1− pr)/pr for all t≥ tr.

Step 1: We calculate the expected lead time of the contest under PSD.

Denote by Tk,l,t the expected lead time of the contest when one agent has obtained k successes

and the other one has obtained l successes from any time t onward. Let us consider the state of

the game when both agents have already obtained one success. Then the expected arrival time for

the second success is given by:

T1,1,t =

∫ ∞
t

2λ(τ − t)e−2λ(τ−t)dτ =
1

2λ
.

Here, information disclosure does not affect the outcome since both agents exert full effort until the

end. Next, consider the state of the game with a leader (an agent with one success) and a laggard

(an agent with no success). Then, the expected lead time of the contest from any time t≥ tr can

be expressed as follows:

T1,0,t≥tr =

∫ ∞
t

[
λ(τ − t) +x0λ

(
τ − t+

1

2λ

)
+
λ(x0− pr)

pr
(τ − t+T1,quit,τ )

]
e
−
(
λ+x0λ+

λ(x0−pr)
pr

)
(τ−t)

dτ

=
2 + pr

2λ (1 + pr)
, (EC.33)

where T1,quit,τ is the expected arrival time for the second success once the principal discloses that

the leader has made partial progress and the laggard quits, namely,

T1,quit,t =

∫ ∞
t

λ(τ − t)e−λ(τ−t)dτ =
1

λ
.

(EC.33) can be interpreted as follows: conditional on reaching to any instant τ , the leader exerts

full effort and if she succeeds the contest ends at τ − t, or the laggard who is putting x0 effort

may achieve her first success and in that case the contest’s expected lead time is τ − t+ 1/(2λ), or

information may be disclosed by the principal and in that case the laggard quits and the contest

ends by the leader at τ − t+ 1/λ in expectation. Interestingly, T1,0,t≥tr is independent of x0. Next,

for any t < tr, the expected lead time is given by:

T1,0,t<tr =

∫ tr

t

[
λ(τ − t) +λ

(
τ − t+

1

2λ

)]
e−2λ(τ−t)dτ +

(
tr− t+

2 + pr
2λ (1 + pr)

)
e−2λ(tr−t)
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=
3

4λ
+

1− pr
4λ(1 + pr)

e−2λ(tr−t), (EC.34)

where we use the fact that no information is disclosed by the principal before tr. Finally, the ex-ante

expected lead time of the contest for any t≥ tr can be expressed as follows:

T0,0,t≥tr =

∫ ∞
t

2x0λ (τ − t+T1,0,τ≥tr)e
−2x0λ(τ−t)dτ

=

∫ ∞
t

2x0λ

[
τ − t+

2 + pr
2λ (1 + pr)

]
e−2x0λ(τ−t)dτ =

1 + pr +x0(2 + pr)

2x0λ(1 + pr)
, (EC.35)

where we use that an agent with no success exerts effort x0 after tr, and for any t < tr is given by:

T0,0,t<tr =

∫ tr

t

2λ (τ − t+T1,0,τ<tr)e
−2λ(τ−t)dτ + (tr− t+T0,0,tr)e

−2λ(tr−t)

=

∫ tr

t

2λ

[
τ − t+

3

4λ
+

1− pr
4λ(1 + pr)

e−2λ(tr−τ)
]
e−2λ(τ−t)dτ +

[
tr− t+

1 + pr +x0(2 + pr)

2x0λ(1 + pr)

]
e−2λ(tr−t)

=

[
2(1 + pr)−x0(1 + 3pr) + 2x0λ(1− pr)(tr− t)

4x0λ(1 + pr)

]
e−2λ(tr−t) +

5

4λ
, (EC.36)

given that both agents exert full effort before tr.

Under PSD, we have x0 = 1 after tr. Also, pr = λtr/(1 + λtr). Plugging in these values into

(EC.36), the expected lead time of the contest under PSD is given by:

T0,0,0 =

[
1− pr + 2λ(1− pr)tr

4λ(1 + pr)

]
e−2λtr +

5

4λ
=

1

4λ
e−2λtr +

5

4λ
. (EC.37)

Step 2: We prove that PSD dominates no information disclosure.

This immediately follows from the previous step. We already show that T1,0,t is independent of

x0. This means the expected lead time of the contest from any time t onward once the first success

is obtained is the same across any design with constant information disclosure of rate λ(x0−pr)/pr
that stimulates constant effort x0 after tr in the equilibrium. However, according to (EC.36), T0,0,0

is decreasing in x0 and probabilistic encouragement design ensures that x0 = 1 as long as both

agents have zero success which results in the minimum expected lead time within this class of

contests. Notice that no information disclosure or any disclosure with a rate lower than γ fails to

encourage full effort and hence is dominated by the probabilistic encouragement design. Finally,

we can compute the expected lead time of the contest under no information disclosure by plugging

in x0 = pr into (EC.36).

Step 3: We prove that PSD dominates full information disclosure.

This step is easy to verify. Note that under full information, the laggard quits upon the arrival

of the first success at any time t. Therefore, the expected lead time in this case is given by:

T F0,0,0 =

∫ ∞
0

2λ

(
t+

1

λ

)
e−2λtdt=

3

2λ
,

where F stands for full information. However, under probabilistic encouragement design, the prin-

cipal delays the stopping time of the laggard by tr periods of time on average if success arrives

after time tr (given that γ = 1/tr) and by 2tr − t periods of time on average if success arrives at

any time t < tr. It is easy to see that T F0,0,0 < (5 + e−2λtr)/(4λ).
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Step 4: We prove that PSD dominates cyclic information disclosure.

During the first cycle in a design with cyclic information disclosure, if the first success arrives at

time t < tr, both agents put full effort during the cycle and the laggard quits at time tr at the end

of the cycle. Therefore, we can write:

TC1,0,t<tr =

∫ tr

t

[
λ(τ − t) +λ

(
τ − t+

1

2λ

)]
e−2λ(τ−t)dτ+

(
tr− t+

1

λ

)
e−2λ(tr−t) =

3

4λ
+

1

4λ
e−2λ(tr−t),

where C stands for cyclic information disclosure. Given this, the ex-ante expected lead time of the

contest under cyclic information disclosure is given by:

TC0,0,0 =

∫ tr

0

2λ

(
t+

3

4λ
+

1

4λ
e−2λ(tr−t)

)
e−2λtdt+ (tr +T0,0,tr)e

−2λtr

⇒ TC0,0,0 =
tr e

−2λtr

2 (1− e−2λtr)
+

5

4λ
, (EC.38)

where we use the fact that TC0,0,0 = TC0,0,tr as the game resets at time tr. However, under PSD,

information is disclosed at least tr periods on average after the success is arrived. It is easy to check

that TC0,0,0 > (5 + e−2λtr)/(4λ). Thus, PSD dominates cyclic disclosure. �

Proof of Theorem 2: We first verify the equilibrium under PCSD and then prove that this

information disclosure policy minimizes the contest’s expected lead time. As before, an agent with

one success finds it optimal to spend full effort at all times since V1,p ≤ R− c/λ for all p. Next,

consider the continuation payoff of an agent i with no success from any time t≥ t (phase 2) onward:

V i
0,t = max

xi0,τ

∫ ∞
t

xi0,τ (λV
i
1,τ − c)e

−
∫ τ
t [xi0,sλ+p

i
sx
−i
1,sλ+(1−pis)x

−i
0,sλφs]dsdτ. (EC.39)

To see the evolution of belief in (9) note that, by Bayes’ rule, the probability that agent i assigns

at time t+dt to the event that her rival has succeeded once, given pit, can be expressed as follows:

pit+dt =
pit(1−x−i1,tλdt) + (1− pit)x−i0,tλdt(1−φt)

pit(1−x−i1,tλdt) + (1− pit)[x−i0,tλdt(1−φt) + 1−x−i0,tλdt]
,

where the numerator is the probability that the contest has not ended yet and no information is

disclosed given that the opponent has succeeded once, and the denominator is the total probability

that the contest has not finished yet and no information is disclosed. The law of motion can be

obtained by subtracting pit from both sides, dividing by dt, and taking the limit as dt→ 0.

Let us fix the strategy of agent −i to the proposed one in the equilibrium and verify that agent

i best-responds by playing the same strategy. Using p as the state variable, consider the Bellman

equation for the maximization problem of agent i with no success as follows:

V0,p = max
x0,p
{−cx0,pdt+x0,pλV1,pdt+ [1−x0,pλdt− pλdt− (1− p)λφpdt]V0,p+dp} .

Using the same techniques as before, we can derive the following HJB equation:

0 = max
x0,p
{−cx0,p +x0,pλ (V1,p−V0,p)− pλV0,p− (1− p)λφpV0,p + (1− p)[λ− pλ− (1− p)λφp]V ′0,p}.

Therefore, the IC constraint for an agent with no success implies that x0,p = 1, if and only if

V φ
1,p−V

φ
0,p ≥ c/λ, (EC.40)
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where the superscript φ refers to PCSD. To derive the expected continuation payoff of agent i,

holding a belief p, upon the arrival of her first success after t (in phase 2), we can write:

V φ
1,p = pV φ

1,1 + (1− p)V φ
1,0, (EC.41)

where V φ
1,1 = 1

2
(R− c/λ) is the expected continuation payoff if the opponent has already progressed

to the second stage, and

V φ
1,0 = φ

(
R− c

λ

)
+ (1−φ)

∫ ∞
t

[(
λR− c

)
+λ

1

2

(
R− c

λ

)]
e−2λ(τ−t)dτ

= φ
(
R− c

λ

)
+ (1−φ)

3

4

(
R− c

λ

)
,

is the expected continuation payoff if the opponent has not progressed to the second stage given

that if the principal immediately discloses the change of state, the rival quits and agent i receives

(R − c/λ), otherwise, during each interval (τ, τ + dτ), the leader puts full effort and earns in

expectation (λR− c)dτ , or the laggard may achieve her first success (given her full effort strategy

in the equilibrium) in which case agent i’s continuation payoff is 1
2
(R− c/λ). Under the proposed

PCSD, we have φp = [ 4c/λ

R−c/λ − 3 + p]/(1− p) for p ∈ [p, p). Given the assumption that the rival

spends full effort in the equilibrium and after substituting for φp in (9), we obtain (12) for the

evolution of pt. Notice that pt and φt are strictly increasing in time for t∈ [t, t). From t≥ t, φt = 1

which holds the belief constant at p from t onward. Given the value of φp and the above equations,

it is straightforward to verify that V φ
1,p = c/λ for any p ≥ p. Using (EC.39), V φ

0,p = 0, and hence

spending full effort is incentive compatible for agent i for all t≥ t.

Finally, the exact same argument in the proof of Proposition 5, step 1 can be provided to prove

that exerting full effort is optimal for agent i with no success for all p < p where p < pr, by showing

that if the agent finds it optimal to exert strictly positive effort at any belief p′ where p≤ p′ ≤ p, then

exerting full effort is optimal at belief p− dp. Therefore, an agent with no success puts full effort

until she succeeds, or the game ends, or partial progress is disclosed. This verifies the equilibrium.

Next, we prove that this design minimizes the contest’s expected lead time. Note that the

expected lead time is the sum of the expected time until the arrival of the first success and its

expected time after the arrival of the first success until the contest ends. Observe that PCSD

minimizes the expected time until the arrival of the first success as both agents exert full effort

until the first success arrives. Thus, we shall show that PCSD also minimizes the expected time

after the first success until the contest ends. Fix an arbitrary contest and observe that upon the

arrival of the first success at time t associated with belief p, we can write V1,p = pV1,1 + (1−p)V1,0,p

where V1,p is the expected continuation payoff of an agent who just succeeded and V1,1 = 1
2
(R− c

λ
)

(is a constant) since both agents spend full effort after achieving the first success under any design.

We claim that V1,0,p = (λR− c)T1,0,p where V1,0,p is the expected continuation payoff of an agent

who just achieved the first success at time t conditional on her rival still being in the first stage
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and T1,0,p is the expected time between the end of the contest and the arrival of the first success

at t (associated with belief p). To prove this claim, we can write

V1,0,p = (R− c

λ
)−
∫ ∞
t

x0,τλ
1

2
(R− c

λ
)e−

∫ τ
t λ(1+x0,s)dsdτ

= (λR− c)[ 1

λ
−
∫ ∞
t

x0,τλ
1

2λ
e−
∫ τ
t λ(1+x0,s)dsdτ ] = (λR− c)T1,0,p. (EC.42)

To understand the first equality above, note that (R− c
λ
) is the continuation payoff of an agent with

one success in the absence of any opponent. In the presence of an opponent and during any interval

(τ, τ + dτ), if the leader succeeds, she loses none of this continuation payoff, but if her opponent

succeeds (for any effort level of an agent with no success in the equilibrium), the leader loses

1
2
(R− c

λ
) as she needs to compete with her rival in the second stage (recall that V1,1 = 1

2
(R− c

λ
)).

The second equality follows by factoring out the term (λR− c). The third equality results from the

definition of T1,0,p where the expected duration of a contest after the arrival of the first success with

only one agent is given by 1
λ
. In the presence of a laggard and during any interval (τ, τ +dτ), if the

leader succeeds, the expected duration does not change, but if the laggard succeeds, the expected

duration reduces by 1
2λ

owing to the fact that two agents are working full time until the task is

complete which takes 1
2λ

on average (a reduction of 1
2λ

compared to 1
λ
). Thus, we prove our claim.

Following the above arguments, if we show that PCSD minimizes V1,p for all p, it follows that

PCSD also minimizes V1,0,p and accordingly T1,0,p for all p. We next show this result.

First, notice that when R≤ 7c
3λ

, phase 1 does not exist under PCSD (i.e., t= p= 0). The principal

chooses φt such that V1,p = c/λ for all p which in turn keeps V0,p = 0 for all p. Indeed, this is the

minimum necessary continuation payoff V1,p at each instant to incentivize an agent with no success

to work; otherwise, the contest does not proceed to state {1,0}. This proves our claim in this case.

Second, suppose R> 7c
3λ

. First, consider an agent with no success holding a belief p > p= 2(R−2c/λ)
R−c/λ

(p is defined in the theorem). The optimal action for this agent is to quit because even if she

succeeds, her payoff is not sufficient to compensate her for her cost of effort as indicated below:

V1,p = pV1,1 + (1− p)V1,0 ≤ p
1

2
(R− c

λ
) + (1− p)(R− c

λ
)<

c

λ
,

where the first inequality results from the facts that an agent with one success always spends full

effort (therefore, V1,1 = 1
2
(R− c

λ
)) and the maximum value of V1,0 is obtained if we assume that

the rival immediately quits (therefore, V1,0 = R− c
λ
). Second, consider an agent with no success

holding a belief p≤ p≤ p. Under PCSD and for all such p, V1,p = c/λ which is the bare minimum

continuation payoff to incentivize any effort in the first stage. Thus, PCSD minimizes V1,p in this

region for all p. Finally, consider an agent with no success holding a belief p < p. Under PCSD and

for all such p, V1,p is strictly greater than c/λ but it is the minimum continuation payoff possible

as, under PCSD, this agent puts full effort until the end and the principal will never disclose

this partial progress to her rival, inducing the rival to keep spending full effort until the contest
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ends. Thus, PCSD minimizes V1,p in this region, too. Putting these together, PCSD grants the

minimum surplus to an agent who obtains a success when R> 7c
3λ

(and when R≤ 7c
3λ

).

In conclusion, PCSD minimizes the expected lead time of the contest after the arrival of the first

success. Since it achieves the same goal before the arrival of the first success, this policy minimizes

the project expected lead time. �

EC.2. Additional Results and Robustness Checks

Proposition EC.1. When the principal is budget-constrained and commits to full information

disclosure, there exists a unique symmetric equilibrium in which both agents exert full effort until

the first success arrives. After that, the laggard quits and the leader puts full effort until the end.

Proof of Proposition EC.1: Incentive compatibility conditions (EC.3) and (EC.5) show that

an agent with one success finds it optimal to put full effort until the end. Given this observation,

we have V1,1 = 1
2
(R− c/λ)< c/λ. Immediately, from IC condition (EC.7), it can be concluded that

the laggard quits. Using this observation, we obtain V1,0 = R− c/λ and V0,0 = 1
2
(R− 2c/λ) ≥ 0.

Therefore, IC condition (EC.9) is satisfied as V1,0−V0,0 = 1
2
R> c/λ. �

Proposition EC.2. When the principal is budget-constrained, and commits to PCSD with a

flexible reward according to R2,1 =R and R2,0,t = 7c/λ−R−pt(R+c/λ)

2(1−pt)
if t < t, otherwise R2,0,t =R if

t≥ t, where t is the time at which the first success is obtained, pt = λt/(1 + λt), and t is defined

in Theorem 2, an agent who has not achieved a success exerts full effort until she obtains her first

success, or her opponent obtains her second success, or the principal discloses the opponent’s partial

progress. An agent who has achieved one success exerts full effort until the end.

The amount of cost savings (CS) relative to the optimal PCSD contest with a fixed reward is

CS =

∫ t

0

(2λIt)e
−2λtdt, (EC.43)

where

It =

∫ ∞
t

λ(R−R2,0,t)e
−2λ(τ−t)dτ =

1

2
(R−R2,0,t). (EC.44)

Proof of Proposition EC.2: In the proof of Theorem 2, we already show that V φ
1,p = c/λ for

t≥ t where R2,1 =R2,0 =R which makes V φ
0,p = 0 for t≥ t and hence exerting full effort is incentive

compatible. For t < t and with the proposed flexible reward in the Proposition, one can verify that

V φ
1,p = pV φ

1,1 + (1− p)V φ
1,0

= p
1

2
(R− c

λ
) + (1− p)1

2
[R2,0,t−

c

λ
+

1

2
(R− c

λ
)] =

c

λ
,

where t is the time at which the first success is obtained and p is the associated belief with that

time. Therefore, (EC.40) is binding implying that an agent with no success finds it optimal to
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exert full effort. In addition, the reward structure is such that the incentive compatibility condition

is slack for an agent with one success. Indeed, this design leaves no surplus for the agents while

inducing them to exert the same level of effort under PCSD.

To understand expressions (EC.43) and (EC.44) note that the principal can save money by

paying a lower reward R2,0,t compared to R if the first success arrives at t < t, and the leader

obtains her second success before the laggard obtains any success. The expressions measure this

value. �

EC.2.1. Splitting the Reward between Stages

In this section, we consider and analyze the possibility of splitting the reward between stages for

a budget-constrained principal (2c/λ < R < 3c/λ) to see if any improvement in lead-time mini-

mization can be obtained. It is worth noting that for a case with no budget restriction, an interim

reward will not be useful because giving a single final reward already achieves the first best.

Because any intermediate reward given publically leads to full information disclosure, which we

show to be suboptimal since the laggard quits immediately, we shall focus on the case where the

interim reward is given privately. Our analysis indicates that Theorem 2 can be easily extended

to settings where the rewards for the two stages are separated, like in Bimpikis et al. (2019).

Specifically, we prove that our probabilistic change-of-state information disclosure policy (PCSD)

remains optimal when the principal specifies αR for the first agent who completes stage one and

(1−α)R for the first agent who completes the task (i.e., both stages). As we shall see in the proof

of Theorem EC.1, any feasible splitting must satisfy 0≤ α≤ (R− c/λ)/R, because otherwise, the

project cannot be completed.

Theorem EC.1. When the principal is budget-constrained and commits to splitting the reward

between stages according to the above rule for a given α, the following probabilistic change-of-state

disclosure policy (PCSD) minimizes the expected lead-time of the contest:

(Phase 1) The principal discloses no information to the agents up to time t=
p

λ(1−p) where

p=


0 if

2c

λ
<R≤ 7c

(3 +α)λ
,

(3 +α)R− 7c/λ

(1 + 3α)R− c/λ
if

7c

(3 +α)λ
<R<

3c

λ
.

(EC.45)

(Phase 2) At each instant (t+ dt) after t, the principal discloses partial progress with probability

φ∗t =


c
λ
(7− pt)−R[3 +α(1− 3pt)− pt]

(1− pt)[(1−α)R− c
λ
]

if t≤ t < t,

1 if t≥ t,

(EC.46)
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if it arrived during interval (t, t+ dt) where pt is the unique solution to the ordinary differential

equation (ODE)

ṗt = λ(1− pt)2(1−φ∗t ), (EC.47)

with boundary conditions pt = p and pt = p≡ 2(R−2c/λ)
(1+α)R−c/λ .

(Equilibrium) Under PCSD, an agent who has not achieved a success exerts full effort until she

obtains her first success, or her opponent obtains her second success, or the principal discloses the

opponent’s partial progress. An agent who has achieved one success exerts full effort until the end.

Proof of Theorem EC.1: Fix a development contest with an intermediate reward αR for the

first agent to complete stage one and a final reward (1−α)R for the first agent to complete both

stages. Note as before that the IC condition for an agent with one success to spend strictly positive

effort can be expressed as (1−α)R− V1,p ≥ c/λ which always holds as long as (1−α)R≥ c/λ. If,

on the other hand, (1−α)R< c/λ, an agent with one success has no incentives to work and hence

the project will never be completed. Therefore, we must have α≤ (R− c/λ)/R which induces an

agent with one success to keep exerting full effort until the project is complete. We now verify the

equilibrium under PCSD by fixing the strategy of agent −i to the proposed one in the equilibrium

and showing that agent i best-responds by playing the same strategy. Consider the continuation

payoff of an agent i with no success from any time t≥ t (phase 2) onward. Using a similar approach

as in the proof of Theorem 2, the IC constraint for this agent implies that x0,p = 1, if and only if:

V φ
1,p−V

φ
0,p = pV φ

1,1 + (1− p)(αR+V φ
1,0)−V

φ
0,p ≥ c/λ, (EC.48)

where the first equality is obtained by expanding, V φ
1,p, the expected continuation payoff of agent

i, holding a belief p, upon the arrival of her first success after t (in phase 2). In particular, V φ
1,1 =

1
2
[(1−α)R− c/λ] is the expected continuation payoff if the opponent has already progressed to the

second stage, and

V φ
1,0 = φ[(1−α)R− c

λ
] + (1−φ)

∫ ∞
t

[
λ(1−α)R− c+λ

1

2
[(1−α)R− c

λ
]

]
e−2λ(τ−t)dτ

= φ[(1−α)R− c

λ
] + (1−φ)

3

4
[(1−α)R− c

λ
],

is the expected continuation payoff if the opponent has not progressed to the second stage given that

if the principal immediately discloses the change of state, the rival quits (since 1
2
[(1−α)R− c/λ]<

c/λ, ∀α) and agent i receives [(1−α)R−c/λ], otherwise, during each interval (τ, τ +dτ), the leader

puts full effort and earns in expectation [λ(1− α)R− c]dτ , or the laggard may achieve her first

success (given her full effort strategy in the equilibrium) in which case agent i’s continuation payoff

is 1
2
[(1−α)R− c/λ]. The evolution of pt in (EC.47) is obtained from (9) given the assumption that
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the rival spends full effort in the equilibrium. Notice that pt and φ∗t are strictly increasing in time

for t∈ [t, t). From t≥ t, φ∗t = 1 which holds the belief constant at p from t onward. Given the value

of φ∗p and the above equations, it is straightforward to verify that pV φ
1,1 + (1− p)(αR+V φ

1,0) = c/λ

for any p≥ p. This makes V φ
0,p = 0, and by (EC.48) spending full effort is incentive compatible for

agent i for all t ≥ t. Finally, the exact same argument in the proof of Proposition 5, step 1 can

be provided to prove that exerting full effort is optimal for agent i with no success for all p < p.

Therefore, an agent with no success puts full effort until she succeeds, or the game ends, or partial

progress is disclosed. This verifies the equilibrium.

Next, we prove that this design minimizes the contest’s expected lead time using a similar

approach as in the proof of Theorem 2. Note that the expected lead time is the sum of the expected

time until the arrival of the first success and its expected time after the arrival of the first success

until the contest ends. Observe that PCSD minimizes the expected time until the arrival of the

first success as both agents exert full effort until the first success arrives. Thus, we shall show that

PCSD also minimizes the expected time after the first success until the contest ends. Observe that

upon the arrival of the first success at time t associated with belief p, the expected continuation

payoff of an agent who just succeeded is V1,p = pV1,1+(1−p)[αR+V1,0,p] where V1,1 = 1
2
[(1−α)R− c

λ
]

(is a constant) since both agents spend full effort after achieving the first success under any design.

We can also show that V1,0,p = [λ(1−α)R− c]T1,0,p where V1,0,p is the expected continuation payoff

of an agent who just achieved the first success at time t conditional on her rival still being in the

first stage and T1,0,p is the expected time between the end of the contest and the arrival of the first

success at t (associated with belief p). To see this, it is enough to note that

V1,0,p = [(1−α)R− c

λ
]−
∫ ∞
t

x0,τλ
1

2
[(1−α)R− c

λ
]e−

∫ τ
t λ(1+x0,s)dsdτ

= [λ(1−α)R− c][ 1

λ
−
∫ ∞
t

x0,τλ
1

2λ
e−
∫ τ
t λ(1+x0,s)dsdτ ] = [λ(1−α)R− c]T1,0,p. (EC.49)

Thus, if we show that PCSD minimizes V1,p for all p, it follows that PCSD also minimizes V1,0,p

and accordingly T1,0,p for all p. The proof follows a similar argument as in the proof of Theorem

2. First, notice that when R ≤ 7c
(3+α)λ

, phase 1 does not exist under PCSD (i.e., t= p= 0). The

principal chooses φt such that V1,p = c/λ for all p which in turn keeps V0,p = 0 for all p, and this

is the minimum necessary continuation payoff V1,p at each instant to incentivize an agent with no

success to work; otherwise, the contest does not proceed to state {1,0}. This proves our claim in

this case.

Second, suppose R> 7c
(3+α)λ

. Consider an agent with no success holding a belief p > p= 2(R−2c/λ)
(1+α)R−c/λ

(p is defined in the theorem). The optimal action for this agent is to quit because even if she

succeeds, her payoff is not sufficient to compensate her for her cost of effort as indicated below:

V1,p = pV1,1 + (1− p)[αR+V1,0]≤ p
1

2
[(1−α)R− c

λ
] + (1− p)[αR+ (1−α)R− c

λ
]<

c

λ
,
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where the first inequality results from the facts that an agent with one success always spends full

effort (therefore, V1,1 = 1
2
[(1−α)R− c

λ
]) and the maximum value of V1,0 is obtained if we assume

that the rival immediately quits (therefore, V1,0 = (1− α)R− c
λ
). Second, consider an agent with

no success holding a belief p≤ p≤ p. Under PCSD and for all such p, V1,p = c/λ which is the bare

minimum continuation payoff to incentivize any effort in the first stage. Thus, PCSD minimizes

V1,p in this region for all p. Finally, consider an agent with no success holding a belief p < p. Under

PCSD and for all such p, V1,p is strictly greater than c/λ but it is the minimum continuation payoff

possible as, under PCSD, this agent puts full effort until the end and the principal will never

disclose this partial progress to her rival, inducing the rival to keep spending full effort until the

contest ends. Thus, PCSD minimizes V1,p in this region, too. Putting these together, PCSD grants

the minimum surplus to an agent who obtains a success when R> 7c
(3+α)λ

(and when R≤ 7c
(3+α)λ

).

In conclusion, PCSD minimizes the expected lead time of the contest after the arrival of the first

success. Since it achieves the same goal before the arrival of the first success, this policy remains

optimal and minimizes the project expected lead time even when the principal splits the reward

between stages. �

Theorem EC.1 shows the robustness of our finding to the case with an interim reward. Yet, one

might question whether splitting rewards is in fact desirable. We answer this question numerically.

Specifically, we consider 200 instances of R in the region (2c/λ,3c/λ), and show that in all of these

instances, the optimal lead-time minimizing contest is a PCSD design that allocates the entire

budget to the final stage/reward (i.e.,α= 0). The results are illustrated in Figure EC.1.

The intuition for the suboptimality of interim rewards is as follows. Recall that, in our develop-

ment context, the key challenge for a budget-constrained principal is to encourage an agent who

is failing to obtain any success over time to keep exerting effort. To mitigate this discouragement,

the principal employs monetary and non-monetary (information design) incentives to minimize

the project lead time. However, assigning a portion of the reward to the intermediate stage only

amplifies the early contest incentives, specifically benefiting an agent who assigns a high chance

to achieving the first success. Yet, such an agent already has sufficient incentives in the absence

of any interim reward. However, an agent who fails to achieve a success for a while has incentive

issues because she believes her opponent is likely to have progressed to the second stage. For such

an agent, an interim reward has no value because she assigns low probability to getting the interim

reward. On the contrary, interim reward reduces incentives for such an agent by diverting some of

the attainable final reward to an unattainable interim reward. To mitigate the loss of incentives,

the principal needs to disclose more information to persuade such an agent, which is suboptimal.

Therefore, giving interim rewards is not desirable in development contests.
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Figure EC.1 No splitting of reward (α = 0) combined with probabilistic change-of-state disclosure (PCSD)

minimizes lead time. Setting: c= λ= 1.

EC.2.2. Probabilistic vs Deterministic Delay

In this section, we will compare deterministic and probabilistic delay in sharing partial progress.

Consider a case where the principal commits to disclose any partial progress with td periods of

delay. This mechanism leads to an initial silent period of length td during which agents’ beliefs

drift upward to pd according to (5). During interval (td, td + dt), if the principal announces partial

progress, an agent with no success (i.e., the laggard) quits. Otherwise, each agent’s belief remains

constant at pd as she realizes that no progress has been made during the initial dt period of the

contest, akin to a contest that starts at dt instead of time 0. Intuitively, the principal wishes to

extend this delay as long as possible to keep the laggard working. Thus, we consider the following

deterministic design policy in which an agent with no success spends full effort until information is

disclosed by the principal, derive the unique symmetric equilibrium under this policy, and compare

the contest’s expected lead time under this policy with that under PSD.

Proposition EC.3. Suppose that the principal is budget-constrained. In the deterministic delay

design, the principal commits to disclose partial progress after a delay of length td given by

(1 + e−2λtd)(R− c/λ) = 2(1 +λtd)(3c/λ−R). (EC.50)

Furthermore, under the deterministic delay design:

(i) An agent who has not achieved a success exerts full effort until she obtains her first success, or

her opponent obtains her second success, or the principal discloses the opponent’s partial progress.
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An agent who has achieved one success exerts full effort until the end.

(ii) Delay length td < tr = pr
λ(1−pr) where pr = λR

c
− 2.

(iii) The expected lead time of the contest is given by (5 + e−2λtd)/(4λ), which is strictly larger than

the expected lead time under PSD.

Proof of Proposition EC.3: Part (i). As before, we fix the strategy of agent −i to the

proposed one in the theorem and verify that agent i best-responds by playing the same strategy.

Condition (EC.21) implies that full effort is optimal for an agent with no success if and only if

V1,p− V0,p ≥ c/λ. We use this condition to pin down td. Consider the very last instant during the

initial silent period of length td at which an agent with no success finds it optimal to work. Then,

we must have:

V d
1,pd

= pdV
d
1,1 + (1− pd)V d

1,0 =
c

λ
, (EC.51)

where pd = λtd/(1 + λtd) is the belief of agent i at time td anticipating the equilibrium behavior

of agent −i. We use the superscript d to refer to a design with delay. Given that the principal

discloses any progress with a delay td, agent i’s belief remains constant for t≥ td. Therefore, at any

threshold belief p= pd, we can write:

V d
1,0 =

∫ t+td

t

[(
λR− c

)
+λ

1

2

(
R− c

λ

)]
e−2λ(τ−t)dτ + e−2λtd

(
R− c

λ

)
,

given that during interval (τ, τ+dτ), the leader puts full effort and earns (λR−c)dτ , or the laggard

may achieve her first success (given her full effort strategy in the equilibrium) and the continuation

payoff is 1
2
(R− c/λ). If neither the leader achieves the second success, nor does the laggard achieve

her first success, the principal discloses progress td periods of time after its arrival and in that case

the laggard quits and the leader gets (R− c/λ). Taking the above integral, we obtain:

V d
1,0 =

(
3

4
+

1

4
e−2λtd

)(
R− c

λ

)
. (EC.52)

Substituting the above value and V d
1,1 = 1

2
(R− c/λ) into (EC.51) and simplifying the equation, we

find that td must solve (EC.50). Finally, to prove that exerting full effort is optimal for agent i

with no success for all p < pd, we move backward from time td associated with belief pd and prove

that if the agent finds it optimal to exert strictly positive effort at any belief p′ where p≤ p′ ≤ pd
(i.e., if V1,p′+dp−V0,p′+dp ≥ c/λ), then we have V1,p−V0,p ≥ c/λ implying that exerting full effort is

optimal at belief p− dp. This can be seen from the following:

V d
1,p−V d

0,p =−cdt+λRdt+ (1−λdt− pλdt)V d
1,p+dp + cdt−λV d

1,pdt− (1−λdt− pλdt)V d
0,p+dp

≥ λRdt+ (1−λdt− pλdt) c
λ
−λV d

1,pdt≥
c

λ
.

To show the last inequality, we need to show that

V d
1,p ≤R− (1 + p)

c

λ
.



e-companion to Khorasani, Körpeoğlu, Krishnan: Dynamic Development Contests ec27

We prove this in two steps. First, we prove that

V d
1,p ≤

1

1 + p

(
R− c

λ

)
⇔ V d

1,p = pV d
1,1 + (1− p)V d

1,0 = p
1

2

(
R− c

λ

)
+ (1− p)

(
3

4
+

1

4
e−2λtd

)(
R− c

λ

)
≤ 1

1 + p

(
R− c

λ

)
⇔ p

1

2
+ (1− p)

(
3

4
+

1

4
e−2λtd

)
≤ 1

1 + p
⇔ 1 + e−2λtd ≤ 2

1 + p
.

To show the last inequality, we use that p= λt/(1 +λt) and t≤ td. Thus, it is enough to show that

1 + e−2λtd ≤ 1 + e−2λt ≤ 2(1 +λt)

1 + 2λt
⇔ 1− (1 + 2λt)e−2λt ≥ 0,

and the last inequality holds given that the left-hand-side is increasing in t and at t = 0, it is

binding. In the second step, we prove that

1

1 + p

(
R− c

λ

)
≤R− (1 + p)

c

λ
which holds if and only if (2 +p)c/λ≤R which is satisfied for p≤ pd. This verifies the equilibrium.

Part (ii). To prove that td < tr, first notice that the left-hand-side of (EC.51) is strictly decreasing

in td. To see this, note that

∂V d
1,pd

∂td
=
∂pd
∂td

V d
1,1−

∂pd
∂td

V d
1,0 + (1− pd)

∂V d
1,0

∂td
< 0,

where the above inequality holds since ∂pd/∂td > 0, V d
1,1 < V d

1,0 and ∂V d
1,0/∂td < 0 according to

(EC.52). Following this observation, suppose that td = tr. Then, we can show that V d
1,pr

< c/λ

implying that td < tr. To see this, recall from (EC.32) that under PSD we have:

V r
1,pr

= prV
r
1,1 + (1− pr)V r

1,0 =
c

λ
,

where superscript r refers to the PSD. Therefore, to prove that V d
1,pr

< c/λ, it is enough to show

that

V d
1,0 <V

r
1,0⇔

(
3

4
+

1

4
e−2λtr

)(
R− c

λ

)
<

3λ+ 2γ

2(2λ+ γ)

(
R− c

λ

)
.

Using the fact that γ = 1/tr and further simplifying the above inequality, we need to show:

1− (1 + 2λtr)e
−2λtr > 0,

which always holds for tr > 0. This completes the proof of part (ii).

Part (iii). We first calculate the expected lead time of the contest when the principal discloses

partial progress with a delay of length td. Denote by T dk,l,t the expected lead time of the contest

when one agent has obtained k successes and the other one has obtained l successes from any time

t onward under a design with delay. Consider any time t when the first success arrives. Then, the

expected lead time of the contest from t can be expressed as follows:

T d1,0,t =

∫ t+td

t

[
λ(τ − t) +λ

(
τ − t+

1

2λ

)]
e−2λ(τ−t)dτ +

(
td +

1

λ

)
e−2λtd =

3

4λ
+

1

4λ
e−2λtd ,

(EC.53)
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where we use the fact that the laggard quits once the principal discloses progress td periods after

its arrival. Using the above expression, the ex-ante expected lead time of the contest is:

T d0,0,0 =

∫ ∞
0

2λ

(
t+

3

4λ
+

1

4λ
e−2λtd

)
e−2λtdt=

1

4λ
e−2λtd +

5

4λ
. (EC.54)

Recall that the expected lead time of the contest under PSD is given by 1
4λ
e−2λtr + 5

4λ
. Part (iii)

of the theorem follows from Part (ii) where we show that td < tr. �

EC.2.3. Discounting

In this section, we extend Proposition 1, Proposition 3 which also extends Theorem 1, and Theorem

2 to the case where the principal and the agents discount future payoffs at rate r > 0. Generaliza-

tions of other results follow in a similar fashion and are available upon request from the authors.

EC.2.3.1. First-Best Contract with Observable Effort and Discounting

Proposition EC.4. There exists an individually rational “first-best” contract that achieves the

minimum expected lead time T with the minimum required compensation of 2c
2λ+r

+ 4λc(3λ+r)

(2λ+r)3
to

agents.

Proof of Proposition EC.4: Each agent incurs a flow cost of c while working during the

contract. Given this, consider the state when both agents have already achieved one success. Then,

each agent’s expected cost in such a contract from any time t is given by:∫ ∞
t

2λ

(∫ τ

t

ce−r(s−t)ds

)
e−2λ(τ−t)dτ =

c

2λ+ r
.

Next, consider the state of the game with a leader and a laggard. Then, each agent’s expected cost

from any time t can be expressed as follows:∫ ∞
t

[
λ

∫ τ

t

ce−r(s−t)ds+λ

(∫ τ

t

ce−r(s−t)ds+
c

2λ+ r
e−r(τ−t)

)]
e−2λ(τ−t)dτ =

c(3λ+ r)

(2λ+ r)2
.

Finally, each agent’s ex-ante expected cost is given by:∫ ∞
0

2λ

(∫ t

0

ce−rsds+
c(3λ+ r)

(2λ+ r)2
e−rt

)
e−2λtdt=

c

2λ+ r
+

2λc(3λ+ r)

(2λ+ r)3
.

Multiplying the above value by 2 gives us the first-best cost of the principal. �

EC.2.3.2. Full Information Disclosure with Flexible Reward and Discounting

Proposition EC.5. Under full information disclosure, a flexible-reward contest with R2,0 =
c(2λ+r)

λ2
and R2,1 = c(3λ+r)

λ2
achieves the minimum expected lead time T with the first-best expected

reward of 2c
2λ+r

+ 4λc(3λ+r)

(2λ+r)3
.

Proof of Proposition EC.5: Consider a flexible-reward contest with R2,0 = c(2λ+r)

λ2
and R2,1 =

c(3λ+r)

λ2
where the principal commits to disclose any success upon its arrival. Let us fix agent −i’s

effort x−ik,l,t = 1 for all k, l, and t and find conditions under which agent i optimally chooses xik,l,t = 1

for all k, l, and t. Consider the state of the game where both agents have already achieved one
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success. The Bellman equation and the corresponding HJB for agent i’s problem can be expressed

as follows:

V1,1 = max
x1,1
{x1,1(λR2,1− c)dt+ (1−λx1,1dt−λdt− rdt)V1,1}

⇒ 0 = max
x1,1
{x1,1 (λR2,1− c−λV1,1)− (λ+ r)V1,1} , (EC.55)

where we use the fact that the winner receives R2,1 in this state of the game. From (EC.55), we can

derive that x1,1 = 1 is optimal if and only if R2,1−V1,1 ≥ c/λ. Next, consider the state of the game

with a leader and a laggard. The Bellman equation and the corresponding HJB for the leader’s

problem (which we assume to be agent i) can be written as:

V1,0 = max
x1,0
{x1,0(λR2,0− c)dt+λV1,1dt+ (1−λx1,0dt−λdt− rdt)V1,0}

⇒ 0 = max
x1,0
{x1,0 (λR2,0− c−λV1,0) +λ (V1,1−V1,0)− rV1,0} , (EC.56)

where we use the fact that the winner receives R2,0 in this state of the game. From (EC.56), we

can derive the IC constraint for the leader which tells us that x1,0 = 1 is incentive compatible if

and only if R2,0−V1,0 ≥ c/λ. Similarly, we can express the Bellman equation and the corresponding

HJB for the laggard’s problem (assuming to be agent i) as follows:

V0,1 = max
x0,1
{x0,1(λV1,1− c)dt+ (1−λx0,1dt−λdt− rdt)V0,1}

⇒ 0 = max
x0,1
{x0,1 (λV1,1− c−λV0,1)− (λ+ r)V0,1} , (EC.57)

which implies that exerting full effort for the laggard is optimal if and only if V1,1 − V0,1 ≥ c/λ.

Finally, before the arrival of any success, the continuation value of each agent is given by:

V0,0 = max
x0,0
{x0,0(λV1,0− c)dt+λV0,1dt+ (1−λx0,0dt−λdt− rdt)V0,0}

⇒ 0 = max
x0,0
{x0,0 (λV1,0− c−λV0,0) +λ (V0,1−V0,0)− rV0,0} . (EC.58)

From (EC.58), exerting x0,0 = 1 is incentive compatible for each agent if and only if V1,0−V0,0 ≥
c

λ
.

We now verify that the proposed flexible-reward schedule in Proposition EC.5 satisfies all of the

above IC constraints and spends the minimum first-best expected reward. We know that V1,1 = c/λ

is the minimum required continuation payoff to incentivize the laggard to put full effort. From

(EC.55), we know that V1,1 =
λR2,1−c
2λ+r

. Thus, the principal has to specify a reward R2,1 = c(3λ+r)

λ2
in

order to satisfy V1,1 = c/λ. Given these values, the IC constraint R2,1−V1,1 ≥ c/λ is satisfied. Also,

plugging in the value of V1,1 = c/λ into (EC.57), we obtain that V0,1 = 0 and so the IC constraint for

the laggard is binding. Next, we know that V1,0 = c/λ is the minimum required continuation payoff

to motivate the agents to exert effort from the beginning. Plugging in this value into (EC.56),

R2,0 = c(2λ+r)

λ2
is needed to satisfy the HJB. It follows that the IC constraint for the leader is satisfied

as R2,0−V1,0 ≥ c
λ
. Finally, given V1,0 = c/λ and V0,1 = 0, we conclude by (EC.58) that V0,0 = 0 which

shows that the last IC constraint V1,0−V0,0 = c
λ
−0 = c

λ
is binding. Therefore, full effort is incentive

compatible at all times which means this design achieves the minimum expected lead time T .
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To calculate the expected reward of the contest with flexible reward, note that when both agents

have already obtained one success, the expected reward of the contest with discounting is given by∫ ∞
t

2λ

[
c(3λ+ r)

λ2
e−r(τ−t)

]
e−2λ(τ−t)dτ =

2c(3λ+ r)

λ(2λ+ r)
.

When there is a leader and a laggard, the expected reward can be computed as follows:∫ ∞
t

λ

[
c(2λ+ r)

λ2
+

2c(3λ+ r)

λ(2λ+ r)

]
e−(2λ+r)(τ−t)dτ =

c

λ
+

2c(3λ+ r)

(2λ+ r)2
.

Finally, the ex-ante expected reward of the contest is given by:∫ ∞
0

2λ

[
c

λ
+

2c(3λ+ r)

(2λ+ r)2

]
e−(2λ+r)tdt=

2c

2λ+ r
+

4λc(3λ+ r)

(2λ+ r)3
,

which is the first-best expected reward. �

EC.2.3.3. Optimal Lead-Time Minimizing Development Contests with Discounting

Theorem EC.2. The following probabilistic change-of-state disclosure design, which we call

PCSD, minimizes the expected lead-time of the contest when the principal is budget-constrained:

(Phase 1) The principal discloses no information to the agents up to time t=
p

λ(1−p) where

p=


0 if

c(2λ+ r)

λ2
<R≤ c(2λ+ r)

λ2
+

c

3λ+ r
,

3λ+ r

λ
− (2λ+ r)2c

λ2(λR− c)
if

c(2λ+ r)

λ2
+

c

3λ+ r
<R<

c(3λ+ r)

λ2
.

(EC.59)

(Phase 2) At each instant (t+ dt) after t, the principal discloses partial progress with probability

φ∗t =



c
λ
− pt λR−c2λ+r

− (1− pt)
λR−c+λλR−c2λ+r

2λ+r

(1− pt)[λR−cλ+r
− λR−c+λλR−c2λ+r

2λ+r
]

if t≤ t < t,

1 if t≥ t,

(EC.60)

if it arrived during interval (t, t+ dt) where pt is the unique solution to the ordinary differential

equation (ODE)

ṗt = λ(1− pt)2(1−φ∗t ), (EC.61)

with boundary conditions pt = p and pt = p≡ (2λ+r)[λ(λR−c)−(λ+r)c]
λ2(λR−c) .

(Equilibrium) Under PCSD, an agent who has not achieved a success exerts full effort until she

obtains her first success, or her opponent obtains her second success, or the principal discloses the

opponent’s partial progress. An agent who has achieved one success exerts full effort until the end.

Proof of Theorem EC.2: Verifying the equilibrium under PCSD is straightforward and

follows the steps provided in the proof of Theorem 2. Hence, we omit this part. Here, we prove

that this design minimizes the contest’s expected lead time. Note that the expected lead time of
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the contest is the sum of the expected time until the arrival of the first success and its expected

time after the arrival of the first success until the contest ends. Observe that PCSD minimizes

the expected time until the arrival of the first success as both agents exert full effort until the first

success arrives. Thus, we shall show that PCSD also minimizes the expected time after the first

success until the contest ends. Fix an arbitrary contest and observe that upon the arrival of the

first success at time t associated with belief p, we can write V1,p = pV1,1 + (1− p)V1,0,p where V1,p

is the expected (discounted) continuation payoff of an agent who just succeeded, V1,1 = λR−c
2λ+r

(is a

constant) since both agents spend full effort after achieving the first success under any design, and

V1,0,p is the expected (discounted) continuation payoff of an agent who just achieved the first success

at time t conditional on her rival still being in the first stage. We claim that V1,0,p = (λR− c)T1,0,p

where T1,0,p is the expected (discounted) time between the end of the contest and the arrival of the

first success at t (associated with belief p). To better understand the principal’s objective function

in the case of discounting, assume that the principal incurs a flow cost of 1 as long as the contest is

running. The principal aims to minimize this cost which is equivalent to the lead-time minimization

objective in the original model. The difference here is that this flow cost is discounted over time

at rate r. To prove our claim, we can write

V1,0,p =
λR− c
λ+ r

−
∫ ∞
t

x0,τλ(
1

λ+ r
− 1

2λ+ r
)(λR− c)e−r(τ−t)−

∫ τ
t λ(1+x0,s)dsdτ

= (λR− c)[ 1

λ+ r
−
∫ ∞
t

x0,τλ(
1

λ+ r
− 1

2λ+ r
)e−r(τ−t)−

∫ τ
t λ(1+x0,s)dsdτ ] = (λR− c)T1,0,p.

(EC.62)

To understand the first equality above, note that λR−c
λ+r

is the (discounted) continuation payoff of

an agent with one success in the absence of any opponent. In the presence of an opponent and

during any interval (τ, τ + dτ), if the leader succeeds, she loses none of this continuation payoff,

but if her opponent succeeds (for any effort level of an agent with no success in the equilibrium),

the leader loses λR−c
λ+r
− λR−c

2λ+r
as she needs to compete with her rival in the second stage (recall that

V1,1 = λR−c
2λ+r

). The second equality follows by factoring out the term (λR− c). The third equality

results from the definition of T1,0,p where the expected discounted cost of running the contest after

the arrival of the first success with only one agent is given by 1
λ+r

. In the presence of a laggard

and during any interval (τ, τ + dτ), if the leader succeeds, the expected discounted cost does not

change, but if the laggard succeeds, the expected discounted cost reduces by 1
λ+r
− 1

2λ+r
owing to

the fact that two agents are working full time until the task is complete. Thus, we prove our claim.

Following the above arguments, if we show that PCSD minimizes V1,p for all p, it follows that

PCSD also minimizes V1,0,p and accordingly T1,0,p for all p. It can be shown that PCSD indeed

minimizes V1,p for all p by following the same steps as in the proof of Theorem 2. This completes

the proof. �
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EC.2.4. Different Poisson Arrival Rates for Different Stages

In this extension, we consider a case where the hazard rate of success in stage 1 is λ1 and in stage

2 is λ2. Proposition 3 can be extended to accommodate different hazard rates in a straightforward

manner to show that a flexible-reward contest with R2,0 = c/λ1 + c/λ2 and R2,1 = 2c/λ1 + c/λ2

induces both agents to exert full effort at all times. This contest ends with probability 1/2 before

the arrival of any success for the laggard in which case the principal spends R2,0 = c/λ1 + c/λ2; and

with probability 1/2, the contest ends after the arrival of the first success for the laggard (the state

when both agents have obtained one success) in which case the principal pays R2,1 = 2c/λ1 + c/λ2.

Thus, the expected reward of the contest equals the first-best expected reward 3c/(2λ1) + c/λ2.

Similarly, the result in Proposition 4 can be extended to this setting if the principal gradually

increases the reward schedule over time according to Rt = (1+pt)c/λ1 +c/λ2 where the equilibrium

belief of each agent about the partial progress of her opponent, pt, is given by

λ1

[
e(λ1−λ2)t− 1

]
λ1e(λ1−λ2)t−λ2

= pt. (EC.63)

Therefore, a principal with sufficient funds, with access to 2c/λ1 + c/λ2, can find an appropriate

flexible-reward schedule for any information disclosure policy that attains the absolute minimum

expected lead time at the minimal cost of incentives. We next introduce the updated PSD in a

case with different Poisson arrival rates (other results can be generalized similarly).

Definition EC.1. The “probabilistic state disclosure design” prescribes no information to the

agents up to time tr that solves
λ1

[
e(λ1−λ2)tr − 1

]
λ1e(λ1−λ2)tr −λ2

= pr, (EC.64)

where pr solves

(1 + pr)c/λ1 + c/λ2 =R. (EC.65)

After that it discloses any partial progress with rate γr = (λ1− prλ2)/pr.

The following proposition describes the equilibrium under this design which is identical to the

one in Proposition 7.

Proposition EC.6. When the principal is budget-constrained, and commits to probabilistic state

disclosure design, an agent who has not achieved a success exerts full effort until she obtains her

first success, or her opponent obtains her second success, or the principal discloses the opponent’s

partial progress. An agent who has achieved one success exerts full effort until the end.

Proof of Proposition EC.6: Let us fix the strategy of agent −i to the proposed one in the

proposition and verify that agent i best-responds by playing the same strategy. We know that an

agent with one success finds it optimal to put full effort if and only if R−V1,p ≥ c/λ2 which always
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holds as long as R≥ c/λ2 since V1,p ≤R− c/λ2. Next, notice that the belief of an agent i with no

success about the partial progress of her opponent evolves according to:

dpit = (1− pit)(λ1− pitλ2− pitγt)dt. (EC.66)

Using p as the state variable and applying the same techniques as before, we can derive the following

HJB equation for the maximization problem of agent i:

0 = max
x0,p

{
−cx0,p +x0,pλ1 (V1,p−V0,p)− pλ2V0,p− pγpV0,p + (1− p)(λ1− pλ2− pγp)V ′0,p

}
.

Therefore, the IC constraint for an agent with no success implies that x0,p = 1, if and only if V1,p−

V0,p ≥ c/λ1. The expected continuation payoff of agent i, holding a belief p, upon the arrival of the

first success is V1,p = pV1,1 +(1−p)V1,0, where V1,1 = 1
2
(R−c/λ2) is the expected continuation payoff

if the opponent has already progressed to the second stage, and V1,0 is the expected continuation

payoff if the opponent has not progressed to the second stage. Given the probabilistic rate of

information disclosure γr = (λ1−prλ2)/pr, by (EC.66) we obtain pt = pr remains constant for t≥ tr.

Therefore, at any threshold belief p= pr, we have:

V1,0 =

∫ ∞
t

[(
λ2R− c

)
+λ1

1

2

(
R− c

λ2

)
+ γr

(
R− c

λ2

)]
e−(λ1+λ2+γr)(τ−t)dτ,

given that during interval (τ, τ + dτ), the leader puts full effort and earns (λ2R − c)dτ , or the

laggard may achieve her first success (given her full effort strategy in the equilibrium) and the

continuation payoff is 1
2
(R− c/λ2), or partial progress may be disclosed and in that case the leader

gets (R− c/λ2). Taking the above integral, we obtain:

V1,0 =
λ1 + 2λ2 + 2γr
2(λ1 +λ2 + γr)

(
R− c

λ2

)
. (EC.67)

Using this value, we can write

V1,pr = prV1,1 + (1− pr)V1,0 = pr
1

2

(
R− c

λ2

)
+ (1− pr)

λ1 + 2λ2 + 2γr
2(λ1 +λ2 + γr)

(
R− c

λ2

)
=

c

λ1

, (EC.68)

where the last equality results from substituting γr = (λ1− prλ2)/pr and R= (1 + pr)c/λ1 + c/λ2.

Hence, V1,pr = c/λ1 for t≥ tr. This implies V0,pr = 0 for t≥ tr and hence the IC constraint for an

agent with no success is binding. Finally, the exact same argument in the proof of Proposition 5,

step 1 can be provided to prove that exerting full effort is optimal for agent i with no success for

all p < pr, by showing that if the agent finds it optimal to exert strictly positive effort at any belief

p′ where p≤ p′ ≤ pr, then exerting full effort is optimal at belief p− dp. Therefore, an agent with

no success puts full effort until she succeeds, or the game ends, or partial progress is disclosed. �

We conclude this extension by showing that our proposed probabilistic design dominates the two

extremes of information disclosure for any pair of λ1 and λ2. Generalization of other results follow

in a similar fashion and are available upon request from the authors.

Theorem EC.3. The expected lead time under PSD is given by (EC.72) which is strictly lower

than the expected lead times under no and full information disclosure policies.
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Proof of Theorem EC.3: We prove the theorem in multiple steps. As before, we prove the

result for a more general class of contests in which the principal commits to disclose information

about any partial progress at constant rate (λ1x0 − prλ2)/pr after tr so that in equilibrium an

agent with no success reduces her effort to x0 ≥ pr for all t≥ tr. It is straightforward to show that

no information disclosure is a special case with x0 = prλ2/λ1 and γt = 0, and probabilistic state

disclosure design is a special case with x0 = 1 and γr = (λ1− prλ2)/pr for all t≥ tr.
Step 1: We first calculate the expected lead time of the contest under PSD. Denote by Tk,l,t

the expected lead time of the contest when one agent has obtained k successes and the other one

has obtained l successes from any time t onward. Let us consider the state of the game when both

agents have already obtained one success. Then the expected arrival time for the second success is

given by:

T1,1,t =

∫ ∞
t

2λ2(τ − t)e−2λ2(τ−t)dτ =
1

2λ2

.

Here, information disclosure does not affect the outcome since both agents exert full effort until

the end. Next, consider the state of the game with a leader and a laggard. Then, the expected lead

time of the contest from any time t≥ tr can be expressed as follows:

T1,0,t≥tr =

∫ ∞
t

[
λ2(τ − t) +x0λ1

(
τ − t+

1

2λ2

)
+
λ1x0− prλ2

pr
(τ − t+T1,quit,τ )

]
× e−

(
λ2+x0λ1+

λ1x0−prλ2
pr

)
(τ−t)

dτ =
2 + pr

2λ2 (1 + pr)
, (EC.69)

where T1,quit,τ is the expected arrival time for the second success once the principal discloses that

the leader has made partial progress and the laggard quits, namely,

T1,quit,t =

∫ ∞
t

λ2(τ − t)e−λ2(τ−t)dτ =
1

λ2

.

Equation (EC.69) can be interpreted as follows. Conditional on reaching to any instant τ , the leader

exerts full effort and if she succeeds the contest ends at τ− t, or the laggard who is putting x0 effort

may achieve her first success and in that case the contest’s expected lead time is τ − t+1/(2λ2), or

information may be disclosed by the principal and in that case the laggard quits and the contest

ends by the leader at τ − t+ 1/λ2 in expectation. Interestingly, T1,0,t≥tr is independent of x0. Next,

for any t < tr, the expected lead time is given by:

T1,0,t<tr =

∫ tr

t

[
λ2(τ − t) +λ1

(
τ − t+

1

2λ2

)]
e−(λ1+λ2)(τ−t)dτ+

(
tr− t+

2 + pr
2λ2 (1 + pr)

)
e−(λ1+λ2)(tr−t)

=
λ1 + 2λ2

2λ2(λ1 +λ2)
+

λ1− prλ2

2λ2(λ1 +λ2)(1 + pr)
e−(λ1+λ2)(tr−t), (EC.70)

where we use the fact that no information is disclosed by the principal before tr. Finally, the ex-ante

expected lead time of the contest for any t≥ tr can be expressed as follows:

T0,0,t≥tr =

∫ ∞
t

2x0λ1 (τ − t+T1,0,τ≥tr)e
−2x0λ1(τ−t)dτ

=

∫ ∞
t

2x0λ1

[
τ − t+

2 + pr
2λ2 (1 + pr)

]
e−2x0λ1(τ−t)dτ =

λ2(1 + pr) +x0λ1(2 + pr)

2x0λ1λ2(1 + pr)
, (EC.71)
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where we use that an agent with no success exerts effort x0 after tr, and for any t < tr is given by:

T0,0,t<tr =

∫ tr

t

2λ1 (τ − t+T1,0,τ<tr)e
−2λ1(τ−t)dτ + (tr− t+T0,0,tr)e

−2λ1(tr−t)

=

∫ tr

t

2λ1

[
τ − t+

λ1 + 2λ2

2λ2(λ1 +λ2)
+

λ1− prλ2

2λ2(λ1 +λ2)(1 + pr)
e−(λ1+λ2)(tr−τ)

]
e−2λ1(τ−t)dτ

+

[
tr− t+

λ2(1 + pr) +x0λ1(2 + pr)

2x0λ1λ2(1 + pr)

]
e−2λ1(tr−t)

=

[
−1

2λ1

− λ1 + 2λ2

2λ2(λ1 +λ2)
+

λ1(λ1− prλ2)

(λ2−λ1)λ2(λ1 +λ2)(1 + pr)
+
λ2(1 + pr) +x0λ1(2 + pr)

2x0λ1λ2(1 + pr)

]
e−2λ1(tr−t)

− λ1(λ1− prλ2)

(λ2−λ1)λ2(λ1 +λ2)(1 + pr)
e−(λ1+λ2)(tr−t) +

λ2
1 + 3λ1λ2 +λ2

2

2λ1λ2(λ1 +λ2)
, (EC.72)

given that both agents exert full effort before tr.

Under PSD, we have x0 = 1 after tr. Also, pr is given by (EC.63). Plugging in these values into

(EC.72) gives us the expected lead time of the contest under PSD.

Step 2: We next prove that PSD dominates no information disclosure. This result follows from

the previous step. We already show that T1,0,t is independent of x0. This means the expected lead

time of the contest from any time t onward once the first success is obtained is the same across any

design with constant information disclosure of rate (λ1x0−prλ2)/pr that stimulates constant effort

x0 after tr in the equilibrium. However, according to (EC.72), T0,0,0 is decreasing in x0 and PSD

ensures that x0 = 1 as long as both agents have zero success, which results in the minimum expected

lead time within this class of contests. Notice that no information disclosure or any disclosure with

a rate lower than γr fails to encourage full effort and hence is dominated by PSD. Finally, we

can compute the expected lead time of the contest under no information disclosure by plugging in

x0 = prλ2/λ1 into (EC.72).

Step 3: We finally prove that PSD dominates full information disclosure. Note that under full

information, the laggard quits upon the arrival of the first success at any time t. However, under

PSD, the principal delays the stopping time of the laggard by 1/γr periods of time on average

if success arrives after time tr and by (tr − t+ 1/γr) periods of time on average if success arrives

at any time t < tr. The result directly follows from the fact that the laggard works for a longer

duration under probabilistic design. �

EC.2.5. Optimal Flexible-Reward Contest with n Agents

In this section, we show that a flexible-reward schedule is even more beneficial when more agents

participate in the contest. We start our analysis by first characterizing the optimal flexible-reward

schedule under full information disclosure that induces n agents to exert full effort to complete

a two-stage task. Then, we compare our proposed optimal design with the optimal fixed-reward

contest. The following remark along with Figure EC.2 formally highlight that the benefit of flexible

rewards is increasing with the number of agents.
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Figure EC.2 Percentage difference between the average rewards under fixed-reward and flexible-reward schedules.

Remark EC.1. In a two-stage development contest with n agents, the principal can implement

an optimal flexible-reward schedule under full information disclosure that achieves the absolute

minimum expected lead time by paying the absolute minimum expected reward. The cost savings

relative to the optimal fixed-reward contest is increasing in the number of agents.

Proof of Remark EC.1: Consider a flexible-reward contest under full information disclosure

in which the principal offers a guaranteed reward of 2c/λ with the option to increase the reward

by c/λ per each additional agent progressing to the second stage. This means if exactly m out

of n agents have already achieved one success, the reward for the winner will be (m+ 1)c/λ. The

optimality of this contest can be seen from the fact that agents’ and principal’s combined surplus is

the same across any design that achieves the absolute minimum expected lead time T by inducing

full effort at all times. Therefore, the principal’s surplus is maximized when the agents’ surplus

is minimized. The proposed flexible-reward schedule in this case minimizes the agents’ surplus by

keeping the continuation payoff of an agent with no success equal to zero (her outside option) and

the continuation payoff of an agent with one success equal to c/λ which is the bare minimum utility

to incentivize first-stage effort. Therefore, this design maximizes the principal’s surplus and hence

is optimal.

To see why this design keeps the continuation payoff of an agent with one success equal to c/λ,

notice that if all agents have already achieved one success, the continuation payoff of each agent

under full effort is equal to

V1,1, ...,1︸ ︷︷ ︸
n

=

∫ ∞
0

[λ(n+ 1)
c

λ
− c]e−nλtdt=

c

λ
.
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Now, suppose this holds for the case when exactly m+ 1 agents have already achieved one success.

By induction, when m agents have already achieved one success, we can show that the continuation

payoff of each agent with one success is c/λ as follows

V1,1, ...,1︸ ︷︷ ︸
m

,0,0, ...,0︸ ︷︷ ︸
n−m

=

∫ ∞
0

[λ(m+ 1)
c

λ
− c+ (n−m)λ

c

λ
]e−nλtdt=

c

λ
.

Given the above result, it immediately follows that this design keeps the continuation payoff of an

agent with no success equal to zero.

Next, we calculate the expected first-best reward of the contest in this case when n agents

exert full effort at all times to complete a two-stage task. Denote by Rn,s the principal’s expected

payout when exactly s agents have not achieved any success. Let us consider the state when all

agents have achieved one success (i.e., s= 0). Then the expected reward of the contest is given by

Rn,0 = (n+ 1)c/λ. Now, let us guess that the expected reward is given by

Rn,s =
c

nλ

s∑
j=0

(n− j)(n− j+ 1)(s!)

n(s−j)(j!)
.

Notice that the above equation holds for s= 0. Towards proving the result by induction on s, we

can express the expected reward of the contest when exactly s+ 1 agents are in the first stage as

follows

Rn,s+1 =

∫ ∞
0

[
(n− s− 1)λ(n− s) c

λ
+ (s+ 1)λRn,s

]
e−nλtdt=

c

nλ

s+1∑
j=0

(n− j)(n− j+ 1)[(s+ 1)!]

n(s+1−j)(j!)
,

where the first equality results from the observation that if any one of the n− s− 1 agents in the

second stage obtains another success, the contest ends and the reward is (n−s)c/λ, and if any one

of the s+ 1 agents in the first stage succeeds, the expected payout is Rn,s, and the second equality

follows by substituting Rn,s and collecting terms. Thus, our guess is verified.

Finally, considering the state when neither of the agents has one success, the expected first-best

reward of the contest is equal to:

Rn,n =
c

nλ

n∑
j=0

(n− j)(n− j+ 1)(n!)

n(n−j)(j!)
. (EC.73)

Now, consider a fixed-reward contest that induces all agents to exert full effort at all times. Such

a contest requires the minimum reward of (n+ 1)c/λ to give sufficient incentives for working to an

agent with no success while all the other agents have progressed to the second stage. This can be

seen by the fact that this reward makes V1,1, ...,1︸ ︷︷ ︸
n

= c/λ which is the minimum continuation payoff

to stimulate effort.

Finally, the fixed-reward contest spends [[(n+ 1)c/λ]/Rn,n− 1]× 100% more than the optimal

flexible-reward contest which one can (tediously) verify that this amount is increasing in n. �
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