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Abstract

Standard meta-learning for representation learning aims to find a common repre-
sentation to be shared across multiple tasks. The effectiveness of these methods is
often limited when the nuances of the tasks’ distribution cannot be captured by a
single representation. In this work we overcome this issue by inferring a conditioning
function, mapping the tasks’ side information (such as the tasks’ training dataset itself)
into a representation tailored to the task at hand. We study environments in which our
conditional strategy outperforms standard meta-learning, such as those in which tasks
can be organized in separate clusters according to the representation they share. We
then propose a meta-algorithm capable of leveraging this advantage in practice. In the
unconditional setting, our method yields a new estimator enjoying faster learning rates
and requiring less hyper-parameters to tune than current state-of-the-art methods. Our
results are supported by preliminary experiments.

1 Introduction

Learning a shared representation among a class of machine learning problems is a well-
established approach used both in multi-task learning Argyriou et al. (2008); Caruana
(1997); Jacob et al. (2009) and meta-learning Balcan et al. (2019); Bertinetto et al. (2018);
Bullins et al. (2019); Denevi et al. (2019b); Finn and Levine (2018); Finn et al. (2019);
Maurer (2009); Pentina and Lampert (2014); Tripuraneni et al. (2020). The idea behind
this methodology is to consider two nested problem: at the within-task level an empirical
risk minimization is performed on each task, using inputs transformed by the current
representation, on the outer-task (meta-) level, such a representation is updated taking
into account the errors of the within-task algorithm on previous tasks.

Such a technique was shown to be advantageous in contrast to solving each task
independently when the tasks share a low dimensional representation, see e.g. Balcan
et al. (2019); Bullins et al. (2019); Denevi et al. (2019b); Khodak et al. (2019); Maurer
(2009); Maurer et al. (2013, 2016); Tripuraneni et al. (2020). However, in real world
applications we often deal with heterogeneous classes of learning tasks, which may overall
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be only loosely related. Consequently, the tasks’ commonalities may not be captured well
by a single representation shared among all the tasks. This is for instance the case in which
the tasks can be organized in different groups (clusters), where only tasks belonging to the
same cluster share the same low-dimensional representation.

To overcome this issue, in this work, we follow the recent literature on heterogeneous
meta-learning Bertinetto et al. (2018); Cai et al. (2020); Denevi et al. (2020); Jerfel et al.
(2019); Rusu et al. (2018); Vuorio et al. (2019); Wang et al. (2020); Yao et al. (2019) and
propose a so-called conditional meta-learning approach for meta-learning a representation.
Our algorithm learns a conditioning function mapping available tasks’ side information
into a linear representation that is tuned to that task at hand. Our approach borrows from
Denevi et al. (2020), where the authors proposed a conditional meta-learning approach
for fine tuning and biased regularization. In those cases however, the tasks’ target vectors
are assumed to be all close to a common bias vector rather than sharing the same low-
dimensional linear representation, as instead explored in this work. As we explain in the
following, working with linear representations brings additional difficulties than working
with bias vectors, but, on the other hand, it is also a relevant and effective framework in
many scenarios.

In this work, we propose an online conditional method for linear representation learning
with strong theoretical guarantees. In particular, we show that the method is advantageous
over standard (unconditional) representation learning methods used in meta-learning
when the environment of observed tasks is heterogeneous.

Contributions and Organization. The contributions of this work are the following. First,
in Sec. 2, we design a conditional meta-learning approach to infer a linear representation
that is tuned to the task at hand. Second, in Sec. 3, we formally characterize circumstances
under which our conditional framework brings advantage w.r.t. the standard unconditional
approach. In particular, we argue that this is the case when the tasks are organized in
different clusters according to the support pattern or linear representation their target
vectors’ share. Third, in Sec. 4, we design a convex meta-algorithm providing a comparable
gain as the number of the tasks it observes increases. In the unconditional setting, the
proposed method is able to recover faster rates and it requires to tune one less hyper-
parameter w.r.t. the state-of-the-art unconditional methods. Finally, in Sec. 5, we present
numerical experiments supporting our theoretical claims. We conclude our work in Sec. 6
and we postpone the missing proofs to the supplementary material.

2 Conditional Representation Learning

In this section we introduce our conditional meta-learning setting for representation
learning. Then, we proceed to identify the differences w.r.t. (with respect to) the standard
unconditional counterpart. We begin our overview by first introducing the class of inner
learning algorithms considered in this work.

Within-Task Algorithms. We consider the standard linear supervised learning setting over
Z = X × Y with X ⊆ Rd and Y ⊆ R input and output spaces, respectively. We denote by
P(Z) the set of probability distributions (tasks) over Z. For any task µ ∈ P(Z) and a given
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loss function ` : R × R → R, we aim at finding a weight vector wµ ∈ Rd minimizing the
expected risk

min
w∈Rd

Rµ(w) Rµ(w) = E(x,y)∼µ `
(
〈x,w〉 , y

)
, (1)

where, 〈·, ·〉 represents the Euclidean product in Rd. In practice, µ is only partially observed
trough a dataset Z = (xi, yi)

n
i=1 ∼ µ

n, namely, a collection of n identically independently
distributed (i.i.d.) points sampled from µ. Thus, the goal becomes to use a learning
algorithm in order to estimate a candidate weight vector with a small expected risk
converging to the ideal Rµ(wµ) as the sample size n grows.

Specifically, in this work we will consider as candidate estimators, the family of regular-
ized empirical risk minimizers for linear feature learning Argyriou et al. (2008). Formally,
denoting by D =

⋃
n∈NZn the space of all datasets on Z, for a given θ ∈ Θ in Θ = Sd+ the

set of positive definite d× d matrices, we will consider the following learning algorithms
A(θ, ·) : D → Rd:

A(θ, Z) = argmin
w∈Ran(θ)⊂Rd

RZ,θ(w), (2)

where Ran(θ) denotes the range of θ and we defined

RZ,θ(w) =
1

n

n∑
i=1

`(〈xi, w〉, yi) +
1

2

〈
w, θ†w

〉
, (3)

for any w ∈ Ran(θ). Here θ† denotes the pseudoinverse of θ. Throughout this work we
will denote by RZ(·) = 1/n

∑n
i=1 `(〈xi, ·〉, yi) the empirical risk associated to Z.

Here, θ plays the role of a linear feature representation that is learned during the
meta-learning process (see Argyriou et al., 2008, for more details on the interpretation).

Remark 1 (Within-Task Regularization Parameter). We observe that, differently to previous
work (see e.g. Denevi et al., 2019b), we consider the meta-parameters θ to be any positive
semidefinite matrix, without constraint on its trace (e.g. Tr(θ) ≤ 1). This allows us to
absorb the regularization parameter λ typically used to control λ

〈
w, θ†w

〉
. This choice is

advantageous both in practice since it reduces the number of hyper-parameter to tune and in
theory (as discussed in the following) by enjoying faster learning rates.

Remark 2 (Online Variant of Eq. (2)). While in the following we will focus on algorithms
of the form of Eq. (2), our analysis and results extend also to the setting in which the exact
minimization of the empirical risk is replaced by a pre-conditioned variant of online gradient
descent on RZ,θ, with starting point w0 = 0 ∈ Rd and step size inversely proportional to the
iteration:

A(θ, Z) =
1

n

n∑
i=1

wi, wi+1 = wi −
θpi
i

pi = sixi + θ
†wi si ∈ ∂`(·, yi)(〈xi, wi〉).

(4)

This modification brings additional negligible logarithmic factors in our bounds in the follow-
ing.
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Unconditional Meta-Learning. The standard unconditional meta-learning setting assumes
there exist a meta-distribution ρ ∈ P(M) – also called environment in (Baxter, 2000) – over
a familyM⊆ P(Z) of distributions (tasks) µ and it aims at selecting an inner algorithm
in the family above that is well suited to solve tasks µ sampled from ρ. This target can
be reformulated as finding a linear representation θρ ∈ Θ such that the corresponding
algorithm A(θρ, ·) minimizes the transfer risk

min
θ∈Θ

Eρ(θ) Eρ(θ) = Eµ∼ρ EZ∼µn Rµ
(
A(θ, Z)

)
. (5)

In practice, this stochastic problem is usually tackled by iteratively sampling a task µ ∼ ρ and
a corresponding dataset Z ∼ µn, and, then, performing a step of stochastic gradient descent
on an empirical approximation of Eq. (5) computed from Z. This has approach has proven
effective for instance when the tasks of the environment share a simple common linear
representation, see e.g. Balcan et al. (2019); Bullins et al. (2019); Denevi et al. (2019a,b);
Finn et al. (2017); Finn and Levine (2018); Finn et al. (2019); Khodak et al. (2019).
However, when a single linear representation is not sufficient for the entire environment
of tasks (e.g. multi-clusters), this homogeneous approach is expected to fail. In order
to overcome this limitation, some recent works have adopted the following conditional
approach to the problem, see e.g. Cai et al. (2020); Denevi et al. (2020); Jerfel et al.
(2019); Rusu et al. (2018); Vuorio et al. (2019); Wang et al. (2020); Yao et al. (2019).

Conditional Meta-Learning. Analogously to Denevi et al. (2020), we assume that any
task µ ∼ ρ is provided of additional side information s ∈ S. In such a case, we consider
the environment ρ as a distribution ρ ∈ P(M,S) over the setM of tasks and the set S of
possible side information. Moreover, as usual, we assume ρ to decompose in ρ(·|s)ρS(·)
and ρ(·|µ)ρM(·) the conditional and marginal distributions w.r.t. S andM. For instance,
we observe that the side information s could contain descriptive features of the associated
task, for example attributes in collaborative filtering Abernethy et al. (2009), or additional
information about the users in recommendation systems Harper and Konstan (2015)).
Moreover s could be formed by a portion of the dataset sampled from µ (see Denevi
et al. (2020); Wang et al. (2020)). Conditional meta-learning leverages this additional
side information in order to adapt (or condition) the linear representation θ ∈ Θ on the
associated task at hand, by learning a linear-representation-valued function τ solving the
problem

min
τ∈T
Eρ(τ), Eρ(τ)=E(µ,s)∼ρEZ∼µnRµ(A(τ(s),Z)) (6)

over the space T of measurable functions τ : S → Θ. Notice that we retrieve the un-
conditional meta-learning problem in Eq. (5) if we restrict Eq. (6) to the set of functions
T const = {τ | τ(·) ≡ θ, θ ∈ Θ}, mapping all the side information into the same constant
linear representation.

In the next section, we will investigate the theoretical advantages of adopting such a
conditional perspective and, then, we will introduce a convex meta-algorithm to tackle
Eq. (6).

4



3 The Advantage of Conditional Representation Learning

In order to characterize the behavior of the optimal solution of Eq. (6) and to investigate the
potential advantage of conditional meta-learning, we analyze the generalization properties
of a given conditioning function τ. Formally, we compare the error Eρ(τ) w.r.t. the optimal
minimum risk

E∗ρ = Eµ∼ρ Rµ(wµ) wµ = argmin
w∈Rd

Rµ(w). (7)

In order to do this, we first need to introduce the following standard assumptions used also
in previous literature. Throughout this work we will denote by ·> the standard transposition
operation.

Assumption 1. Let ` be a convex and L-Lipschitz loss function in the first argument. Addi-
tionally, there exist R > 0 such that ‖x‖ ≤ R for any x ∈ X .

Theorem 1 (Excess Risk with Generic Conditioning Function τ). Let Asm. 1 hold. For any
s ∼ ρS , introduce the conditional covariance matrices

W(s) = Eµ∼ρ(·|s)wµw>
µ , C(s) = Eµ∼ρ(·|s)Ex∼ηµxx>, (8)

where, ηµ denotes the inputs’ marginal distribution of the task µ. Let τ ∈ T such that
Ran(W(s)) ⊆ Ran(τ(s)) for any s ∼ ρS and let A(τ(s), ·) be the associated inner algorithm
from Eq. (2). Then,

Eρ(τ) − E∗ρ ≤
Es∼ρSTr

(
τ(s)†W(s)

)
2

+
2L2Es∼ρSTr

(
τ(s)C(s)

)
n

. (9)

Proof. For any (µ, s) ∼ ρ, consider the decomposition

Eρ(τ) − E∗ρ = E(µ,s)∼ρ

[
Bµ,s + Cµ,s

]
, (10)

with

Bµ,s = EZ∼µn
[
Rµ(A(τ(s), Z)) −RZ(A(τ(s), Z))

]
Cµ,s = EZ∼µn

[
RZ(A(τ(s), Z)) −Rµ(wµ)

]
.

Bµ,s is the generalization error of the inner algorithm A(τ(s), ·) on the task µ. Hence,
applying stability arguments (see Prop. 6 in App. A), we can write

Bµ,s ≤
2L2Tr

(
τ(s)Ex∼ηµxx>

)
n

.

Regarding the term Cµ,s, for any conditioning function τ such that wµ ∈ Ran(τ(s)), we can
write

Cµ,s = EZ∼µn
[

min
w∈Rd:w∈Ran(τ(s))

RZ,τ(s)(w) −Rµ(wµ)
]

≤ EZ∼µn
[
RZ,τ(s)(wµ) −Rµ(wµ)

]
=

Tr
(
τ(s)†wµw

>
µ

)
2

,
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where, the second equality exploits the definition of the algorithm in Eq. (2) and the first
inequality exploits the definition of minimum. The desired statement follows by combining
the two bounds above, rewriting E(µ,s)∼ρ = Es∼ρSEµ∼ρ(·|s) and observing that the constraint
above on τ can be rewritten as follows

wµ ∈ Ran(τ(s)) for any (µ, s) ∼ ρ ⇐⇒ Ran(wµw>
µ ) ⊆ Ran(τ(s)) for any (µ, s) ∼ ρ⇐⇒ Eµ∼ρ(·|s)
[
Ran(wµw>

µ )
]
⊆ Ran(τ(s)) for any s ∼ ρS⇐⇒ Ran

(
Eµ∼ρ(·|s)

[
wµw

>
µ

])
⊆ Ran(τ(s)) for any s ∼ ρS ,

where the second and the third equivalences derive from the fact that, for any matrices
A,B ∈ Sd+ and any scalar c 6= 0, Ran(A) ⊆ Ran(A+B) = Ran(A)+Ran(B) and Ran(cA) =
Ran(A), see e.g. Hogben (2006, 2013).

Thm. 1 suggests that the conditioning function τ∗ minimizing the right hand side of
Eq. (9) is a good candidate to solve the meta-learning problem. The following result
explores this question by showing that such a minimizer admits a closed form solution.
The proof is reported in App. B. In the following, we will denote by ‖ · ‖F and ‖ · ‖∗ the
Frobenius and trace norm of a matrix, respectively.

Proposition 2 (Best Conditioning Function in Hindsight). The conditioning function mini-
mizer and the minimum of the bound presented in Thm. 1 over the set

{τ ∈ T | Ran(W(s)) ⊆ Ran(τ(s)), ρS -almost surely} ,

are respectively

τρ(s) =

√
n

2L
C(s)†/2(C(s)1/2W(s)C(s)1/2)1/2C(s)†/2

and

Eρ(τρ) − E∗ρ ≤
2LEs∼ρS

∥∥W(s)1/2C(s)1/2
∥∥
∗√

n
. (11)

This result allows us to quantify the benefits of adopting the conditional feature learning
strategy.

Conditional Vs. Unconditional Meta-Learning. Applying Prop. 2 to T const, we obtain the
excess risk bound for unconditional meta-learning

Eρ(θρ) − E∗ρ ≤
2L
∥∥W1/2

ρ C
1/2
ρ

∥∥
∗√

n
, (12)

achieved for τ(s) ≡ θρ the meta-parameter

θρ =

√
n

2L
C
†/2
ρ (C

1/2
ρ WρC

1/2
ρ )1/2C

†/2
ρ , (13)

with unconditional covariance matrices

Wρ = Eµ∼ρwµw>
µ , Cρ = Eµ∼ρEx∼ηµxx>. (14)
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We observe that in the previous literature Denevi et al. (2018, 2019b) the authors
restricted the unconditional problem over the smaller class of linear representation Θ̂ =
{θ ∈ Sd+ : Ran(Wρ) ⊆ Ran(θ),Tr(θ) ≤ 1} and they considered as the best unconditional
representation, the matrix minimizing only a part of the previous bound, namely,

θ̂ρ = argmin
θ∈Θ̂

Tr
(
θ†Wρ

)
=

W
1/2
ρ

Tr
(
W
1/2
ρ

) . (15)

On the other hand, the unconditional oracle we introduce above in Eq. (13) allows us to
recover a tighter bound which is able to recover the best performance between independent
task learning (ITL) and the oracle considered in previous literature Denevi et al. (2019b).
Indeed, by exploiting the duality between the trace norm ‖ · ‖∗ and the operator norm
‖ · ‖∞ of a matrix, we can upper bound the right-side-term in Eq. (12) by the quantity

2Lmin
{∥∥W1/2

ρ

∥∥
∗
∥∥C1/2ρ ∥∥∞, ∥∥W1/2

ρ

∥∥
F

∥∥C1/2ρ ∥∥
F

}
√
n

,

namely, the minimum between the bound for independent task learning and the bound for
unconditional oracle obtained by previous authors. Notice that the unconditional quantity
in Eq. (12) is always bigger than the conditional quantity in Eq. (11), since Eq. (12)
coincides with the minimum over a smaller class of function. In order to quantify the gap
between these two quantities – namely, the advantage in using the conditional approach
w.r.t. the unconditional one – we have to compare the term

∥∥W1/2
ρ C

1/2
ρ

∥∥
∗ with the term

Es∼ρS
∥∥C(s)1/2W(s)1/2

∥∥
∗.

We report below a setting that can be considered illustrative for many real-world
scenarios in which such a gap in performance is significant. We refer to App. C for the
details and the deduction.

Example 1 (Clusters). Let S = Rq be the side information space, for some integer q > 0. Let
ρ be such that the side information marginal distribution ρS is given by a uniform mixture
of m uniform distributions. More precisely, let ρS = 1

m

∑m
i=1 ρ

(i)
S , with ρ(i)S = U

(
B(ai, 1/2)

)
the uniform distribution on the ball of radius 1/2 centered at ai ∈ S, characterizing the
cluster i. For a given side information s, a task µ ∼ ρ(·|s) is sampled such that: 1) its inputs’
marginal ηµ is a distribution with constant covariance matrix C(s) = Eµ∼ρ(·|s)Ex∼ηµxx> = C,
for some C ∈ Sd+, 2) wµ is sampled from a distribution with conditional covariance matrix
W(s) = Eµ∼ρ(·|s)wµw>

µ , with W(s) such that (C1/2W(s)C1/2)(C1/2W(p)C1/2) = 0 if s 6= p.
Then,

Es∼ρS
∥∥C(s)1/2W(s)1/2

∥∥
∗ =

1√
m

∥∥W1/2
ρ C

1/2
ρ

∥∥
∗.

The inequality above tells us that, in the setting of Ex. 1, the conditional approach
gains a

√
m factor in comparison to the unconditional approach. Therefore, the larger

the number of clusters is, the more pronounced the advantage of conditional approach
w.r.t. the unconditional one will be. We observe that a particular case of the setting above
could be that one in which q = 1 and the side information are noisy observations of the
index of the cluster the tasks belong to. In our experiments, in Sec. 5, we consider a more
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interesting and realistic variant of the setting above, in which we will use as task’s side
information a training dataset sampled from that task. In the next section, we introduce a
convex meta-algorithm mimicking this advantage also in practice.

4 Conditional Representation Meta-Learning Algorithm

To tackle conditional meta-learning in practice we consider a parametrization where the
conditioning functions that are modeled w.r.t. a given feature map Φ : S → Rk (with
k ∈ N) on the side information space. In other words, we consider τ : S → Sd+,

τ(·) =
(
MΦ(·)

)>
MΦ(·) + C, (16)

for some tensor M ∈ Rp×d×k (p ∈ N) and matrix C ∈ Sd+.
By construction, the above parametrization guarantees us to learn functions taking

values in the set of positive semi-definite matrices. However, directly addressing the meta-
learning problem poses two issues: first, dealing with tensorial structures might become
computationally challenging in practice and second, such parametrization is quadratic in
M and would lead to a non-convex optimization functional in practice. To tackle this issue,
the following results shows that we can equivalently rewrite the conditioning function in
the form of Eq. (16) by using a matrix in Sdk+ . This will allows us to implement our method
working with matrices in Sdk+ , instead of tensors in Rp×d×k. Throughout this work, we will
denote by ⊗ the Kronecker product.

Proposition 3 (Matricial Re-formulation of τM(s)). Let τ be as in Eq. (16). Then,

τ(s) =
(
Id ⊗Φ(s)>

)
HM

(
Id ⊗Φ(s)

)
+ C, (17)

where Id is the identity in Rd×d and HM is the matrix in Rdk×dk defined by the entries(
HM

)
(i−1)k+h,(j−1)k+z

=
〈
M(:, i, h),M(:, j, z)

〉
with i, j = 1, . . . , d and h, z = 1, . . . , k.

The arguments above motivate us to consider the following set of conditioning functions:

TΦ =
{
τ(·) =

(
Id ⊗Φ(·)>

)
H
(
Id ⊗Φ(·)

)
+ C

∣∣∣such that H ∈ Sdk+ , C ∈ Sd+
}
. (18)

To highlight the dependency of a function τ ∈ TΦ w.r.t. its parameter H and C, we will
denote τ = τH,C. Evidently, TΦ contains the space of all unconditional estimators T const.
We consider TΦ equipped with the canonical norm ‖τH,C‖2 = ‖(H,C)‖2F = ‖H‖

2
F + ‖C‖

2
F,

where, recall, ‖ · ‖F denotes the Frobenius norm. The following two standard assumptions
will allow us to design and analyse our method.

Assumption 2. The optimal function τρ belongs to TΦ, namely there exist Hρ ∈ Sdk+ and
Cρ ∈ Sd+, such that τρ(·) = τHρ,Cρ(·) =

(
Id ⊗Φ(·)>

)
Hρ
(
Id ⊗Φ(·)

)
+ Cρ.

Assumption 3. There exists K > 0 such that ‖Φ(s)‖ ≤ K for any s ∈ S.

8



Here, Asm. 2 allows us to restrict the conditional meta-learning problem in Eq. (6) to
TΦ, rather than to the entire space T of measurable functions, while Asm. 3 ensures that
the meta-objective is Lipschitz (see below).

The Convex Surrogate Problem. We start from observing that, exploiting the generaliza-
tion properties of the within-task algorithm (see Prop. 6 in App. A), for any τ, we can write
the following

EZ∼µn
[
Rµ(A(τ(s), Z))

]
≤EZ∼µn

[
RZ(A(τ(s), Z))

]
+
2L2Tr

(
τ(s)Ex∼ηµxx>

)
n

≤ EZ∼µn
[
RZ,τ(s)(A(τ(s), Z))

]
+
2L2Tr

(
τ(s)Ex∼ηµxx>

)
n

,

where in the second inequality we have exploited the fact that the within-task regularizer
is non-negative. Consequently, by taking the expectation w.r.t. (µ, s) ∼ ρ and exploiting the
fact that the points are i.i.d., we get

Eρ(τ) ≤ E(µ,s)∼ρ EZ∼µn
[
RZ,τ(s)(A(τ(s), Z)) +

2L2

n
Tr
(
τ(s)

X>X

n

)]
, (19)

where X ∈ Rn×d is the matrix with the inputs vectors (xi)ni=1 as rows. The inequality above
suggests us to introduce the surrogate problem

min
τ∈T

Êρ(τ) Êρ(τ) = E(µ,s)∼ρ EZ∼µn
[
RZ,τ(s)(A(τ(s), Z)) +

2L2

n
Tr
(
τ(s)

X>X

n

)]
, (20)

where, from the last inequality above, for any τ, we have

Eρ(τ) ≤ Êρ(τ). (21)

We stress that the surrogate problem we take here is different from the one considered in pre-
vious work Bullins et al. (2019); Denevi et al. (2019a,b), where the authors considered as
meta-objective only a part of the function above, namely, E(µ,s)∼ρ EZ∼µn

[
RZ,τ(s)(A(τ(s), Z))

]
.

As we will see in the following, such a choice is more appropriate for the problem at hand,
since, differently from the meta-objective used in previous literature, it will allow us to
develop a conditional meta-learning method that is theoretically grounded also for linear
representation learning.

Exploiting Asm. 2, the surrogate problem in Eq. (20) can be restricted to the class of
linear functions TΦ in Eq. (18) and it can be rewritten more explicitly as

min
H∈Sdk,C∈Sd+

E(µ,s)∼ρ EZ∼µn L
(
H,C, s, Z

)
L
(
H,C, s, Z

)
= RZ,τH,C(s)(A(τH,C(s), Z)) +

2L2

n
Tr
(
τH,C(s)

X>X

n

)
.

(22)

In the following proposition we outline some useful properties of the meta-loss L
(
·, ·, s, Z

)
introduced above (such as convexity) supporting its choice as surrogate meta-loss.
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Algorithm 1 Meta-Algorithm, SGD on Eq. (22)

Input γ > 0 meta-step size, H0 ∈ Sdk+ , C0 ∈ Sd+
Initialization H1 = H0 ∈ Sdk+ , C = C0 ∈ Sd+
For t = 1 to T

Receive (µt, st) ∼ ρ and Zt ∼ µnt
Let θt =

(
Id ⊗Φ(st)

)
Ht
(
Id ⊗Φ(st)

>
)
+ Ct

Compute wθt = A(θt, Zt) by Eq. (2)
Compute ∇L(·, Ct, st, Zt)(Ht) as in Eq. (23) with wθt
Compute ∇L(Ht, ·, st, Zt)(Ct) as in Eq. (23) with wθt
Update Ht+1 = projΘ

(
Ht − γ∇L(·, Ct, st, Zt)(Ht)

)
Update Ct+1 = projΘ

(
Ct − γ∇L(Ht, ·, st, Zt)(Ct)

)
Return H =

1

T

T∑
t=1

Ht, C =
1

T

T∑
t=1

Ct

Proposition 4 (Properties of the Surrogate Meta-Loss L). For any Z ∈ D and s ∈ S, the
function L

(
·, ·, s, Z

)
is convex and one of its subgradients is given, for any H ∈ Sdk+ and C ∈ Sd+,

by

∇L
(
H, ·, s, Z

)
(C) = ∇̂

∇L
(
·, C, s, Z

)
(H) =

(
Id ⊗Φ(s)

)
∇̂
(
Id ⊗Φ(s)>

) (23)

where

∇̂ = −
λ

2
τH,C(s)

†wτH,C(s)w
>
τH,C(s)

τH,C(s)
† +

2L2X>X

n2
.

Moreover, under Asm. 1 and Asm. 3, we have∥∥∇L(·, ·, s, Z)(H,C)∥∥
F
≤ (1+ K2)(LR)2

(1
2
+
2

n

)
.

The proof of Prop. 4 is reported in App. D.2. It follows from combining results from
Denevi et al. (2019b) with the composition of the linear parametrization of the functions
τH,C ∈ TΦ.

The Conditional Meta-Learning Estimator. The meta-learning strategy we propose con-
sists in applying Stochastic Gradient Descent (SGD) on the surrogate problem in Eq. (22).
Such a meta-algorithm is implemented in Alg. 1: we assume to observe a sequence of
i.i.d. pairs (Zt, st)

T
t=1 of training datasets and side information, and at each iteration we

update the conditional parameters (Ht, Ct) by performing a step of constant size γ > 0
in the direction of −∇L(·, ·, st, Zt)(Ht, Ct) and a projection step on Sdk+ × Sd+. Finally, we
output the conditioning function τH,C parametrized by (H,C), the average across all the
iterates (Ht, Ct)Tt=1. The theorem below analyzes the generalization properties of such a
conditioning function.
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Theorem 5 (Excess Risk Bound for the Conditioning Function Returned by Alg. 1). Let
Asm. 1 and Asm. 3 hold. For any s ∼ ρS , recall the conditional covariance matrices W(s)
and C(s) introduced in Thm. 1. Let τH,C be a fixed function in TΦ such that Ran(W(s)) ⊆
Ran(τH,C(s)) for any s ∼ ρS . Let H and C be the outputs of Alg. 1 applied to a sequence
(Zt, st)

T
t=1 of i.i.d. pairs sampled from ρ with meta-step size

γ =
‖(H−H0, C− C0)‖F

(1+ K2)(LR)2

(1
2
+
2

n

)−1 1√
T
. (24)

Then, in expectation w.r.t. the sampling of (Zt, st)Tt=1,

E Eρ(τH,C) − E
∗
ρ ≤

Es∼ρSTr
(
τH,C(s)

†W(s)
)

2
+
2L2Es∼ρSTr

(
τH,C(s)C(s)

)
n

+
(1
2
+
2

n

)(1+ K2)(LR)2 ‖(H−H0, C− C0)‖F√
T

.

Proof (Sketch). The detailed proof is reported in App. D.4. Exploiting the fact that, for any
τ ∈ T , Eρ(τ) ≤ Êρ(τ) (see Eq. (21)) and adding ±Êρ(τH,C), we can write the following

EZ Eρ(τH,C) − E
∗
ρ ≤EZ Êρ(τH,C) − Êρ(τH,C)︸ ︷︷ ︸

A(τH,C)

+ Êρ(τH,C) − E∗ρ︸ ︷︷ ︸
B(τH,C)

.
(25)

The term A(τH,C) can be controlled according to the convergence properties of the meta-
algorithm in Alg. 1 as described in Prop. 12. Regarding the term B(τH,C), exploiting the
definition of the within-task algorithm in Eq. (2) as minimum, for any τ ∈ T such that
Ran(Eµ∼ρ(·|s)wµw>

µ ) ⊆ Ran(τ(s)) for any s ∼ ρS , we can rewrite

B(τ) = E(µ,s)∼ρ EZ∼µn
[
RZ,τ(s)(A(τ(s), Z)) −Rµ(wµ)

]
+
2L2E(µ,s)∼ρ Tr

(
τ(s)Ex∼ηµxx>

)
n

≤
E(µ,s)∼ρ Tr

(
τ(s)†wµw

>
µ

)
2

+
2L2E(µ,s)∼ρ Tr

(
τ(s)Ex∼ηµxx>

)
n

.

The desired statement then derives from combining the two parts above and optimizing
w.r.t. γ.

We now present some important implications of Thm. 5.

Proposed Vs. Optimal Conditioning Function. Specializing the bound in Thm. 5 to the
best conditioning function τρ in Prop. 2, thanks to Asm. 2, we get the following bound for
our estimator,

E Eρ(τH,C) − E
∗
ρ ≤ O

(
Es∼ρS

∥∥W(s)1/2C(s)1/2
∥∥
∗ n

−1/2
)
+O

(
‖(Hρ −H0, Cρ − C0)‖F T−1/2

)
.

From such a bound, we can state that our proposed meta-algorithm achieves comparable
performance to the best conditioning function τρ in hindsight, when the number of observed
tasks is sufficiently large. Moreover, recalling the unconditional oracle θ̂ρ in Eq. (15) used
in previous literature, regarding the second term vanishing with T , we observe that our
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conditional meta-learning approach incurs a cost of ‖(Hρ−H0, Cρ−C0)‖FT−1/2 as opposed
to the cost of ‖θ̂ρ − θ0‖T−1/4 associated to state-of-the-art unconditional meta-learning
approaches (see Balcan et al. (2019); Bullins et al. (2019); Denevi et al. (2019b); Khodak
et al. (2019)). Thus, our conditional approach presents a faster convergence rate w.r.t. T
than such unconditional methods, but a complexity term that is expected to be larger due
to the larger complexity of the class of functions we are working with. Such a faster rate
w.r.t. T is essentially due to our formulation of the problem on the entire set of positive-
semidefinite matrices (with no trace constraints). This in fact allows us to incorporate the
within-task regularization parameter λ directly in the linear representation and to gain a

√
T

order that was lost in previous literature when tuning w.r.t. the parameter λ. At the same
time, this allows us to develop also a method requiring to tune just one hyper-parameter,
while previous unconditional approaches requires to tune two hyper-parameters.

Comparison to Unconditional Meta-Learning. Specializing Thm. 5 to the best uncon-
ditional estimator τH,C ≡ θρ we introduced in Eq. (13), the bound for our estimator
becomes

E Eρ(τH,C) − E
∗
ρ ≤ O

(∥∥W1/2
ρ C

1/2
ρ

∥∥
∗ n

−1/2
)
+O

(
‖θρ − C0‖ T−1/2

)
. (26)

From the bound above, we can conclude that the conditional approach provides, at least, the
same guarantees as its unconditional counterpart. Moreover, we stress again that the bound
above presents a faster rate w.r.t. T in comparison to the state-of-the-art unconditional
methods.

Remark 3 (Online Variant of Eq. (2)). Also in this case, as already observed for the bias
regularization and fine tuning framework proposed in Denevi et al. (2020), when we use
the online inner family in Rem. 2, we can approximate the meta-subgradient in Eq. (23) by
replacing the batch regularized empirical risk minimizer A(τH,C(s), Z) in Eq. (2) with the last
iterate of the online algorithm in Eq. (4).

5 Experiments

We now present preliminary experiments in which we compare the proposed conditional
meta-learning approach in Alg. 1 (cond.) with the unconditional counterpart (uncond.)
and solving the tasks independently (ITL, namely, running the inner algorithm separately
across the tasks with the constant linear representation θ = Id ∈ Sd+). We considered
regression problems and we evaluated the errors by ` the absolute loss. We implemented
the online variant of the within-task algorithm introduced in Eq. (4). The hyper-parameter
γ was chosen by (meta-)cross validation on separate Ttr, Tva and Tte respectively meta-train,
-validation and -test sets. Each task is provided with a training dataset Ztr of ntr points
and a test dataset Zte of nte points used to evaluate the performance of the within-tasks
algorithm. In App. E we report the details of this process in our experiments.

Synthetic Clusters. We considered two variants of the setting described in Ex. 1 with
side information corresponding to the training datasets Ztr associated to each task. In
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Figure 1: Test error (averaged over 5 random generations of the data) of different methods w.r.t. an
increasing number of tasks on synthetic data. 2 clusters (Left) and 6 clusters (Right).

both settings, we sampled Ttot = 900 tasks from a uniform mixture of m clusters. For
each task µ, we generated the target vector wµ ∈ Rd with d = 20 as wµ = P(jµ)w̃µ,
where, jµ ∈ {1, . . . ,m} denotes the cluster from which the task µ was sampled and with the
components of w̃µ ∈ Rd/(10) sampled from the Gaussian distribution G(0, 1) and then w̃µ
normalized to have unit norm, with P(jµ) ∈ Rd×d/(10) a matrix with orthonormal columns.
We then generated the corresponding dataset (xi, yi)

ntot
i=1 with ntot = 80 according to the

linear equation y = 〈x,wµ〉+ ε, with x sampled uniformly on the unit sphere in Rd and ε
sampled from a Gaussian distribution, ε ∼ G(0, 0.1). In this setting, the operator norm of
the inputs’ covariance matrix is small (equal to 1/d) and the weight vectors’ covariance
matrix of each single cluster is low-rank (its rank is d/(10) = 2). We implemented our
conditional method using the feature map Φ : D → R2d defined by Φ(Z) = 1

ntr

∑ntr
i=1φ(zi),

with φ(zi) = vec
(
xi(yi, 1)

>
)
, where, for any matrix A = [a1, a2] ∈ Rd×2 with columns

a1, a2 ∈ Rd, vec(A) = (a1, a2)
> ∈ R2d.

In Fig. 1, we report the results we got on an environment of tasks generated as above
with m = 2 (Left) and m = 6 (Right) clusters, respectively. As we can see, when the
clusters are two, the unconditional approach outperforms ITL (as predicted from previous
literature), but the unconditional method is in turn outperformed by our conditional
counterpart. When the number of clusters raises to six, the performance of unconditional
meta-learning degrades to the same performance of ITL, while conditional meta-learning
outperforms both methods. Summarizing, the more the heterogeneity of the environment
(number of clusters) is significant, the more the conditional approach brings advantage
w.r.t. the unconditional one. This is in line with our statement in Ex. 1.

Real Datasets. We tested the performance of the methods also on the regression problem
on the computer survey data from Lenk et al. (1996) (see also McDonald et al., 2016).
Ttot = 180 people (tasks) rated the likelihood of purchasing one of ntot = 20 computers.
The input represents d = 13 computers’ characteristics and the label is a rate in {0, . . . , 10}.
In this case, we used as side information the training datapoints Z = (zi)

ntr
i=1 and the

feature map Φ : D → Rd+1 defined by Φ(Z) = wZ, with wZ the solution of Tikhonov
regularization with the squared loss, namely, the vector satisfying (X̂>X̂+ Id+1)wZ = X̂>y,
where, X̂ ∈ R(d+1)×n is the matrix obtained by adding to the matrix X ∈ Rn×d one column
of ones at the end. Fig. 2 (Left) shows that also in this case, the unconditional approach
outperforms ITL, but the performance of its conditional counterpart is much better.
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Figure 2: Test error (averaged over 5 random splitting of the data) of different methods w.r.t. an
increasing number of tasks on the Lenk dataset (Left) and the Movielens-100k dataset (Right).

Figure 3: Test error (averaged over 5 random splitting of the data) of different methods w.r.t. an
increasing number of tasks on the Jester-1 dataset.

Finally, we tested the performance of the methods on the Movielens-100k and Jester-
1 real-world datasets, containing ratings of users (tasks) to movies and jokes (points),
respectively. We recall that recommendation system settings with d items can be interpreted
within the meta-learning setting by considering each data point (x, y) to have input x ∈ Rd
to be the one-hot encoding of the current item to be rated (e.g. a movie or a joke) and
y ∈ R the corresponding score (see e.g. Denevi et al., 2019a, for more details). We
restricted the original dataset to the ntot = 20 most voted movies/jokes (as a consequence,
by formulation, d = 20). We guaranteed each user voted at least 5 movies/jokes, which led
to a total of Ttot = 400/450 tasks (i.e. users). In both cases, we used as side information the
training datapoints Z = (zi)

ntr
i=1. For the Movielens-100k dataset we used the same feature

map described for the synthetic clusters experiments in Fig. 1. For the Jester-1 dataset, let
M and m denote the maximum and minimum rating value that can be assigned to a joke.
We adopted the feature map Φ : D → R2d+1 such that, for any dataset Z = (xi, yi)

n
i=1, we

have

Φ(Z) =

(
vec(Φ̃(Z))

1

)
, (27)

where vec denotes the vectorization operator (i.e. mapping a matrix in the vector concate-
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nating all its columns) and Φ̃ : Z→ Rd×2 is such that

Φ̃(Z) =

[
cos

(
n∑
i=1

xi

(
π

4

M− yi
M−m

))
, sin

(
n∑
i=1

xi

(
π

4

M− yi
M−m

))]
�

(
n∑
i=1

xi

)
, (28)

with � denoting the Hadamard (entry-wise) product broad-casted across both columns.
The rationale behind this feature map is to represent as similar vectors those users with

similar scores for the same movies. In particular, each item-score pair observed in training
is represented as a unitary vector in R2++, with the angle depending on the score attributed
to that item (the vector corresponds to zero if that movie was not observed at the training
time). We noticed that this feature map did not provide significant advantages on the
Movielens-100k dataset, while being particularly favorable on the Jester-1 benchmark.

We report the average test errors (and standard deviation) for ITL, conditional and
unconditional meta-learning in Fig. 2 (Right) and Fig. 3 for Movielens-100k and Jester-1,
respectively. As it can be noticed, the proposed approach performs significantly better than
ITL and its unconditional counterpart. This suggests that groups of users might rely each
on similar features (but different from those of other groups) to rate an item in the dataset
(respectively a movie or a joke).

6 Conclusion

We proposed a conditional meta-learning approach aiming at learning a function mapping
task’s side information into a linear representation that is well suited for the task at hand.
We theoretically and experimentally showed that the proposed conditional approach is
advantageous w.r.t. the standard unconditional counterpart when the observed tasks
share heterogeneous linear representations. Our investigation allowed us to develop
also a new variant of an unconditional meta-learning method requiring tuning one less
hyper-parameter and relying on faster learning bounds than state-of-the-art unconditional
approaches.

We identify two main directions for future work. A first question left opened by most
conditional meta-learning methods is how to design a suitable feature map Φ when the
tasks’ training datas is used as side information. Following most previous work Rusu
et al. (2018); Wang et al. (2020) in our experiments we adopted a mean embedding
representation. However, given the key importance played by such feature map in Thm. 5,
it will be worth investigating better alternatives in the future. A second direction is
more focused on computations and modeling aspects. In particular it will be valuable to
investigate how to predict non-linear conditioning functions (similarly to e.g. Bertinetto
et al. (2018); Finn et al. (2017)) and develop more efficient versions of our method, using
less expensive algorithms to update the positive matrices, such as the Frank-Wolfe algorithm
used in Bullins et al. (2019) to deal with unconditional settings.
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Appendix

The supplementary material is organized as follows. In App. A we give the bound on the
generalization error of the algorithm in Eq. (2) that we used in various proofs. In App. B
we report the proof to get the closed form of the best conditioning function τρ outlined in
Prop. 2. In App. C we report the proof of the statement in Ex. 1. In App. D, we report the
proofs of the statements we used in Sec. 4 in order to prove the expected excess risk bound
in Thm. 5 for Alg. 1. Finally, in App. E we report the experimental details we missed in the
main body.

A Generalization Bound of the Within-Task Algorithm

We now study the generalization error of the within-task algorithm in Eq. (2), i.e. the
discrepancy between the (true) risk and the empirical risk of the corresponding estimator.
This is done in the following result where we exploit stability arguments, more precisely
the so-called hypothesis stability, see (Bousquet and Elisseeff, 2002, Def. 3).

Proposition 6 (Generalization Error of the Within-Task Algorithm in Eq. (2)). Let Asm. 1
hold. For a distribution µ ∼ ρ, fix a dataset Z = (xi, yi)

n
i=1 ∼ µ

n. For any θ ∈ Θ, let wθ(Z) be
the corresponding RERM in Eq. (2) over Z. Then, the following generalization error bound
holds for wθ(Z):

EZ∼µn
[
Rµ(wθ(Z)) −RZ(wθ(Z))

]
≤ 2L

2

n
Tr
(
Ez∼µ θxx>

)
. (29)

Proof. During this proof, we need to make explicit the dependency of the RERM (Regular-
ized Empirical Risk Minimizer) wθ in Eq. (2) w.r.t. the dataset Z. For any i ∈ {1, . . . , n},
consider the dataset Z(i), a copy of the original dataset Z in which we exchange the point
zi = (xi, yi) with a new i.i.d. point z ′i = (x ′i, y

′
i). For a fixed θ ∈ Θ, we analyze how much

this perturbation affects the outputs of the RERM algorithm in Eq. (2). In other words, we
study the discrepancy between wθ(Z) and wθ(Z(i)). We start from observing that, since

by Asm. 1 RZ,θ is 1-strongly convex w.r.t. ‖ · ‖θ =
√〈
·, θ† ·

〉
, by growth condition and the

definition of the RERM algorithm, we can write the following

1

2

∥∥wθ(Z(i)) −wθ(Z)
∥∥2
θ
≤ RZ,θ(wθ(Z(i))) −RZ,θ(wθ(Z))

1

2

∥∥wθ(Z(i)) −wθ(Z)
∥∥2
θ
≤ RZ(i),θ(wθ(Z)) −RZ(i),θ(wθ(Z

(i))).

(30)

Hence, summing the two inequalities above, we get∥∥wθ(Z(i)) −wθ(Z)
∥∥2
θ
≤ RZ,θ(wθ(Z(i))) −RZ(i),θ(wθ(Z

(i))) +RZ(i),θ(wθ(Z)) −RZ,θ(wθ(Z))

=
A + B
n

,

(31)
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where we have introduced the terms

A = `(〈x ′i, wθ(Z)〉, y ′i) − `(〈x ′i, wθ(Z(i))〉, y ′i)
B = `(〈xi, wθ(Z(i))〉, yi) − `(〈xi, wθ(Z)〉, yi).

(32)

Now, introducing the subgradients s ′θ,i ∈ ∂`(·, y ′i)(〈x ′i, wθ(Z)〉) and sθ,i ∈ ∂`(·, yi)(〈xi, wθ(Z(i))〉)
and applying Holder’s inequality, we can write

A ≤
〈
x ′is
′
θ,i, wθ(Z) −wθ(Z

(i))
〉
≤
∥∥x ′is ′θ,i∥∥θ,∗ ∥∥wθ(Z(i)) −wθ(Z)

∥∥
θ

B ≤
〈
xisθ,i, wθ(Z

(i)) −wθ(Z)
〉
≤
∥∥xisθ,i∥∥θ,∗ ∥∥wθ(Z(i)) −wθ(Z)

∥∥
θ
,

(33)

where ‖ · ‖θ,∗ =
√〈
·, θ ·

〉
is the dual norm of ‖ · ‖θ. Combining these last two inequalities

with Eq. (31) and simplifying, we get the following∥∥wθ(Z(i)) −wθ(Z)
∥∥
θ
≤ 1

n

(∥∥x ′is ′θ,i∥∥θ,∗ + ∥∥xisθ,i∥∥θ,∗). (34)

Hence, combining the first row in Eq. (33) with Eq. (34), we can write

`(〈x ′i, wθ(Z)〉, y ′i) − `(〈x ′i, wθ(Z(i))〉, y ′i) ≤
1

n

(∥∥x ′is ′θ,i∥∥2θ,∗ + ∥∥x ′is ′θ,i∥∥θ,∗ ∥∥xisθ,i∥∥θ,∗). (35)

Now, taking the expectation w.r.t. Z ∼ µn and z ′i ∼ µ of the left side member above,
according to (Bousquet and Elisseeff, 2002, Lemma 7), we get

EZ∼µn Ez ′i∼µ
[
`(〈x ′i, wθ(Z)〉, y ′i)− `(〈x ′i, wθ(Z(i))〉, y ′i)

]
= EZ∼µn

[
Rµ(wθ(Z))−RZ(wθ(Z))

]
.

Finally, taking the expectation of the right side member, exploiting the fact that the points
are i.i.d. according µ, we get

EZ∼µn Ez ′i∼µ
1

n

(∥∥x ′is ′θ,i∥∥2θ,∗ + ∥∥x ′is ′θ,i∥∥θ,∗∥∥xisθ,i∥∥θ,∗
)
≤ 2

n
EZ∼µn Ez ′i∼µ

∥∥x ′is ′θ,i∥∥2θ,∗, (36)

where we recall that s ′θ,i ∈ ∂`(·, y ′i)(〈x ′i, wθ(Z)〉). Combining the two last statements above,
we get

EZ∼µn
[
Rµ(wθ(Z)) −RZ(wθ(Z))

]
≤ 2

n
EZ∼µn Ez ′i∼µ

∥∥x ′is ′θ,i∥∥2θ,∗. (37)

Finally, substituting the close form of ‖ · ‖θ,∗ and observing that, by Asm. 1 we have∥∥x ′is ′θ,i∥∥2θ,∗ ≤ L2∥∥x ′i∥∥2θ,∗, we get the desired statement:

EZ∼µn
[
Rµ(wθ(Z)) −RZ(wθ(Z))

]
≤ 2L

2

n
Ez ′i∼µ

〈
x ′i, θx

′
i

〉
=
2L2

n
Tr
(
Ez∼µ θxx>

)
. (38)

20



B Proof of Prop. 2

In this section we report the proof to get the closed form of the best conditioning function
τρ outlined in Prop. 2. In order to do this, we need the following results.

Lemma 7. For any µ ∼ ρM, define the inputs’ covariance matrix Cµ = Ex∼ηµxx>. Then, for
any wµ ∈ argminw∈Rd Rµ(w), the projection w0,µ = C†µCµwµ of wµ onto the range of Cµ is
still a minimizer of Rµ.

Proof. Consider the decomposition of wµ w.r.t. the range of Cµ:

wµ = w0,µ +w
⊥ (39)

with w0,µ = C†µCµwµ and w⊥ ∈ Rd such that Cµw⊥ = 0. We note that, almost surely w.r.t.
the points x ∈ Rd sampled from µ, we have

〈
w⊥, x

〉
= 0. This follows by noting that by the

orthogonality between Cµ and w⊥, we have

0 =
〈
w⊥, Cµw

⊥
〉
= Ex∼ηµ

〈
w⊥, xx>w⊥

〉
= Ex∼ηµ

〈
x,w⊥

〉2
, (40)

that can hold only if
〈
x,w⊥

〉2
= 0 almost surely (a.s.) w.r.t. ηµ. We conclude that 〈wµ, x〉 =

〈w0,µ, x〉+
〈
w⊥, x

〉
= 〈w0,µ, x〉 a.s. w.r.t. µ and, consequently, Rµ(wµ) = Rµ(w0,µ).

Corollary 8. For any s ∈ S, recall the conditional covariance matrices in Thm. 1. Then,
Ran(W(s)) ⊂ Ran(C(s)), namely the range of the task-vector conditional covariance W(s) is
always contained in the range of the input conditional covariance C(s).

Proof. The corollary is a direct consequence of the previous Lemma 7. The result above
guarantees that for any µ ∼ ρM, the rank-one operator Wµ = wµw

>
µ has range contained

in the range of Cµ. Taking the conditional expectations W(s) = Eµ∼ρ(·|s)Wµ and C(s) =
Eµ∼ρ(·|s)Cµ maintains this relation unaltered, giving the desired statement.

Lemma 9. Let P ∈ Sd+ be an orthogonal projector, namely such that P = P2. Then, for any
positive definite matrix θ ∈ Sd++, we have Pθ−1P � (PθP)†.

Proof. The proof is essentially a corollary of Schur’s complement. Let consider the decom-
position

θ = PθP︸︷︷︸
A

+Pθ(I− P)︸ ︷︷ ︸
B

+(I− P)θP︸ ︷︷ ︸
B>

+(I− P)θ(I− P)︸ ︷︷ ︸
C

(41)

where A,C ∈ Sd+, B ∈ Rd×d and CB = B>C = 0 since (I − P)P = P(I − P) = P − P2 =
P−P = 0. Additionally, since C† = CC†C† = C†C†C, we have that also AC† = ACC†C† = 0
and analogously C†B = B>C† = 0. Note that since θ is invertible, both A and C are full
rank. We now observe a few relevant interactions between the objects above. In particular,
we observe that CC†B> = B>. To see this, first note that

CC†B> = (I− P)θ(I− P)
(
(I− P)θ(I− P)

)†
(I− P)θP. (42)
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By taking D = (I − P)θ1/2 and using the properties of the pseudoinverse (e.g. D =
D>(DD>)†), we have

CC†B> = DD>(DD>)†Dθ1/2P (43)

= DD†Dθ1/2P (44)

= Dθ1/2P (45)

= B>. (46)

We now derive an alternative characterization of θ in terms of A,B,C. By adding and
removing a term BC†B to θ, we have

θ = A+ B+ B> + C (47)

= A− BC†B> + BC†B> + B+ B> + C (48)

= A− BC†B> + B+ C+ (B+ C)(C†B>) (49)

= A− BC†B> + B+ C+ (A− BC†B> + B+ C)(C†B) (50)

= (A− BC†B> + B+ C)(I+ C†B>), (51)

where we have first used the equality CC†B> = B> and then the ortogonality AC† =
B>C† = 0. Following a similar reasoning

A− BC†B> + B+ C = A− BC†B> + C+ BC†C (52)

= A− BC†B> + C+ BC†(A− BC†B> + C) (53)

= (I+ BC†)(A− BC†B> + C) (54)

since BC†C = C (following the same reasoning used for B> = CC†B>) and AC† = C†B = 0.
We conclude that

θ = (I+ BC†)(A− BC†B> + C)(I+ C†B>). (55)

We now show that all terms in the equation above are invertible. First note that (I +
BC†)−1 = (I − BC†) and (I + C†B>)−1 = (I + C†B>). Moreover, since θ � 0 and C(A −
BC†B>) = 0, then also A− BC†B> � 0. We have

θ−1 = (I− C†B>)(A− BC†B> + C)−1(I− BC†), (56)

from which we conclude

Pθ−1P = P(A− BC†B> + C)−1P (57)

= P
(
(A− BC†B>)† + C†

)
P (58)

= P(A− BC†B>)†P (59)

= (A− BC†B>)†. (60)

Since BC†B> � 0, we have A− BC†B> � A and therefore (A− BC†B>)† � A† from which
we have

Pθ−1P = (A− BC†B>)† � A† = (PθP)†, (61)

as desired.

22



Proposition 10. Consider two matrices A,B ∈ Sd+ such that Ran(A) ⊆ Ran(B) and consider
the following associated problem:

min
θ∈Sd+, Ran(A)⊆Ran(θ)

Tr(θ−1A) + Tr(θB). (62)

Then, a minimizer and the corresponding minimum of the problem above are given by

θ∗ = B
−1/2(B1/2AB1/2)1/2B−1/2 2

∥∥B1/2A1/2∥∥∗. (63)

Moreover θ∗ is the unique minimizer such that Ran(θ∗) ⊂ Ran(B).

Proof. Let Θ = {θ ∈ Sd+ | Ran(A) ⊂ Ran(θ)} and denote by F : Θ → R the objective
functional of the problem in Eq. (62), such that for any θ ∈ Θ

F(θ) = Tr(θ−1A) + Tr(θB). (64)

Note that the sign of inverse is well defined since Ran(A) ⊂ Ran(θ). We begin the proof by
showing that the Eq. (62) is equivalent to

min
θ∈Sd+, Ran(A)⊂Ran(θ)⊂Ran(B)

Tr(θ−1A) + Tr(θB). (65)

To see this, let P = BB† the orthogonal projector onto the range of B. By hypothesis,
A = PAP and B = PBP. Therefore, for any θ ∈ Sd++

F(θ) = Tr(θ−1A) + Tr(θB)

= Tr(Pθ−1PA) + Tr(PθPB)

≥ Tr((PθP)†A) + Tr(PθPB)

= F(PθP),

where we have applied the fact that Pθ−1P � (PθP)† from Lemma 9 and the positive
semidefinteness of A. The inequality above implies the equivalence between Eq. (62) and
Eq. (65). Indeed, let θ∗ ∈ Θ be a minimizer of Eq. (62) and consider a sequence (θn)n∈N
such that θn ∈ Sd++ for any n ∈ N and θn → θ∗. By continuity of F we have also that
F(θn) → F(θ∗). Clearly, F(θ∗) ≤ F(PθnP) ≤ F(θn) and therefore also F(PθnP) → F(θ∗).
By continuity of F over Θ, this also implies that the limit limn→+∞ PθnP = Pθ∗P is a
minimizer for Eq. (62) (and one such that Ran(θ∗) ⊂ Ran(B)). We consider now the
set ΘB = {θ ∈ Sd+ | Ran(θ) = Ran(B)} of all positive semidefinite matrices with same
range as B, hence invertible on Ran(B). Note that ΘB is an open subset of Θ and its
closure in Θ corresponds to Θ itself. By definition, any θ ∈ ΘB is such that θ = B†/2XB†/2

with Ran(X) = Ran(B). This implies in particular that XB†B = X and θ† = B†/2X†B†/2.
Therefore,

F(θ) = Tr(θ†A) + Tr(θB) (66)

= Tr(X†B1/2AB1/2) + Tr(X), (67)
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and Ran(B1/2AB1/2) ⊆ Ran(B) = Ran(X). We can now minimize the problem w.r.t. X,
namely

min
X∈Sd+, Ran(B1/2AB1/2)⊆Ran(X)

Tr(X†B1/2AB1/2) + Tr(X). (68)

The minimization corresponds to the variational form of the trace norm of B1/2AB1/2

Micchelli et al. (2013) and has solution X∗ = (B1/2AB1/2)1/2, with minimum corre-
sponding to 2Tr((B1/2AB1/2)1/2) = 2

∥∥B1/2A1/2∥∥∗. To conclude the proof, let G : {X ∈
Sd+ | Ran(B1/2AB1/2) ⊆ Ran(X)} → R be the objective functional in Eq. (68) such that
G(X) = Tr(X†B1/2AB1/2) + Tr(X). Let now X∗ ∈ Sd+ be a minimzer for G and (Xn)n∈N be a
minimizing sequence with Ran(Xn) = Ran(B) for each n ∈ N and Xn → X∗. Let (θn)n∈N
such that θn = B†/2XB†/2 for any n ∈ N. Then we have θn → B†/2X∗B

†/2 and by continuity
F(B†/2X∗B

†/2) = G(X∗), hence minXG(X) ≤ minθ F(θ). Note that B†/2X∗B†/2 is a minimizer
for F, since F and G have same minimum value. To see this it is sufficient to show that, given
a minimizing sequence (θn)n∈N such that Ran(θn) = Ran(B) for any n ∈ N and θn → θ∗,
we have Xn = B1/2θnB

1/2 → B1/2θnB
1/2 and thus F(θ∗) = G(B1/2θnB1/2). We have shown

that minθ F(θ) ≥ minXG(X). Therefore θ∗ = B†/2X∗B
†/2 = B†/2(B1/2AB1/2)1/2B†/2 is a

minimizer of Eq. (62) as desired. The uniqueness of θ∗ follows from the uniqueness of
X∗ from the standard results on the variational form of the trace norm Micchelli et al.
(2013).

We now have all the ingredients necessary to prove Prop. 2.

Proposition 2 (Best Conditioning Function in Hindsight). The conditioning function mini-
mizer and the minimum of the bound presented in Thm. 1 over the set

{τ ∈ T | Ran(W(s)) ⊆ Ran(τ(s)), ρS -almost surely} ,

are respectively

τρ(s) =

√
n

2L
C(s)†/2(C(s)1/2W(s)C(s)1/2)1/2C(s)†/2

and

Eρ(τρ) − E∗ρ ≤
2LEs∼ρS

∥∥W(s)1/2C(s)1/2
∥∥
∗√

n
. (11)

Proof. We aim to minimize

min
τ:S→Θ

Ran(W(s))⊆Ran(τ(s))

Es∼ρS ϕ(s, τ(s)) with ϕ(s, θ) =
Tr
(
θ†W(s)

)
2

+
2L2Tr

(
θC(s)

)
n

.

(69)
over the set of all measurable functions τ : S → Θ. Note that from Cor. 8, for any s ∈ S we
have Ran(W(s)) ⊂ Ran(C(s)). Therefore we can apply Prop. 10 to have that for any s ∈ S,
the problem

min
θ∈Sd+, Ran(W(s))⊆Ran(θ)

ϕ(s, θ) (70)

has solution

τρ(s) =

√
n

2L
C(s)†/2(C(s)1/2W(s)C1/2)1/2C(s)†/2. (71)
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Therefore, for any τ : S → Θ we have

Es∼ρS ϕ(τρ(s), s) ≤ Es∼ρS ϕ(τ(s), s), (72)

and therefore Es∼ρS ϕ(τρ(s), s) ≤ minτ Es∼ρS ϕ(τ). To conclude the proof we need to
show that τρ is measurable. This follows immediately by applying Aumann’s measurable
selection principle, see for instance the formulation in (Steinwart and Christmann, 2008,
Lemma A.3.18). Under the notation of Steinwart and Christmann (2008), we can apply
the result by taking h(s, θ) = (θθ† − I)W(s), the set A = {0} ⊂ Y = Sd+. This guarantees
the existence of a measurable function τ0 : S → Θ such that it minimizes pointwise ϕ(s, ·)
for any s ∈ S on the set {θ ∈ Sd+ | Ran(W(s)) ⊂ Ran(θ)}. The uniqueness of τρ(s) for each
s ∈ S guarantees that τρ = τ0 is measurable as desired.

C Proof of Ex. 1

In this section we report the proof of the statement in Ex. 1.

Example 1 (Clusters). Let S = Rq be the side information space, for some integer q > 0. Let
ρ be such that the side information marginal distribution ρS is given by a uniform mixture
of m uniform distributions. More precisely, let ρS = 1

m

∑m
i=1 ρ

(i)
S , with ρ(i)S = U

(
B(ai, 1/2)

)
the uniform distribution on the ball of radius 1/2 centered at ai ∈ S, characterizing the
cluster i. For a given side information s, a task µ ∼ ρ(·|s) is sampled such that: 1) its inputs’
marginal ηµ is a distribution with constant covariance matrix C(s) = Eµ∼ρ(·|s)Ex∼ηµxx> = C,
for some C ∈ Sd+, 2) wµ is sampled from a distribution with conditional covariance matrix
W(s) = Eµ∼ρ(·|s)wµw>

µ , with W(s) such that (C1/2W(s)C1/2)(C1/2W(p)C1/2) = 0 if s 6= p.
Then,

Es∼ρS
∥∥C(s)1/2W(s)1/2

∥∥
∗ =

1√
m

∥∥W1/2
ρ C

1/2
ρ

∥∥
∗.

Proof. According to the setting described in the example, we can rewrite the following:

Es∼ρS
∥∥C(s)1/2W(s)1/2

∥∥
∗ = Es∼ρS

∥∥C1/2W(s)1/2
∥∥
∗

= Es∼ρSTr
((
C1/2W(s)C1/2

)1/2)
=
1

m

m∑
i=1

E
s∼ρ

(i)
S

Tr
((
C1/2W(s)C1/2

)1/2)
=
1

m

m∑
i=1

Tr
((
C1/2W(ai)C

1/2
)1/2)

=
1

m
Tr

(
m∑
i=1

(
C1/2W(ai)C

1/2
)1/2)

=
1

m
Tr

(( m∑
i=1

C1/2W(ai)C
1/2
)1/2)

,

(73)

where, in the first equality we have exploited the fact that C(s) is a constant matrix C, in
the second equality we have applied the definition of the rewriting of the trace norm of a
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matrix A as ‖A‖∗ = Tr
(
(AA>)1/2

)
, in the third and fourth equality we have exploited the

assumption on ρS , and finally, in the last equality, by point 2), we managed to apply the
fact that, for two matrices A,B ∈ Sd+ such that A1/2B1/2 = B1/2A1/2 = 0, we have

(A1/2 + B1/2)(A1/2 + B1/2) = A+ B =⇒ (A+ B)1/2 = A1/2 + B1/2. (74)

On the other hand, we observe that we can also write the following:∥∥C1/2ρ W
1/2
ρ

∥∥
∗ =

∥∥C1/2W1/2
ρ

∥∥
∗

= Tr
((
C1/2WρC

1/2
)1/2)

= Tr
((
C1/2Es∼ρSW(s)C1/2

)1/2)
= Tr

((
C1/2

1

m

m∑
i=1

E
s∼ρ

(i)
S
W(s)C1/2

)1/2)

=
1√
m

Tr

(( m∑
i=1

C1/2W(ai)C
1/2
)1/2)

=
1√
m

Tr

((
C1/2

m∑
i=1

W(ai)C
1/2
)1/2)

,

(75)

where, in the first equality we have exploited the fact that C(s) is a constant matrix C, in
the second equality we have applied the definition of the rewriting of the trace norm of a
matrix A as ‖A‖∗ = Tr

(
(AA>)1/2

)
and in the fourth and fifth equality we have exploited

the assumption on ρS . The desired statement directly derives from combining Eq. (73) and
Eq. (75).

D Proofs of the statements in Sec. 4

In this section we report the proofs of the statements we used in Sec. 4 in order to prove
the expected excess risk bound for Alg. 1 in Thm. 5. We start from proving the matricial
rewriting of Prop. 3 in App. D.1. We then prove in App. D.2 the properties of the surrogate
functions in Prop. 4. Then, in App. D.3, we prove the convergence rate of Alg. 1 on the
surrogate problem in Eq. (22).

D.1 Proof of Prop. 3

We start from proving the matricial rewriting of Prop. 3..

Proposition 3 (Matricial Re-formulation of τM(s)). Let τ be as in Eq. (16). Then,

τ(s) =
(
Id ⊗Φ(s)>

)
HM

(
Id ⊗Φ(s)

)
+ C, (17)

where Id is the identity in Rd×d and HM is the matrix in Rdk×dk defined by the entries(
HM

)
(i−1)k+h,(j−1)k+z

=
〈
M(:, i, h),M(:, j, z)

〉
with i, j = 1, . . . , d and h, z = 1, . . . , k.
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Proof. We start from observing that for any i, j = 1, . . . , d, we can rewrite the following((
MΦ(s)

)>
MΦ(s)

)
i,j

=
〈(
MΦ(s)

)>
(i, :),

(
MΦ(s)

)
(:, j)

〉
=
〈(
MΦ(s)

)
(:, i),

(
MΦ(s)

)
(:, j)

〉
=

m∑
q=1

(
MΦ(s)

)
(:, i)q

(
MΦ(s)

)
(:, j)q

=

m∑
q=1

(
k∑
h=1

Mq,i,hΦ(s)h

)(
k∑
z=1

Mq,j,zΦ(s)z

)

=

m∑
q=1

k∑
h=1

k∑
z=1

Mq,i,hMq,j,zΦ(s)hΦ(s)z

=

k∑
h=1

k∑
z=1

Φ(s)hΦ(s)z

m∑
q=1

Mq,i,hMq,j,z

=

k∑
h=1

k∑
z=1

Φ(s)hΦ(s)z

(
m∑
q=1

Mq,i,hMq,j,z

)

=

k∑
h=1

k∑
z=1

Φ(s)hΦ(s)z
〈
M(:, i, h),M(:, j, z)

〉
.

(76)

We now observe that for any i, j = 1, . . . , d, we can rewrite the following((
Id ⊗Φ(s)>

)
HM

(
Id ⊗Φ(s)

))
i,j

=
〈(
Id ⊗Φ(s)>

)
(i, :),

(
HM

(
Id ⊗Φ(s)

))
(:, j)

〉
=
〈(
Id ⊗Φ(s)

)
(:, i),

(
HM

(
Id ⊗Φ(s)

))
(:, j)

〉
=

kd∑
n=1

(
Id ⊗Φ(s)

)
n,i

(
HM

(
Id ⊗Φ(s)

))
n,j

=

kd∑
n=1

(
Id ⊗Φ(s)

)
n,i

〈
HM(n, :),

(
Id ⊗Φ(s)

)
(:, j)

〉
=

kd∑
n=1

(
Id ⊗Φ(s)

)
n,i

kd∑
p=1

(
HM

)
n,p

(
Id ⊗Φ(s)

)
p,j

=

kd∑
n=1

kd∑
p=1

(
Id ⊗Φ(s)

)
n,i

(
HM

)
n,p

(
Id ⊗Φ(s)

)
p,j

=

kd∑
n=1

kd∑
p=1

Φ(s)h δn,(i−1)k+h
(
HM

)
n,p
Φ(s)z δp,(j−1)k+z

=

k∑
h=1

k∑
z=1

Φ(s)hΦ(s)z
(
HM

)
(i−1)k+h,(j−1)k+z

,

(77)
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where, in the seventh equality we have exploited the fact that, by definition,

(
Id ⊗Φ(s)

)
n,i

=

{
Φ(s)r if r = n− (i− 1)k

0 otherwise
= Φ(s)r δn,r+(i−1)k. (78)

and in the last equality we have defined the new indexes h, z = 1, . . . , k as

h = n− (i− 1)k z = p− (j− 1)k (79)

and, as consequence, we have rewritten

n = (i− 1)k+ h p = (j− 1)k+ z. (80)

As, a consequence, if we define HM as the matrix in Rdk×dk with entries(
HM

)
(i−1)k+h,(j−1)k+z

=
〈
M(:, i, h),M(:, j, z)

〉
, (81)

with i, j = 1, . . . , d and h, z = 1, . . . , k, then, Eq. (76):

((
MΦ(s)

)>
MΦ(s)

)
i,j

=

k∑
h=1

k∑
z=1

Φ(s)hΦ(s)z
〈
M(:, i, h),M(:, j, z)

〉
(82)

and Eq. (77):

((
Id ⊗Φ(s)>

)
HM

(
Id ⊗Φ(s)

))
i,j

=

k∑
h=1

k∑
z=1

Φ(s)hΦ(s)z
(
HM

)
(i−1)k+h,(j−1)k+z

(83)

coincide. This coincides with the first desired statement. In order to prove the statement
HM ∈ Sdk+ , we show that HM = A>

MAM, where AM is the matrix in Rm×dk defined as

AM(:, (i− 1)k+ h) =M(:, i, h). (84)

We start from recalling that, by definition of HM, we have(
HM

)
(i−1)k+h,(j−1)k+z

=
〈
M(:, i, h),M(:, j, z)

〉
. (85)

Moreover, we observe that, for any p, q = 1, . . . , kd,(
A>
MAM

)
p,q

=
〈(
A>
M

)
(p, :), AM(:, q)

〉
Rm =

〈
AM(:, p), AM(:, q)

〉
. (86)

As a consequence, the desired statement is satisfied if we define(
AM
)
(:, (i− 1)k+ h) =M(:, i, h). (87)

We now prove the last statement. Let (ei)di=1 be the canonical basis in Rd. By the definition
of the trace and the rewriting of τ(s) in Prop. 3, denoting by vec the vectorization operation,
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we can rewrite

Tr
(
τ(s)

)
=

d∑
i=1

〈
ei, τ(s)ei

〉
=

d∑
i=1

〈
ei,
(
Id ⊗Φ(s)>

)
HM

(
Id ⊗Φ(s)

)
ei
〉

=

d∑
i=1

e>i
(
Id ⊗Φ(s)>

)
HM

(
Id ⊗Φ(s)

)
ei

=

d∑
i=1

((
Id ⊗Φ(s)

)
ei

)>
HM

(
Id ⊗Φ(s)

)
ei

=

d∑
i=1

(
vec
(
Φ(s)e>i

))>
HMvec

(
Φ(s)e>i

)
= Tr

(
HM

d∑
i=1

vec
(
Φ(s)e>i

)
vec
(
Φ(s)e>i

)>)
≤ Tr

(
HM

)∥∥∥∥∥
d∑
i=1

vec
(
Φ(s)e>i

)
vec
(
Φ(s)e>i

)>∥∥∥∥∥∞
= Tr

(
HM

)∥∥Φ(s)
∥∥2
Rk ,

(88)

where, in the fifth equality, we have applied the relation(
C> ⊗A

)
vec(B) = vec(ABC) (89)

with A = Φ(s), B = e>i and C = Id, i.e.(
Id ⊗Φ(s)

)
ei = vec

(
Φ(s)e>i

)
, (90)

in the inequality we have applied Holder’s inequality and in the last equality we have
applied the following proposition.

Proposition 11. For any i = 1, . . . , d, define

vi = vec
(
Φ(s)e>i

)
(91)

Then, ∥∥∥∥∥
d∑
i=1

vec
(
Φ(s)e>i

)
vec
(
Φ(s)e>i

)>∥∥∥∥∥∞ =

∥∥∥∥∥
d∑
i=1

viv
>
i

∥∥∥∥∥∞ =
∥∥Φ(s)

∥∥2. (92)

Proof. We start from observing that, for any i, j = 1, . . . , d, we have

v>i vj = vec
(
Φ(s)e>i

)>vec
(
Φ(s)e>j

)
= Tr

(
eiΦ(s)>Φ(s)e>j

)
= Tr

(
Φ(s)>Φ(s)e>j ei

)
= Φ(s)>Φ(s)e>j ei

=
∥∥Φ(s)

∥∥2δi,j,
(93)
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where, in the second equality, we have used the property of the operator vec:

vec(A)>vec(B) = Tr
(
A>B

)
(94)

with
A = Φ(s)e>i B = Φ(s)e>j . (95)

As a consequence, the vectors

ṽi =
vi
‖vi‖

=
vi∥∥Φ(s)
∥∥ i = 1, . . . , d, (96)

form an orthonormal basis of the space. Moreover, we can rewrite the operator above as
follows

d∑
i=1

vec
(
Φ(s)e>i

)
vec
(
Φ(s)e>i

)>
=

d∑
i=1

viv
>
i =

d∑
i=1

∥∥Φ(s)
∥∥2ṽiṽi>. (97)

The rewriting above coincides with the eigenvalues’ decomposition of the operator: the
vectors ṽi are the eigenvectors with associated constant eigenvalues

∥∥Φ(s)
∥∥2. As a conse-

quence, we can conclude that∥∥∥∥∥
d∑
i=1

vec
(
Φ(s)e>i

)
vec
(
Φ(s)e>i

)>∥∥∥∥∥∞ =
∥∥Φ(s)

∥∥2. (98)

D.2 Proof of Prop. 4

We now prove the properties of the surrogate functions in Prop. 4.

Proposition 4 (Properties of the Surrogate Meta-Loss L). For any Z ∈ D and s ∈ S, the
function L

(
·, ·, s, Z

)
is convex and one of its subgradients is given, for any H ∈ Sdk+ and C ∈ Sd+,

by

∇L
(
H, ·, s, Z

)
(C) = ∇̂

∇L
(
·, C, s, Z

)
(H) =

(
Id ⊗Φ(s)

)
∇̂
(
Id ⊗Φ(s)>

) (23)

where

∇̂ = −
λ

2
τH,C(s)

†wτH,C(s)w
>
τH,C(s)

τH,C(s)
† +

2L2X>X

n2
.

Moreover, under Asm. 1 and Asm. 3, we have∥∥∇L(·, ·, s, Z)(H,C)∥∥
F
≤ (1+ K2)(LR)2

(1
2
+
2

n

)
.

Proof. We are interested in studying the properties of the surrogate function L
(
·, ·, s, Z

)
:

Sdk+ × Sd+ → R in Eq. (22). We start from observing that, such a function coincides with the
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composition of the function

θ ∈ Sd+ 7→ ∆(θ, Z) = F(θ, Z) +G(θ, Z) ∈ R

F(θ, Z) = min
w∈Rd

RZ,θ(w) RZ,θ(w) =
1

n

n∑
i=1

`(〈xi, w〉, yi) +
λ

2

〈
w, θ†w

〉
+ ιRan(θ)(w)

G(θ, Z) =
2L2

n
Tr
(
θ
X>X

n

)
.

(99)

with the linear transformation

s ∈ S 7→ τH,C(s) =
(
Id ⊗Φ(s)>

)
H
(
Id ⊗Φ(s)

)
+ C ∈ Sd+. (100)

In other words, for any H ∈ Sdk+ and C ∈ Sd+, we can write

L
(
H,C, s, Z

)
= ∆(τH,C(s), Z) = F(τH,C(s), Z) +G(τH,C(s), Z). (101)

We now observe that both the functions F(·, Z) and G(·, Z) are both convex (F(·, Z) is
convex since it is the minimum of a jointly convex function see Denevi et al. (2019b) and
G(·, Z) is a linear function). As a consequence, the function ∆(·, Z) is convex over Sd+. This
implies the convexity of the surrogate function L

(
·, ·, s, Z

)
over Sdk+ × Sd+ (composition of

a convex function with a linear transformation). In order to get the closed form of the
gradient in Eq. (23) we proceed in a similar way as in Denevi et al. (2020). More precisely,
we start from recalling that, as already observed in Denevi et al. (2019b), thanks to strong
duality in the within-task problem, for any θ ∈ Sd+, we can rewrite

F(θ, Z) = min
w∈Ran(θ)

RZ,θ(w) = max
α∈Rn

{
−
1

n

n∑
i=1

`∗i (αi) −
1

2n2
Tr
(
θX>αα>X

)}
, (102)

where, `∗i (·) denotes the Fenchel conjugate of `i(·) = `(·, yi) and α ∈ Rn coicides with the
dual variable. As a consequence, we can rewrite

∆(θ, Z) = F(θ, Z) +G(θ, Z)

= max
α∈Rn

{
−
1

n

n∑
i=1

`∗i (αi) −
1

2n2
Tr
(
θX>αα>X

)}
+
2L2

n
Tr
(
θ
X>X

n

)
= max
α∈Rn

{
−
1

n

n∑
i=1

`∗i (αi) + Tr

(
θ
(
−
X>αα>X

2n2
+
2L2X>X

n2

))}
.

(103)
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As a consequence, we have

∆(τH,C, Z) = max
α∈Rn

{
−
1

n

n∑
i=1

`∗i (αi) + Tr

((
Id ⊗Φ(s)>

)
H
(
Id ⊗Φ(s)

)(
−
X>αα>X

2n2
+
2L2X>X

n2

))

+ Tr

(
C
(
−
X>αα>X

2n2
+
2L2X>X

n2

))}

= max
α∈Rn

{
−
1

n

n∑
i=1

`∗i (αi) + Tr

(
H
(
Id ⊗Φ(s)

)(
−
X>αα>X

2n2
+
2L2X>X

n2

)(
Id ⊗Φ(s)>

))

+ Tr

(
C
(
−
X>αα>X

2n2
+
2L2X>X

n2

))}
= max
α∈Rn

Q(α,H,C, s, Z),

(104)

where we have introduced the function

Q(α,H,C, s, Z) = −
1

n

n∑
i=1

`∗i (αi) + Tr

(
H
(
Id ⊗Φ(s)

)(
−
X>αα>X

2n2
+
2L2X>X

n2

)(
Id ⊗Φ(s)>

))

+ Tr

(
C
(
−
X>αα>X

2n2
+
2L2X>X

n2

))
.

(105)

Hence, applying (Denevi et al., 2019b, Lemma 44), we know that, once computed a
maximizer ατH,C(s) of the function above α ∈ Rn 7→ Q(α,H,C, s, Z),

∇Q(ατH,C(s), ·, ·, s, Z)(H,C) ∈
∂∆(τH,C(s), Z)

∂(H,C)
=
∂L
(
H,C, s, Z

)
∂(H,C)

. (106)

As a consequence, since for a given matrix A, ∇Tr
(
·A)(H) = A, we get that

∇L
(
·, ·, s, Z

)
(H,C) =

((
Id ⊗Φ(s)

)
∇̂
(
Id ⊗Φ(s)>

)
, ∇̂
)
∈
∂L
(
H,C, s, Z

)
∂(H,C)

, (107)

with

∇̂ = −
X>ατH,C(s)α

>
τH,C(s)

X

2n2
+
2L2X>X

n2
. (108)

Finally, in order to get the desired closed form in Eq. (23), we just need to observe that,
according to the optimality conditions of the within-task problem in (see (Denevi et al.,
2019b, Lemma 44)) with θ ∈ Sd+, we have that

X>αθ = −nθ†wθ. (109)

As a consequence, we can rewrite Eq. (108) as follows by using the primal solution of the
within-task problem:

∇̂ = −
λ

2
τH,C(s)

†wτH,C(s)w
>
τH,C(s)

τH,C(s)
† +

2L2X>X

n2
. (110)
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Finally, we observe that, by the closed form in Eq. (23),∥∥∇L(·, ·, s, Z)(H,C)∥∥
F
≤
∥∥∇L(·, ·, s, Z)(H,C)∥∥∗ ≤ A + B + C + D (111)

with

A =

∥∥∥∥∥(Id ⊗Φ(s)
)X>ατH,C(s)α

>
τH,C(s)

X

2n2

(
Id ⊗Φ(s)>

)∥∥∥∥∥
∗

B =

∥∥∥∥∥(Id ⊗Φ(s)
)2L2X>X

n2

(
Id ⊗Φ(s)>

)∥∥∥∥∥
∗

C =

∥∥∥∥∥X
>ατH,C(s)α

>
τH,C(s)

X

2n2

∥∥∥∥∥
∗

D =

∥∥∥∥∥2L2X>X

n2

∥∥∥∥∥
∗

.

(112)

We now observe that all the matrices inside the trace norms above are positive semidefinite
(as a matter of fact, if a matrixQ is positive semidefinite, then, P>QP is positive semidefinite
for any matrix P). As a consequence, all the trace norms above coincide with the trace of
the corresponding matrices, namely,

A = Tr

((
Id ⊗Φ(s)

)X>ατH,C(s)α
>
τH,C(s)

X

2n2

(
Id ⊗Φ(s)>

))

B = Tr

((
Id ⊗Φ(s)

)2L2X>X

n2

(
Id ⊗Φ(s)>

))

C = Tr

(
X>ατH,C(s)α

>
τH,C(s)

X

2n2

)

D = Tr

(
2L2X>X

n2

)
.

(113)

We now observe that, proceeding as above in Eq. (88) and exploiting Asm. 3, we can write

A ≤
∥∥Φ(s)

∥∥2Tr

(
X>ατH,C(s)α

>
τH,C(s)

X

2n2

)
=
∥∥Φ(s)

∥∥2C ≤ K2C
B ≤

∥∥Φ(s)
∥∥2Tr

(
2L2X>X

n2

)
=
∥∥Φ(s)

∥∥2D ≤ K2D. (114)

Hence, combining everything in Eq. (111), we get∥∥∇L(·, ·, s, Z)(H,C)∥∥
F
≤ (1+ K2)

(
C + D

)
. (115)

The desired statement derives from observing that, since, by Asm. 1, Tr
(
X>ατH,C(s)α

>
τH,C(s)

X
)
≤

(nLR)2 (see (Denevi et al., 2019b, Lemma 44)) and Tr
(
X>X

)
= Tr

(
XX>

)
=
∑n
i=1 ‖xi‖2 ≤

nR2, then

C ≤ (LR)2

2λ
D ≤ 2(LR)

2

n
. (116)
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D.3 Convergence rate of Alg. 1 on the surrogate problem in Eq. (22)

We now give the convergence rate of Alg. 1 on the surrogate problem in Eq. (22).

Proposition 12 (Convergence rate on the surrogate problem in Eq. (22)). Let H and C be
the average of the iterations obtained from the application of Alg. 1 over the training data
(Zt, st)

T
t=1 with constant meta-step size γ > 0. Then, under Asm. 1 and Asm. 3, for any

τH,C ∈ TΦ, in expectation w.r.t. the sampling of (Zt, st)Tt=1,

E Êρ
(
τH,C

)
− Êρ

(
τH,C

)
≤ γ(1+ K

2)2(LR)4

2λ2

(1
2
+
2

n

)2
+

∥∥(H−H0, C− C0)
∥∥2
F

2γT
. (117)

Proof. We observe that Alg. 1 coincides with projected Stochastic Gradient Descent applied
to the convex and Lipschitz (see Prop. 4) surrogate problem in Eq. (22):

min
H∈Sdk+ ,C∈Sd+

Êρ(τH,C) Êρ(τH,C) = E(µ,s)∼ρ EZ∼µn L
(
H,C, s, Z

)
. (118)

As a consequence, by standard arguments (see e.g. (Shalev-Shwartz and Ben-David, 2014,
Lemma 14.1, Thm. 14.8) and references therein), for any τH,C ∈ TΦ, we have

E Êρ
(
τH,C

)
−Êρ

(
τH,C

)
≤ γ

2T

T∑
t=1

E
∥∥∇L(·, ·, s, Zt)(Ht, Ct)∥∥2F+

∥∥(H−H0, C− C0)
∥∥2
F

2γT
. (119)

The desired statement derives from combining this bound with the bound on the norm of
the meta-subgradients in Prop. 4.

D.4 Proof of Thm. 5

We now have all the ingredients necessary to prove Thm. 5.

Theorem 5 (Excess Risk Bound for the Conditioning Function Returned by Alg. 1). Let
Asm. 1 and Asm. 3 hold. For any s ∼ ρS , recall the conditional covariance matrices W(s)
and C(s) introduced in Thm. 1. Let τH,C be a fixed function in TΦ such that Ran(W(s)) ⊆
Ran(τH,C(s)) for any s ∼ ρS . Let H and C be the outputs of Alg. 1 applied to a sequence
(Zt, st)

T
t=1 of i.i.d. pairs sampled from ρ with meta-step size

γ =
‖(H−H0, C− C0)‖F

(1+ K2)(LR)2

(1
2
+
2

n

)−1 1√
T
. (24)

Then, in expectation w.r.t. the sampling of (Zt, st)Tt=1,

E Eρ(τH,C) − E
∗
ρ ≤

Es∼ρSTr
(
τH,C(s)

†W(s)
)

2
+
2L2Es∼ρSTr

(
τH,C(s)C(s)

)
n

+
(1
2
+
2

n

)(1+ K2)(LR)2 ‖(H−H0, C− C0)‖F√
T

.
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Proof. We start from observing thta, in expectation w.r.t. the meta-training set, for any
fixed conditioning function τH,C ∈ TΦ, we can write the following decomposition

E Eρ(τH,C) − E
∗
ρ ≤ E Êρ(τH,C) − E

∗
ρ

= E Êρ(τH,C) − E
∗
ρ ± Êρ(τH,C)

= E Êρ(τH,C) − Êρ(τH,C)︸ ︷︷ ︸
A(τH,C)

+ Êρ(τH,C) − E∗ρ︸ ︷︷ ︸
B(τH,C)

,
(120)

where in the inequality above we have exploited the fact that, for any τ ∈ T , Eρ(τ) ≤ Êρ(τ)
(see Eq. (21)). We now observe that the term A(τH,C) can be controlled according to the
convergence properties of the meta-algorithm in Alg. 1 as described in Prop. 12:

E Êρ
(
τH,C

)
− Êρ

(
τH,C

)
≤ γ(1+ K

2)2(LR)4

2

(1
2
+
2

n

)2
+

∥∥(H−H0, C− C0)
∥∥2
F

2γT
. (121)

Regarding the term B(τH,C), we observe that, for any τ, we can rewrite

B(τ) = Êρ(τ) − E∗ρ

= E(µ,s)∼ρ EZ∼µn
[
RZ,τ(s)(A(τ(s), Z)) −Rµ(wµ)

]
+
2L2E(µ,s)∼ρ Tr

(
τ(s)Ex∼ηµxx>

)
n

≤
E(µ,s)∼ρ Tr

(
τ(s)†wµw

>
µ

)
2

+
2L2E(µ,s)∼ρ Tr

(
τ(s)Ex∼ηµxx>

)
n

,

(122)

where in the inequality we have exploited the fact that, thanks to the definition of the
algorithm, for any (µ, s) ∼ ρ, we can write

EZ∼µn
[
RZ,τ(s)(A(τ(s), Z)) −Rµ(wµ)

]
≤

Tr
(
τ(s)†wµw

>
µ

)
2

. (123)

Combining the bounds on the two terms above in Eq. (120), we get

E Eρ(τH,C) − E
∗
ρ ≤

E(µ,s)∼ρ Tr
(
τH,C(s)

†wµw
>
µ

)
2

+
2L2E(µ,s)∼ρ Tr

(
τH,C(s)Ex∼ηµxx>

)
n

+
γ(1+ K2)2(LR)4

2

(1
2
+
2

n

)2
+

∥∥(H−H0, C− C0)
∥∥2
F

2γT
.

(124)

The desired statement derives from optimizing w.r.t. the hyper-parameter γ > 0.

E Experimental Details

In this section we report the experimental details we missed in the main body. Specifically,
we report the details regarding the tuning of the hyper-parameter γ and the characteristics
of the machine we used for running our experiments.

Synthetic Clusters. In order to tune the hyper-parameter γ we applied the procedure
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above with 14 candidates values for γ in the range [10−5, 105] with logarithmic spacing and
we evaluated the performance of the estimated meta-parameters (linear representations)
by using T = Ttr = 500, Tva = 300, Tte = 100 of the available tasks for meta-training,
meta-validation and meta-testing, respectively. In order to train and to test the inner
algorithm, we splitted each within-task dataset into n = ntr = 50% ntot for training and
nte = 50% ntot for test.

Lenk Dataset. In order to tune the hyper-parameter γ we applied the procedure above
with 14 candidates values for γ in the range [10−5, 105] with logarithmic spacing and we
evaluated the performance of the estimated meta-parameters (linear representations) by
using T = Ttr = 100, Tva = 40, Tte = 30 of the available tasks for meta-training, meta-
validation and meta-testing, respectively. In order to train and to test the inner algorithm,
we splitted each within-task dataset into n = ntr = 16 for training and nte = 4 for test.

Movieles-100k Dataset. In order to tune the hyper-parameter γ we applied the procedure
above with 14 candidates values for γ in the range [10−5, 105] with logarithmic spacing and
we evaluated the performance of the estimated meta-parameters (linear representations)
by using T = Ttr = 200, Tva = 100, Tte = 100 of the available tasks for meta-training,
meta-validation and meta-testing, respectively. In order to train and to test the inner
algorithm, we splitted each within-task dataset into n = ntr = 15 for training and nte = 5
for test.

Jester-1 Dataset. In order to tune the hyper-parameter γ we applied the procedure above
with 14 candidates values for γ in the range [10−5, 105] with logarithmic spacing and we
evaluated the performance of the estimated meta-parameters (linear representations) by
using T = Ttr = 250, Tva = 100, Tte = 100 of the available tasks for meta-training, meta-
validation and meta-testing, respectively. In order to train and to test the inner algorithm,
we splitted each within-task dataset into n = ntr = 15 for training and nte = 5 for test.

All the experiments were conducted on a workstation with 4 Intel Xeon E5-2697 V3
2.60Ghz CPUs and 256GB RAM.
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