UCL Discovery
UCL home » Library Services » Electronic resources » UCL Discovery

Provenance and recycling of Sahara Desert sand

Pastore, G; Baird, T; Vermeesch, P; Resentini, A; Garzanti, E; (2021) Provenance and recycling of Sahara Desert sand. Earth-Science Reviews , 216 , Article 103606. 10.1016/j.earscirev.2021.103606.

[img] Text
Sahara.pdf - Accepted version
Access restricted to UCL open access staff until 21 March 2022.

Download (1MB)


We here present the first comprehensive provenance study of the Sahara Desert using a combination of multiple provenance proxies and state-of-the-art statistical analysis. Our dataset comprises 44 aeolian-dune samples, collected across the region from 12°N (Nigeria) to 34°N (Tunisia) and from 33°E (Egypt) to 16°W (Mauritania) and characterized by bulk-petrography, heavy-mineral, and detrital-zircon Usingle bondPb geochronology analyses. A set of statistical tools including Multidimensional Scaling, Correspondence Analysis, Individual Difference Scaling, and General Procrustes Analysis was applied to discriminate among sample groups with the purpose to reveal meaningful compositional patterns and infer sediment transport pathways on a geological scale. The overall homogenity across sand samples, however, precluded a detailed narrative. Saharan dune fields are, with a few local exceptions, composed of pure quartzose sand with very poor heavy-mineral suites dominated by durable zircon, tourmaline, and rutile. Some feldspars, amphibole, epidote, garnet, or staurolite occur closer to basement exposures, and carbonate grains, clinopyroxene and olivine near a basaltic field in Libya. Relatively varied compositions also characterize sand along the Nile Valley and the southern front of the Anti-Atlas fold belt in Morocco. Otherwise, from the Sahel to the Mediterranean Sea and from the Nile River to the Atlantic Ocean, sand consists nearly exclusively of quartz and durable minerals. These have been concentrated through multiple cycles of erosion, deposition, and diagenesis of Phanerozoic siliciclastic rocks during the long period of relative tectonic quiescence that followed the Neoproterozoic Pan-African orogeny, the last episode of major crustal growth in the region. The principal ultimate source of recycled sand is held to be represented by the thick blanket of quartz-rich sandstones that were deposited in the Cambro-Ordovician from the newly formed Arabian-Nubian Shield in the east to Mauritania in the west. Durability of zircon grains and their likelihood to be recycled from older sedimentary rocks argues against the assumption, too often implicitly taken for granted in provenance studies based on detrital-zircon ages, that their age distribution reflects transport pathways existing at the time of deposition rather than inheritance from multiple and remote landscapes of the past.

Type: Article
Title: Provenance and recycling of Sahara Desert sand
DOI: 10.1016/j.earscirev.2021.103606
Publisher version: https://doi.org/10.1016/j.earscirev.2021.103606
Language: English
Additional information: This version is the author accepted manuscript. For information on re-use, please refer to the publisher's terms and conditions.
Keywords: Sand petrography, Heavy minerals, U-Pb zircon ages, Multivariate statistics, Sedimentary processes, Recycling, Fluvial/aeolian interactions, Wind-fed and river-fed sand seas, Pan-African Orogeny
UCL classification: UCL
UCL > Provost and Vice Provost Offices
UCL > Provost and Vice Provost Offices > UCL BEAMS
UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Maths and Physical Sciences
UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Maths and Physical Sciences > Dept of Earth Sciences
URI: https://discovery.ucl.ac.uk/id/eprint/10125947
Downloads since deposit
Download activity - last month
Download activity - last 12 months
Downloads by country - last 12 months

Archive Staff Only

View Item View Item