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Introduction
Contextual stimuli are important modulators in the way we learn 
and can promote specific behaviours. One mechanism underlying 
contextual learning is the so-called Pavlovian-to-instrumental 
transfer (PIT). The PIT effect capture the influence of Pavlovian 
conditioned stimuli (CSs) on instrumental behaviour, with appeti-
tive Pavlovian stimuli specifically promoting approach and reduc-
ing withdrawal, and aversive Pavlovian stimuli promoting 
withdrawal and reducing approach (Huys et al., 2011), thus reflect-
ing a powerful mechanism affecting behavioural choices across 
humans (Talmi et al., 2008) and animals (Dickinson et al., 2000; 
O’Connor et al., 2010). Moreover, the PIT effect has been used as a 
quantification of incentive salience attribution, that is, the extent to 
which formerly neutral cues become attractive, themselves desired, 
and therefore ‘wanted’ (Huys et al., 2014; Meyer et al., 2012).

Crucially, incentive salience attribution is one prominent mech-
anism underlying several disorders of compulsivity, such as alcohol 
dependence (AD; Corbit and Janak, 2007) and other addictive dis-
orders (LeBlanc et al., 2012). Also, interindividual differences in 
PIT have been associated with addiction vulnerability and mainte-
nance. For instance, preclinical work suggests an association 
between the magnitude of PIT and addictive behaviour, such as 

compulsive alcohol drinking (Barker et al., 2012; Corbit and Janak, 
2007). Preclinical studies have also consistently reported that non-
drug-related (e.g. food or sucrose reward) CSs lead to increased 
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responding during PIT in addicted animals (LeBlanc et al., 2013; 
Ostlund et al., 2014; Saddoris et al., 2011). Moreover, we have 
recently shown that the PIT effect in humans serves as a vulnerabil-
ity marker for the development and maintenance of AD (Garbusow 
et al., 2014, 2019; Schad et al., 2019a; but see van Timmeren et al., 
2020). The behavioural and neural correlates of PIT have been 
associated with relapse in AD (Garbusow et al., 2016; Sekutowicz 
et al., 2019; Sommer et al., 2020) and were predictive of future 
drinking behaviour in adolescents (Sekutowicz et al., 2019).

Although contemporary theories emphasise the involvement 
of the dopaminergic system in incentive salience, recent find-
ings suggest the opioid system as another important player 
(Pecina and Berridge, 2013; van Steenbergen et al., 2019). The 
opioid system has been primarily linked to hedonic features of a 
reward, also termed ‘liking’ as opposed to ‘wanting’, which 
reflects the motivational properties to promote a certain behav-
iour rather than its hedonic value. However, preclinical studies 
have shown that stimulation of the µ-opioid (MOP) system in 
the nucleus accumbens directly enhances incentive motivation 
(or ‘wanting’) for reward (Pecina and Berridge, 2013). In ani-
mals, experimental manipulation of the opioid system can medi-
ate the influence of reward-guided and stimulus-guided decisions 
on choice (Laurent et al., 2012), increase motivation for differ-
ent reward types (Mahler and Berridge, 2012) and mediate the 
motivating influence of cue-triggered reward expectations 
(Lichtenberg and Wassum, 2017). In humans, evidence for a 
functional role of the opioid system in mediating ‘wanting’ 
mainly stems from pharmacological challenges. For instance, 
MOP agonists and antagonists selectively enhance and decrease 
processing efficiency in a reward task (Eikemo et al., 2017) and 
increase and decrease the motivation to view positive valenced 
stimuli, respectively (Chelnokova et al., 2014). Likewise, opioid 
receptor antagonists reduced physical effort produced to obtain 
reward and increased negative facial reactions during reward 
anticipation (Korb et al., 2019).

In humans, the role of the opioid system in mediating the PIT 
effect as one further quantification of incentive salience (or 
‘wanting’) is less clear. The opioid receptor antagonist naltrexone 
could decrease alcohol cue-induced activation of the ventral stri-
atum (Myrick et al., 2008) and cue-induced impulsive respond-
ing (Mitchell et al., 2007). However, to date, there are only two 
studies investigating the role of the opioid system in mediating 
human PIT-like effects (Weber et al., 2016; Wiers et al., 2009), 
reporting reduced PIT after blockade of the MOP receptor (nal-
trexone) in healthy humans (Weber et al., 2016) and increased 
automatic approach tendencies in G+ carriers of the OPRM1 
polymorphism to alcohol-associated stimuli (Wiers et al., 2009). 
The overarching aim of our study was to further elucidate the role 
of the human opioid system in mediating the PIT effect in both 
healthy subjects and those with AD.

A common mechanism of quantifying interindividual differ-
ences in the human opioid system is the determination of the 
MOP receptor single nucleotide polymorphism (OPRM1). The 
OPRM1 gene codes for the MOP receptor, an inhibitory G-protein 
coupled receptor that binds endogenous opioid peptides such as 
β-endorphin and enkephalins as well as exogenous opioids such 
as morphine and heroin (Burns et al., 2019; Kieffer and 
Gaveriaux-Ruff, 2002). Opioid receptors are distributed widely 
in the human brain and modulate brain function at all levels of 
neural integration, including the mesolimbic system as part of the 
brain’s reward pathway.

Human studies investigating the OPRM1 polymorphism 
have suggested a crucial role of this single nucleotide polymor-
phism (SNP) in AD, treatment response and automatic approach 
biases to conditioned cues (Chamorro et al., 2012; Filbey et al., 
2008; Ray and Hutchison, 2004; Wiers et al., 2009). The A118G 
(rs1799971) polymorphism of the OPRM1 gene alters the func-
tion of MOP receptors, such that the G variant binds beta-endor-
phin three times more strongly than the A variant, potentially 
also affecting receptor availability (Heinz et al., 2005). We 
henceforth refer to the minor OPRM1 G-allele carriers as G+ 
carriers. G+ carriers were shown to report higher subjective 
alcohol-associated feelings of intoxication (Ray and Hutchison, 
2004) and craving (Van Den Wildenberg et al., 2007) and have a 
higher risk for positive family history (Ray and Hutchison, 
2004). However, conflicting results stem from large genome-
wide association studies (GWAS) and candidate gene studies 
(Kong et al., 2017), which could not replicate an association 
between AD and OPRM1 genotype, corresponding with a recent 
report on converging evidence against an association between 
the OPRM1 A118G polymorphism and alcohol consumption 
and sedation (Sloan et al., 2018).

The analyses presented here aimed to answer three questions. 
(1) Is the OPRM1 polymorphism associated with the PIT effect 
across three independent cohorts? (2) Is the association between 
the PIT effect and the OPRM1 polymorphism different in patients 
with AD compared to healthy controls (HCs)? (3) Is the associa-
tion between the PIT effect and the OPRM1 polymorphism rele-
vant for treatment outcome in the way that it is different in 
prospectively relapsing and abstinent patients with AD?

Methods

Subjects

All subjects were recruited between 2012 and 2018 as part of a 
larger study (LeAD study, ClinicalTrials.gov identifiers: 
NCT01744834, NCT01679145 and NCT02615977) investigat-
ing behavioural, genetic and neuroimaging alterations associated 
with reward-based learning as (a) predictors for the development 
of AD in a sample of young 18-year-old male subjects recruited 
from the national registry and (b) the maintenance of AD with 
respect to relapse and drinking behaviour in a sample of patients 
suffering from AD and an age, education and sex-matched HC 
sample (for previously published results of our sample, see, 
amongst others, Garbusow et al., 2014, 2016, 2019). Thus, this 
study comprised two independent HC samples that significantly 
differed with regards to several sociodemographic variables (see 
Supplemental Table S2 for between-group differences). As previ-
ous analyses (Sebold et al., 2016) indicated substantial differ-
ences in PIT effects between these cohorts, we did not merge 
both control samples but instead analysed the influence of the 
OPRM1 polymorphism on the PIT effect separately in these two 
control cohorts (analysis 1).

The assessed samples were a subsample of the three cohorts 
mentioned above for which genetic data were available: 
18-year-old male subjects (N = 161, henceforth referred to as 
young controls), recently detoxified patients with AD (N = 186) 
and age-matched HCs (N = 105, henceforth referred to as mid-
dle-aged controls). For a precise overview of the selection pro-
cedures, see Supplemental Information 1 and Supplemental 
Figure S1.
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For a complete description of exclusion criteria, see Garbusow 
et al. (2016). Briefly, all subjects were free from psychotropic 
medication, had no history of substance dependence (DSM-IV, 
except from AD in the AD group) or current substance use 
(DSM-IV, except for nicotine use), no other current DSM-IV axis 
1 psychiatric or neurological disorders and no borderline person-
ality disorder as assessed by the computer-based Composite 
International Diagnostic Interview (Jacobi et al., 2013; Wittchen, 
1997). Participants’ demographic and clinical characteristics are 
outlined in Table 1. Participants gave written informed consent 
before study inclusion. The study was approved by the local eth-
ics committees of the Technical University of Dresden and 
Charité Universitätsmedizin Berlin.

To define relapse across patients with AD, a three-month fol-
low-up was performed using the Time Line Follow Back proce-
dure (Sobell and Sobell, 1992). Relapse was defined as at least 
five standard drinks (e.g. one standard drink = 0.33 L beer) on one 
occasion for male participants and at least four standard drinks 
for female participants according to the World Health 
Organization (WHO; 2014) definition of high-risk consumption. 
A total of 51 patients were classified as relapsers (of whom 37 
were G− and 14 were G+ carriers), whereas 94 patients were 
classified as abstainers (of whom 78 were G− and 16 were G+ 
carriers). The remaining 41 patients could not be contacted dur-
ing the follow-up period.

Task

We used a PIT task as previously described (Garbusow et al., 
2014, 2016; Sommer et al., 2017). The task consisted of four 
phases (of which the first three phases are depicted in Figure 
1): (a) instrumental learning, (b) Pavlovian learning, (c) PIT 
and (d) forced choice task followed by a rating scale of the 
stimuli.

Instrumental learning. Subjects had to learn to collect ‘Go’ 
shells and leave ‘No-Go’ shells by repeatedly pressing a button 
while receiving probabilistic feedback. In order to collect a shell, 
subjects had to move a red dot onto the selected shell by repeated 
button presses within two seconds. We instructed the subjects to 
maximise their profit. For this, they should use the probabilistic 
feedback to find out via trial and error what is a ‘good shell’, 
which in ‘most cases’ lead to wins when collected, and leave ‘bad 
shells’, which in ‘most cases’ lead to wins when not collected. 
Each button press moved the red dot a fraction of the way towards 
the shell. To collect a ‘Go’ shell correctly, subjects had to press 
the button five or more times, and to leave a ‘No-Go’ shell, sub-
jects had to perform between zero and four button presses. The 
subjects did not know about the number of button presses, but we 
instructed them to press the button as often as possible to collect 
a shell to maximise instrumental performance. Correct responses 
were rewarded with 20 cents in 80% of trials and punished with 
a loss of 20 cents in 20% of trials, and for wrong responses it was 
vice versa (see Figure 1.1 for ‘Go’ and ‘No-Go’ trials). The shell 
set consisted of six different shells (three ‘Go’ shells and three 
‘No-Go’ shells).

Participants performed 60–120 trials, depending on their per-
formance. In order to ensure that all subjects were at comparable 
performance levels before advancing to the PIT part, a learning 
criterion was enforced (80% correct choices over 16 trials after a 
minimum of 60 trials).

Pavlovian learning. Pavlovian learning consisted of 80 trials in 
which compound visual and auditory stimuli (CS) were predic-
tive of distinct monetary rewards or punishments (unconditioned 
stimulus (US); Figure 1.2). Each trial began with a three-second 
presentation of a compound CS (fractal picture and tone) which 
was then followed by a three-second presentation of two fixation 
crosses (on the left and right side of the screen). Then, the US 
(monetary reward or punishment) was presented for threeseconds 
on the side where the CS had not been presented. Subjects were 
instructed to view the CS–US pairings passively and to memorise 
these associations. The set of CS consisted of six stimuli of which 
each was paired with positive (+2€/+1€), neutral (0€) or nega-
tive (−1€/−2€) outcomes, henceforth referred to as ‘money CS’.

PIT phase. Subjects performed 162 trials of the instrumental 
task again, this time without outcome feedback. Subjects were 
instructed that their choices still counted towards the final mon-
etary outcome (so-called nominal extinction). The instrumental 
stimuli superimposed one of the money CSs presented during 
Pavlovian training (Figure 1.3), or one of four beverage stimuli 
(results not presented here, but see (Schad et al., 2019a; Sekuto-
wicz et al., 2019; Sommer et al., 2017, 2020). Each instrumental 
stimulus (three ‘Go’ shells and three ‘No-Go’ shells) was com-
bined with each money CS (fractal stimulus previously associ-
ated with either of −2€, −1€, 0€, +1€, +2€) for three times, 
resulting in 90 trials, which were of primary interest for this 
study. Each trial lasted 3.6 seconds.

Forced-choice task. This part of the task aimed to verify the 
acquisition of Pavlovian learning. In each trial, subjects had to 
choose between two sequentially presented compound money 
CSs from the Pavlovian training, each presented for two seconds. 
All possible compound CS pairings were presented three times in 
an interleaved randomised order.

Pleasantness ratings. After the task, subjects were asked to 
rate the pleasantness of the CSs (fractals and shells) from the 
Pavlovian learning phase and the instrumental learning phase on 
a Likert scale from 1 to 7 on the screen.

Genotyping

To genotype our sample, DNA was extracted semi-automatically 
with a Chemagen Magnetic Separation Module (PerkinElmer, 
Waltham, MA) from whole blood. All samples were genotyped 
with the Illumina Infinium Psych Array Bead Chip (Illumina, San 
Diego, CA). We assessed rs1799971, a SNP that is an A-to-G 
substitution (A118G), resulting in a functional amino acid substi-
tution (Asn40Asp; Hartwell et al., 2020).

Because of the limited sample size, G-allele carriers (AG and 
GG) were grouped together. This approach is in keeping with 
precedent in the field (Persson et al., 2019; Way et al., 2009).

Behavioural analyses

Data were analysed using the R programming language (R 
Foundation for Statistical Computing, Vienna, Austria). 
Demographic, clinical and neuropsychological comparisons 
between G+ and G− OPRM1 carriers were examined using chi-
square and t-tests (Table 1).
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Analysis of the PIT phase was of primary interest, but we ana-
lysed all other phases as well (see Supplemental Information 6, 
Supplemental Information 7, Supplemental Information 8 and 
Supplemental Information 10). In the PIT phase, the PIT effect 
reflects the interaction between the valence of the background 
stimulus and the accuracy of the foreground instrumental action. 
We were specifically interested whether the OPRM1 genotype 
covaried with PIT effect, that is, the way that positive and nega-
tive stimuli influence ‘Go’ and ‘No-Go’ actions. More precisely, 
we asked whether the genetic phenotype would interact with the 
extent to which a positive stimulus facilitates ‘Go’ responses but 
impairs ‘No-Go’ responses and, vice versa, a negative stimulus 
facilitates ‘No-Go’ responses but impairs ‘Go’ responses.

As outlined in the introduction, the analyses presented here 
aimed to elucidate: (a) the association between the OPRM1 poly-
morphism and the PIT effect, (b) the clinical relevance of this 
association for AD and (c) the relevance of this association for 
treatment outcome. Across these different analyses, we coded a 
participant’s accuracy of the PIT phase as correct (1) if a ‘Go’ 
shell was collected or a ‘No-Go’ shell was left, and as false (0) if 
a ‘No-Go’ shell was collected or a ‘Go’ shell was left. We used a 
binomial mixed effect regression as implemented in the lme4 
package (Bates et al., 2015). We regressed the participant’s accu-
racy (correct or incorrect) on Pavlovian valence (negative, neutral 
or positive, dummy coded with neutral as the reference), instru-
mental action (‘Go’ or ‘No-Go’, coded as 0.5 and −0.5) and 
OPRM1 polymorphism (G− or G+, coded as −0.5 and +0.5) and 
tested for interaction between these factors. Subjects were added 
as random effects (random intercept model). We performed model 

comparisons to ensure that this model was the best-fitting model 
across subjects (see Supplmenetal Information 2).

Analysis 1: Association between the PIT effect and the 
OPRM1 polymorphism across cohorts. To test whether the 
OPRM1 polymorphism was associated with the PIT effect in all 
three cohorts, we performed the above-described analysis for all 
three cohorts separately (Supplemental Figure S1).

Analysis 2: Alcohol-related group differences for the asso-
ciation between the PIT effect and the OPRM1 polymor-
phism. To test whether the interaction between the PIT effect 
and the OPRM1 polymorphism was significantly different 
between HCs and patients with AD, we performed the above-
described regression model (see analysis 1) but additionally 
added group (HC or AD, coded as 0.5 and −0.5) as an additional 
fixed effect and allowed interaction with all predictors (Supple-
mental Figure S1). For this analysis, we only included patients 
with AD and middle-aged control subjects (who were initially 
sampled as a comparison group of patients with AD). Both 
groups profoundly differed across several socio-economic and 
clinical variables (Supplemental Table S2). Increased depression, 
anxiety, craving and impulsivity as well as reduced cognitive 
speed and working memory are features instead of confounders 
of AD. Thus, as suggested by Miller and Chapman (2001), we did 
not control for these variables. Years of education was the only 
variable we added as a covariate because groups significantly dif-
fered in these variables despite our efforts of matching.

Figure 1. Phases 1–3 of the paradigm for (a) the ‘No-Go’ trial and (b) the ‘Go’ trial. 1. Instrumental learning: The subject’s task was to move a dot 
towards the stimulus by repeated button presses in order to collect it or to do nothing within two seconds. These two instrumental choices resulted 
in monetary wins or losses, presented immediately after each trial via a picture of a 20€ coin for 1.5 seconds. Feedback was probabilistic. A ‘Go’ shell 
was rewarded in 80% and punished in 20% of trials if collected and vice versa if not collected. A ‘No-Go’ shell was rewarded in 80% and punished in 
20% of the trials if not collected and vice versa if collected. 2. Pavlovian learning: Neutral fractal and audio stimulus compounds (CS) are repeatedly 
paired with monetary outcomes (US: e.g. here a 2€ coin). 3. Pavlovian-to-instrumental transfer (PIT) phase: Subjects performed the instrumental 
task in nominal extinction, that is, no explicit monetary outcomes were presented (A. leave button to not collect a ‘No-Go’ shell and B. press button 
to collect ‘Go’ shell superimposed on the audiovisual Pavlovian stimulus; here: the Pavlovian stimulus previously paired with 2€ and the respective 
tone pitch).
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Analysis 3: Relapse-related group differences for the asso-
ciation between the PIT effect and the OPRM1 polymor-
phism. To test whether the interaction between the OPRM1 
polymorphism and the PIT effect was significantly different 
between patients with AD who relapsed and those who remained 
abstinent, we performed the above described regression analysis 
(see analysis 1) but added relapse (relapsers or abstainers, coded 
as 0.5 and −0.5) as an additional fixed factor and allowed interac-
tion with all predictors. For this analysis, we only included 
patients with AD for whom relapse data were available (n = 145; 
Supplemental Figure S1). Relapsing patients did not differ from 
abstaining patients in any demographic or clinical variables, 
except for craving (where relapsing patients had significantly 
higher OCDS scores (Anton et al., 1995; Mann and Ackermann, 
2000) than abstaining patients (t = −2.66, p = 0.01). Thus, we 
added craving as a covariate of no interest in this analysis.

Post hoc analyses

For analyses 2 and 3, we were particularly interested in how the 
PIT effect was modulated by the OPRM1 polymorphism and 
whether this depended on group, respectively. Thus, in our post 
hoc analyses, we focused on these contrasts (analysis 2: G+ vs. 
G− carriers/HCs vs. ADs; analysis 3: G+ vs. G− carriers/relaps-
ers vs. abstainers) and considered effects as significant when they 
survived Bonferroni correction for four comparisons (p < 0.01).

Results

Genotyping

Genotyping resulted in 353 participants homozygous for the 
major A allele, 89 participants with the AG combination and 10 
participants homozygous for the G allele. OPRM1 genotype dis-
tribution did not significantly differ from Hardy–Weinberg equi-
librium (χ2

(df = 1) = 2.31, p = 0.13).
Demographic, clinical and neuropsychological comparisons 

between G+ and G− carriers in all three cohorts indicated no 
group differences (Table 1), except from increased self-reports of 
impulsivity assessed via BIS-15 (Meule, 2011) in G+ carriers 
compared to G− carriers in young healthy adults. Moreover, we 

found no evidence for a functional association between the 
OPRM1 polymorphism and AD. Descriptively, there were pro-
portionally more G+ carriers among the HCs compared to the 
AD group – from the literature we would have expected the 
reverse results – although this difference was formally not statis-
tical significant (χ2

(df = 1) = 3.62, p = 0.06). Also, we found no evi-
dence for a functional association between the OPRM1 
polymorphism and relapse (χ2

(df = 1) = 1.60, p = 0.21).

Behavioural data

Analysis 1: Association between the PIT effect and the 
OPRM1 polymorphism across cohorts. The first aim of this 
study was to test whether the OPRM1 polymorphism influences 
the PIT effect across three independent cohorts. In all three 
cohorts we found a significant PIT effect, that is, the interaction 
between Pavlovian valence (negative, neutral or positive) and 
instrumental action (‘Go’ or ‘No-Go’; Table 2), indicating that 
positive stimuli facilitated ‘Go’ responses but impaired ‘No-Go’ 
responses, whereas negative stimuli facilitated ‘No-Go’ responses 
but impaired ‘Go’ responses.

In all groups, respectively, we found no interaction between 
Pavlovian valence and OPRM1 polymorphism. However, the 
OPRM1 polymorphism interacted with instrumental action 
(Table 2). Crucially, we found a three-way interaction between 
Pavlovian valence, instrumental action and OPRM1 polymor-
phism in all cohorts. This result suggests that the OPRM1 poly-
morphism strongly interacts with the PIT effect in all three 
independent cohorts. In fact the PIT effect was significantly 
higher in G+ carriers compared to G− carriers (Figure 2 and 
Table 2).

To rule out that our PIT-related OPRM1 effect was simply due 
to the fact that G+ carriers showed stronger cue-induced modu-
lation of liking, we further performed analyses of the rating data 
of the Pavlovian stimuli (pleasantness ratings; Supplemental 
Information 10). To this end, we first tested whether the OPRM1 
polymorphism was associated with ratings of the stimuli, depend-
ing on the Pavlovian valence. In all cohorts, the OPRM1 poly-
morphism did not interact with Pavlovian valence (Supplemental 
Information 10). Moreover, adding the rating data as an addi-
tional covariate in our PIT analyses, all interaction between the 

Table 2. Results of analysis 1. Effects of the regression analysis from the PIT part for all three cohorts.

Group Alcohol-dependent 
patients (N = 186)

Middle-aged  
controls (N = 105)

Young controls 
(N = 161)

 χ2 p-Value χ2 p-Value χ2 p-Value

Pavlovian CS valence 11.723 0.003 5.599 0.061 15.105 0.001
Instrumental behavior 7.057 0.008 13.108 0.0003 0.159 0.690
OPRM1 polymorphism 0.002 0.963 0.046 0.831 0 0.994
Pavlovian valence × instrumental behavior 2074.63 <0.0001 912.67 <0.0001 365.68 <0.0001
Pavlovian valence × OPRM1 polymorphism 0.224 0.894 0.074 0.964 0.629 0.730
Instrumental behavior × OPRM1 polymorphism 13.917 0.0002 18.930 <0.0001 7.757 0.005
Pavlovian valence × instrumental behavior × OPRM1 polymorphism 12.723 0.002 9.027 0.011 20.691 <0.0001

All interaction effects with the OPRM1 polymorphism in the young control cohort remained significant after controlling for self-reports of impulsivity, which was signifi-
cantly different between G+ and G− carriers in this cohort (see Table 1). Statistically significant values are shown in bold.
PIT: Pavlovian-to-instrumental transfer; CS: conditioned stimulus.



Sebold et al. 7

OPRM1 polymorphism, Pavlovian valence and instrumental 
action remained significant (patients with AD: p = 0.0004; mid-
dle-aged controls: p = 0.006; young controls: p < 0.0001).

Analysis 2: Alcohol-related group differences for the asso-
ciation between the PIT effect and the OPRM1 polymor-
phism. The second aim of this study was to test whether the 
interaction between the PIT effect and OPRM1 polymorphism 
was significantly different between patients with AD and HCs. 
This analysis indicated a three-way interaction between Pavlov-
ian valence, instrumental action and group and also a three-way 

interaction between Pavlovian valence, instrumental action and 
OPRM1 polymorphism. Thus, AD and the OPRM1 polymor-
phism were significantly and independently associated with the 
strength of the PIT effect per se (see Figure 2). Moreover, we 
found a three-way interaction between instrumental action, group 
and OPRM1 polymorphism. However, the four-way interaction 
between Pavlovian valence, instrumental action, group and 
OPRM1 polymorphism was not statistically significant (Table 3). 
Thus, the interaction between the PIT effect and the OPRM1 
polymorphism was not statistically different between patients 
with AD and matched control subjects (Figure 2).

Figure 2. Results of the PIT phase as a function of group (patients with alcohol dependence (AD), middle-aged controls and young controls) and 
OPRM1 polymorphism. Each panel shows the PIT effect in the respective group, that is, there was a significant influence of Pavlovian background 
valence on instrumental action (accuracy: percent correct choices), here visualised by the slope of the lines. Crucially, in each of the three cohorts, 
this was steeper in G+ carriers compared to G− carriers, as indicated by the three-way interaction between OPRM1 polymorphism, Pavlovian valence 
and instrumental action (analysis 1), that is, in each of the three independent cohorts, the PIT effect was modulated by the OPRM1 polymorphism. 
However, this was not different between alcohol-dependent patients and matched middle-aged controls (analysis 2).

Table 3. Results of analysis 2. Effects of the regression analysis from the PIT part where we tested whether the interaction between the PIT effect 
and the OPRM1 polymorphism was significantly different between patients with AD and HCs.

χ2 p-Value

Pavlovian valence 13.183 0.001
Instrumental action 18.391 <0.0001
OPRM1 polymorphism 0.007 0.933
Group 2.316 0.128
Years of education 7.651 0.006
Pavlovian valence × instrumental action 2888.726 <0.0001
Pavlovian valence × OPRM1 polymorphism 0.031 0.984
Instrumental action × OPRM1 polymorphism 0.374 0.540
Pavlovian valence × group 3.661 0.160
Instrumental action × group 4.187 0.041
OPRM1 polymorphism × group 0.015 0.901
Pavlovian valence × instrumental action × OPRM1 polymorphism 16.909 <0.0001
Pavlovian valence × instrumental action × group 22.695 <0.0001
Pavlovian valence × OPRM1 polymorphism × group 0.257 0.880
Instrumental action × OPRM1 polymorphism × group 30.727 <0.0001
Pavlovian valence × instrumental action × OPRM1 polymorphism × group 0.318 0.853

HC: healthy control.
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Analysis 3: Relapse-related group differences for the associa-
tion between the PIT effect and the OPRM1 polymor-
phism. Last, we tested whether the observed interaction between 
the OPRM1 polymorphism and the PIT effect was associated with 
relapse. Again, we found a three-way interaction between the 
OPRM1 polymorphism, Pavlovian valence and instrumental action 
(Table 4). In addition, we observed an interaction between relapse 
status and instrumental action, and a three-way interaction between 
Pavlovian valence, instrumental action and relapse. This interaction 
was further modulated by the OPRM1 polymorphism, resulting in 
the expected four-way interaction between Pavlovian valence, 
instrumental action, OPRM1 polymorphism and relapse status (Fig-
ure 3 and Table 4). Thus, the interaction between the OPRM1 poly-
morphism and the PIT effect was statistically different between 
patients with AD who prospectively relapsed and those who 

remained abstinent. Post hoc tests indicated that the interaction 
between Pavlovian valence, instrumental action and the OPRM1 
polymorphism was only significant for relapsers (p < 0.0001) but 
not for abstainers (p = 0.328). Moreover, the interaction between 
Pavlovian valence, instrumental action and relapse was significant 
for G+ carriers (p < 0.0001) but not for G− carriers (p = 0.09).

Discussion
To explore and further understand the behavioural and genetic 
underpinnings of ‘wanting’ as an expression of incentive salience 
attribution in humans and to bridge the gap to preclinical results, 
we investigated the association between the OPRM1 polymor-
phism, PIT effect and relapse across a large cohort of patients 
with AD and two independent cohorts of HCs.

Table 4. Results of analysis 3. Effects of the regression analysis from the PIT part where we tested whether the interaction between the PIT effect 
and the OPRM1 polymorphism was significantly different between relapsers and abstainers.

χ2 p-Value

Pavlovian valence 10.27 0.006
Instrumental action 0.002 0.965
OPRM1 polymorphism 0.324 0.569
Relapse 0.706 0.401
Craving 0.053 0.817
Pavlovian valence × instrumental action 1535.13 <0.0001
Pavlovian valence × OPRM1 polymorphism 0.426 0.808
Instrumental action × OPRM1 polymorphism 11.706 0.001
Pavlovian valence × relapse 0.513 0.774
Instrumental action × relapse 12.786 <0.0001
OPRM1 polymorphism × relapse 0.042 0.838
Pavlovian valence × instrumental action × OPRM1 polymorphism 16.786 0.001
Pavlovian valence × instrumental action × relapse 13.647 0.001
Pavlovian valence × OPRM1 polymorphism × relapse 0.571 0.752
Instrumental action × OPRM1 polymorphism × relapse 1.988 0.159
Pavlovian valence × instrumental action × OPRM1 polymorphism × relapse 30.347 <0.0001

Figure 3. Results of the PIT phase as a function of treatment outcome (abstainers vs. relapsers) and OPRM1 polymorphism (analysis 3). Patients 
with AD who relapsed showed a stronger interaction between the PIT effect and the OPRM1 polymorphism compared to patients with AD who 
remained abstinent. Moreover, G+ carriers showed a strong and significant interaction between the PIT effect and treatment outcome, whereas G− 
carriers did not.



Sebold et al. 9

We demonstrate that (a) in all three independent cohorts, G+ 
carriers showed an increased PIT effect; (b) there is no difference 
between patients with AD and HCs in the interaction between 
OPRM1 and PIT; but (c) when merely investigating AD, relaps-
ing patients carrying the G+ allele showed an increased PIT 
effect as opposed to abstaining patients, who did not show an 
association between OPRM1 genotype and PIT. We henceforth 
discuss these three main results.

Analysis 1: Association between the PIT 
effect and the OPRM1 polymorphism across 
cohorts

The first analysis demonstrated a clear association between the 
OPRM1 genotype and PIT in three independent human cohorts. 
Two studies have previously investigated the role of the human 
opioid system in PIT-like effects in healthy human subjects. By 
using a pharmacological challenge, Weber et al. (2016) demon-
strated that naltrexone reduces PIT effects for primary reinforcers 
(e.g. food rewards). We here demonstrate that the opioid system is 
also involved in modulating PIT effects for secondary reinforcers 
(e.g. monetary rewards). Beyond this, the experimental design 
from Weber et al. (2016) also differed in several other aspects 
from our study. Weber et al. (2016) focused on the positive ‘limb’ 
of the PIT effect (the extent to which positive stimuli affect 
responses), whereas our paradigm also enabled us to examine the 
negative ‘limb’ of the PIT effect (the extent to which negative 
stimuli affect responses). Moreover, our instrumental task 
included both ‘Go’ and ‘No-Go’ responses, whereas the instru-
mental task by Weber et al. (2016) merely included a ‘Go’ compo-
nent. Thus, in line with previous investigations (Guitart-Masip 
et al., 2011, 2014; Swart et al., 2017), our experimental manipula-
tion enabled us to test for more complex valence–action interac-
tions. These previous tasks in line with our results have identified 
a potentially phylogenetically induced bias for congruent action–
valence responses (e.g. better performance when a ‘Go’ response 
was acquired to win) compared to incongruent action valence 
(e.g. when a ‘No-Go’ response was acquired to win).

A second study published by Wiers et al. (2009) investigated 
automatic appetitive action tendencies in male heavy-drinking 
carriers of the OPRM1 G allele. Heavy-drinking G+ carriers 
showed increased automatic approach tendencies not only to 
alcohol-associated stimuli but also to other appetitive stimuli 
(Wiers et al., 2009). This is in line with our finding of increased 
behavioural modulation in the presence of appetitive cues in AD 
G+ carriers. However, Wiers et al. did not include a control 
group in their study design and only included male sex, which 
limits generalisability and comparability to our results.

In summary, our data support the notion that the OPRM1 pol-
ymorphism serves as one biological agent associated with human 
PIT effect in both AD patients and HCs.

Analysis 2: Alcohol-related group differences 
for the association between the PIT effect 
and the OPRM1 polymorphism

We did not find a significantly different association between the 
PIT effect and the OPRM1 polymorphism between patients 

with AD and HCs, which partly reflects the ongoing debate and 
contradictory results published so far on the association between 
the OPRM1 genotype and AD (Hendershot et al., 2016; Kong 
et al., 2017; Ray and Hutchison, 2004; Sloan et al., 2018). 
Instead, we found that AD and the OPRM1 polymorphism are 
independent factors that both increase the PIT effect. Moreover, 
we found an interaction between instrumental action, OPRM1 
polymorphism and group, indicating that the opioid system dif-
ferently affects instrumental responses in AD patients and HCs. 
Exploratory post hoc analyses (Supplementary Information 4) 
indicated that AD G+ carriers showed increased ‘Go’ responses 
compared to ‘No-Go’ responses, whereas HC G+ carriers 
showed increased ‘No-Go’ responses compared to ‘Go’ 
responses. Of note, a positive PIT effect is accompanied by an 
overall increase of ‘Go’ responses, while a negative PIT effect 
is accompanied by an overall increase in ‘No-Go’ responding. 
Thus, the OPRM1 polymorphism may influence the positive 
PIT effect in patients with AD and the negative PIT effect in 
HC. A core feature of AD is the persistent substance consump-
tion despite the negative consequences of consumption (Stacy 
and Wiers, 2010). We speculate that this paradox might partly 
be explained by an increased responsiveness of patients with 
AD to positively conditioned cues, which is stronger in G+ car-
riers. On the other hand, an increased responsiveness to nega-
tive stimuli might reveal a protective mechanism of healthy G+ 
carriers (S3 and S4). Clearly, future studies need to validate this 
speculation.

Analysis 3: Relapse-related group differences 
for the association between the PIT effect 
and the OPRM1 polymorphism

Only relapsers but not abstainers showed a significant interac-
tion between the PIT effect and the OPRM1 polymorphism. 
Moreover, only relapsing G+ carriers showed an increased PIT 
effect compared to abstainers, whereas there was no difference 
between the PIT effect in relapsers and abstainers in G− carriers. 
One speculative interpretation of these findings is that there may 
be two pathways to relapse, and that these fundamentally differ 
with regard to the OPRM1 polymorphism and the PIT effect. On 
the one hand, in G+ carriers, the mechanisms driving PIT might 
also be related to relapse, whereas in G− carriers, these mecha-
nisms could be less related to relapse. Our finding of an increased 
PIT effect in relapsing AD G+ carriers might also be relevant 
for precision medicine, particularly in the light of the ongoing 
discussion of the OPRM1 polymorphism as a potential bio-
marker for the effectiveness of naltrexone treatment (Chamorro 
et al., 2012; Hartwell et al., 2020; Oslin et al., 2003; Setiawan 
et al., 2012; Ziauddeen et al., 2016). Strikingly, treatment 
response to naltrexone was also particularly high in patients with 
AD classified as reward drinkers (Mann et al., 2018; Witkiewitz 
et al., 2019) and reduced craving, most notably in social drink-
ers, who had high positive alcohol expectancies (Palfai et al., 
1999).

Similar considerations might be relevant to nalmefene, the 
MOP antagonist and partial κ-agonist, recently approved for the 
treatment of AD (Gual et al., 2013), with similarly conflicting 
results. According to a meta-analysis, the drug is able to improve 
behavioural outcomes in patients with AD (Mann et al., 2016), 
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while others show that it has a limited efficacy in AD therapy 
(Palpacuer et al., 2015; Soyka and Muller, 2017). Nalmefene 
administered in a modified ‘Go’/‘No-Go’ paradigm mildly 
reduced vigor to alcoholic cues in patients with AD (Gal et al., 
2019). However, no major differences were observed between 
the treatment group and the placebo group with respect to behav-
ioural and neural correlates of approach/avoidance tendencies. 
Given our data, future studies could investigate whether naltrex-
one and/or nalmefeme might be particularly effective in alcohol-
dependent patients who are G+ carriers and additionally show 
large PIT effects.

Outlook: How does OPRM1 influence neural 
reward processing?

The neural correlates of PIT have been associated with relapse 
in AD within the mesolimbic reward system (Garbusow et al., 
2016; Sekutowicz et al., 2019; Sommer et al., 2020) and could 
predict future drinking behaviour in adolescents (Sekutowicz 
et al., 2019). Recent studies have suggested a direct link 
between the OPRM1 polymorphism and the mesolimbic dopa-
minergic system. For instance, by using a mouse model of the 
OPRM1 A118G SNP, Popova et al. (2019) demonstrated that 
A- and G-allele carriers show significantly different regulation 
of mesolimbic dopaminergic firing. One potential underlying 
mechanism is that MOP receptors (which are affected by the 
OPRM1 polymorphism) mediate opioid-induced disinhibition 
of midbrain dopaminergic neurons (Jalabert et al., 2011; Jhou 
et al., 2012; Matsui et al., 2014). Recent work in rodents has 
proven that optogenetic manipulations of those dopaminergic 
neurons can bidirectionally modulate online action selection 
(Howard et al., 2017). Thus, we speculate that the OPRM1 pol-
ymorphism is associated with the extent to which Pavlovian 
stimuli functionally activate the mesolimbic dopaminergic sys-
tem in AD. This speculation is in line with functional magnetic 
resonance imaging studies using cue reactivity paradigms in 
substance-dependent individuals. For instance, some studies 
suggest that AD G+ carriers display increased neural responses 
to alcohol-associated stimuli in mesocorticolimbic areas (Bach 
et al., 2015; Courtney et al., 2015; Filbey et al., 2008; but see 
Schacht et al., 2013). In line with this, humanised mice carrying 
the G+ allele of the OPRM1 polymorphism displayed increased 
striatal dopamine release in response to an intravenously 
infused alcohol dose (Ramchandani et al., 2011). Clearly, future 
studies should further investigate how the OPRM1 polymor-
phism affects the underlying neural mechanisms of the PIT 
effect in humans.

Limitations

The generalisability of our results is limited by the lack of prereg-
istration, additional analyses designed after study protocol and the 
use of single gene analyses. The correlational nature of the analy-
ses only allows speculation about causal relationships and needs 
to be further validated in a longitudinal design. Even though can-
didate genes as opposed to large-scale GWAS studies have come 
into disrepute, we believe that there is still a high relevance in 
connecting single genes and their respective pathways to specific 

neurocognitive processes and thus providing the opportunity for 
more specific interventions in precision medicine (Deb et al., 
2010; Di Martino et al., 2020). Another limitation of our design is 
that the procedure used here to indicate Pavlovian learning (task 
phase 4) was not designed to detect between-group effects but 
instead served to identify subjects who did not learn the Pavlovian 
contingencies (Supplemental Information 8). Across all cohorts, 
subjects could almost perfectly identify the best Pavlovian stim-
uli, and these ceiling effects potentially lowered statistical power 
to detect differences in Pavlovian learning. Several studies across 
humans and animals have demonstrated that individuals who 
attribute incentive salience to reward predicting stimuli through 
Pavlovian conditioning (so called sign-trackers) will also show an 
increased PIT effect (Garofalo and di Pellegrino, 2015; Schad 
et al., 2019b). Future studies should therefore use more sensitive 
methods to identify sign-tracking humans (such as eye-tracking; 
Schad et al., 2019b) and test the role of the OPRM1 polymor-
phism in this phenomenon. One further limitation is the relatively 
small sample size of relapsers versus abstainers in analysis 3. 
Importantly, the group of G+ carriers that relapsed versus 
abstained was 16 versus 14, respectively. Thus, future stratifica-
tion studies need to replicate our findings in larger sampling sizes, 
for example by oversampling G+ carriers in AD.

Summary

This study presents strong evidence for an association between 
the OPRM1 polymorphism and the PIT effect in both patients 
with AD and HCs. It is the first to show that the OPRM1 poly-
morphism modulates the extent to which Pavlovian stimuli 
exert control over behaviour and suggests a functional differ-
ence of this gene–behaviour interaction between relapsers and 
abstainers.
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