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Abstract. Neuroimaging studies of structural connectomes typically
average the data from many subjects and analyse the average properties
of the resulting network. We propose a new framework for individual
brain-network structural abnormality detection. The framework uses a
graph-based anomaly detection algorithm that allows to detect abnor-
mal structural connectivity on a subject level. The proposed method is
generic and can be adapted for a broad range of network abnormality
detection problems. In this study, we apply our method to investigate the
integrity of white matter tracts of 19-year-old extremely preterm born
individuals. We show the feasibility to cast the network abnormality de-
tection problem into a min-cut max-flow problem, and identify consistent
abnormal white matter tracts in extremely preterm subjects, including
a shared network involving the bilateral thalamus and frontal gyri.

Keywords: Prematurity · Brain-network abnormality detection · Diffusion-
weighted MRI · Min-cut Max-flow · Grey matter

1 Introduction

The neuropsychological outcome and neuroimaging phenotype of preterm-born
children and infants is greatly influenced by premature exposure to the extrauter-
ine environment [2,3,9]. Studies have shown anatomical [2], micro-structural [3]
and a range of neuropsychological differences [9] linked to prematurity. The ma-
jority of neuroimaging studies on preterm populations analyse the average prop-
erties of the preterm group compared to that of the controls. Such population-
level studies usually register all images of a population into a common space.
Due to the anatomical abnormalities associated with the preterm brain, such
as ventriculomegaly, this step can lead to misleading results. Generally, anal-
ysis that contrast two populations inherently ignore considerable inter-subject
heterogeneity in each group. In the present work, we acknowledge that besides
the normal individual variability, preterm birth has a broad range of effects on
the brain. The most-reported impairments in the preterm born population are
negative neuropsychological outcome [9] and white matter (WM) differences [5]
with a varied pattern of severity.
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Researchers’ efforts in investigating WM led to developing brain structural
connectomes (or networks) as a promising tool to investigate major brain path-
ways and examine essential circuits [12].

The connectome can be studied as a graph where the nodes are the brain
regions, and the edges quantify inter-connectivity between those areas. The main
aim of the present paper is to detect abnormal WM connectivity. Labels for WM
abnormalities are difficult to obtain. However, we hypothesise that abnormalities
in edge connectivity are unlikely to be isolated and that conversely, anomalies
are likely to be contiguous. Graph-based methods allow us to model this anatom-
ical hypothesis and to detect abnormalities even in the absence of ground-truth
labels.

The min-cut max-flow framework is applied to investigate the integrity of
WM tracts of 19-year-old extremely preterm individuals (born before 27 weeks
completed gestation). We analyse WM connectivity in the individual subject
space by mapping the tracts into structural connectomes; then we separate aber-
rant connectivity from the aged-matched control-group connectivity using the
min-cut max-flow framework. The framework takes into account the anatomical
information of the WM tracts and brain regions to which they are connected.
We use a graph similarity measure based on a Laplacian matrix to measure
the global differences in structural connectivity between a reference connectivity
matrix and the connectivity matrix under investigation. While the distance ma-
trix estimates a global measure of divergence, the min-cut max-flow framework
localises the abnormality. We experimentally show that the proposed framework
can detect consistent abnormal WM tracts across the subjects, and the abnormal
WM tracts identified for each subject correlate with the changes in structural
connectivity as measured by the graph similarity measure.

2 Methods

We describe the data in section 2.1 and the steps to perform tractography and
network extraction in section 2.2. Section 2.3 describes the measure we use to
quantify the distance between two brain-networks, while section 2.4 describes
the min-cut max-flow formulation to detect brain-network abnormalities. Figure
1 illustrates the main steps of the pipeline.

2.1 Data

Diffusion weighted MRI and T1-weighted MRI acquisitions were performed on a
3T Philips Achieva system for Np = 80 (49/31 females/males) extremely preterm
born 19-year-old individuals and Nc = 36 (19/17 females/males) full-term born
age-matched peers. T1-weighted MRI images were acquired at TR=6.93 ms,
TE=3.14 ms and 1 mm isotropic resolution. EPI-SE volumes of dWMRI were
acquired at (2.5 × 2.5 × 3) mm resolution across b-values of (0, 300, 700, 2000)
s/mm2, n: 4, 8, 16, 32 directions, TE: 70 ms, TR: 3500 ms, FOV: (240×240×150)
mm, flip angle: 90◦, and SENSE factor of 1.
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Fig. 1. Outline of the methodology to estimate structural networks and find abnormal
structural connections. We performed Anatomically Constrained Tractography (ACT)
(1) [10] to estimate the white matter streamlines. We estimate the structural connec-
tome (3) by quantifying the connectivity between brain regions obtained from Geodesic
Information Flow (GIF) [4] parcellations (2). We compare the structural connectivity
matrix of each extremely preterm born subject GP to the average structural connectiv-
ity matrix of the full-term born subjects GC (4); similar edges have the same colour, the
colour of the abnormal edge in GP is different to the corresponding edges in GC (4). We
cast the problem into a min-cut max-flow framework (5). The detection of structural
brain abnormality (7) results from the graph cut after solving the min-cut max-flow
problem (6).

T1-weighted images were bias-corrected using N4ITK algorithm [14]. Diffusion-
weighted MRI volumes were corrected for thermal noise [15], Gibbs-ringing arte-
facts [7], eddy current-induced distortion and subject movements artefacts [1].

The median gestational age at birth for extremely preterm born individuals
is 25.14 (CI 95% 22.14− 25.86) weeks of gestation. The full term born subjects
were born after 37 weeks of gestation. All the subjects had MRI assessment at
19 years of age.

2.2 Tractography and networks extraction

As shown in step 1 of figure 1, we generate a whole-brain tractogram for each
subject. A multi-shell multi-tissue approach [6] was used to estimate the response
function for each tissue type. The fibre orientation distribution (FOD) was first
calculated in each voxel using constrained spherical deconvolution (CSD) [13]
and then normalised for inter-subject comparisons. Anatomically Constrained
Tractography (ACT) was performed using dynamic seeding and backtrack re-
tracking algorithms [10]. To account for the fact that the density of the esti-
mated fibres is not representative of the density of the underlying white mat-
ter fibres, the ten million streamlines generated per subject were filtered using
the spherical-deconvolution informed filtering of tracks (SIFT2) procedure [11].
SIFT2 determines an adequate cross-sectional area for each estimated stream-
line, such that the estimated streamlines densities throughout the white matter
are reflective of the fibre densities computed using the spherical deconvolution
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model [11]. As illustrated in figure 1, in step 2, tissue parcellations of the cor-
rected T1-weighted volumes were obtained using Geodesic Information Flow
(GIF) [4]. Brain regions of interest (ROI) were defined based on the GIF la-
belling protocol [4]. The grey matter areas (121 brain regions) formed the nodes
for the brain network derivation. For each subject n ∈ N , a network Gn = (Q,Z)
is defined, in which each node corresponds to an ROI, and Z is the set of edges
connecting the ROIs. In the network Gn, for all of edges (i, j), we denote gij the
strength of the connectivity between i and j defined by the weighted (SIFT2)
[11] contribution of each streamline connecting i and j. This is illustrated in step
3 of figure 1.

2.3 Graph similarity measure

We aim to evaluate the divergence of the connectivity matrix of each extremely
preterm born subject from the normality. The graph similarity is quantified using
the spectral distance (SD) [16] of the normalised Laplacian. The eigenvalues of
the normalised Laplacian describe aspects of the global network structure. The
difference between the spectra of normalised Laplacians can be used to quantify
the similarity between networks. The normalised Laplacian L of a graph G with
edge weights gij is defined as L = I − D− 1

2GD− 1
2 [16], where I is the identity

matrix and D is a diagonal matrix such that D = diag(di) with ∀i di =
∑

j∈Q gij .
To avoid the use of arbitrary control connectivity matrices, we consider the mean
connectivity matrix GC of the full-term born subjects and the corresponding
normalised Laplacian LC . Let LP be the Laplacian of the connectivity matrix
GP of the extremely preterm born subject, the spectral distance SD(LC ,LP) is
defined as the Euclidean distance between the eigenvalues of LC and LP [16]

SD(LC ,LP) =
∑
u

√
(λCu − λPu )2 (1)

Therefore we aim to measure the normality of GP using SD(LC ,LP).

2.4 Graph cut optimisation for the detection of abnormal
connectivity

This section shows how the problem of detecting anomalies in subject’s connec-
tivity network can be cast as a min-cut max-flow problem.

Min-cut max-flow framework: Given the group-level reference connectivity
matrix GC and the subject-level abnormal connectivity matrix GP (as illustrated
in step 4 of figure 1), we aim to identify the abnormal connectivity in GP with
respect to GC . As each edge (i, j) connects brain regions i and j with strength of
connectivity gij , by comparing the strength of connectivity gij in the reference
connectivity matrix GC and the abnormal connectivity matrix GP , we aim to
separate abnormal edges from normal edges.
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We cast this problem into a min-cut max-flow framework [8]. A max-flow
framework involves a fully connected bi-directed graph F = (V, E) with |V| nodes
and |E| directed edges connecting them. An edge (i, j) ∈ Z in the connectivity
matrix Gn is a node v ∈ V in the graph F as illustrated in step 5 of figure 1.
The graph F has two additional nodes: the source node s ∈ V and the sink
node t ∈ V. Each edge of F has a fixed and non-negative capacity C which is
the maximum flow that edge can handle. The graph F has three types of edges.
Namely: 1) the edges that connect the source node s ∈ V to the nodes v ∈ V
with capacity Cs,v, the edges that link the sink node t ∈ V to the nodes v ∈ V
with capacity Ct,v and the edges that connect the nodes v ∈ V between each
other with capacity Cv1,v2. The source node s and the sink node t are not directly
connected. According to the max-flow min-cut theorem, the maximum flow from
the source node s ∈ V to the sink node t ∈ V corresponds to the minimum total
capacities of the edges, which, if removed, would partition the graph F into two
subsets: the abnormal nodes set S and the normal nodes set T .

In order to reflect the similarity between the edge (i, j) ∈ GC and the corre-
sponding edge (i, j) ∈ GP , we define the capacity Ct,v as the Gaussian similarity

function between the edge weights gGCij and gGPij

Ct,v(gGCij , g
GP
ij ) = K · exp

−
(
gGCij − g

GP
ij

)2
2σ2

 (2)

where K is an arbitrary multiplicative constant. The capacity Cs,v of the
edges connecting the source node s ∈ V with the nodes v ∈ V is set to K −
Ct,v(gGCij , g

GP
ij ). The capacity Cs,v reflects the extent to which the strength of

connectivity associated with the edge (i, j) ∈ GP is abnormal while the capacity
Ct,v reflects the degree to which the strength of connectivity associated with the
edge (i, j) ∈ GP is normal.

In addition, if one brain region has an abnormal edge connection (i, j), then
the likelihood it has other abnormal edge connections is high. Sporadic abnor-
mal connections are more likely to be due to noise or error in the streamline
reconstruction. Pair of edges of the form (i, j) and (i, y) that are connected to
the same brain region i are considered as neighbours in Gn. To account for that
in the graph F , the capacity of the edges Cv1,v2 is set to a positive constant
value M if the two nodes represent two neighbouring edges in the connectivity
matrices Gn and zero otherwise. Therefore, partitioning the graph into sets S
and T maximises

E =
∑
v∈S

K − Ct,v(gGCij , g
GP
ij ) +

∑
v∈T

Ct,v(gGCij , g
GP
ij )−

∑
v1∈S,v2∈T

Cv1,v2 (3)

which is solved using highest-label preflow-push algorithm.

Parameter tuning: The average full-term connectivity matrix is the reference
connectivity matrix GC . The parameters of the graph F are K,σ and M . As
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K and M are dependent, we fix K = 104 and determine σ and M using a
grid search such that when the reference connectivity matrix GC is compared to
the connectivity matrix of each full-term born subject, the graph-cut framework
identifies minimal abnormal edges Ec; when the reference connectivity matrix
GC is compared to the connectivity matrix of each extremely preterm subjects,
the graph-cut identifies the maximum number of abnormal edges Ep. Therefore,
the best σ and M maximise the quantity Ep − Ec.

Framework evaluation: To assess the performance of the min-cut max-flow
framework, we evaluate two aspects: 1) the consistency of the identified abnormal
edges across the subjects and 2) the consistency of the number of the identified
edges Ep with respect to the graph similarity measure SD(LC ,LP). We expect
the number of the identified abnormal edges to correlate with the similarity mea-
sure SD(LC ,LP), as higher SD(LC ,LP) indicates stronger structural deviation
from the reference matrix GC . The identified edges constitute a sub-network for
each subject. It is expected that the identified sub-networks show two character-
istics: 1) a general pattern that is shared between the extremely preterm subjects
as being born extremely preterm might induce similar brain abnormalities, and
2) a distinctive one that is characteristic to individual subjects as result of indi-
vidual variability. To investigate how the identified sub-networks cluster across
the extremely preterm subjects, we use principal component analysis (PCA) to
derive a low-dimensional set of features Xred that represent the original abnor-
mal sub-networks X. We apply PCA to the set of edges X ∈ RNp×|Z| in which
for each extremely preterm subject, we set the edges that have been identified
as abnormal to 1 and 0 otherwise.

Simulation: The weight of each edge is proportional to the WM connecting
the corresponding brain regions. A WM abnormality is a reduction or increase
in the weight of the edges with respect to the reference group (full term born
subjects). Since reduction in WM connectivity is a characteristic of the preterm
brain phenotype [5], we simulate abnormalities of WM connectivity by reducing
weights in GP with respect to GC . To show the ground-truth link between SD and
the percentage of edges identified abnormal edges. We consider GC as a 15× 15
zero-diagonal symmetric matrix of ones, and consider GP as a 15 × 15 matrix
with synthetic abnormalities. In the beginning, GP is identical to GC , then the
abnormalities are induced by randomly reducing the weights associated with the
edges connected to the same node in GP . In each iteration an additional node is
reduced at random by 90% to 100% until 99% of all the edges are reduced. This
simulation has been carried out on 6 pairs of GC and GP . We used the same K,σ
and M parameters as in real data.

3 Results

The grid search over the parameters σ and M that minimise the number of
abnormal edges Ec detected in the full-term born subjects and maximise the
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number of abnormal edges Ep identified in the extremely preterm born group
shows that the best values are σ = 0.01 and M = 51.

SD

%
E p

Fig. 2. Visualisation of the relationship between the spectral distance SD(LC ,LP) and
proportion of abnormal edges %EP identified for each extremely preterm subject. The
correlation between SD(LC ,LP) and the proportion of abnormal edges is ρ = 0.71 with
p-value = 10−14.

Figure 2 shows the relationship between SD and the ratio of abnormal to
normal edges in each extremely preterm subject. The correlation between SD
and the total number of abnormal edges Ep is statistically significant (p-value
= 10−14) with a correlation coefficient of ρ = 0.71. On average 11.3% ± 2.5%
of the total edges in extremely preterm subjects have been identified as abnor-
mal. Figure 3 shows the most identified edges (in 98% of the extremely preterm
subject). These edges form a sub-network related to WM connecting mainly
frontal cortex and deep grey matter regions such as bilateral thalamus and bi-
lateral frontal gyrus. Moreover, the pattern of the identified sub-network shows
hemispheric symmetry. Figure 4 shows a plot of the identified abnormal sub-
networks with respect to the first and second principal components. In addition,
the subjects have been colour-coded with respect to the percentage of abnormal
edges that were identified for that subject. Figure 4 shows that the subjects with
higher percentage of abnormal edges form different clusters.

Simulation: The figure in the supplementary material shows the results for the
relationship between SD and the proportion of abnormal edges that have been
detected in the connectivity matrix with synthetic abnormalities. The figure
displays the results for 6 pairs of GP and GC . The mean correlation coefficient
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Fig. 3. Visualisation of the most common identified edges in the extremely preterm
subjects. The connections in green are the abnormal edges, the brain regions in black
are connected by abnormal edges while brain regions in white do not have abnormal
edges.
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Fig. 4. Visualisation of the PCA results. The reduced sub-network data is plotted
with respect to the first and second principal component. To visualise the data, an
annotated colour scale is used to represent the percentages of abnormal edges found in
each subject, with black being the least and white being the most.
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between the SD and the proportion of abnormal edges is ρ = 0.98 (p-value
= 4× 10−9). This suggests that the SD metric summarised the amount of local
abnormalities present in the connectivity matrix.

4 Discussion

We propose a new framework for brain-network structural abnormality detection.
The framework is based on a min-cut max-flow algorithm and aims to detect
abnormal structural connectivity at the subject level.

The results show agreement between the graph similarity measure (SD) and
the number of abnormal edges Ep both on the real data (figure 2) and on the
data with simulated abnormalities (figure in the supplementary material). This
indicates that the framework can detect the number of abnormal edges that is
proportional to how different is the individual connectivity matrix with respect
to the reference connectivity matrix. In the case of real data, the most identified
sub-network across the extremely preterm born subjects (figure 3) demonstrates
that there is consistency across the subjects as the abnormal WM connectivity is
distributed between the deep grey matter regions and the frontal cortex. These
results are consistent with previous findings in extremely preterm neonatal pop-
ulation [3] and in extremely preterm adolescents [5]. The agreement between
these findings suggests that WM connectivity in these brain areas is vulnera-
ble to extreme preterm exposure to the extra-uterine environment. Moreover, it
appears that the extremely preterm brain at adolescence does not recover from
early-life WM injury. However, it is still unclear whether the WM alteration rep-
resents a developmental delay or permanent damage. Further analysis of older
preterm samples needs to be performed.

Figure 4 shows clusters of identified sub-networks suggesting that the iden-
tified sub-networks have a variable pattern. The subjects with similar abnormal
sub-networks form clusters. The clustering along the first principal component
might be driven by the number of abnormal edges, while the clustering along the
second principal component is more subtle. In general, it seems that the degree
to which each extremely preterm born subject has been affected by extremely
preterm exposure to the extrauterine environment is variable. In the future, it
would be interesting to analyse how this translates to the varied cognitive out-
come of these subjects [9].

In this study, we demonstrated for the first time the feasibility of casting the
network abnormality detection problem into a min-cut max-flow problem. This
method is able to detect abnormal connectivity at an individual level, compared
to conventional group-wise comparisons. Although the method was employed
to analyse abnormal structural connectivity in extremely preterm subjects, it
can be extended to detect abnormal functional connectivity. This could be of
great relevance to other conditions such as dementia or autism. Moreover, the
proposed framework could be applied to a broad range of network abnormality
detection beyond the proposed medical application.
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