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Abstract

Background: Machine learning (ML) is increasingly used in research for subtype definition and risk prediction,
particularly in cardiovascular diseases. No existing ML models are routinely used for cardiovascular disease
management, and their phase of clinical utility is unknown, partly due to a lack of clear criteria. We evaluated ML
for subtype definition and risk prediction in heart failure (HF), acute coronary syndromes (ACS) and atrial fibrillation
(AF).

Methods: For ML studies of subtype definition and risk prediction, we conducted a systematic review in HF, ACS
and AF, using PubMed, MEDLINE and Web of Science from January 2000 until December 2019. By adapting
published criteria for diagnostic and prognostic studies, we developed a seven-domain, ML-specific checklist.

Results: Of 5918 studies identified, 97 were included. Across studies for subtype definition (n = 40) and risk
prediction (n = 57), there was variation in data source, population size (median 606 and median 6769), clinical
setting (outpatient, inpatient, different departments), number of covariates (median 19 and median 48) and ML
methods. All studies were single disease, most were North American (n = 61/97) and only 14 studies combined
definition and risk prediction. Subtype definition and risk prediction studies respectively had limitations in
development (e.g. 15.0% and 78.9% of studies related to patient benefit; 15.0% and 15.8% had low patient selection
bias), validation (12.5% and 5.3% externally validated) and impact (32.5% and 91.2% improved outcome prediction;
no effectiveness or cost-effectiveness evaluations).
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Conclusions: Studies of ML in HF, ACS and AF are limited by number and type of included covariates, ML
methods, population size, country, clinical setting and focus on single diseases, not overlap or multimorbidity.
Clinical utility and implementation rely on improvements in development, validation and impact, facilitated by
simple checklists. We provide clear steps prior to safe implementation of machine learning in clinical practice for
cardiovascular diseases and other disease areas.
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Background
Disease definitions rely on expert consensus, informed
by best available evidence [1–3]. Machine learning (ML),
the use of algorithms to describe patterns in datasets
with (supervised) or without (unsupervised) the need to
define them a priori, is increasingly used in research for
definition [4] and risk prediction [5]. However, estab-
lished evaluation frameworks for clinical utility of such
models [6, 7] have not been applied.
Better definitions for cardiovascular disease (CVD),

the single greatest disease burden in the UK and glo-
bally [6], may improve prevention and treatment by
characterising target populations, enabling compar-
ability and generalisability across study designs and
populations. Heart failure (HF), acute coronary syn-
dromes (ACS) and atrial fibrillation (AF) are among
the commonest CVDs globally [8, 9]. Despite frequent
changes in disease definitions [3, 10, 11], continued
diagnostic and prognostic uncertainties have led to
ML research in all three diseases [12–17]. HF, ACS
and AF frequently overlap, so phenotyping and risk
prediction are relevant across diseases. To date, no
existing ML models are routinely used for CVD man-
agement, and their phase of clinical utility is un-
known, partly due to a lack of clear criteria.
Unlike drugs and devices [18, 19], the pathway to

translation from research to routine use is unclear for
ML. The AI-TREE criteria (Additional file_Web table 1)
were developed for ML healthcare research [20], but
consensus is lacking for best practice or regulatory re-
quirements for implementation [21, 22]. Importance of
such guidelines is emphasised by systematic reviews
showing that ML performs no better than logistic re-
gression or healthcare professionals in prediction across
diseases, with high risk of bias and limited external val-
idation in published studies [23, 24].
Evidence for ML in subtype definition and risk predic-

tion in HF, ACS and AF has not been assimilated. More-
over, it is unclear how application of ML in CVD
compares with other diseases. Our aims were to (i) de-
velop a simple framework for clinical utility and validity
of ML models in healthcare and (ii) conduct a systematic
review to evaluate methods and results of ML for sub-
type definition or risk prediction in HF, AF and ACS.

Methods
We followed the Preferred Reporting Items for System-
atic reviews and Meta-Analysis (PRISMA) statement,
with a protocol agreed by all authors, without prospect-
ively registering.

Systematic review
Identification of studies
We searched PubMed, MEDLINE and Web of Science
databases from 1 January 2000 until 31 December 2019.
Our search terms, agreed by co-authors, pertained to
machine learning, clustering, cardiovascular disease,
heart failure, atrial fibrillation, acute coronary syn-
dromes, subtype and risk prediction. Reference lists and
expert recommendations were taken into account, to
identify grey literature, including conference reports and
proceedings, guidelines, working papers and theses
(Additional file_Search strategy).

Selection of studies
All abstracts were independently screened and then full
text of selected abstracts were respectively assessed for
eligibility by two reviewers (from AB, SC and MZ), and
conflicts were resolved by a third reviewer (AB or SC).

Inclusion and exclusion criteria
Studies were eligible if the publication presented:

(i) ML models for disease subtype definition/clustering
for HF, ACS and AF; or

(ii) Risk prediction for HF, ACS or AF

Studies were excluded if they:

(i) Were not original empirical data
(ii) Were not English language
(iii)Were not peer-reviewed (e.g. a published disserta-

tion was not eligible)
(iv)Did not concern models developed for humans
(v) Did not have full text available

Data extraction
Tools for extraction were adapted and developed with
consensus among co-authors from published
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frameworks for new risk markers (AHA [6]), diagnostic
accuracy (QUADAS-2 [25]), prognostic tools (CHARMS
[26], PROGRESS [7], TRIPOD [27]) and ML (AI-TREE
[20], Christodoulou [23]) (Additional file_Web table 2).
The author, year and country of study, clinical setting,
data source, outcome, comparator methods, ML
method(s) and covariates were extracted. The final
checklist was in the three stages of the translational
pathway (“development”, “validation” and “impact”) as
per AHA and PROGRESS statements [6, 7]. There were
seven domains under the three main stages: clinical rele-
vance, patients, algorithms (“development”), internal val-
idation, external validation (“validation”), and clinical
utility and effectiveness (“impact”). The questions for
each domain were from published guidelines as above
with similar extraction items for subtype definition and
risk prediction studies. Data extraction was by two inde-
pendent reviewers (from AB, MZ and SC), and disagree-
ments were resolved by a third reviewer (AB or SC).
Quantitative analysis was beyond the scope of this re-
view and its aims.

Results
Systematic review of HF, AF and ACS
Of 5918 articles identified by our search, 97 met the in-
clusion criteria (Additional file_Figure S1).

Unsupervised ML for subtype definition
Of the 40 studies of unsupervised ML for subtype defin-
ition (included patients: median n = 606; min 117, max
251,451), there were 27 in HF, 9 in ACS and 4 in AF. All
studies focused on a single disease, and only 6 (15%)
studies included data regarding history of all three dis-
eases. Twenty-three (57.5%) studies involved < 1000 in-
dividuals (range 117–874) and 29 (72.5%) were based in
North America with no analyses from low- or middle-
income countries. Across diseases, 26 (65%) studies were
in outpatients (8 inpatient and 6 mixed inpatient and
outpatient) and 11 used trial data (10 prospective cohort,
5 retrospective cohort, 11 cross-sectional, 5 registries),
with 7 using EHR data. The mean number of covariates
was 31 (min 3, max 156), most commonly demographic
and symptom variables (Table 1) [28–67].
Most studies used only one ML method (n = 22).

Non-hierarchical clustering was used in 12 studies (hier-
archical: n = 25). The most commonly used method was
K-means (n = 11), but other methods included Gaussian
mixture modelling, latent class analysis and random for-
est (RF). All studies reported disease clusters. Most stud-
ies found 3 clusters (n = 17, 42.5%; median 3), and most
clusters were based on symptom (n = 20) or physical
(n = 17) variables. Clustering was usually case-wise (n =
37), rather than variable-wise (n = 3) and one study used
both approaches.

At the development stage, there were limitations at
“clinical relevance” (question related to patient benefit
15.0%, target condition applicability 62.5% and data suit-
able for clinical question 70%), “patient” (patient applic-
ability 30.0%, low patient selection bias 15.0%) and
“algorithm” (algorithm applicability 55.0%, low algorithm
bias 40.0%) levels. Twelve studies did not validate or rep-
licate findings; 28 (70.0%) had internal validation (most
commonly using number of clusters or prediction of
mortality/admissions) and only 5 (12.5%) externally vali-
dated findings. There were significant deficiencies under
“clinical utility” (improved prediction of outcomes
32.5%, methods available 0%, clinically relevant metrics
72.5%, interpretable by clinicians 65%, clinically justified
results 40%) and “effectiveness” (no studies showing ef-
fectiveness, real-world or cost) domains (Table 2) [28–
67].

Supervised ML for risk prediction
Of the 57 studies of supervised ML for risk prediction
(median n = 6769; min 28, max 2,994,837), 31 were in
HF, 19 in ACS and 7 in AF. Ten of 57 studies involved
< 1000 individuals and most were from North America
(n = 32), with one from a low- or middle-income coun-
try (n = 1). Risk prediction studies focused on develop-
ment of (i) HF, ACS or AF in healthy individuals or the
general population by case-control, cross-sectional or
cohort design (n = 25) and (ii) outcomes in HF, ACS or
AF (n = 32) (Table 3) [13, 45, 53, 65–118].
Across diseases, 27 studies were in outpatients (23 in-

patient and 7 mixed inpatient and outpatient) and 5
used trial data (6 prospective cohort, 30 retrospective co-
hort, 6 registry and 11 case-control). Thirty-one studies
used EHR data. The mean number of covariates was 723
(median 48; min 6, max 15,815), most commonly dem-
ography, symptoms and comorbidities/drugs. The ML
methods used were variable with neural networks (n =
19), random forest (n = 23) and support vector machine
(n = 16).
At the development stage, there were concerns at

“clinical relevance” (question related to patient benefit
78.9%, target condition applicability 68.4% and data suit-
able for clinical question 68.4%), “patient” (patient ap-
plicability 43.9%, low patient selection bias 15.8%) and
“algorithm” (algorithm applicability 68.4%, low algorithm
bias 47.4%) levels. Only three studies (5.3%) had external
validation in the clinical trial (n = 12,063), prospective
cohort (n = 861) and registry (n = 4759) data. There was
internal validation in 49/57 (86.0%) by “hold-out”, “leave
one out” or k-fold cross-validation. The risk of bias was
high in all studies with the commonest causes as patient
selection (n = 47), patient applicability to the clinical
question (n = 35) and bias in the algorithm(s) (n = 31).
Again, there were major limitations under “clinical
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utility” (improved prediction of outcomes 91.2%,
methods available 45.6%, clinically relevant metrics
49.1%, interpretable by clinicians 47.4%, clinically justi-
fied results 43.9%) and “effectiveness” (no studies show-
ing effectiveness, real-world or cost) domains (Table 4)
[13, 45, 53, 65–118].

Discussion
Our study highlighted three key findings with important
impact on the use of ML in subtype definition and risk
prediction for HF, ACS and AF. First, there is significant
variation in methods, data and reporting of results. Sec-
ond, we provide a pragmatic framework, based on pub-
lished criteria, for assessing validity and clinical utility of
ML studies. Third, there are major limitations at

development, validation and impact stages in studies of
ML in CVD, and our scoping review (Additional file_
Scoping review_Methods and Results, Additional file_
Web table 3 [119–129], Additional file_Web table 4
[130–143]) [144, 145] suggests similar problems for
non-CVDs. Addressing these issues has potential to im-
prove future data science approaches and enhance value
of these methods for clinical decision-making and better
patient care.
There is increasing interest in guidelines for develop-

ment and implementation of ML in healthcare from pa-
tients and public, academics and industry, partly due to
current uncertainty regarding necessary approval and
regulatory procedures [146, 147]. Whether in medicines
or medical devices, the “development pipeline” (e.g.

Table 1 Systematic review of machine learning studies of subtype definition in heart failure, acute coronary syndromes and atrial
fibrillation ( n = 40 studies)

ACS-acute coronary syndrome; AF-atrial fibrillation; CVD-cardiovascular disease; ECG- electrocardiogram; ED-emergency department; EHR-electronic health records;
HF-heart failure; IP-hospital inpatient; LV-left ventricular; MI-myocardial infarction; OP- hospital outpatient; RCT- randomised controlled trial; United Kingdom;
US-United States.
◦ Negative/No for all columns (except in "Baseline population" column, where it denotes "Unreported")
● Positive/Yes
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Table 2 Quality assessment of machine learning studies of subtype definition for heart failure, acute coronary syndromes and atrial
fibrillation ( n = 40)

◦ Negative/No
● Positive/Yes

Banerjee et al. BMC Medicine           (2021) 19:85 Page 5 of 14



phases I to IV of drug development) and guidelines are
much clearer, ultimately promoting clinical effective-
ness and patient safety. The wide variations in methods,
datasets and reporting are not surprising, given the
current lack of such guidelines with respect to the use
of ML in subtype definition and risk prediction [147].
On the basis of existing checklists, we have developed a
straightforward 7-domain checklist (16 points) to cap-
ture development, validation and impact. Although

there are multiple efforts to standardise reporting
guidelines for AI in healthcare [27, 148], the relation-
ship with the “translational pathway” in terms of devel-
opment, validation and impact has not been
emphasised. We show that no published studies have
results which are ready to be implemented, again likely
to be related to lack of consensus regarding what is re-
quired in research and clinical practice to ensure clin-
ical effectiveness and safety of ML.

Table 3 Machine learning risk prediction studies in heart failure, acute coronary syndromes and atrial fibrillation (n = 57)

ACS, acute coronary syndrome; AF, atrial fibrillation; Atherosclerosis Risk in Communities Study; CHARGE Cohorts for Heart and Aging Research in Genomic
Epidemiology; CHA2DS2-VASc congestive heart failure, hypertension, age > 75, diabetes mellitus, stroke, vascular disease, sex category; CVD, cardiovascular disease;
ECG, electrocardiogram; EHR, electronic health records; GRACE, Global Registry of Acute Coronary Events; HF, heart failure; HFpEF, heart failure with preserved
ejection fraction; IP, hospital inpatient; LV, left ventricular; OP, hospital outpatient; RCT, randomised controlled trial; TIMI, thrombolysis in myocardial infarction; UK,
United Kingdom; US, United States
*Australia, Austria, Brazil, Canada, China, Denmark, Korea, Finland, France, Germany, Italy, Japan, Mexico, Norway, Poland, Spain, Sweden, Netherlands, and UK
◦ Negative/no for all columns (except in the “Baseline population” column, where it denotes “unreported”)
● Positive/yes
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Table 4 Quality assessment of machine learning studies of risk prediction for heart failure, acute coronary syndromes and atrial
fibrillation (n = 57)

◦ Negative/No
● Positive/Yes
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Problems at the development stage
Studies to date of ML in HF, ACS and AF have been
limited by number and type of covariates, population
size, geographic location (mainly North American) and
clinical setting. As with epidemiologic studies and trials,
the generalisability of data and reproducibility of
methods [6, 7] are crucial to make findings interpretable
and translatable to clinical care. However, the majority
of studies to date have not fully considered these factors,
resulting in high risk of bias in all studies.
EHR data and advanced data analytics, which have

been either under-used or under-reported in studies to
date, offer research opportunities across diseases, but
ML studies have focused on single diseases, when dis-
eases often co-exist, as for HF, ACS and AF. Outside
CVD, perhaps the most promising ML studies to date
have been in either large imaging datasets or settings
where there is linkage of multimodal clinical data.
Whereas the popular concept of ML suggests the use of
a wide range of covariates, particularly in clustering, the
number and type of variables have been limited. Avail-
ability of covariates and quality of recording in EHR de-
termine these limitations rather than research or clinical

need. In the future, as more complete and larger EHR
datasets become available for research, studies of ML
can focus on improved use of limited data in clinical
practice, or use of more comprehensive lists of covari-
ates and coexisting diseases for the discovery of new fac-
tors in disease definition or prediction. For example, the
ESC classification lists 89 causes of HF, which have not
been studied together in a single population-based study
in EHR or otherwise [3].
The majority of studies have had positive results sug-

gesting publication bias (not formally assessed here),
which likely overestimates potential healthcare impact.
Lessons must be learned from biomarkers and genomics
[149, 150], where lack of standardisation and biased
reporting have contributed to lack of translation from
science to practice. It is concerning that a significant
proportion of studies ML are being developed with ques-
tions unrelated to patient benefit, or with data unsuit-
able to answer them. “Data-driven care” is important in
both personalised and precision medicine [151], both of
which can benefit from advances in the use of ML. How-
ever, a “data-centred” or “data-driven” agenda must re-
main “patient-centred” rather than “technology-centred”

Fig. 1 Development, validation and impact of machine learning studies in subtype definition and risk prediction for heart failure, acute coronary
syndromes and atrial fibrillation
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(or in this case, “ML-centred”) [152]. Our framework
can be used to plan studies, facilitating clinical relevance
and reducing bias.

Problems at the validation stage
In order to improve data-driven characterisation of CVD
and influence clinical decision-making, ML studies for
subtyping and prediction should be larger-scale, across
diseases, with standardised reporting and proven exter-
nal validity. To date, the degree of external validation
across subtype definition and risk prediction ML studies
has been disappointing, making ML difficult to imple-
ment in routine care. External validation will help to
understand which clustering and prediction tools are of
greatest use, and greater availability of electronic health
record data should facilitate this step in the pathway to
implementation of ML.

Problems at the impact stage
There are major gaps at the phases of clinical utility,
particularly open availability of methods and interpret-
ability of methods and results by clinicians. A limitation
of our study is that we did not conduct meta-analysis for
studies of either subtype classification or risk prediction
because it was out of scope for our review. However,
variation and lack of standardisation in methods and
reporting make meta-analysis challenging and potentially
unrepresentative. These issues can be addressed at de-
sign and implementation phases, but have been relatively
neglected. Importantly, in applications of ML in CVD to
date, studies of effectiveness and cost-effectiveness are
lacking. Without these evaluations, ML cannot be imple-
mented safely or effectively.
Figure 1 shows deficiencies at development, validation

and impact stages and that ML research is not necessar-
ily being conducted in a “sequential” manner, e.g. to en-
sure that the evaluation of impact is in validated ML
models, perhaps reflecting lack or under-use of consen-
sus guidelines. Particularly in CVD, with high disease
burden globally and in low- and middle-income coun-
tries, the impact of ML has to be considered through a
global lens. The fact that the majority of the literature
regarding ML in CVD is from the North American con-
text does raise concern that AI could broaden research
and clinical inequalities both within and across coun-
tries, beyond current debates about the inequalities
which may be inherent in algorithms. If individuals are
not represented in the data feeding into the algorithms,
then the AI cannot benefit them. These inequalities still
exist in other domains, such as pharmaceutical trials and
genomics, but the situation is improving, e.g. the propor-
tion of RCTs recruiting in low- to middle-income coun-
tries has increased in recent years. As EHR and digital
healthcare become global phenomena, there is scope to

use ML in diverse data and settings. Validation of ML
applications in clustering and risk prediction across
countries and settings, even between high-income coun-
tries, are urgently needed to advance this agenda. We
have proposed steps to improve the development and
validation of ML in clinical datasets (Additional file_
Web table 5).

Conclusions
Studies to date of ML in HF, ACS and AF have been
limited by number and type of covariates, population
size, geographic location (mainly North American), clin-
ical setting, focus on single diseases (where overlap and
multimorbidity are common) and ML methods used.
Moreover, flaws at stages of development, validation and
impact reduce the clinical utility and likelihood of imple-
mentation of ML in routine healthcare. To improve the
generalisability, applicability and clinical utility of ML in
CVD and other diseases, and to influence clinical
decision-making internationally, we provide a simple
checklist to foster standardised reporting and validation.
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