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SUMMARY
The recently enriched genomic history of Indigenous groups in the Americas is still meager concerning
continental Central America. Here, we report ten pre-Hispanic (plus two early colonial) genomes and 84
genome-wide profiles from seven groups presently living in Panama. Our analyses reveal that pre-Hispanic
demographic events contributed to the extensive genetic structure currently seen in the area, which is also
characterized by a distinctive Isthmo-Colombian Indigenous component. This component drives these pop-
ulations on a specific variability axis and derives from the local admixture of different ancestries of northern
North American origin(s). Two of these ancestries were differentially associated to Pleistocene Indigenous
groups that also moved into South America, leaving heterogenous genetic footprints. An additional Pleisto-
cene ancestry was brought by a still unsampled population of the Isthmus (UPopI) that remained restricted to
the Isthmian area, expanded locally during the early Holocene, and left genomic traces up to the present day.
INTRODUCTION

Archaeological and genetic evidence suggests that the peopling

of sub-Arctic America started from Beringia before, during, and
1706 Cell 184, 1706–1723, April 1, 2021 ª 2021 The Authors. Publish
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immediately after late Glacial times (Achilli et al., 2018; Ardelean

et al., 2020; Becerra-Valdivia and Higham, 2020; Braje et al.,

2017; Skoglund and Reich, 2016; Waters, 2019; Yu et al., 2020).

Initial settlement attempts were followed by a more widespread
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peopling that reached southern South America as early as �15

thousand years ago (kya) (Dillehay et al., 2017). Recent studies

of ancient and modern genomes describe a complex scenario

prior to European contact with multiple migrations from Beringia,

as initially suggested by mitochondrial DNA (mtDNA) data (Achilli

et al., 2013; Brandini et al., 2018; Gómez-Carballa et al., 2018;

Llamas et al., 2016; Perego et al., 2009; Perego et al., 2010;

Tammet al., 2007) aswell as demographic spreads and admixture

events along the two continents (Flegontov et al., 2019; Moreno-

Mayar et al., 2018; Posth et al., 2018; Scheib et al., 2018;

Schroeder et al., 2018). The great majority of ancestries in early

Native Americans (NAs, here used to indicate Indigenous groups)

derive froman ancestral Beringian population(s) that differentiated

sometime between �22 and �18 kya and likely exhibited genetic

sub-structure that may explain the initial late Glacial migration(s)

aswell as the spreadof the so-calledUPopA (unknownpopulation

in the Americas) whose legacy reappears in Central America�8.7

kya, leaving signs in the gene pool of the Mixe (Moreno-Mayar

et al., 2018). In unglaciated eastern Beringia/northern North Amer-

ica, the first peoples split into two branches called Northern NA

(NNA, or ANC-B) and Southern NA (SNA, or ANC-A). The most

ancient representatives of SNA are individuals who were living

on both sides of the Rocky Mountains more than 10 kya: the

Clovis-associatedAnzick-1 and theSpirit Cave individuals associ-

ated with Western Stemmed technology. Ancient individuals car-

rying SNA ancestries crossed the Panama land bridge and

entered South America. Their fast spread along the southern

continent is evidenced by the earliest archaeological human pres-

ence in the Southern Cone at 14.6 kya and by ancient human

genomes dating more than 9 kya on both sides of the continent:

at Cuncaicha (Peru) and Los Rieles (Chile) on the Pacific and

Lapa do Santo and Lagoa Santa (Brazil) on the Atlantic. Another

UPop (UPopY) with Australasian ancestry may have contributed

to the early peopling of South America as recognized in one

sample from the Lagoa Santa site and in someAmazonian groups

that experienced isolation events (e.g., Surui and Karitiana)

(Moreno-Mayar et al., 2018; Skoglund et al., 2015).

However, the demographic dynamics underlying many of

these events, before and after European contact, are still unchar-

acterized, especially at the regional level (Fernandes et al., 2020;

Lindo et al., 2017; Nakatsuka et al., 2020; Nägele et al., 2020).

The Panamanian isthmus lies between the Atlantic and Pacific

oceans and connects the two American continents. It was the

only land bridge during the initial peopling of South America

and has remained a crossroads of goods, technologies, ideas,

and peoples throughout history, including more recent colonial

times (Cooke, 2005; Cooke et al., 2019; Hernández Mora et al.,

2021). In light of Panama’s geographic location, the archaeoge-

nomic study of its past can reveal its demographic history,

including movements between North and South America.

Ethics and community engagement
This study involves international collaborative efforts that bring

together archaeologists, geneticists, historians, anthropologists,

and computer engineers to incorporate existing knowledge with

genomic information about pre-Hispanic as well as modern

Indigenous individuals from the Isthmus of Panama. It was

possible with the support of local authorities and Indigenous
peoples of Panama and centrally involved local co-authors of

the present paper (J.R., T.M., M.T., J.M.P., R.C., J.M., and

J.G.M.) with years of experience in the Isthmo-Colombian re-

gion. Samples from the ancient individuals were collected for

the ArtEmpire European Research Council (ERC) project

(Consolidator Grant CoG-2014 no. 648535) in collaboration

with the Patronato Panamá Viejo (PaPV) as established by the

Convenio Especı́fico de colaboración entre el Patronato Panamá

Viejo de la República de Panamá y la Universidad Pablo de Ola-

vide, de Sevilla, España, signed on January 20th, 2016. Excava-

tions were undertaken with the permission of the Republic of

Panama’s Instituto Nacional de Cultura, Dirección Nacional de

Patrimonio Histórico (DNPH), Resolución DNPH no. 139-16 of

November 11th, 2016, and resolución DNPH no. 006-18 of

January 8th, 2018. Selected samples from bone and teeth were

exported to Pavia (Italy) andMannheim (Germany) in accordance

with the Permission of the Republic of Panama’s Instituto Nacio-

nal de Cultura, Dirección Nacional de Patrimonio Histórico, Res-

olución no. 080-17 DNPH of April 19th, 2017, and resolución no.

304-18 DNPH of September 26th, 2018. Even though no ties to

the pre-Hispanic inhabitants have been stated, we are engaging

local Indigenous communities to present the information from

this study and to seek their views. In general, the project has

been designed to maximize opportunities for public engage-

ment, as testified by ongoing meetings with local interest groups

to discuss research design and findingst. In order to increase

positive social impact, some information on the ancient samples

are publicly available in the ArtEmpire’s database, translated into

Spanish to increase accessibility (https://artempire.cica.es/)

(Aram et al., 2020), and a documentary also has been released

(https://www.youtube.com/watch?v=5BmxppS4oks).

The collection of the modern Indigenous samples was

approved by the Comité de Bioética de la investigación del Insti-

tuto Conmemorativo Gorgas and undertaken by the Instituto

Conmemorativo Gorgas de Estudios de la Salud (ICGES, Gorgas

Memorial Institute for Health Studies) of Panama. The ICGES ex-

plained the project to community leaders in their native lan-

guages and sent biological samples to the Department of

Biology and Biotechnology of the University of Pavia for DNA

extraction and analysis in agreement with the memorandum of

understanding (written in English and Spanish) signed on August

9th, 2016. All experimental procedures and individual written

informed consent forms were also reviewed and approved by

the Ethics Committee for Clinical Experimentation of the Univer-

sity of Pavia, Board minutes of October 5th, 2010, and April 11th,

2013. We are particularly grateful to and acknowledge the

ancient and modern people who shared their DNAs.

Panama: archaeology and history
Paleoecological and archaeological data point to a continuous

human inhabitation of the Isthmo-Colombian area from approx-

imately 16 kya (Cooke et al., 2013; Ranere and Cooke, 2020).

Clear evidence for the cultivation of domesticated plants,

including maize (Zea mays), manioc (Manihot esculenta), and

squash (Cucurbita moschata), dates back to more than 8–4.5

kya (Linares, 1977a, 1977b; Linares and Ranere, 1980; Linares

et al., 1975; Piperno, 2011; Ranere and Cooke, 2020), while Pan-

ama’s first pottery (Monagrillo ware) appeared about 4.5 kya
Cell 184, 1706–1723, April 1, 2021 1707
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(Martı́n et al., 2015, 2016). By 3 kya, the area’s western region

possesses all the characteristics of a coherent historical unit

(Greater Chiriquı́, which extended into present-day Costa

Rica), while this consensus is not available for the central and

eastern regions, often termed Greater Coclé and Greater Darién

(see specific section in STAR Methods for further details).

From approximately 500 BCE to 1,500 CE, relations among

neighbors oscillated between cooperation driven by exchange

and trade and conflict over land and resources. Although polities

often called chiefdoms expanded and contracted, there is no ev-

idence for aggressive empire building as in Mexico or the Andes

(Helms, 2014). On the eve of the Spanish invasion, historians and

most archaeologists agree that much of the central and eastern

Isthmus was inhabited by Indigenous polities that spoke

languages in the Nuclear Chibchan family (with variants of lan-

guages in the Chocoan family probably also spoken on the Pa-

cific side) and used the ‘‘language of Cueva’’ as a lingua franca

(either a trade language or a group of vernaculars) in a linguisti-

cally complex region, much as the Huëtar did in Costa Rica

(Cooke 2016; Costenla, 2012; Romoli, 1987). Based on partial

and fragmentary data, historians have ventured estimates of

the pre-Hispanic population in those areas where the language

of Cueva was spoken at European contact from 130,000 to

240,000 people and archaeologists have identified specific

villages capable of sustaining up to 2,400 inhabitants (Cooke,

2005; Cooke et al., 2019; Romoli, 1987). After nearly one millen-

nium of less destructive war and trade among neighbors,

European incursions provoked a rapid decline in the region’s

Indigenous populations. However, not all Indigenous groups

experienced simultaneous demographic decline. Historical re-

cords suggest that an expansion among the Guna followed the

reduction of other Indigenous groups (Castillero Calvo, 2017).

Panama: Genetics
To date uniparental systems have been examined to assess the

genetic history of Panama: mtDNA data identified specific line-

ages predating the Clovis technological horizon (13.2 kya), while

the comparison with Y chromosome data revealed a sex bias

during the colonial period consistent with ‘‘more native men per-

ishing or being deprived of reproductive rights than women’’

(Grugni et al., 2015; Perego et al., 2012). Similar to mtDNA

data, patterns of regional genetic continuity in some Indigenous

American (IA) communities have been inferred from the analysis

of nuclear genomes from continental Central America (Reich

et al., 2012), but without ancient DNA (aDNA) data from the Isth-

mian land bridge.

To refine the human genetic history of the Isthmus, for the first

time we have directly tested and analyzed autosomal markers of

both pre-Hispanic human remains and contemporary Indige-

nous groups from Panama. Twenty ancient individuals (13 of

them pre-Hispanic and seven colonial) were sampled from seven

different archaeological excavations along the Pacific coast of

Panama City, located from the residential area of Coco del Mar

to the remnants of Old Panama’s Cathedral in Panamá Viejo,

an area of pre-Hispanic inhabitation and the site of the colonial

city from 1,519 to 1,671 CE (Hernández Mora et al., 2021). Mod-

ern sampling for a total of 84 individuals, 76 self-identified as

associated with five different Indigenous groups plus four self-
1708 Cell 184, 1706–1723, April 1, 2021
designated ‘‘Moreno’’ and four self-identified ‘‘Mestizo’’ individ-

uals (Figure 1A; Table S1), took place in PanamaCity as well as in

the provinces and Indigenous territories.

RESULTS

Although the tropical environment and the proximity of the exca-

vation sites to the ocean, with recurrent flooding, challenge the

possibility of DNA preservation, we were able to obtain some

of the first reliable aDNA data from the Isthmus. Starting from

the initial collection of samples from 20 ancient individuals, we

eventually assembled ancient low-coverage (R0.01X) genomes

from 12 unrelated individuals (one female and eleven males),

including ten from pre-Hispanic times (radiocarbon dated from

603 to 1,430 CE). Molecular decay analyses demonstrated the

poor preservation of endogenous DNA, but error rate and valida-

tion tests confirmed the reliability of the retrieved genomic data

(Table S2). In order to characterize the genetics of Isthmian indi-

viduals with the greatest possible spatial range and temporal

depth, the 12 ancient genomes were compared with genome-

wide data from 74 unrelated modern Panamanians and to avail-

able modern and ancient data by assembling different datasets

(STAR Methods; Table S3).

Uniparental lineages of pre-Hispanic Panamanians
The evaluation of uniparental markers revealed the presence of

the ‘‘pan-American’’ mtDNA haplogroups A2 and B2 in the

pre-Hispanic samples, while two haplogroups, H1j1a and

L2a1c2a, typical of Europeans and sub-Saharan Africans,

respectively, were identified in the samples taken from colonial

ancient individuals (Figure S1A; Table S1).

The most represented mtDNA haplogroup of pre-Hispanic

Panamanians, A2af1, was previously identified (as A2af) at high

frequencies among present-day Panamanians, mainly in the Co-

marca of Guna Yala (Perego et al., 2012). It is characterized by

the so-called ‘‘Huëtar deletion,’’ a peculiar 6-bp control-region

deletion initially detected in the Chibchan-speaking Huëtar

from Costa Rica (Santos et al., 1994).

The eight pre-contact Y chromosomes are positive for the L54

marker, which characterizes all the Indigenous American

branches of haplogroup Q (Figure S1B). Two individuals

(PAPV118, PAPV175) were further sub-classified as Q1b1a1a-

M3 and one (PAPV117) as Q1b1a1a1-M848, the most frequent

haplogroups among Indigenous peoples of the Americas (Grugni

et al., 2019; Pinotti et al., 2019).

Archaeological and anthropological significance of two
burials in Panamá Viejo and Coco del Mar
An initial evaluation of the ancient low-coverage genomesmade it

possible to address long-standing anthropological and archaeo-

logical questions regarding the possible genetic relationships

among individuals buried together. These cases included the

ten human remains (one adult, nearly complete, female skeleton

with nine adult male skulls beneath and around her) recovered

from a pre-Hispanic burial denominated Tumba 1 underneath

the Plaza Mayor of Panamá Viejo, and a similar burial at Coco

del Mar (approximately 1 km to the west of Panamá Viejo), where

a female skeleton was found accompanied by three male crania
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Figure 1. Geographic locations and time ranges of modern and ancient individuals sampled

(A) Map showing the geographic origin of the Isthmian individuals sampled; the inset represents the locations of the archaeological excavations.

(B) Schematic drawings of Tumba 1 in the Plaza Mayor site of Panamá Viejo and the burial at Coco del Mar. The table reports mtDNA and Y chromosome

haplogroup affiliations, molecular sex determination, and 14C-calibrated dates (CE). The sum distributions of all ages combined are shown, separately for the two

sites, above (Tumba 1) and below (Coco del Mar) the table. Calibration dataset was IntCal20. Calibration software was OxCal 4.4.2. The inset on the right shows

no kinship relationships (values extracted from Table S2 with error bars indicating 2-fold Standard Errors, SE) among individuals buried together in Plaza Mayor

Tumba 1 and Coco del Mar. IDs (and additional information) are indicated in black and gray, respectively.
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(Figure 1B). Crania interred with prestigious individuals have been

interpreted as evidence either of ancestor veneration or of human

sacrifice with the ostentation of trophy heads (Mendizabal, 2004;

Smith-Guzmán and Cooke, 2018). Arguments in either case draw

on presumed (recent or ancestral) tribal and biological relation-

ships. Using genome-wide data, we can now exclude any genetic

relatedness among the individuals. Moreover, the two females

exhibit different mtDNA haplogroups (D1 and B2, respectively)

with respect to the surrounding male crania (A2af1a1, B2b, and

B2d in Tumba 1; A2af1b, A2w, and B2d in Coco del Mar).

In combination with these genetic results, radiocarbon dates

obtained for the pre-Hispanic individuals sampled from Panamá

Viejo and Coco del Mar point toward a more complex and

nuanced interpretation. The two female figures, PAPV109

(1265-1375 CE) and PAPV172 (1051-1221 CE), were interred

with crania dated from 603 to 1,390 CE (2 sigma) in the first

case and from 657 to 1,430 CE (2 sigma) in the second

(Figure 1B). Hence, skulls spanning over 700 years, including

the area’s earliest and latest pre-Hispanic remains recovered

to date, accompanied each of the main individuals. Seven of

the skulls that accompanied PAPV109 belonged to individuals

who pre-dated her by hundreds of years, and the other two

were roughly contemporary. One of the crania buried with
PAPV172 belonged to a male individual who lived roughly 500

years before her, and the other two to male individuals deceased

and buried over the subsequent 300 years. Drawing upon on

Cueva as well as Guna ethnography (Castillero Calvo, 2017:

pp. 26, 87, 281, 282, 476–478; Fernández de Oviedo, 1853:

Vol. 2, pp. 125–154; Fortis, 2013), crania kept for hundreds of

years or even deposited after the main interment probably per-

tained to enemy chiefs whose death in battle guaranteed their

spirits’ eternal repose. Their skulls may have provided sorcerers

and healers, in this case female seers or tequina, a gateway to

knowledge about enemies as well as the afterlife. These women

entered the next world with the tools of their trade (the skulls), like

other individuals interred in Panamá Viejo (a ‘‘musician’’ poised

as if playing her instrument, and a seated adolescent with flint

blades and stingray tail barbs) or mentioned in Spanish chroni-

cles (farmers buried with corn) (Fernández de Oviedo, 1853:

pp. 125–154). The heads of prestigious enemies obtained in war-

fare would have facilitated the seers’ access to their strength and

knowledge as well as their ability to communicate with other

worlds. The different mtDNA lineages of these individuals might

also support their origins from various pre-Hispanic groups,

since we have found significant differences in the haplogroup

distribution among themodern Indigenous populations analyzed
Cell 184, 1706–1723, April 1, 2021 1709
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here (p value < 0.0001). Although the literature contains refer-

ence to wives, slaves, and loyal servants sacrificed with their

chiefs (Fernández de Oviedo, 1853; Romoli, 1987), these burials

illustrate a different practice. Their arrangement stands out

among a great diversity of pre-Hispanic interments over a wide

zone of the Panamanian Pacific, some of these including offer-

ings in local pottery, metal, lapidary, shell, and bone work, and

many burial modes, including bones deposited in urns or bun-

dles (Martı́n, 2002a, 2002b). PAPV172’s head was found

beneath a ceramic offering, while five ceramic pots with offerings

accompanied PAPV109, who also wore a necklace fashioned

from thorny oyster shells (Spondylus spp.). Within the variety of

pre-Hispanic burial patterns observed to date, individuals

PAPV109 and PAPV172 appear unique on a local as well as a

regional level.

Deciphering genomic variation on the Isthmus
The analyses conducted in this study facilitate a microgeo-

graphic and diachronic assessment of Indigenous autosomal

variation in this strategic region. The characterization of the

pre-colonial genetic histories is clouded by the impacts of colo-

nization. This is evident in the distinctive genetic profiles that

differentiate the current gene pool of the Panamanian groups

as obtained by the ADMIXTURE analyses (Figures 2A, S2A,

and S2B). The two groups that experienced a history of admix-

ture, the self-identified ‘‘Moreno’’ and ‘‘Mestizo,’’ reveal large

proportions of their genomes not derived from Indigenous peo-

ples of the Americas. Both show a comparable proportion of

ancestry predominant in Europeans (K2) and the component

common to Africans (K3) is more prevalent in the ‘‘Moreno’’

group; the ‘‘Mestizo’’ are characterized by a component also

identified in Asians (K4). The coexistence of different continental

genomic ancestries is common in the Americas, due to complex

admixture that started during the colonial period (Ongaro et al.,

2019). In Panama, where European colonization began in 1,502

CE, this is particularly evident in the ‘‘Mestizo,’’ but it is also re-

vealed by individuals who self-identified as Indigenous and

genealogically unadmixed, showing variable amounts of African

and European ancestries in their genomes, with the lowest

average values in the Guna, followed by the Ngäbe.

The modern and ancient Isthmian individuals are also charac-

terized by a specific Indigenous component, which has been

identified considering only modern individuals (K6, Figure S2A)

as well as with the addition of ancient individuals (K9, Figure 2A).

This component drives the Isthmo-Colombian axis, depicted by

the first (main) component in the principal-component analysis

(PCA) of Indigenous groups (Figure 2B), which includes ancient

andmodernPanamanians togetherwith theCabécar fromsouth-

ern Costa Rica and two populations from northern Colombia (the

Wayuu and the admixed Columbia [CLM]). The Indigenous

groups from the pre-colonial Greater Chiriquı́ cultural area form

two closely related western clusters (one with the Ngäbe and

the other including Bribri, Naso, and Cabécar). The pre-Hispanic

individuals group together in themiddle of the Isthmo-Colombian

genetic landscape and create a distinct branch in the outgroup f3

statistics hierarchical tree, together with a few self-identified

‘‘Moreno’’ (FigureS3A), suggesting the integrationof pre-Hispan-

ic individuals into the forming multi-cultural colonial groups. The
1710 Cell 184, 1706–1723, April 1, 2021
genetic closeness of the pre-Hispanic individuals is possibly ex-

pectedwhenconsidering thegeographic proximity of thearchae-

ological excavations but less expected when taking into account

the radiocarbon dates, from603 to 1,430CE, thus revealing a ge-

netic continuity for almost one thousand years (Table S1). The

modern Indigenous populations from the Greater Darién area of

cultural influence to the east of the region (Guna, Emberá, and

northern Colombians) create distinct groups in the PCA plot,

well separated from the Greater Chiriquı́ populations in the west.

The details of this genetic sub-structure (and heterogeneity) on

the Isthmus became apparent by analyzing the nearly unad-

mixed Indigenous haplotypes (uIA217 dataset) with fineSTRUC-

TURE (Figures 3A and S4A). Among the five Isthmian genetic

clusters, four are specific to Indigenous Panamanian groups

(PaNASO, PaNGABE, PaEMBERA, PaGUNA), while the Bribri in-

dividuals form a separate cluster (here called Western Isthmus)

with the Cabécar from Costa Rica. The latter branch, together

with Naso and Ngäbe, forms a macro-group that might be asso-

ciated with the geographic region of the pre-colonial Greater

Chiriquı́ cultural area. Genetically distinct are the Emberá and

the Guna, suggesting a wider genetic variation in the Greater Da-

rién cultural region. The Guna also show the highest level of sim-

ilarity in intra- and inter-cluster comparisons (Figures 3B and

S4B), analogous only to two Indigenous groups that experienced

isolation events, the Amazonian Surui and Karitiana, and pre-

served an ancient Australasian-related ancestry, the so-called

UPopY (Moreno-Mayar et al., 2018; Skoglund et al., 2015). We

formally looked for UPopY variants in the Isthmus with f4 statis-

tics in the form f4 (W/Panama, X/Mixe; Y/Australasia, Mbuti)

without finding any significant sign of admixture or gene flow

(Figure S5A). The same statistics were used to formally test the

average correlation in allele frequency differences (mixture of an-

cestries) within the Isthmo-Colombian area (Figure 2C). This

analysis provides statistical support to the genetic interactions

(Z score often < |3|) in the western Isthmian area, eventually

extended to Cabécar, Naso, and Ngäbe. On the other hand, it re-

veals close relationships among the Emberá and northern Co-

lombians (CLM and Wayuu). Finally, the pre-Hispanic commu-

nities inhabiting the Pacific coast in the area of Panama City

cluster together with the Guna compared with other Isthmo-Co-

lombian populations (Z score < |3|), except for the Ngäbe.

Deciphering genomic connections outside the Isthmus
Previous studies (Gnecchi-Ruscone et al., 2019; Moreno-Estrada

et al., 2013; Reich et al., 2012) have already provided hints of ge-

netic patterns in the Isthmo-Colombian region, eventually

extended to other groups that speak Chibchan languages. Here,

we first confirmed that the previously discussed Isthmian compo-

nent is also detectable in additional Chibchan-speaking popula-

tions genotyped with a different array (Arhuaco and Kogi from

Colombia; Guaymı́, Cabécar, Teribe, Bribri, Huëtar, and Maleku

from Costa Rica) and that its highest legacy can be detected in

the western Isthmian land bridge consisting of the present-day

countries of Panama and Costa Rica (Figure S2C). We have

now detailed patterns of genomic variation of the area’s core pop-

ulation(s), represented by pre-Hispanic Isthmian individuals and

modern Panamanians, underlining their unique features in the

Americas’ genetic landscape.
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Figure 2. Overview of the genetic structure of ancient and modern Isthmian groups

(A) ADMIXTURE plot for K = 14; each bar shows the average ancestry proportion of individuals within the same group considering the rWD1560 dataset plus the

American and Siberian ancient individuals.

(B) Indigenous American (IA) PCA analysis including the mIA417 dataset and ancient genomes projected onto uIA217 variability. The inset shows a specific

Isthmo-Colombian PCA.

(C) f4 statistics in the form f4 (W/Isthmo-Colombia/Anzick, X/Isthmo-Colombia/SpiritCave; Y/Isthmo-Colombia, Mbuti) considering the uIA89 and mIA417 da-

tasets plus ancient Isthmian individuals (all SNPs). The f4 values are reported in abscissa. Each tested population (Y) is shown (with triangles pointing to X or W

population) only when the initial conformation of the tree is rejected (p value� 0.001, for Z scores > |3.3|), thus visually pointing to the closer population (X or W) in

each comparison. A legend for symbols used in the paper is reported on the top left.
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The f-statistics tests not only detected higher levels of shared

genetic history between ancient and present-day groups of the

Isthmian area extended to Costa Rica (Cabécar) and northern

Colombia (CLM and Wayuu) in comparison with other ancient

and modern populations (Figures 4 and S3B) but also revealed

different levels of shared ancestries in the Isthmian groups

(Figure S5B). The same pattern has been detected in the

neighbor-joining tree (based on outgroup f3 statistics and rooted
with an ancient Beringian genome; Figure S3C) of ancient and

modern IA groups. This graph identifies an early Isthmo-Colom-

bian branch with different sub-branches. This and the additional

IA branches (with a geographic pattern) largely overlap with the

haplotype-based clusters identified in the American-wide uIA217

dataset (Figure 3A), where in the absence of data from ancient in-

dividuals, the distinctiveness of the Isthmo-Colombian area in the

modern America genomic structure remains evident.
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Figure 3. Population genetic structure as revealed by haplotype analysis of modern Panamanian and IA populations
(A) fineSTRUCTURE unrooted dendrogram showing the 19 identified Indigenous clusters and the geographic distributions of the individuals in the nearly un-

admixed IA (uIA217) dataset.

(B) Violin plot showing cluster self-copy lengths (fragments copied from members of their own cluster) in the uIA217 dataset; higher values are for more isolated

groups.

(C) Density of the intrapopulation average total length of shared IBD blocks, considering nine bins of IBD lengths in the Panamanian and non-Panamanian

Indigenous groups of the uIA217 dataset. The inset shows the estimation of changes in effective population size (Ne) over time based on IBD segments with a

minimum threshold of 2 cM (even if estimates older than �1,000 years should be considered with caution) and considering a generation time of 25 years.
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Figure 4. Heatmaps based on f4 statistics to compare the differential relationships between the Isthmian groups and other ancient/mod-

ern IAs

f4 statistics in the form f4 (W/Isthmus, X/USR-1; Y/Ancient and Modern IA, Mbuti). Each tested population (Y) is represented by squares (ancient) and circles

(modern) with colors proportional to f4 values; Z score always >3.3.
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Apre-Hispanicoriginof the Isthmo-Colombiandistinctiveness is

suggestedbyour analysisof effectivepopulationsizebasedon the

identical-by-descent (IBD) segments.A reduction in thepopulation

sizeof thePanamaniangroupsprobablybeganduringpre-colonial

times (�1 kya; inset of Figure 3C), thus before the average time of

the other IA population groups taken together. This trend ismainly

driven by the Guna, who on the other hand show unreliable popu-

lation size (Ne) values when considering short fragments (<8 cM,

Figure S4C). Therefore, we repeated this analysis without the

Guna, confirming an earlier beginning of the Ne reduction in the

Panamanian IA groups that became steeper in colonial times

(Figure S4D). Finally, Ne estimates based on IBD longer (and

more reliable) fragments (>8 cM) allowed us to confirm this trend

for the Guna (Figure S4E). Three factors may have contributed to

this demographic pattern: (1) a decrease in the population size

that started before European contact; (2) a less intensive impact

of European colonialism, as also suggested by the lower peaks

of IBD bins for most Panamanian groups; and (3) an earlier and

steeper demographic recovery after contact than in other IA pop-

ulations, especially evident in Guna and Ngäbe who show an

enrichment of shorter IBD segments, around 7–13 Mb, and then
a fastdecreaseof IBDblocks (Figure3C).All explanationsareplau-

sible andnotmutually exclusive.BeforeEuropeancontact, cultural

changes in the Panama Bay region may have accompanied

migrations and demographic shifts (see ‘‘Panama: archaeology

and history’’ and, in the STAR Methods section, ‘‘Insights into

pre-Hispanic Panama’’). This possibility finds support from other

genetic analyses that showed a high level of genomic drift shared

by the Isthmian Indigenous groups, including the ancient individ-

uals sampled, on both allele frequencies and haplotypes (see

PCA plots and all the trees), as well as from the comparison of

the IBD fragments shared among the Panamanian groups and

with other IA populations (Figure S4F). The latter analysis reveals

ancient interactions (from at least 2,500 years ago) within

the Isthmo-Colombian area, much stronger and temporally

extended among the western populations (Cabécar, Bribri, and

Naso) currently living in the geographic region associated with

the pre-colonial Greater Chiriquı́ cultural area. On the eastern

part of the Isthmus, the Guna also show a number of short (older)

blocks sharedwith theMaya fromMexico,while the Emberá share

shorter blocks with South American populations. Thus, the former

probably received ancient genetic inputs from the north, while the
Cell 184, 1706–1723, April 1, 2021 1713



A B

Figure 5. Schematic phylogenetic trees based on genome-wide and mtDNA data

(A) Inferred maximum likelihood tree built with TreeMix on the unadmixed dataset uIA89 allowing two admixture edges (migration events). Population groups are

colored according to linguistic/geographic affiliation. Horizontal branch lengths are proportional to the amount of genetic drift that has occurred on the branch.

Migration arrows are colored according to their weight.

(B) Bayesian phylogenetic tree of ancient and modern mitogenomes from Panama belonging to IA founding haplogroups. It was rooted on an L2c2 mitogenome

from a ‘‘Moreno’’ individual. The Bayesian age (mean value with standard deviation) is shown for relevant branches. Black lines highlight Isthmo-Colombian-

specific branches. The inset shows the Bayesian skyline plot (BSP), based on complete mitogenomes, displaying changes in the effective Ne through time

considering a generation time of 25 years.
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latter admixed with external southern sources. The Guna also

show a direct connection with the ancestors of North and Central

Americanpopulations in theTreeMixmaximum likelihood (ML) tree

when two migration edges (gene flows) are added (Figure 5A).

Such an ancient legacy is also confirmed by the Panamanian

mtDNA tree. The most-represented haplogroups among ancient

and modern Panamanian mitogenomes belong to the four main

pan-American founding lineages (A2, B2, C1, and D1; Figure 5B).

We also identified four Isthmo-specific sub-branches, the most

represented one (A2af1) is dated at 15.82 ± 4.09 kya (Figure S1A).

Finally, the Bayesian skyline plot (BSP) of Panamanian mtDNAs

shows an increase in population size starting in the early Holocene

(�10 kya) (inset of Figure 5B).

A previously undescribed ancestry among ancient
Indigenous peoples of the Americas?
To further understand the peculiarities of the Isthmo-Colombian

populations within the context of the most updated archaeoge-

nomic scenario of non-Arctic America (see Introduction), we

used f4 statistics, which controls for possible biases deriving

from population-specific drift, to compare ancient individuals

and contemporary Indigenous groups to the individuals we

sampled. As expected, the Isthmus shows an excess of allele

sharing with modern and ancient Indigenous populations from

Central and South America when compared with Ancestral Be-

ringia (USR-1, Upward Sun River, Alaska, �11.5 kya) and NNA
1714 Cell 184, 1706–1723, April 1, 2021
(represented by ASO, Ancient Southwestern Ontario, �4.2 kya)

genomes, but this picture is more intricate when dealing with

the SNA-related ancient genomes (Table S4). The affinities be-

tween the (Y/tested) Isthmian populations and other Indigenous

(X) groups are significantly stronger in relation to Anzick-1 (Mon-

tana, �12.8 kya) than to Spirit Cave (Nevada, �10.9 kya) (W in-

dividuals; Figure 6A), suggesting that Isthmian populations are

related to Spirit Cave as much as to other Indigenous groups,

while Anzick-1 is an outgroup to them. We directly tested the re-

lationships of Isthmian and other Central/South American popu-

lations with Anzick-1 and Spirit Cave, highlighting a differential

trend that becomes significant with a higher molecular resolution

power, i.e., more single-nucleotide polymorphisms (SNPs)

(Figures 2C and S5C). Moreover, the Isthmus seems more

closely related to Spirit Cave than to Anzick-1 in comparison

with Ancestral Beringia.

Such genomic differences are confirmed when moving south-

ward in Central America (Table S4) and particularly for the early

ancient genomes excavated on the southern continent. The Pa-

cific coast populations (Los Rieles, Chile, �10.9 kya) exhibit

greater affinity to Spirit Cave, while the ancient genomes from

the Atlantic side show the same pattern as Anzick-1 when

considering individuals older than �7 kya (Lagoa Santa, Brazil,

�10.4 kya). These distinctive signals persisted up to about 7

kya, when they were probably erased by amajor population turn-

over in South America (Moreno-Mayar et al., 2018; Posth et al.,
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Figure 6. f4 statistic tests on Isthmian and other IA groups and minimum number of ancestral sources

(A) f4 statistics in the form f4 (W/Ancient IA, X/Modern IA; Y/Isthmus, Mbuti) on uIA89, mIA417, and ancient genomes considering only transversions. Only sub-

groups of meaningful ancient genomeswere considered (see Table S4 for comparisons with the entire ancient dataset). The Emberá group was excluded due to a

significant degree of admixture detected in the individuals. Each tested population (Y) is shown (with triangles pointing to X or W population) only when the initial

conformation of the tree is rejected (p ~ 0.001, when the Z score is >|3.3|), thus visually pointing to the closer population (W or X) in each comparison.

(B) We used qpWave to compare (in pairs) ancient Panama and present-day Isthmian groups with all IA populations (considering rank 1). Outgroups were kept to

the minimum and chosen to represent different IA ancestries identified here (STAR Methods) and in other papers. Rank 1 refers to a model in which all paired

populations fit as derived from two ancestral sources, relative to the outgroups. A p value > 0.01 (< 2 in �log10 scale, dotted red line) means pairs that could be

explained by a single independent source.
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Figure 7. Admixture graphmodeling ances-

tries and affinities of Isthmian groups in

America

Best fitting f-statistics-based admixture graph

optimized using qpGraph. We modeled the ge-

netic history of ancient Isthmian individuals and

the Guna directly linked to ancient IA genomes

representative of the SNA ancestries. At the top,

we show the f4 statistics with the worst Z score

after optimizing themodel. Statistics on alternative

models are also listed (see Figure S7 for further

details). Numbers to the right of solid edges

represent optimized drift parameters and per-

centages to the right of dashed edges represent

admixture proportions. Different colors indicate

the specific ancestries discussed in the text. The

bar chart shows different ancestry proportions in

ancient and modern Isthmian groups (except for

Guna) estimated with qpGraph on the final tree

(Z score always < |2.5|).
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2018), facilitated by a widespread population decline due tomid-

Holocene climate changes (Riris and Arroyo-Kalin, 2019).

The results of previous analyses revealed that Isthmian and

non-Isthmian IA populations are differentially related to available

Pleistocene individuals, suggesting the contribution of different

sources. To test whether the Isthmian and non-Isthmian groups

derived from the same or distinct ancestral populations, we

used qpWave (Patterson et al., 2012), which estimates the mini-

mum number of sources necessary to explain the observed ge-

netic composition of population groups. Significance values are

consistent with pairs of Isthmian and non-Isthmian groups

deriving from at least two separate streams of ancestry, as at-

tested by rank 1 p value < 0.01 in most comparisons, especially

for the Guna (Figure 6B). This finding demonstrates that the

distinctiveness of the Isthmo-Colombian area cannot be ex-

plained by genetic drift alone, as recently inferred in other popula-

tion contexts (Nägele et al., 2020). The Guna also show lower

values (mostly <25th percentile) of shared genetic history with

ancient genomes representative ofwell-known Indigenous ances-
1716 Cell 184, 1706–1723, April 1, 2021
tries than the average of the one shared by

other IA populations (Figure S3D). There-

fore, we modeled admixture graphs look-

ing for the most plausible origin of the

ancestral source(s) of the Isthmian

component (Figures S6 and S7; see also

the specific section of STAR Methods for

further details). The best supported topol-

ogy successfully tested the hypothesis

that the ancestral gene pool of the

Isthmo-Colombian area, here represented

by pre-Hispanic Panamanians, derives

from a local admixture between different

ancestral components (Figure 7). One de-

rives from the differential mixture of two

ancestries, SNA1 and SNA2, that in turn

stem from an ancestral SNA source. This

scenario is strongly suggestive of the first

split between SNA and NNA occurring in
Beringia, thus further north than generally proposed (Waters,

2019). The NNA ancient individual in Figure 7, ASO (�4.2 kya), re-

sults from an admixture between NNA and SNA1. We could not

identify an unadmixed proxy for the NNA ancestry among the

available modern and ancient individuals (Figure S6H), but NNA

does not seem to be involved in shaping the Isthmian genomic

pool. Founding populations carrying the SNA1 ancestry probably

took part in an early peopling of the double continent passing

through the Isthmus and leaving signals on both sides of South

America, as attested by two of the most ancient genomes, Lagoa

Santa in Brazil (�10.4 kya) and Los Rieles in Chile (�10.9 kya). The

former also confirms a few traces of UPopY, the UPop of Austral-

asian ancestry, which was previously proposed to have contrib-

uted to the early peopling of South America (Moreno-Mayar

et al., 2018; Skoglund et al., 2015). On the other hand, only Los

Rieles shows significant inputs of the SNA2 ancestry, which

moved later or slower than SNA1 through the Americas, admixing

multiple times with the first settlers along the way, as demon-

strated by the ancient admixed genomes of Spirit Cave in North
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America andMayahak Cab Pek (Belize,�9.3 kya) and the ancient

Isthmians (this study) in Central America. Once SNA2 reached

South America, it probably left a stronger contribution on the Pa-

cific side, as suggested by Los Rieles and supported by the differ-

ential pattern depicted by the f4 statistics (Table S4). However, to

fully explain the genetic variation of pre-Hispanic Panama, we

need to consider an additional ancestry: an ancestral unsampled

population of the Isthmus (UPopI; Figure 7), which is still unrepre-

sented in the ancient dataset, but left its strongest traces in the

contemporary Guna. UPopI parallels the Spirit Cave branch of

SNA2, testifying to a long-shared drift between the pre-Hispanic

Guna and the ancient Isthmian (including pre-Hispanic) individuals

sampled. This best-fitting model was also checked without

considering UPopI and replacing Spirit Cave with Anzick-1 and

Guna with Mixe, previously used to identify UPopA (Moreno-

Mayar et al., 2018), without finding any statistically supported

graph (Figures S7D–S7F). Therefore, it is supported that Anzick-

1 and Spirit Cave might represent different ancestries and UPopI

is a still unsampled population distinct from UPopA. UPopI likely

originated in the north during the late Pleistocene, as attested

by the age (�15 kya, Figure S1A) of the entire mtDNA haplogroup

A2af1 that probably represents its mitochondrial legacy, and

expanded more than 10 kya in the Isthmo-Colombian area (ac-

cording tomitogenome data; inset of Figure 5B). These ancestries

left different traces in pre-Hispanic Isthmian individuals and

contemporary Panamanian groups (Figure 7), and only the pres-

ence of UPopI provides significant support for our final model. It

also explains the ancestral component, already seen in the

ADMIXTURE analyses, which is geographically restricted to the

Isthmo-Colombian area and prevalent in the Guna, where it was

probably maintained by a high level of isolation. Finally, this spe-

cific ancestry could explain the ‘‘archaeogenomic distinctive-

ness’’ of the Isthmo-Colombian area within the genomic land-

scape of IA groups.

DISCUSSION

Our work enriches the IA genomic database with autosomal data

from cultural groups of Panama and ten low-coverage pre-His-

panic genomes obtained from human remains excavated in the

tropical area of PanamaCity on the PacificOcean. The ancient ge-

netic profiles from Panamá Viejo and Coco del Mar sites, radio-

carbon dated from 603 to 1,430 CE, confirm similarities in the

gene pool of this pre-Hispanic population(s), suggesting common

origins. The diachronic comparison with population groups pres-

ently living in Panama allowed us to identify genetic similarities

with the Guna and Ngäbe and suggestive connections with

some admixed individuals, implying that, in the wake of the

conquest, there was extensive gene flow. A genetic sub-structure

has been identified in the entire Isthmo-Colombian region, with a

macro-group encompassing the Cabécar, Bribri, Naso, and

Ngäbe, who currently live in the pre-colonial Greater Chiriquı́ cul-

tural area. A wider genetic variation characterizes eastern Pan-

ama, here represented by pre-Hispanic individuals from

Panamá Viejo andCocodelMar plusGuna, Emberá, and northern

Colombians. Our analyses suggest that pre-Hispanic demo-

graphic changes and isolation events, evident in the Guna,

contributed to create the genetic structure currently seen in the re-
gion. Moreover, through allele frequency analyses and haplotype-

based reconstructions,wedescribe thepresenceofa specificaxis

of Indigenous genetic variation in the Americas, which is typical

in the Isthmo-Colombian area and possibly extended to other

Chibchan-speaking groups. This component was present not

only among pre-Hispanic Isthmian individuals but also strongly

characterizes current Panamanian groups, particularly the Guna,

surviving both pre-colonial demographic fluctuations and the

genetic bottleneck (and admixture) caused by colonialism.

The detection of this component has an impact that expands

far beyond the Isthmo-Colombian area and the ancestry of its

past and current inhabitants. The following clues point to the

scenario that it arose in the late Pleistocene: (1) the pre-Clovis

age of the Isthmian-specific mtDNA haplogroup A2af1, (2) the

internal structure that emerges when only the Indigenous

genome-wide variation is analyzed, (3) the longer shared ge-

netic history among Isthmo-Colombian populations with

respect to other Indigenous populations, and (4) the differential

relationships with Pleistocene individuals from North America.

Next, to identify its ancestral source(s), we built a statistically

significant model that explains this Isthmo-Colombian compo-

nent as a local admixture of different ancestries of northern

North American origin. At least two SNA ancestries, SNA1

and SNA2, differentially associated to available Pleistocene ge-

nomes, should be considered, as well as an additional Isth-

mian-specific ancestry. The latter requires the contribution of

UPopI, which stemmed from the same source (SNA2) that

contributed to the pre-Clovis groups with Western Stemmed

technologies associated with Spirit Cave and, according to mi-

togenome data, expanded within the Isthmo-Colombian area

during the early Holocene.

The ancestral admixtures described here were probably

bound to now-submerged archeological sites on the Pacific

coast of the Isthmus. Nevertheless, the genomes of the pre-His-

panic individuals from Panamá Viejo and Coco del Mar attest to

these events, and the site of Vampiros-1 (initially named Cueva

de los Vampiros), the only Pleistocene site on the lower Isthmian

land bridge that contains cultural, but not human, skeletal re-

mains, provides further archeological support. Vampiros-1

shows evidence of both Clovis and Fluted Fishtail Point lithic tra-

ditions indicating that hunter-gatherers of extra-Isthmian origin

were on the lower Isthmus 13.2–11.7 kya with specific compos-

ite weaponry and cutting/scraping tools (Ranere and Cooke,

2020). Our model also fits well with recent archeological records

from both sides of the Isthmo-Colombian area. Archeological

findings in southern North America report early peopling as far

south as central northern Mexico around the Last Glacial

Maximum (LGM) (Ardelean et al., 2020) and more widespread

settlements in warmer pre-Clovis times (14.7–12.9 kya)

(Becerra-Valdivia and Higham, 2020). The cultural heterogeneity

observed among the oldest reliable pre-Clovis archaeological

sites of South America (dated 15.1–14.0 kya) along the Pacific

coastal zone (Huaca Pietra in Central Andes; Monte Verde II in

South Andes) (Dillehay et al., 2017) and in the Pampas (Arroyo

Seco 2) (Politis et al., 2016) can be explained considering a

deeper chronological time (between 16.6 and 15.1 kya) for the

Isthmian crossing that led to the initial peopling of South America

(Prates et al., 2020).
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The preservation effect of an ancient legacy in ‘‘outlier popula-

tions,’’ such as theGuna, recalls that of Sardinians andBasques in

Europe (Achilli et al., 2004; Chiang et al., 2018; Novembre et al.,

2008; Olivieri et al., 2017; Palencia-Madrid et al., 2017). In the Eu-

ropean context, Sardinians maintained the most evident traces of

the early European Neolithic farmers (Lazaridis et al., 2014, 2016;

Raveane et al., 2019). Among Indigenous peoples, some Amazo-

nian groups, which match the very high internal similarities of the

Guna, have preserved the specific ancestry of a UPop linked to

Australasia (Moreno-Mayar et al., 2018; Skoglund et al., 2015).

In the Isthmian context, demographic events connected to both

pre-Hispanic and colonial times contributed to differentially retain

and further shape the IA ancestries.

Limitations of study
The models reported in this study are based on 12 ancient

low-coverage genomes from two archeological sites and

genome-wide data from 74 unrelated modern Panamanians.

These data provide a suggestive baseline for future interdisci-

plinary studies on the Isthmo-Colombian crossroads. High-

coverage genomic data, from a wider time frame (since early

Holocene to colonial times) and other archeological sites

(across the entire Isthmo-Colombian area), as well as whole

genomes from present-day individuals, are needed to

continue to refine the region’s genetic history. This additional

work, with more statistical power and higher molecular resolu-

tion, will be essential to further detail the genetic patterns

(and ancestries) that we have identified in the Panamanian

population(s) and to reconstruct variation in population sizes

over time.

STAR+METHODS

Detailed methods are provided in the online version of this paper

and include the following:

d KEY RESOURCES TABLE

d RESOURCE AVAILABILITY
171
B Lead contact

B Materials availability

B Data and code availability

d EXPERIMENTAL MODEL AND SUBJECT DETAILS

B Insights into pre-Hispanic Panama: details on archae-

ology, history, and linguistics

B Ancient Individuals and archaeological information

B Modern Individuals

d METHOD DETAILS

B Collagen extraction and 14C-dating

B Ancient DNA processing

B Modern DNA processing

d QUANTIFICATION AND STATISTICAL ANALYSIS

B Ancient data preparation for analysis

B Molecular sex and kinship determination

B Checking for reference bias

B Modern data preparation for analysis

B Ancient comparative datasets

B Modern comparative datasets

B Uniparental analyses
8 Cell 184, 1706–1723, April 1, 2021
B Population genetics analysis based on allele

frequencies

B Population genetics analysis based on reconstructed

haplotypes

d ADDITIONAL NOTES

SUPPLEMENTAL INFORMATION

Supplemental information can be found online at https://doi.org/10.1016/j.cell.

2021.02.040.

ACKNOWLEDGMENTS

We thank Nicole Smith-Guzmán for her suggestions and Sandra Kraus, Sus-

anne Lindauer, Robin van Gyseghem, and Matthias Hänisch for processing

and analyzing radiocarbon samples at the CEZA in Mannheim. We also thank

the anonymous reviewers for their insightful comments. We are grateful to the
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Valdiosera, C., Garcı́a, N., Pääbo, S., Arsuaga, J.L., and Meyer, M. (2013).

Complete mitochondrial genome sequence of a Middle Pleistocene cave

bear reconstructed from ultrashort DNA fragments. Proc. Natl. Acad. Sci.

USA 110, 15758–15763.

Danecek, P., Auton, A., Abecasis, G., Albers, C.A., Banks, E., DePristo, M.A.,

Handsaker, R.E., Lunter, G., Marth, G.T., Sherry, S.T., et al.; 1000 Genomes

Project Analysis Group (2011). The variant call format and VCFtools. Bioinfor-

matics 27, 2156–2158.

Delaneau, O.,Marchini, J., and Zagury, J.F. (2011). A linear complexity phasing

method for thousands of genomes. Nat. Methods 9, 179–181.
Cell 184, 1706–1723, April 1, 2021 1719

http://refhub.elsevier.com/S0092-8674(21)00229-4/sref1
http://refhub.elsevier.com/S0092-8674(21)00229-4/sref1
http://refhub.elsevier.com/S0092-8674(21)00229-4/sref1
http://refhub.elsevier.com/S0092-8674(21)00229-4/sref1
http://refhub.elsevier.com/S0092-8674(21)00229-4/sref2
http://refhub.elsevier.com/S0092-8674(21)00229-4/sref2
http://refhub.elsevier.com/S0092-8674(21)00229-4/sref2
http://refhub.elsevier.com/S0092-8674(21)00229-4/sref2
http://refhub.elsevier.com/S0092-8674(21)00229-4/sref2
http://refhub.elsevier.com/S0092-8674(21)00229-4/sref3
http://refhub.elsevier.com/S0092-8674(21)00229-4/sref3
http://refhub.elsevier.com/S0092-8674(21)00229-4/sref4
http://refhub.elsevier.com/S0092-8674(21)00229-4/sref4
http://refhub.elsevier.com/S0092-8674(21)00229-4/sref5
http://refhub.elsevier.com/S0092-8674(21)00229-4/sref5
http://refhub.elsevier.com/S0092-8674(21)00229-4/sref5
http://refhub.elsevier.com/S0092-8674(21)00229-4/sref5
http://refhub.elsevier.com/S0092-8674(21)00229-4/sref6
http://refhub.elsevier.com/S0092-8674(21)00229-4/sref6
http://refhub.elsevier.com/S0092-8674(21)00229-4/sref6
http://refhub.elsevier.com/S0092-8674(21)00229-4/sref6
https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
http://refhub.elsevier.com/S0092-8674(21)00229-4/sref8
http://refhub.elsevier.com/S0092-8674(21)00229-4/sref8
http://refhub.elsevier.com/S0092-8674(21)00229-4/sref8
http://refhub.elsevier.com/S0092-8674(21)00229-4/sref9
http://refhub.elsevier.com/S0092-8674(21)00229-4/sref9
http://refhub.elsevier.com/S0092-8674(21)00229-4/sref9
http://refhub.elsevier.com/S0092-8674(21)00229-4/sref10
http://refhub.elsevier.com/S0092-8674(21)00229-4/sref10
http://refhub.elsevier.com/S0092-8674(21)00229-4/sref10
http://refhub.elsevier.com/S0092-8674(21)00229-4/sref10
http://refhub.elsevier.com/S0092-8674(21)00229-4/sref11
http://refhub.elsevier.com/S0092-8674(21)00229-4/sref11
http://refhub.elsevier.com/S0092-8674(21)00229-4/sref11
http://refhub.elsevier.com/S0092-8674(21)00229-4/sref11
http://refhub.elsevier.com/S0092-8674(21)00229-4/sref11
http://refhub.elsevier.com/S0092-8674(21)00229-4/sref12
http://refhub.elsevier.com/S0092-8674(21)00229-4/sref12
http://refhub.elsevier.com/S0092-8674(21)00229-4/sref12
http://refhub.elsevier.com/S0092-8674(21)00229-4/sref12
http://refhub.elsevier.com/S0092-8674(21)00229-4/sref13
http://refhub.elsevier.com/S0092-8674(21)00229-4/sref13
http://refhub.elsevier.com/S0092-8674(21)00229-4/sref14
http://refhub.elsevier.com/S0092-8674(21)00229-4/sref15
http://refhub.elsevier.com/S0092-8674(21)00229-4/sref15
http://refhub.elsevier.com/S0092-8674(21)00229-4/sref15
http://refhub.elsevier.com/S0092-8674(21)00229-4/sref15
http://refhub.elsevier.com/S0092-8674(21)00229-4/sref16
http://refhub.elsevier.com/S0092-8674(21)00229-4/sref16
http://refhub.elsevier.com/S0092-8674(21)00229-4/sref17
http://refhub.elsevier.com/S0092-8674(21)00229-4/sref17
http://refhub.elsevier.com/S0092-8674(21)00229-4/sref17
http://refhub.elsevier.com/S0092-8674(21)00229-4/sref17
http://refhub.elsevier.com/S0092-8674(21)00229-4/sref18
http://refhub.elsevier.com/S0092-8674(21)00229-4/sref18
http://refhub.elsevier.com/S0092-8674(21)00229-4/sref18
http://refhub.elsevier.com/S0092-8674(21)00229-4/sref19
http://refhub.elsevier.com/S0092-8674(21)00229-4/sref19
http://refhub.elsevier.com/S0092-8674(21)00229-4/sref19
http://refhub.elsevier.com/S0092-8674(21)00229-4/sref20
http://refhub.elsevier.com/S0092-8674(21)00229-4/sref20
http://refhub.elsevier.com/S0092-8674(21)00229-4/sref20
http://refhub.elsevier.com/S0092-8674(21)00229-4/sref20
http://refhub.elsevier.com/S0092-8674(21)00229-4/sref21
http://refhub.elsevier.com/S0092-8674(21)00229-4/sref21
http://refhub.elsevier.com/S0092-8674(21)00229-4/sref22
http://refhub.elsevier.com/S0092-8674(21)00229-4/sref22
http://refhub.elsevier.com/S0092-8674(21)00229-4/sref22
http://refhub.elsevier.com/S0092-8674(21)00229-4/sref22
http://refhub.elsevier.com/S0092-8674(21)00229-4/sref22
http://refhub.elsevier.com/S0092-8674(21)00229-4/sref23
http://refhub.elsevier.com/S0092-8674(21)00229-4/sref23
http://refhub.elsevier.com/S0092-8674(21)00229-4/sref23
http://refhub.elsevier.com/S0092-8674(21)00229-4/sref24
http://refhub.elsevier.com/S0092-8674(21)00229-4/sref24
http://refhub.elsevier.com/S0092-8674(21)00229-4/sref24
http://refhub.elsevier.com/S0092-8674(21)00229-4/sref24
http://refhub.elsevier.com/S0092-8674(21)00229-4/sref25
http://refhub.elsevier.com/S0092-8674(21)00229-4/sref25
http://refhub.elsevier.com/S0092-8674(21)00229-4/sref25
http://refhub.elsevier.com/S0092-8674(21)00229-4/sref26
http://refhub.elsevier.com/S0092-8674(21)00229-4/sref26
http://refhub.elsevier.com/S0092-8674(21)00229-4/sref26
http://refhub.elsevier.com/S0092-8674(21)00229-4/sref27
http://refhub.elsevier.com/S0092-8674(21)00229-4/sref27
http://refhub.elsevier.com/S0092-8674(21)00229-4/sref27
http://refhub.elsevier.com/S0092-8674(21)00229-4/sref27
http://refhub.elsevier.com/S0092-8674(21)00229-4/sref27
http://refhub.elsevier.com/S0092-8674(21)00229-4/sref28
http://refhub.elsevier.com/S0092-8674(21)00229-4/sref28
http://refhub.elsevier.com/S0092-8674(21)00229-4/sref28
http://refhub.elsevier.com/S0092-8674(21)00229-4/sref28
http://refhub.elsevier.com/S0092-8674(21)00229-4/sref28
http://refhub.elsevier.com/S0092-8674(21)00229-4/sref29
http://refhub.elsevier.com/S0092-8674(21)00229-4/sref29
http://refhub.elsevier.com/S0092-8674(21)00229-4/sref29
http://refhub.elsevier.com/S0092-8674(21)00229-4/sref30
http://refhub.elsevier.com/S0092-8674(21)00229-4/sref30
http://refhub.elsevier.com/S0092-8674(21)00229-4/sref30
http://refhub.elsevier.com/S0092-8674(21)00229-4/sref30
http://refhub.elsevier.com/S0092-8674(21)00229-4/sref31
http://refhub.elsevier.com/S0092-8674(21)00229-4/sref31
http://refhub.elsevier.com/S0092-8674(21)00229-4/sref31
http://refhub.elsevier.com/S0092-8674(21)00229-4/sref31
http://refhub.elsevier.com/S0092-8674(21)00229-4/sref32
http://refhub.elsevier.com/S0092-8674(21)00229-4/sref32
http://refhub.elsevier.com/S0092-8674(21)00229-4/sref32
http://refhub.elsevier.com/S0092-8674(21)00229-4/sref33
http://refhub.elsevier.com/S0092-8674(21)00229-4/sref33
http://refhub.elsevier.com/S0092-8674(21)00229-4/sref33
http://refhub.elsevier.com/S0092-8674(21)00229-4/sref34
http://refhub.elsevier.com/S0092-8674(21)00229-4/sref34
http://refhub.elsevier.com/S0092-8674(21)00229-4/sref34
http://refhub.elsevier.com/S0092-8674(21)00229-4/sref34
http://refhub.elsevier.com/S0092-8674(21)00229-4/sref34
http://refhub.elsevier.com/S0092-8674(21)00229-4/sref35
http://refhub.elsevier.com/S0092-8674(21)00229-4/sref35
http://refhub.elsevier.com/S0092-8674(21)00229-4/sref35
http://refhub.elsevier.com/S0092-8674(21)00229-4/sref35
http://refhub.elsevier.com/S0092-8674(21)00229-4/sref36
http://refhub.elsevier.com/S0092-8674(21)00229-4/sref36


ll
OPEN ACCESS Article
Dickau, R. (2010). Microbotanical and macrobotanical evidence of plant use

and the transition to agriculture in Panama. In Integrating Zooarchaeology

and Paleoethnobotany, A.M. VanDerwacker and T.M. Peres, eds. (Springer),

pp. 99–134.

Dillehay, T.D., Goodbred, S., Pino, M., Vásquez Sánchez, V.F., Tham, T.R.,

Adovasio, J., Collins, M.B., Netherly, P.J., Hastorf, C.A., Chiou, K.L., et al.

(2017). Simple technologies and diverse food strategies of the Late Pleisto-

cene and Early Holocene at Huaca Prieta, Coastal Peru. Sci. Adv. 3, e1602778.

Drummond, A.J., Rambaut, A., Shapiro, B., and Pybus, O.G. (2005). Bayesian

coalescent inference of past population dynamics from molecular sequences.

Mol. Biol. Evol. 22, 1185–1192.

Fernandes, D.M., Sirak, K.A., Ringbauer, H., Sedig, J., Rohland, N., Cheronet,

O., Mah, M., Mallick, S., Olalde, I., Culleton, B.J., et al. (2020). A genetic history

of the pre-contact Caribbean. Nature 590, 103–110.

Fernández de Oviedo, G. (1853). Historia general y natural de las Indias, Vol. 2

(la Real Academia de la Historia).

Flegontov, P., Altınısxık, N.E., Changmai, P., Rohland, N., Mallick, S., Adamski,

N., Bolnick, D.A., Broomandkhoshbacht, N., Candilio, F., Culleton, B.J., et al.

(2019). Palaeo-Eskimo genetic ancestry and the peopling of Chukotka and

North America. Nature 570, 236–240.

Fortis, P. (2013). Kuna art and shamanism: an ethnographic approach (Univer-

sity of Texas Press).

Fregel, R., Méndez, F.L., Bokbot, Y., Martı́n-Socas, D., Camalich-Massieu,
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Coble, M.D., Diegoli, T.M., Álvarez-Iglesias, V., Martinón-Torres, F., Olivieri,

A., et al. (2018). The peopling of South America and the trans-Andean gene

flow of the first settlers. Genome Res. 28, 767–779.

Green, R.E., Malaspinas, A.-S., Krause, J., Briggs, A.W., Johnson, P.L.F., Uh-

ler, C., Meyer, M., Good, J.M., Maricic, T., Stenzel, U., et al. (2008). A complete

Neandertal mitochondrial genome sequence determined by high-throughput

sequencing. Cell 134, 416–426.

Griggs, J.C. (2005). The archaeology of central Caribbean Panama (The Uni-

versity of Texas at Austin).

Grugni, V., Battaglia, V., Perego, U.A., Raveane, A., Lancioni, H., Olivieri, A.,

Ferretti, L., Woodward, S.R., Pascale, J.M., Cooke, R., et al. (2015). Exploring

the Y chromosomal ancestry of modern Panamanians. PLoS ONE 10,

e0144223.

Grugni, V., Raveane, A., Ongaro, L., Battaglia, V., Trombetta, B., Colombo, G.,

Capodiferro, M.R., Olivieri, A., Achilli, A., Perego, U.A., et al. (2019). Analysis of

the human Y-chromosome haplogroup Q characterizes ancient population

movements in Eurasia and the Americas. BMC Biol. 17, 3.

Günther, T., and Nettelblad, C. (2019). The presence and impact of reference

bias on population genomic studies of prehistoric human populations. PLoS

Genet. 15, e1008302.

Helms, M.W. (2014). Ancient Panama: Chiefs in Search of Power (University of

Texas Press).

Hernández Mora, I., Martı́n, J.G., and Aram, B. (2021). The first Cathedral on

America’s Pacific coast. Hist. Archaeol. Published online January 4, 2021.

https://doi.org/10.1007/s41636-020-00275-z.
1720 Cell 184, 1706–1723, April 1, 2021
Holmberg, K. (2007). Beyond the catastrophe: The volcanic landscape of Baru,

western Panama. In Living under the Shadow: Cultural Impacts of Volcanic

Eruptions, E.J. Gallen and R. Torrence, eds. (Left Coast Press), pp. 274–297.

Homburger, J.R., Moreno-Estrada, A., Gignoux, C.R., Nelson, D., Sanchez, E.,

Ortiz-Tello, P., Pons-Estel, B.A., Acevedo-Vasquez, E., Miranda, P., Lange-

feld, C.D., et al. (2015). Genomic insights into the ancestry and demographic

history of South America. PLoS Genet. 11, e1005602.

Iizuka, F., Cooke, R.G., Frame, L., and Vandiver, P.B. (2014). Inferring prove-

nance, manufacturing technique, and firing temperatures of the Monagrillo

ware (3520-1300 cal BC), Panama’s first pottery. In Craft and science: Interna-

tional perspectives on archaeological ceramics, M. Martinón-Torres, ed.

(Bloomsbury Qatar Foundation) https://doi.org/10.5339/uclq.2014.cas.

Jones, E.R., Zarina, G., Moiseyev, V., Lightfoot, E., Nigst, P.R., Manica, A., Pin-

hasi, R., and Bradley, D.G. (2017). The Neolithic transition in the Baltic was not

driven by admixture with early European farmers. Curr. Biol. 27, 576–582.

Jónsson, H., Ginolhac, A., Schubert, M., Johnson, P.L., and Orlando, L. (2013).

mapDamage2.0: fast approximate Bayesian estimates of ancient DNA dam-

age parameters. Bioinformatics 29, 1682–1684.

Katoh, K., and Standley, D.M. (2013). MAFFT multiple sequence alignment

software version 7: improvements in performance and usability. Mol. Biol.

Evol. 30, 772–780.

Katoh, K., Misawa, K., Kuma, K., and Miyata, T. (2002). MAFFT: a novel

method for rapidmultiple sequence alignment based on fast Fourier transform.

Nucleic Acids Res. 30, 3059–3066.

Kopelman, N.M., Mayzel, J., Jakobsson, M., Rosenberg, N.A., and Mayrose, I.

(2015). Clumpak: a program for identifying clustering modes and packaging

population structure inferences across K. Mol. Ecol. Resour. 15, 1179–1191.

Korneliussen, T.S., Albrechtsen, A., and Nielsen, R. (2014). ANGSD: Analysis

of Next Generation Sequencing Data. BMC Bioinformatics 15, 356.

Kromer, B., Lindauer, S., Synal, H.-A., and Wacker, L. (2013). MAMS–a new

AMS facility at the Curt-Engelhorn-Centre for Achaeometry, Mannheim, Ger-

many. Nucl. Instrum. Methods Phys. Res. B 294, 11–13.

Lawson, D.J., Hellenthal, G., Myers, S., and Falush, D. (2012). Inference of

population structure using dense haplotype data. PLoS Genet. 8, e1002453.

Lazaridis, I., Patterson, N., Mittnik, A., Renaud, G., Mallick, S., Kirsanow, K.,

Sudmant, P.H., Schraiber, J.G., Castellano, S., Lipson, M., et al. (2014).

Ancient human genomes suggest three ancestral populations for present-

day Europeans. Nature 513, 409–413.

Lazaridis, I., Nadel, D., Rollefson, G., Merrett, D.C., Rohland, N., Mallick, S.,

Fernandes, D., Novak, M., Gamarra, B., Sirak, K., et al. (2016). Genomic in-

sights into the origin of farming in the ancient Near East. Nature 536, 419–424.

Leslie, S., Winney, B., Hellenthal, G., Davison, D., Boumertit, A., Day, T., Hut-

nik, K., Royrvik, E.C., Cunliffe, B., Lawson, D.J., et al.; Wellcome Trust Case

Control Consortium 2; International Multiple Sclerosis Genetics Consortium

(2015). The fine-scale genetic structure of the British population. Nature 519,

309–314.

Li, H., and Durbin, R. (2010). Fast and accurate long-read alignment with Bur-

rows-Wheeler transform. Bioinformatics 26, 589–595.

Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., Marth, G.,

Abecasis, G., Durbin, R., and Subgroup, G.P.D.P.; 1000 Genome Project Data

Processing Subgroup (2009). The Sequence Alignment/Map format and SAM-

tools. Bioinformatics 25, 2078–2079.

Linares, O.F. (1977a). Adaptive strategies in western Panama.World Archaeol.

8, 304–319.

Linares, O.F. (1977b). Ecology and the Arts in Ancient Panama: On the Devel-

opment of Social Rank and Symbolism in the Central Provinces (Dumbar-

ton Oaks).

Linares, O.F., and Ranere, A.J. (1980). Adaptive radiations in prehistoric Pan-

ama (Peabody Museum of Archaeology and Ethnology, Harvard University).

Linares, O.F., Sheets, P.D., and Rosenthal, E.J. (1975). Prehistoric agriculture

in tropical highlands. Science 187, 137–145.

http://refhub.elsevier.com/S0092-8674(21)00229-4/sref37
http://refhub.elsevier.com/S0092-8674(21)00229-4/sref37
http://refhub.elsevier.com/S0092-8674(21)00229-4/sref37
http://refhub.elsevier.com/S0092-8674(21)00229-4/sref37
http://refhub.elsevier.com/S0092-8674(21)00229-4/sref38
http://refhub.elsevier.com/S0092-8674(21)00229-4/sref38
http://refhub.elsevier.com/S0092-8674(21)00229-4/sref38
http://refhub.elsevier.com/S0092-8674(21)00229-4/sref38
http://refhub.elsevier.com/S0092-8674(21)00229-4/sref39
http://refhub.elsevier.com/S0092-8674(21)00229-4/sref39
http://refhub.elsevier.com/S0092-8674(21)00229-4/sref39
http://refhub.elsevier.com/S0092-8674(21)00229-4/sref40
http://refhub.elsevier.com/S0092-8674(21)00229-4/sref40
http://refhub.elsevier.com/S0092-8674(21)00229-4/sref40
http://refhub.elsevier.com/S0092-8674(21)00229-4/sref41
http://refhub.elsevier.com/S0092-8674(21)00229-4/sref41
http://refhub.elsevier.com/S0092-8674(21)00229-4/sref42
http://refhub.elsevier.com/S0092-8674(21)00229-4/sref42
http://refhub.elsevier.com/S0092-8674(21)00229-4/sref42
http://refhub.elsevier.com/S0092-8674(21)00229-4/sref42
http://refhub.elsevier.com/S0092-8674(21)00229-4/sref42
http://refhub.elsevier.com/S0092-8674(21)00229-4/sref43
http://refhub.elsevier.com/S0092-8674(21)00229-4/sref43
http://refhub.elsevier.com/S0092-8674(21)00229-4/sref44
http://refhub.elsevier.com/S0092-8674(21)00229-4/sref44
http://refhub.elsevier.com/S0092-8674(21)00229-4/sref44
http://refhub.elsevier.com/S0092-8674(21)00229-4/sref44
http://refhub.elsevier.com/S0092-8674(21)00229-4/sref44
http://refhub.elsevier.com/S0092-8674(21)00229-4/sref45
http://refhub.elsevier.com/S0092-8674(21)00229-4/sref45
http://refhub.elsevier.com/S0092-8674(21)00229-4/sref45
http://refhub.elsevier.com/S0092-8674(21)00229-4/sref45
http://refhub.elsevier.com/S0092-8674(21)00229-4/sref46
http://refhub.elsevier.com/S0092-8674(21)00229-4/sref46
http://refhub.elsevier.com/S0092-8674(21)00229-4/sref47
http://refhub.elsevier.com/S0092-8674(21)00229-4/sref47
http://refhub.elsevier.com/S0092-8674(21)00229-4/sref47
http://refhub.elsevier.com/S0092-8674(21)00229-4/sref47
http://refhub.elsevier.com/S0092-8674(21)00229-4/sref48
http://refhub.elsevier.com/S0092-8674(21)00229-4/sref48
http://refhub.elsevier.com/S0092-8674(21)00229-4/sref48
http://refhub.elsevier.com/S0092-8674(21)00229-4/sref48
http://refhub.elsevier.com/S0092-8674(21)00229-4/sref49
http://refhub.elsevier.com/S0092-8674(21)00229-4/sref49
http://refhub.elsevier.com/S0092-8674(21)00229-4/sref49
http://refhub.elsevier.com/S0092-8674(21)00229-4/sref49
http://refhub.elsevier.com/S0092-8674(21)00229-4/sref50
http://refhub.elsevier.com/S0092-8674(21)00229-4/sref50
http://refhub.elsevier.com/S0092-8674(21)00229-4/sref51
http://refhub.elsevier.com/S0092-8674(21)00229-4/sref51
http://refhub.elsevier.com/S0092-8674(21)00229-4/sref51
http://refhub.elsevier.com/S0092-8674(21)00229-4/sref51
http://refhub.elsevier.com/S0092-8674(21)00229-4/sref52
http://refhub.elsevier.com/S0092-8674(21)00229-4/sref52
http://refhub.elsevier.com/S0092-8674(21)00229-4/sref52
http://refhub.elsevier.com/S0092-8674(21)00229-4/sref52
http://refhub.elsevier.com/S0092-8674(21)00229-4/sref53
http://refhub.elsevier.com/S0092-8674(21)00229-4/sref53
http://refhub.elsevier.com/S0092-8674(21)00229-4/sref53
http://refhub.elsevier.com/S0092-8674(21)00229-4/sref54
http://refhub.elsevier.com/S0092-8674(21)00229-4/sref54
https://doi.org/10.1007/s41636-020-00275-z
http://refhub.elsevier.com/S0092-8674(21)00229-4/sref56
http://refhub.elsevier.com/S0092-8674(21)00229-4/sref56
http://refhub.elsevier.com/S0092-8674(21)00229-4/sref56
http://refhub.elsevier.com/S0092-8674(21)00229-4/sref57
http://refhub.elsevier.com/S0092-8674(21)00229-4/sref57
http://refhub.elsevier.com/S0092-8674(21)00229-4/sref57
http://refhub.elsevier.com/S0092-8674(21)00229-4/sref57
https://doi.org/10.5339/uclq.2014.cas
http://refhub.elsevier.com/S0092-8674(21)00229-4/sref59
http://refhub.elsevier.com/S0092-8674(21)00229-4/sref59
http://refhub.elsevier.com/S0092-8674(21)00229-4/sref59
http://refhub.elsevier.com/S0092-8674(21)00229-4/sref60
http://refhub.elsevier.com/S0092-8674(21)00229-4/sref60
http://refhub.elsevier.com/S0092-8674(21)00229-4/sref60
http://refhub.elsevier.com/S0092-8674(21)00229-4/sref61
http://refhub.elsevier.com/S0092-8674(21)00229-4/sref61
http://refhub.elsevier.com/S0092-8674(21)00229-4/sref61
http://refhub.elsevier.com/S0092-8674(21)00229-4/sref62
http://refhub.elsevier.com/S0092-8674(21)00229-4/sref62
http://refhub.elsevier.com/S0092-8674(21)00229-4/sref62
http://refhub.elsevier.com/S0092-8674(21)00229-4/sref63
http://refhub.elsevier.com/S0092-8674(21)00229-4/sref63
http://refhub.elsevier.com/S0092-8674(21)00229-4/sref63
http://refhub.elsevier.com/S0092-8674(21)00229-4/sref64
http://refhub.elsevier.com/S0092-8674(21)00229-4/sref64
http://refhub.elsevier.com/S0092-8674(21)00229-4/sref65
http://refhub.elsevier.com/S0092-8674(21)00229-4/sref65
http://refhub.elsevier.com/S0092-8674(21)00229-4/sref65
http://refhub.elsevier.com/S0092-8674(21)00229-4/sref66
http://refhub.elsevier.com/S0092-8674(21)00229-4/sref66
http://refhub.elsevier.com/S0092-8674(21)00229-4/sref67
http://refhub.elsevier.com/S0092-8674(21)00229-4/sref67
http://refhub.elsevier.com/S0092-8674(21)00229-4/sref67
http://refhub.elsevier.com/S0092-8674(21)00229-4/sref67
http://refhub.elsevier.com/S0092-8674(21)00229-4/sref68
http://refhub.elsevier.com/S0092-8674(21)00229-4/sref68
http://refhub.elsevier.com/S0092-8674(21)00229-4/sref68
http://refhub.elsevier.com/S0092-8674(21)00229-4/sref69
http://refhub.elsevier.com/S0092-8674(21)00229-4/sref69
http://refhub.elsevier.com/S0092-8674(21)00229-4/sref69
http://refhub.elsevier.com/S0092-8674(21)00229-4/sref69
http://refhub.elsevier.com/S0092-8674(21)00229-4/sref69
http://refhub.elsevier.com/S0092-8674(21)00229-4/sref70
http://refhub.elsevier.com/S0092-8674(21)00229-4/sref70
http://refhub.elsevier.com/S0092-8674(21)00229-4/sref71
http://refhub.elsevier.com/S0092-8674(21)00229-4/sref71
http://refhub.elsevier.com/S0092-8674(21)00229-4/sref71
http://refhub.elsevier.com/S0092-8674(21)00229-4/sref71
http://refhub.elsevier.com/S0092-8674(21)00229-4/sref72
http://refhub.elsevier.com/S0092-8674(21)00229-4/sref72
http://refhub.elsevier.com/S0092-8674(21)00229-4/sref73
http://refhub.elsevier.com/S0092-8674(21)00229-4/sref73
http://refhub.elsevier.com/S0092-8674(21)00229-4/sref73
http://refhub.elsevier.com/S0092-8674(21)00229-4/sref74
http://refhub.elsevier.com/S0092-8674(21)00229-4/sref74
http://refhub.elsevier.com/S0092-8674(21)00229-4/sref75
http://refhub.elsevier.com/S0092-8674(21)00229-4/sref75


ll
OPEN ACCESSArticle
Lindo, J., Achilli, A., Perego, U.A., Archer, D., Valdiosera, C., Petzelt, B., Mitch-

ell, J., Worl, R., Dixon, E.J., Fifield, T.E., et al. (2017). Ancient individuals from

the North American Northwest Coast reveal 10,000 years of regional genetic

continuity. Proc. Natl. Acad. Sci. USA 114, 4093–4098.

Lipson, M. (2020). Applying f4 -statistics and admixture graphs: Theory and ex-

amples. Mol. Ecol. Resour. 20, 1658–1667.

Liu, D., Duong, N.T., Ton, N.D., Van Phong, N., Pakendorf, B., Van Hai, N., and

Stoneking, M. (2020). Extensive ethnolinguistic diversity in Vietnam reflects

multiple sources of genetic diversity. Mol. Biol. Evol. 37, 2503–2519.

Llamas, B., Fehren-Schmitz, L., Valverde, G., Soubrier, J., Mallick, S., Roh-

land, N., Nordenfelt, S., Valdiosera, C., Richards, S.M., Rohrlach, A., et al.

(2016). Ancient mitochondrial DNA provides high-resolution time scale of the

peopling of the Americas. Sci. Adv. 2, e1501385.
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(Panamá La Vieja). In Arqueologóa de Panamá la Vieja: Avances de investiga-

ción, No. 2, B. Rovira and J.G. Martı́n, eds. (Panamá Viejo, Panama:
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Las Perlas, Panamá: Aproximación a una cronologı́a con comentarios sobre

las conexiones externas. Lat. Am. Antiq. 27, 378–396.

Martı́nez-Polanco, M.F., and Cooke, R.G. (2019). Zooarchaeological and ta-

phonomical study of the white-tailed deer (Cervidae: Odocoileus virginianus

Zimmerman 1780) at Sitio Sierra, a pre-Columbian village in Pacific Coclé
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Lizasu, A., and de Pancorbo, M.M. (2017). Ancient mitochondrial lineages sup-

port the prehistoric maternal root of Basques in Northern Iberian Peninsula.

Eur. J. Hum. Genet. 25, 631–636.
Cell 184, 1706–1723, April 1, 2021 1721

http://refhub.elsevier.com/S0092-8674(21)00229-4/sref76
http://refhub.elsevier.com/S0092-8674(21)00229-4/sref76
http://refhub.elsevier.com/S0092-8674(21)00229-4/sref76
http://refhub.elsevier.com/S0092-8674(21)00229-4/sref76
http://refhub.elsevier.com/S0092-8674(21)00229-4/sref77
http://refhub.elsevier.com/S0092-8674(21)00229-4/sref77
http://refhub.elsevier.com/S0092-8674(21)00229-4/sref77
http://refhub.elsevier.com/S0092-8674(21)00229-4/sref78
http://refhub.elsevier.com/S0092-8674(21)00229-4/sref78
http://refhub.elsevier.com/S0092-8674(21)00229-4/sref78
http://refhub.elsevier.com/S0092-8674(21)00229-4/sref79
http://refhub.elsevier.com/S0092-8674(21)00229-4/sref79
http://refhub.elsevier.com/S0092-8674(21)00229-4/sref79
http://refhub.elsevier.com/S0092-8674(21)00229-4/sref79
http://refhub.elsevier.com/S0092-8674(21)00229-4/sref80
http://refhub.elsevier.com/S0092-8674(21)00229-4/sref80
http://refhub.elsevier.com/S0092-8674(21)00229-4/sref81
http://refhub.elsevier.com/S0092-8674(21)00229-4/sref81
http://refhub.elsevier.com/S0092-8674(21)00229-4/sref82
http://refhub.elsevier.com/S0092-8674(21)00229-4/sref82
http://refhub.elsevier.com/S0092-8674(21)00229-4/sref83
http://refhub.elsevier.com/S0092-8674(21)00229-4/sref83
http://refhub.elsevier.com/S0092-8674(21)00229-4/sref83
http://refhub.elsevier.com/S0092-8674(21)00229-4/sref84
http://refhub.elsevier.com/S0092-8674(21)00229-4/sref84
http://refhub.elsevier.com/S0092-8674(21)00229-4/sref84
http://refhub.elsevier.com/S0092-8674(21)00229-4/sref85
http://refhub.elsevier.com/S0092-8674(21)00229-4/sref85
http://refhub.elsevier.com/S0092-8674(21)00229-4/sref85
http://refhub.elsevier.com/S0092-8674(21)00229-4/sref85
http://refhub.elsevier.com/S0092-8674(21)00229-4/sref86
http://refhub.elsevier.com/S0092-8674(21)00229-4/sref86
http://refhub.elsevier.com/S0092-8674(21)00229-4/sref86
http://refhub.elsevier.com/S0092-8674(21)00229-4/sref87
http://refhub.elsevier.com/S0092-8674(21)00229-4/sref87
http://refhub.elsevier.com/S0092-8674(21)00229-4/sref88
http://refhub.elsevier.com/S0092-8674(21)00229-4/sref88
http://refhub.elsevier.com/S0092-8674(21)00229-4/sref89
http://refhub.elsevier.com/S0092-8674(21)00229-4/sref89
http://refhub.elsevier.com/S0092-8674(21)00229-4/sref89
http://refhub.elsevier.com/S0092-8674(21)00229-4/sref90
http://refhub.elsevier.com/S0092-8674(21)00229-4/sref90
http://refhub.elsevier.com/S0092-8674(21)00229-4/sref90
http://refhub.elsevier.com/S0092-8674(21)00229-4/sref91
http://refhub.elsevier.com/S0092-8674(21)00229-4/sref91
http://refhub.elsevier.com/S0092-8674(21)00229-4/sref91
http://refhub.elsevier.com/S0092-8674(21)00229-4/sref92
http://refhub.elsevier.com/S0092-8674(21)00229-4/sref92
http://refhub.elsevier.com/S0092-8674(21)00229-4/sref92
http://refhub.elsevier.com/S0092-8674(21)00229-4/sref92
http://refhub.elsevier.com/S0092-8674(21)00229-4/sref93
http://refhub.elsevier.com/S0092-8674(21)00229-4/sref93
http://refhub.elsevier.com/S0092-8674(21)00229-4/sref93
http://refhub.elsevier.com/S0092-8674(21)00229-4/sref93
http://refhub.elsevier.com/S0092-8674(21)00229-4/sref93
https://doi.org/10.1016/j.quaint.2020.06.003
https://doi.org/10.1016/j.quaint.2020.06.003
http://refhub.elsevier.com/S0092-8674(21)00229-4/sref95
http://refhub.elsevier.com/S0092-8674(21)00229-4/sref95
http://refhub.elsevier.com/S0092-8674(21)00229-4/sref96
http://refhub.elsevier.com/S0092-8674(21)00229-4/sref96
http://refhub.elsevier.com/S0092-8674(21)00229-4/sref96
http://refhub.elsevier.com/S0092-8674(21)00229-4/sref96
http://refhub.elsevier.com/S0092-8674(21)00229-4/sref97
http://refhub.elsevier.com/S0092-8674(21)00229-4/sref97
http://refhub.elsevier.com/S0092-8674(21)00229-4/sref98
http://refhub.elsevier.com/S0092-8674(21)00229-4/sref98
http://refhub.elsevier.com/S0092-8674(21)00229-4/sref98
http://refhub.elsevier.com/S0092-8674(21)00229-4/sref98
http://refhub.elsevier.com/S0092-8674(21)00229-4/sref99
http://refhub.elsevier.com/S0092-8674(21)00229-4/sref99
http://refhub.elsevier.com/S0092-8674(21)00229-4/sref99
http://refhub.elsevier.com/S0092-8674(21)00229-4/sref99
http://refhub.elsevier.com/S0092-8674(21)00229-4/sref100
http://refhub.elsevier.com/S0092-8674(21)00229-4/sref100
http://refhub.elsevier.com/S0092-8674(21)00229-4/sref101
http://refhub.elsevier.com/S0092-8674(21)00229-4/sref101
http://refhub.elsevier.com/S0092-8674(21)00229-4/sref101
http://refhub.elsevier.com/S0092-8674(21)00229-4/sref102
http://refhub.elsevier.com/S0092-8674(21)00229-4/sref102
http://refhub.elsevier.com/S0092-8674(21)00229-4/sref102
http://refhub.elsevier.com/S0092-8674(21)00229-4/sref102
http://refhub.elsevier.com/S0092-8674(21)00229-4/sref103
http://refhub.elsevier.com/S0092-8674(21)00229-4/sref103
http://refhub.elsevier.com/S0092-8674(21)00229-4/sref103
http://refhub.elsevier.com/S0092-8674(21)00229-4/sref103
http://refhub.elsevier.com/S0092-8674(21)00229-4/sref103
http://refhub.elsevier.com/S0092-8674(21)00229-4/sref104
http://refhub.elsevier.com/S0092-8674(21)00229-4/sref104
http://refhub.elsevier.com/S0092-8674(21)00229-4/sref104
http://refhub.elsevier.com/S0092-8674(21)00229-4/sref104
http://refhub.elsevier.com/S0092-8674(21)00229-4/sref105
http://refhub.elsevier.com/S0092-8674(21)00229-4/sref105
http://refhub.elsevier.com/S0092-8674(21)00229-4/sref105
http://refhub.elsevier.com/S0092-8674(21)00229-4/sref105
http://refhub.elsevier.com/S0092-8674(21)00229-4/sref106
http://refhub.elsevier.com/S0092-8674(21)00229-4/sref106
http://refhub.elsevier.com/S0092-8674(21)00229-4/sref106
http://refhub.elsevier.com/S0092-8674(21)00229-4/sref106
http://refhub.elsevier.com/S0092-8674(21)00229-4/sref107
http://refhub.elsevier.com/S0092-8674(21)00229-4/sref107
http://refhub.elsevier.com/S0092-8674(21)00229-4/sref107
http://refhub.elsevier.com/S0092-8674(21)00229-4/sref107
http://refhub.elsevier.com/S0092-8674(21)00229-4/sref108
http://refhub.elsevier.com/S0092-8674(21)00229-4/sref108
http://refhub.elsevier.com/S0092-8674(21)00229-4/sref108
http://refhub.elsevier.com/S0092-8674(21)00229-4/sref109
http://refhub.elsevier.com/S0092-8674(21)00229-4/sref109
http://refhub.elsevier.com/S0092-8674(21)00229-4/sref110
http://refhub.elsevier.com/S0092-8674(21)00229-4/sref110
http://refhub.elsevier.com/S0092-8674(21)00229-4/sref110
http://refhub.elsevier.com/S0092-8674(21)00229-4/sref110
http://refhub.elsevier.com/S0092-8674(21)00229-4/sref111
http://refhub.elsevier.com/S0092-8674(21)00229-4/sref111
http://refhub.elsevier.com/S0092-8674(21)00229-4/sref111
http://refhub.elsevier.com/S0092-8674(21)00229-4/sref111
http://refhub.elsevier.com/S0092-8674(21)00229-4/sref112
http://refhub.elsevier.com/S0092-8674(21)00229-4/sref112
http://refhub.elsevier.com/S0092-8674(21)00229-4/sref112
http://refhub.elsevier.com/S0092-8674(21)00229-4/sref113
http://refhub.elsevier.com/S0092-8674(21)00229-4/sref113
http://refhub.elsevier.com/S0092-8674(21)00229-4/sref113
http://refhub.elsevier.com/S0092-8674(21)00229-4/sref113


ll
OPEN ACCESS Article
Patterson, N., Price, A.L., and Reich, D. (2006). Population structure and eige-

nanalysis. PLoS Genet. 2, e190.

Patterson, N., Moorjani, P., Luo, Y., Mallick, S., Rohland, N., Zhan, Y., Gen-

schoreck, T., Webster, T., and Reich, D. (2012). Ancient admixture in human

history. Genetics 192, 1065–1093.
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GATK McKenna et al., 2010 https://gatk.broadinstitute.org/hc/en-us

BEAST Bouckaert et al., 2019 http://beast.community/

Tracer Rambaut et al., 2018 http://tree.bio.ed.ac.uk/software/tracer/
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FigTree http://tree.bio.ed.ac.

uk/software/figtree/

http://tree.bio.ed.ac.uk/software/figtree/

Yhaplo Poznik, 2016 https://github.com/23andMe/yhaplo

EIGENSOFT Patterson et al., 2006 https://github.com/DReichLab/EIG

CLUMPAK Kopelman et al., 2015 http://clumpak.tau.ac.il/

DISTRUCT Rosenberg, 2004 https://rosenberglab.stanford.edu/distruct.html

AdmixTools Patterson et al., 2012 https://github.com/DReichLab/AdmixTools

TreeMix Pickrell and Pritchard, 2012 https://bitbucket.org/nygcresearch/

treemix/wiki/Home

qpGraph Patterson et al., 2012 https://github.com/DReichLab/AdmixTools

SHAPEITv2 Delaneau et al., 2011 https://mathgen.stats.ox.ac.uk/genetics_

software/shapeit/shapeit.html

CHROMOPAINTERv2 Lawson et al., 2012 http://www.paintmychromosomes.com/

fineSTRUCTURE Lawson et al., 2012 http://www.paintmychromosomes.com/

Refined-IBD Browning and

Browning, 2013

http://faculty.washington.edu/

browning/refined-ibd.html

IBDne Browning et al., 2018 http://faculty.washington.edu/browning/ibdne.html

ContaminationX Moreno-Mayar et al., 2020 https://github.com/sapfo/contaminationX

ContamMix Fu et al., 2013 -

Schmutzi Renaud et al., 2015 https://github.com/grenaud/schmutzi

Rx Mittnik et al., 2016 Mittnik et al., 2016

Qpwave Reich et al., 2012 https://github.com/DReichLab/AdmixTools

Deposited data

Mitogenomes of Modern Individuals GenBank MW467798-MW467881

Genotype Data of Modern Individuals Mendeley Data https://doi.org/10.17632/d45xg84bcj.1

Sequencing Data of Ancient Individuals European

Nucleotide Archive
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RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Alessan-

dro Achilli (alessandro.achilli@unipv.it).

Materials availability
This study did not generate new unique reagents.

Data and code availability
The accession number for the ancient DNA sequencing data reported in this paper is ENA: PRJEB42372.Modern genotype data have

been deposited to Mendeley Data: https://doi.org/10.17632/d45xg84bcj.1. The accession numbers for modern complete mitoge-

nomes reported in this paper are GeneBank: MW467798-MW467881. Scripts used to infer Y chromosome aDNA haplogroups

are available on GitHub (https://github.com/raveancic/aDNAYchromosome), all the other scripts used for analysis and plots are

available upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Insights into pre-Hispanic Panama: details on archaeology, history, and linguistics
From ca. 4.5 kya agriculture along Panama’s Pacific watershed was complemented by fishing in rivers and estuaries, and catching

birds, large snakes and iguanas (Iguanidae spp.), and hunting mammals with body masses < 55 kg on the offshore Pearl Island ar-

chipelago (Cooke et al., 2016). Some of these, e.g., white-tailed deer (Odocoileus virginianus), raccoons (Procyon lotor) and rodents
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including agouti (Dasyprocta punctata) and paca (Cuniculus paca), forage in human trash and eat crops in gardens and fields (Cooke

et al., 2007, 2008; Martı́nez-Polanco et al., 2020). On Pedro Gonzalez (Pearl Islands), a very small deer (Mazama sp.) (7-10 kg) was

extirpated by hunting. Dolphins (Tursiops and Delphinus) were consumed 6.2-5.6 kya and were possibly killed when beached (Cooke

et al., 2016). Later, with the establishment of villages ca 4-2 kya, community activities diversified, especially regarding the exchange

of goods. Hunting strategies now included communal drives in Pacific wooded savannas. Deermeat was stored salted and dried and

then served at special feasts (Martı́nez-Polanco and Cooke, 2019).

Inhabitation of the Caribbean side of the Central American Isthmus (Costa Rica) began in the Late Pleistocene (13.4-12 kya)

(Ranere and Cooke, 2020). In the very humid central Caribbean Panama, human activities date back to 5.9 kya when groups crossed

the Central Cordillera to collect food and materials not available on the opposite side, e.g., embalming agents.

On the central Caribbean, maize is found in rock shelters with earth ovens from about 3.5 kya. Materials analysis demonstrates that

Monagrillo pottery found here was manufactured in the central Pacific watershed (Griggs, 2005; Iizuka et al., 2014). One site in the

coastal lowlands of Coclé province (Zapotal, PR-32), which used Monagrillo pottery, consisted of dwellings stratified within a shell-

bearing midden accumulated between 4.3 and 3.2 kya. Zapotal has the characteristics of a small village. There are very large

numbers of edge-ground cobbles here, which were used at many 8-3 kya sites in Panama for grinding several plant foods including

maize and manioc. The abundance of small fish (< 300 g live weight) that were taken at Zapotal points to the use of tidal traps and

weirs in the nearby estuary in order to maximize biomasses (Zohar and Cooke, 2019).

By 3 kya notable differences had arisen in the material culture of a western region (Greater Chiriquı́; Chiriquı́ and Bocas del Toro

provinces) and a central region (Greater Coclé; Coclé, Azuero Peninsula and Veraguas provinces). Greater Chiriquı́ shows material

culture, art, genes and language that are broadly consistent (Ulloa, 2017), in distinction to the Greater Coclé or the evenmore diverse,

but less studied, Greater Darién.

Unique ceremonial and religious precincts stand out in both the Chiriquı́ and Coclé cultural areas, although they are markedly

different: Barriles in highland Chiriquı́ (Linares et al., 1975), and the twin sites of Sitio Conte and El Caño in the Pacific Coclé lowlands.

The ceremonial site at Barriles consists of low platforms, boulder petroglyphs, urn burials, large statues depicting one man sitting on

another’s shoulders–in an apparent display of social dominance–and an enormous maize-grinding stone (metate) showing explicit

iconographic connections between maize and human fertility (Linares et al., 1975). Maize, beans (Phaseolus spp,), and palm and

tree fruits characterize the samples of carbonized plant remains in the middens in domestic areas (Dickau, 2010; Smith, 1980).

The Barriles ceremonial precinct seems to have served many communities located between 1,000 and 2,300 m above sea level in

the shadow of the Barú volcano, which last erupted 0.5 kya (Holmberg, 2007). It is inferred that Barriles was the initial settlement of a

cultural group that first entered this highland zone from elsewhere ca 2.8 kya. Friction led to fission. A sector of the colonizing pop-

ulation moved to Cerro Punta and henceforth maintained vacillating relations with its ancestors (‘‘peace, trade, war’’). Communion

among the entire descent groupwas not severed. Periodically, perhaps annually, festivals were held at ancestral Barriles. The feats of

the founders and supernatural helpers were celebrated. Large quantities of alcoholic beverages (e.g., maize and palm sap) were likely

brewed.

The well-studied heritage of Greater Coclé, which reached its apogee at the great ceremonial and burial precincts of Sitio Conte

and El Caño 1.5–0.95 kya (Lothrop, 1937, 1942; Mayo Torné, 2015), confirms a continuity of iconography and symbolism on deco-

rated pottery from 2.5 kya until two decades after Spanish conquest in this central region. But whether this area was also linguistically

united cannot yet be determined.

Cultural geography becomes even more complex in the Greater Darién area extending from the El Valle Pleistocene volcano to

eastern Darién. Historians and most archaeologists agree that by 1,500 CE the eastern region, and possibly much of the central

area, was inhabited by speakers of the Cueva language. Historian Kathleen Romoli and linguists Jacob Loewen and Adolfo Costenla

have proposed for many years that the group of settlements that at the time of Spanish conquest spoke the ‘‘language of Cueva’’

were not an ‘‘ethnic group’’ but, rather, a collection of settlements that shared the Cueva language as a lingua franca. These three

researchers also argue that some polities in fact spoke variants of languages in the Chocoan family, especially those on the Pacific

side of the Isthmus (Costenla, 2012; Loewen, 1963; Romoli, 1987). Chibchan languages probably derive from a proto-language that

coalesced about 10 kya (O’Connor andMuysken, 2014) in a ‘‘core area’’ on the lower Central American Isthmus (southern Costa Rica

and western central Panama). Ever since Barrantes et al. (1990) conducted an isozyme-based study of modern Central American

Indigenous polities that spoke languages in the Nuclear Chibchan family (Costenla, 2012), it has been apparent that this population

coalesced very early in the Holocene and at the onset of agriculture gradually experienced in situ fission and fusion.

Ceramics found in eastern Panama point to greater proximity to the Greater Coclé tradition than a putative Gran Darién cultural

sphere among the peoples who inhabited this region from 200 BCE to 1200 CE. Recent findings on the Pearl Islands archipelago

confirm the expansion of the ceramic style known as Cubitá, as well as molded and incised variations of the Conte style, both

from the central region of Gran Coclé in the gulf of Panamá (Martı́n et al., 2016). Biese had already suggested that this expansion

reached Panamá Viejo, where he reported examples of the Conte style excavated around Puente del Rey, toward the north of the

site (Biese, 1964).

At the Miraflores site on the Banks of the Bayano River (Cooke, 1976; Oyuela-Calcedo and Raymond, 1998), 670–1015 CE and

700–1030 CE according to the latest 2 sigma calibrations (Martı́n et al., 2016), only one piece made in the region exhibited painted

decorations with obvious influences fromGreater Coclé: a plate with a tripod pedestal with the effigy of a monkey (Cooke, 1998). The

same pattern of cultural replacement is documented on the Pearl Islands archipelago, where the islands’ Fifth Ceramic Horizon is
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identified from 750 through 1350 CE (Martı́n et al., 2016). This late ceramic configuration, which features incised decoration and

molding procedures different from its immediate precedents, is that which archaeologists normally associate with Greater Darien,

the region that sixteenth-century Spanish chroniclers described as populated by communities that spoke the ‘‘Cueva language’’

from Urabá to the eastern slope of the El Valle volcano (Martı́n, 2002b; Romoli, 1987).

Martı́n et al. (2016) argue that the discrepancy between the Greater Darien and Greater Coclé cultural areas, whose geographical

extension may have shifted over time, could derive from a change in the population inhabiting the Pearl Islands archipelago: the group

using Cubitá ceramics andConte variationsmay have ceded before the entry of a populationwith a very different ceramic tradition from

the Darien region and related to northwest Colombia. Another hypothesis (Cooke, 1998; Martı́n and Sánchez, 2007; Sánchez-Herrera

and Cooke, 2000) relates the changes observed to a reorganization of the commercial routes and exchanges from 500 CE, which inten-

sified after 800-900 CE, with the introduction of metallurgy to the isthmus and the replacement of shell artifacts with those of gold to

represent high social status. Fromat least the beginning of the common era through the end of its firstmillennia, the dispersion of Cubitá

ceramics allude to the fact that the Pearl Islands archipelago, the Azuero Peninsula and the central coast of the bay of Panama partic-

ipated in the same sphere of social interaction. This relationship changed completely in the subsequent period, and until European

contact.

The uneven impact of European colonization and the upheaval it induced, in addition to subsequent migrations, show that compre-

hensive and detailed studies of this time period need to be completed in this region to help trace population histories of Indigenous

groups before and after 1500 CE. Although goods also crossed the isthmus in pre-colonial times, the process intensified after the

early sixteenth century, when the Spanish established settlements on both sides of the Isthmus to forge a highway for the global

transit (and often forced mobility) of persons and goods between the Atlantic and Pacific Oceans.

Ancient Individuals and archaeological information
In order to assess change and continuity in the most radically transformed area of the Isthmus, the under-studied eastern region, 20

ancient individuals (21 specimens in total, sometimes referred as ancient Panamanians for the sake of clarity) were collected from

seven different archaeological excavations (six of these within today’s Patronato Panamá Viejo, and one at nearby Coco del Mar)

(Figure 1A; Table S1). Based on the style of the ceramics recovered, archaeologists consider the area related to contiguous contem-

porary settlements as part of an extended pre-Hispanic presence of Cueva-speakers within the Greater Darien cultural region

(Martı́n, 2002b). This population coexisted and mixed with Spanish settlers from 1519 to 1541 Common Era (CE), as an Indigenous

presence among Old Panama’s earliest Christian burials suggests. The excavations sampled took place in and near Panamá Viejo,

the site of the colonial city from 1519 through 1671 CE, and an area of pre-Hispanic occupation before that.

1. Plaza Mayor (N = 4)

The burial site excavated in the Plaza Mayor, originally identified as Tumba 1 (Figure 1B), contained the remains of a female individual

with a spondylus necklace and surrounded by offerings that included nine male crania. Scholars have awaited genetic research in

order to test the hypothesized relationships regarding the individuals buried within this tomb since its discovery in 1996 (Mendizabal,

2004). DNA was successfully extracted from the main individual (PAPV109) and three of the nine skulls (PAPV114, 117 and 118)

around her. PAPV109 did not meet quality standards to be included in autosomal analyses (Table S1).

2. Plaza Casas Oeste (N = 1)

In the Plaza Mayor’s Casas Oeste, the remains of 35 pre-Hispanic individuals were found in different positions, including extended

burials, as well as urns and packages of bones. DNA of one of these individuals (PAPV137), radiocarbon dated 898-1014 (2 sigma), a

male individual of at least 15 years at death, extended yet leaning toward the right side, with his skull pointed northwest, was ex-

tracted in this work.

3. Catedral (N = 5)

Human remains excavated from Old Panama’s Cathedral in Panamá Viejo (PAPV52, 53, 57) and its courtyard (PAPV61, 93) in 2000

reflect the African and European presence, as well as a mixed Indigenous inheritance, in the city from 1542 to 1671 CE (Hernández

Mora et al., 2021).

4. Sur de la Plaza (N = 2)

Two post-contact individuals analyzed here were excavated from Sur de la Plaza (PAPV26, 27) and dated 1519-1541 CE, based on

the historical and archaeological evidence.

5. Parque Morelos (N = 4)

Other pre-Hispanic burials were excavated from the Parque Morelos (roughly 1 km to the west of the Plaza Mayor) in 2001-2003.

These excavations uncovered the remains of two pre-Columbian residential structures, including evidence of post-holes, pottery,

grinding stones, seashell beads, fragments of three bone flutes and a frog-shaped gold pendant. Within a few meters from the res-

idential structures, urns and ‘‘packages’’ with cranial and long bones belonging to children and adults (PAPV146 and 156, dated 776-

966 and 1264-1289 CE, respectively, and the first one with DNA extracted from two different bones), were also recovered (Martı́n,

2002a, 2006). An additional individual was excavated in an extended primary burial (PAPV167, 779-985 CE, 2 sigma) some 50 m

from the residential structures.
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6. Centro de Visitantes (N = 1)

Another pre-Hispanic individual was extracted from an extended burial excavated by Juan Martı́n in 2001 at the Centro de Visitantes

site, close to Parque Morelos, in the west part of Panamá Viejo (PAPV106), and dated 894-986 CE (2 sigma). Five ceramic offerings

accompanied this female individual, of approximately 30-35 years at death.

7. Coco del Mar (N = 4) located outside Panamá Viejo

The additional site where pre-Hispanic human remains were uncovered in 2005 was in an adjacent residential area, Coco del Mar,

one kilometer to thewest of theMorelos statue. In this case, the burial is characterized by a particular conformation (Figure 1B), where

a primary, female individual (PAPV172) was discoveredwith threemale crania (PAPV173, 174, 175) and additional pottery as offerings

(Martı́n et al., 2008), similar to that of Plaza Mayor’s Tumba 1.

Modern Individuals
In 2010, Indigenous polities encompassed about 12% of the 3.4 million inhabitants of Panama. The most numerous are individuals

who identify as the Ngäbe (62.3%), Guna (19.3%) and Emberá (7.5%), followed by smaller polities such as the Chocoan-speaking

Wounaan (the Noanomá of Spanish chronicles), and the Buglé, Bribri, and Naso Djërdi (formerly known as Teribe). The contemporary

population also includes important numbers of self-identified Afro-Panamanians (‘‘Morenos’’) and individuals of mixed Hispano-

Indigenous (‘‘Mestizo’’) ancestry.

Modern sampling took place in Panama City as well as in the provinces and Indigenous territories. A total of 84 biological samples

were collected in Panama from healthy adult (> 18 years old) individuals, almost equally distributed between females and males (41

and 43, respectively), and belonging to different Indigenous groups using NorgenBiotek kits (Figure 1A; Table S1). During sample

collection, genealogical information (for at least two generations), cultural affiliation, and spoken language were also gathered

from each subject.

METHOD DETAILS

Collagen extraction and 14C-dating
The individuals PAPV106, PAPV109, PAPV114, PAPV117, PAPV118, PAPV137, PAPV146, PAPV156, PAPV167, PAPV172,

PAPV173, PAPV174 and PAPV175 were analyzed by accelerator mass spectrometry (AMS) at Mannheim (Table S1) together with

additional individuals from the same sites, i.e., PAPV110, PAPV111, PAPV112, PAPV113, PAPV115, PAPV116, PAPV139,

and PAPV 169, dated between 990 and 1,385 CE (https://artempire.cica.es/archeo/list), with an overall time span from 603 to

1,430 CE.

Compact bone portionswere cut and the surfaces removed. About 1 g of samplewas placed in glass tubes, demineralized in 10mL

of 0.5 N HCl at initially 4�C and later at room temperature for 14 days, rinsed to neutrality and reacted with 10 mL of 0.1 M NaOH for

24 h at 4�C, rinsed again to neutrality and gelatinized in 4 mL of acidified H2O (pH 2-3) for 48 h at 75�C. Insoluble particles were sepa-

rated using EZEE filter separators. Ultrafiltration (molecular mass > 30 kD) removed the short-chained collagen and concentrated the

long-chained collagen, which was frozen and lyophilized.

The collagen was combusted and the relative amounts of carbon (C) and nitrogen (N) determined using an elemental analyzer (El-

ementar Inc., MicroCube). The produced CO2 was reduced to graphite using either a custom-made, semi-automated graphitization

unit or a fully automated and commercially available unit (IonPLus Inc., AGE3). The resulting graphite powder was compressed into

aluminum targets and subsequently analyzed using a MICADAS-type AMS-system (IonPlus Inc.) (Kromer et al., 2013).

The isotopic ratios 14C/12C and 13C/12C of samples, calibration standard (Oxalic Acid-II), blanks and control standards were

measured simultaneously in the AMS. 14C-ages were corrected for isotopic fractionation to d13C = �25& (Stuiver and Polach,

1977) using the 13C/12C AMS-values and calibrated using the dataset INTCAL13 (Reimer et al., 2013, 2020) and software SwissCal

(L.Wacker, ETH-Zürich). Calibration graphs were generated using the software OxCal (Ramsey and Lee, 2013).

Ancient DNA processing
Different bones (femur, humerus and petrous bone) and teeth were available from ancient individuals for DNA extraction (Table S1),

which was carried out in the dedicated clean rooms at the Carl R.Woese Institute for Genomic Biology, University of Illinois, following

published protocols (Dabney et al., 2013; Lindo et al., 2017; Pinhasi et al., 2015; Scheib et al., 2018). Bones or teeth were soaked in

sodium hypochlorite (bleach 100%) for 3 minutes to remove surface contamination, then washed three times with DNA-free ddH2O

and once with isopropanol. Dried samples were placed in a DNA Crosslinker under UV. About 0.1 g of tooth or bone powder were

drilled. The powder was incubated in 1 mL of 0.5 M EDTA with 60-100 ml of Proteinase K (33.3 mg/ml) and 50 ml of 10% N-lauryl sar-

cosine for 20-24 hours at 56�C. The digested samples were concentrated at �100 ml using Amicon centrifugal filter units. The DNA

was purified using the MinElute Reaction Cleanup Kit (QIAGEN). The extracted DNA was quantified with Qubit dsDNA HS Assay Kit

and tested through a PCR amplification of mtDNA control-region fragments (< 150 bps). Samples showing at least 5 ng of DNA and

with at least one successful short mtDNA amplification were selected for shotgun sequencing.

Double-stranded DNA libraries were prepared starting from�55.5 ml of extracted DNA using the NEBNext�Ultra DNA Library Prep

Kit for Illumina�. Adapters were used in a dilution of 1:20, which is recommended for low concentration DNA samples. Adaptor-

ligated libraries were purified using the MinElute Reaction Cleanup Kit (QIAGEN) and then prepared for amplification, which was car-
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ried out in thermocyclers in the modern DNA laboratory. The MinElute Reaction Cleanup Kit (QIAGEN) was used to clean amplified

libraries, whose quality was then checked on the E-Gel Precast Agarose Electrophoresis System and quantified on the Agilent 2100

Bioanalyzer Instrument with the High Sensitivity DNA kit.

Eventually, 21 DNA libraries (10 nM) were selected (two for the individual PAPV146) for Illumina sequencing on the HiSeq4000 (sin-

gle-end 100 bp, for a total of 150-200M reads) at the Roy J. Carver Biotechnology Center of the University of Illinois.

Mitochondrial DNA capture was also performed at the University of Florence for four individuals (PAPV27, PAPV53, PAPV93,

PAPV109), as in (Modi et al., 2020).

Modern DNA processing
After automated DNA extraction with Maxwell� RSC Instrument in the lab of Genomics of Human and Animal Populations at the Uni-

versity of Pavia, the samples were genotyped with the Affymetrix Human Origin 600K chip at the Institute of Healthcare Research in

Santiago de Compostela (CEGEN).

As for themitogenome sequencing, the entiremtDNAwas amplified in two overlapping fragments (Modi et al., 2020). Libraries were

prepared using the Illumina Nextera XT DNA preparation kit and sequenced at the National Neurological Institute C. Mondino in Pavia

on an Illumina MiSeq instrument (paired-end reads 150x2).

QUANTIFICATION AND STATISTICAL ANALYSIS

Ancient data preparation for analysis
Illumina adapters were removed from raw data using CutAdapt (Martin, 2011). Trimmed FASTQ files were then checked with FastQC

(Andrews, 2010). Taking into account the high number of K-mers that were found, mostly poli-A probably generated during the blunt-

end phase, CutAdapt was run twice to remove these artifacts. Trimmed reads were mapped against the human reference genome

hg19 build 37.1, as well as versus the revised Cambridge Reference Sequence (rCRS) in separate runs, using the algorithm aln of bwa

v0.6.1 (Li and Durbin, 2010). The numerous duplicates, generated during library amplification, were removed with the tool MarkDu-

plicates of the Picard package (http://broadinstitute.github.io/picard).

Validation tests

Ancient DNA damage pattern. Damage patterns (Table S2) were analyzed with MapDamage2.0 (Jónsson et al., 2013). The molecular

decay after death was calculated from the length of the reads, as in (Allentoft et al., 2012). We used the error rate estimate to confirm

the antiquity of our reads (Table S2). It calculates the excess of derived alleles observed in an ancient genome (compared to a high-

quality genome) taking into account that all the anatomically modern humans should have the same percentage of derived alleles.

The error rate analysis was performed comparing our trimmed FASTQ with the ‘‘Error estimation’’ tool of ANGSD (Analysis of

Next Generation Sequencing Data) (Korneliussen et al., 2014), using the chimp genome as an outgroup and the genome

NA12778 (from the 1000 genomes project), as an error-free individual (Schroeder et al., 2018).

To double-check if an excess of damage and/or erroneous adapters’ trimmingmight affect the results of the subsequent analyses,

we repeated twoAncientPanama FASTQ trimming usingmore stringent criteria: removing 10 additional bases fromboth ends of each

read; removing the adapters using a higher mismatch rate (up to 50%) than in the original pipeline (20%). These trimmed FASTQwere

thenmapped against the reference genome hg19 build 37.1. We repeated the specific Isthmo-Colombian PCA analysis including the

Ancient Panamanian data trimmed with more stringent criteria finding consistent results with the original plot in Figure 2B.

Contamination tests

Chromosome X contamination. For each library derived from ancient male individuals we estimated nuclear contamination using the

approach described inMoreno-Mayar et al. (2020), based on readsmapping to the X chromosome. Thismethod relies on the fact that

males are hemizygous for X-linked loci outside the pseudo-autosomal regions, making multiple alleles in these loci attributable to

either errors or contaminations. These estimates can be used as proxy for nuclear contamination estimates in ancient male

individuals.

We used ANGSD (Korneliussen et al., 2014) to estimate contamination on reads with mapping quality greater than 30 and base

quality greater than 20. We considered at least 100 sites with depth greater than or equal to 2 (Nägele et al., 2020) matching the

HapMapCEU allele frequencies (Altshuler et al., 2010) as potential contaminants, after excluding pseudo-autosomal regions on chro-

mosome X. We then applied the tool presented in Moreno-Mayar et al. (2020) to estimate contamination using low-depth X chromo-

some data, setting to 1,000 the maximum number of jackknife samples used for estimating standard errors and considering the

estimates from the Two-consensus method.

Mitochondrial DNA contamination. Jones’s method: Contamination in ancient mitochondrial sequences was first estimated by as-

sessing the number of non-consensus base calls (with base quality greater than or equal to 20) at haplogroup diagnostic positions as

a function of the total coverage for each of these sites (Jones et al., 2017).

contamMix: We also estimated mtDNA contamination in our data by using contamMix v. 1.0-10, which provides the maximum a

posteriori probability of the consensus sequence being authentic (Fu et al., 2013). This method is based on the reconstructed mtDNA

consensus to estimate contamination, which should not exceed 50% for contamMix to work. First, we built an mtDNA consensus

sequence running ANGSD (Korneliussen et al., 2014) and using the parameters -doCounts 1 and -doFasta 2 (majority rule). We re-

tained only reads with mapping quality higher than 30 and nucleotides with base quality greater than 20. Moreover, we filtered for
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sites with aminimum depth of 5X. Then, we remapped to the rebuilt consensus sequence only the reads that mapped uniquely to the

mitochondrial reference sequence. We usedmafft (Katoh et al., 2002; Katoh and Standley, 2013) to align our consensus sequence to

a panel of 311 worldwide mtDNA sequences (Green et al., 2008), representing potential contaminant sequences. Finally, we used

both the alignment and the remapped reads for contamination estimation with contamMix, running five independent chains for

50,000 iterations. The results were checked bymonitoring the Gelman diagnostic (Gelman and Rubin, 1992) to confirm convergence.

Schmutzi: The thirdmethod to estimatemtDNA contamination was Schmutzi (Renaud et al., 2015), which jointly estimates present-

day human contamination and reconstructs the endogenous mitochondrial sequence by considering both deamination patterns and

fragment length distributions. Present-day human contamination was evaluated by an iterative likelihood method implemented in

Schmutzi using a non-redundant database of 197 human mitogenomes available in the software package.

Molecular sex and kinship determination
The sex of each individual was determined using two computational approaches specific for low-coverage genomes, Ry (Skoglund

et al., 2013) and Rx (Mittnik et al., 2016) (Table S2). The relationships between the ancient Isthmian individuals were verified using the

tool READ with default parameters (Monroy Kuhn et al., 2018) (Table S2).

Checking for reference bias
The reference bias indicates an increased probability of detecting the alleles present in the reference sequence, especially when

dealing with paleogenomic data affected by fragmentation and other post-mortem damage, often generating C to T and G to A tran-

sitions at 50 and 30 fragment ends (Type II damage) (Günther and Nettelblad, 2019). These characteristics might influence mapping

scores in low-coverage ancient genomes, particularly for those reconstructed from very short reads, eventually leading to an artificial

decrement of reads carrying alternative alleles, in comparison to high-coveragemodern genomes. In order to verify that this issue did

not affect our downstream analyses, we compared the alternative allele frequency distributions between modern and ancient indi-

vidual data. We used the PLINK 2.0 toolset to calculate the average proportion of alternative alleles for each individual. This analysis

was repeated considering all SNPs, all SNPs without C to T and G to A and only transversions without finding significant differences

between the pseudo-haploid datasets (derived from ancient and masked individuals).

Modern data preparation for analysis
The raw data were initially checked with Affymetrix suite software, then the data from 81 individuals that passed the quality control

(call rate > 98.5) (Raveane et al., 2019) were converted into PLINK files and retained for the kinship analyses to exclude putatively

related individuals using KING (Manichaikul et al., 2010). Considering that Indigenous populations have a higher degree of related-

ness due to long periods of isolation and endogamy, there was the need to evaluate a different threshold. For this reason, the 97.5-

percentile of population IBD for each population was used as threshold for exclusion (Busby et al., 2015). For each pair of related

individuals, the exclusion was based on the number of missing SNPs. A total of 74 individuals (out of the initial 84) were retained after

quality and kinship filters.

Ancient comparative datasets
The 545,942 SNPs retained in the rWD1560-dataset (see ‘‘Reduced worldwide (rWD1560) dataset’’ section) were called on the

ancient dataset that contained our 12 ancient Panamanian individuals merged with 241 ancient Siberian and American individuals

with a minimum coverage of 0.01X (Table S3). The calling was performed for all individuals in one run using ANGSD (Korneliussen

et al., 2014) with the haplocall 1 option, which picks a random read starting from an input set. In addition, to avoid possible biases

due to low coverage data, we down-sampled all ancient genomes to 1X and 0.5X coverage using ANGSD with the -downSample

option.

The ancient dataset wasmerged using PLINK 1.9 (Purcell et al., 2007) with our modern datasets and then filtered using–geno and–

mind options set respectively to 0.60 and 0.98 (Scheib et al., 2018), keeping only individuals with at least 10,000 SNPs (Table S3)

(Posth et al., 2018).

Modern comparative datasets
As detailed below, different comparative datasets were assembled: 1) a worldwide dataset of modern samples (rWD1560, 545,942

SNPs); 2) two datasets of (nearly) ‘‘unadmixed’’ Indigenous Americans (uIA217, 534,569 SNPs and uIA89 523,210 SNPs) obtained by

removing individuals with signatures of non-Indigenous genetic contributions using different stringent criteria; and 3) a larger dataset

of ‘‘admixed’’ individuals where only genetic fragments inherited from Indigenous individuals were retained, masking (removing) var-

iants not belonging to haplotypes inherited by Indigenous groups (mIA417, 545,942 SNPs), to focus on pre-Hispanic interactions. The

individuals used for the latter dataset were considered pseudo-haploid in allele frequency analyses, while in haplotype-based

methods the individual chromosome pairs were jointly analyzed. Moreover, some of the samples with less than 50% Indigenous

ancestry were removed (rmIA311).

1) Reduced worldwide (rWD1560) dataset

A first dataset of 4,939 modern individuals was built encompassing worldwide Affymetrix Human-Origins genotyped individuals and

American whole-genome sequences from the literature considering a minimum threshold of 500K overlapping SNPs. This dataset
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was merged using PLINK 1.9 with our modern individuals and then filtered using–geno and–mind options set to 0.02. After excluding

related individuals (see ‘‘Modern data preparation for analysis’’ section), the dataset was geographically restricted to 1,560 individ-

uals (rWD1560, Table S3) including our modern Panamanians (74), all individuals from America (1,084) and Siberia (203), and the

western Eurasian (61), African (73) and Australasian (65) populations that left a greater genomic impact on Indigenous Americans dur-

ing colonial times (Chacón-Duque et al., 2018; Homburger et al., 2015; Montinaro et al., 2015; Ongaro et al., 2019).

2) ‘‘Nearly unadmixed’’ Indigenous American (uIA217 and uIA89) datasets

European colonialism and the African slave trade left a strong impact on the Indigenous American populations. Therefore, the ana-

lyses of pre-colonial genetic history might be strongly influenced by these components and it is very difficult to find non-admixed

modern individuals, even within Indigenous groups. Thus, three different approaches (ADMIXTURE, Local Ancestry and f4) have

been used to create a sub-set of individuals with the maximum possible Indigenous genetic component, to avoid signals altered

by recent admixture events. Considering the inconsistency of the preliminary results obtained by using the three methods indepen-

dently, a stepwise merging approach was preferred, retaining individuals classified as Indigenous (with the lowest content of non-

Indigenous component) after each step.

1. ADMIXTURE.We extend the analyses on our rWD1560 dataset until K20. However, considering that K14 has the lowest cross-

validation (CV) error (Figure S2A), we used K14 to identify the individuals that have more than 95% of Indigenous components (290 in

total) (Alexander et al., 2009).

2. f4 statistics. In the second approach, we used f4 statistics in the following form: f4 (ancientIndigenous, X; Europe/Africa, Mbuti).

Ancient Indigenous was composed by five high-coverage ancient genomes selected on the basis of country of origin and age (Table

S3). The selected individuals (N = 305) were those with a Z score < |3| for both Europe and Africa.

3. Local ancestry (LA). Combining the positive results of ADMIXTURE and f4 statistics, we could retain 230 individuals to be

selected for the Local Ancestry (LA) using the software RFMix (Maples et al., 2013). Among these, we selected 58 individuals to

be used as ancestral source in LA analysis. The overall criteria used to select these 58 ancestral individuals were as follows: i) suc-

cessfully passing the f4 filter (see ‘‘f4 statistics’’ section); ii) 100% IA in K14 (see ‘‘ADMIXTURE’’ section); iii) belonging to a population

that best represents a specific IA component in the ADMIXTURE analysis (Figure S2A) for each K (until K20):

d K1 6 Puno individuals (selected at K20 among the population with more K1)

d K6 25 Guna individuals (selected at K14)

d K10 2 Chipewyan individuals (selected at K14)

d K11 10 Karitiana individuals (selected at K14)

d K17 8 Surui individuals (selected at K18)

d K20 7 Kichwa Orellana individuals (selected at K20)

We also used all African (73) and European (51) individuals (representing the respective ancestries). The Finns were excluded due

to their known admixture with a central Asian population (Saag et al., 2019; Sikora et al., 2019). The entire dataset was screened for

the LA of these selected individuals allowing us to identify 210 individuals showing less than 5% of non-IA ancestry (plus the 58 used

as IA sources).

Merging all the positive results of these three independent analyses, we identified a restricted dataset with 217 almost unadmixed

individuals (uIA217, Table S3). Moreover, more stringent criteria, i.e., < 1% African, < 2% European (Gnecchi-Ruscone et al., 2019)

and Z < |2|, were used to select a second restricted dataset with only 89 almost unadmixed individuals (uIA89, Table S3).

3) Indigenous American dataset with masked haplotypes (mIA417)

The non-Indigenous component (> 5%) identified using LA was removed from each haplotype of the 417 individuals, not included in

the almost unadmixed Indigenous dataset. This masked dataset mIA417 combined with uIA217 (or uIA89) creates an overall Indig-

enous dataset encompassing 634 (506) individuals.

Uniparental analyses
Ancient mitogenomes

Taking into account that the mitogenome sequence included in the whole hg19 human reference is different from the mtDNA refer-

ence sequence (rCRS) commonly used in phylogenetic studies on mtDNA, we have chosen rCRS for mapping the FASTQ data in our

pipeline. Processed reads from shotgun (single-end) sequencing were aligned to the rCRS sequence (Andrews et al., 1999) with BWA

v0.7.17 aln/samse algorithm (Li et al., 2009) and realigned with CircularMapper (Peltzer et al., 2016). Duplicate reads were removed

with Picard MarkDuplicates (https://github.com/broadinstitute/picard) and BAM files were further processed with SAMtools (Li

et al., 2009).

Raw paired-end reads derived from captured mitogenomes that overlapped for at least 11 bases were merged using ClipAnd-

Merge v1.7.7 (Peltzer et al., 2016) and then processed as above (see ‘‘Ancient data preparation for analyses’’ section) with an addi-

tional step to remove the indexes used for multiplexing on the MiSeq sequencer. Clean reads were mapped to rCRS (Andrews et al.,

1999) with BWA v0.7.17 mem algorithm and BAM files were filtered with Picard MarkDuplicates (https://github.com/broadinstitute/

picard) to remove duplicates and with SAMtools (Li et al., 2009). The final mtDNA BAM of the four captured individuals were merged

with the shotgun mtDNA BAM using SAMtools merge.
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For all mitochondrial BAM files, only reads with minimummapping and base quality of 30 and positions with a minimum depth of 1

were retained for downstream analyses. Eventually, we obtained 13 ancient mitogenomes with mtDNA genome coverageR 0.99 (11

from pre- Hispanic individuals) (Table S1).

Two strategies were used to determine the haplotypes of these 13mitogenomes. First, we performed variant calling with BCFtools

(Li et al., 2009) and filtering the VCF files with VCFtools (Danecek et al., 2011). Haplotypes were refined by manually checking

BAM files.

Then, to better define indels in our dataset, as there are diagnostic deletions for some Indigenous lineages, we realigned cleaned

reads of our ancient individuals to modern Panamanian mitogenomes belonging to the same haplogroup. The alignment was per-

formed with BWA 0.7.17 aln/samse algorithm (Li et al., 2009) and reads were realigned with CircularMapper (Peltzer et al., 2016).

Consensus sequences were generated using the same filters as before and then compared to the rCRS to obtain final haplotypes.

We also reconstructed the consensus sequence for the four contaminated individuals. We used ANGSD (Korneliussen et al., 2014)

applying the same filters as in Sánchez-Quinto et al. (2019).

Haplogroups classification, based on phylotree.org (mtDNA tree Build 17) (Van Oven, 2015), was assessed using the online tool

HaploGrep2 (Weissensteiner et al., 2016).

Modern mitogenomes

After adaptors trimming paired-end reads were aligned to rCRS (Andrews et al., 1999) with BWAmem algorithm (Li et al., 2009). BAM

files were filtered with PicardMarkDuplicates (https://github.com/broadinstitute/picard) and SAMtools (Li et al., 2009). Variant calling

was performed with GATK HaplotypeCaller (McKenna et al., 2010) and mitochondrial haplotypes were also checked by manually

inspecting BAM files. HaploGrep2 was used for haplogroup assignment (Table S1). We have also double-checked the final haplo-

types for possible NUMTS without finding any problems. Four mitogenomes (PaGUN9659, PaGUN9671, PaNAS16050, and

PaNGA1193) were obtained with Sanger sequencing and analyzed using Sequencher v5.0 (http://www.genecodes.com/).

MtDNA tree, dating, and demography

Phylogenetic tree and Bayesian Skyline Plot (BSP) were generated using BEAST v2.6.2 (Bouckaert et al., 2019). BEAST was also

employed to calculate Bayesian age estimates. Radiocarbon dates of ancient individuals were used as priors. The L2c2mitogenome

from a Moreno individual (PaMOR16007) was included in the analyses as an outgroup. BEAST runs were performed with complete

mtDNA sequences under the HKY substitution model (gamma-distributed rates plus invariant sites) with a fixedmolecular clock as in

(Brandini et al., 2018). We set the clock rate considering the ones published in Posth et al. (2016) and Soares et al. (2009). The chain

length was established at 10,000,000 iterations with samples drawn every 1,000 Markov chain Monte Carlo (MCMC) steps, after a

discarded burn-in of 10% steps (default value 0). Panama-specific haplogroups were set as monophyletic in the analyses. The same

BEAST settings were used to: i) estimate the ages of haplogroups and (ii) evaluate population expansions in Panama through BSPs

(Drummond et al., 2005) by including all Panamanian Indigenous mitogenomes analyzed in this study. BSPs were visualized in a plot

using Tracer v1.7 (Rambaut et al., 2018) and converted into an excel graph by assuming a generation time of 25 years as in Brandini

et al. (2018). The maximum clade credibility tree was determined using TreeAnnotator and visualized with FigTree (http://tree.bio.ed.

ac.uk/software/figtree/).

Ancient Y chromosomes

The haplogroup classification of the eight ancient Y chromosomes (Table S1) was deducted from the aDNA aligned sequences by: i)

extracting with bcftools all the positions belonging to the Y chromosome; ii) considering only the positions that matched the list of the

SNPs belonging to the main branches of the phylogenetic tree present in Poznik (2016) after taking into account any possible aDNA

damage (C/T– > T/C;G/A– > A/G) as in Fregel et al. (2018). To further sub-classify the ancient Y chromosomes the sameworkflowwas

performed by considering the list of 1,104 specific haplogroup Q SNPs reported by Grugni et al. (2019). All codes and pipeline for this

part can be found at the link: https://github.com/raveancic/aDNAYchromosome.

Modern Y chromosomes

The Y chromosome haplogroup classification of the 43 modern male individuals was first inferred from genotyped files by using the

script called Haplogroups.py in Yhaplowith Python3 (Poznik et al., 2016) (https://github.com/23andMe/yhaplo), using default param-

eters. Then, the obtained classification was confirmed by hierarchical analysis, as previously described (Battaglia et al., 2013), of the

following Y chromosome haplogroupmarkers: M9,M242,M3,M89, YAP,M96,M304,M172,M241,M269, L23, S116. In addition, the

M242 positive samples (Hg Q) were further sub-classified by typing the signature markers (M848, Z780, M925, Z5908, Y780,

CTS2731) of the main Indigenous sub-haplogroups recently identified (Grugni et al., 2019; Pinotti et al., 2019). Haplogroup nomen-

clature is according to Grugni et al. (2019).

Population genetics analysis based on allele frequencies
Principal Component Analysis (PCA)

PCAs were performed using ‘smartpca’ program from the package EIGENSOFT v7.2.0 (Patterson et al., 2006). Ancient data, char-

acterized by a large amount ofmissing data, were projected onto themodern variation with the lsqproject and autoshrink options. The

same approach was used for the masked dataset (mIA417) that also shows a variable amount of missing data. Several PCAs were

performed considering ancient and modern world-wide datasets and different sub-datasets. Those individuals showing peculiar

outlier positions in the PCA plots were excluded from the downstream analyses (Tables S1 and S3).
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ADMIXTURE clustering analysis

Different datasets (only modern and modern plus ancient individuals) were pruned with PLINK 1.9 (–indep-pairwise 200 25 0.4) and

used to perform a biogeographical ancestry analysis with ADMIXTURE v.1.23 (Alexander et al., 2009).We performed ten independent

unsupervised ADMIXTURE runs for each K, from K1 to K20, adding the –cv flag to identify the 5-fold cross-validation (CV) error for

each K. The average cross-validation (cv) value for each K were plotted to select the model with highest likelihood. The software

CLUMPAK (Kopelman et al., 2015) was used to combine different runs and to find the best alignment of the results across a range

of K values with the tool DISTRUCT (Rosenberg, 2004).

The analysis on the rWD1560 dataset reveals well-defined structures and consistent trends, associated with a low CV value, until

K14 (or even K20) suggesting that the observed pattern is not an artifact. In the ADMIXTURE plot it is possible to observe seven spe-

cific IA ancestries, some mirroring the PCA clusters (Figure 2B):

d K1 that is widely distributed in all IA populations with high percentage in Puno, Aymara, Quechua and Paran-Cusco individuals,

all speaking Andean languages.

d K6 is modal in the Guna and highly represented in all the populations from Costa Rica to Panama, speaking Chibchan

languages.

d K10 is typical of the Chipewyan (speaking a Na-Dene language) with lower percentage in all populations from northern North

America.

d K11 is modal in Karitiana and Surui speaking Tupi (Equatorial-Tucanoan) languages.

d K17 separates the Surui from Karitiana.

d K15 is represented by the Pima and mostly present in Mexico, but also widely distributed in Central and Northern IA speaking

groups.

d K19, like K1, is widely distributed across the double continent and reaches the highest level in South America, particularly in the

Andes Mountains (i.e., KCH).

Additional interesting components are K13 and K16 that are present in high percentages in Puerto Rico (PUR) andColombia (CLM),

respectively. They also can be observed in admixed American and European populations. The above-mentioned components are

present in different proportions and differentially distributed among IA populations including the Panamanians, with the only notable

exception of the Guna showing a specific component. The addition of 329 ancient Siberian and American individuals to the rWD1560

dataset confirms the already-discussed ancestries, revealing an additional K specific of Archaic Caribbean individuals (Figure 2A). A

further ADMIXTURE analysis (Figure S2B) was performed projecting the ancient individuals on to the population structure from only

modern individuals using the option -P and the .P file from the analysis in Figure S2A at K14.

Admixture tests (f statistics)
The f statistics was performed using EIGENSOFT v7.2 and AdmixTools v4.1 (Patterson et al., 2012). Outgroup f3was used to highlight

only the shared genetic history between individuals or populations relative to an outgroup (Peter, 2016). A high f3 value means more

genetic history shared between the pair population analyzed. This method is less sensitive to lineage-specific genetic drift over the

use of pairwise distance measures, such as Fst (Skoglund et al., 2015). A graphic explanation of the outgroup f3 is reported in

Figure S3.

We analyzed the shared genetic history of modern IA populations (included in the mIA417 and uIA89 datasets) against some

ancient reference genomes (aRG) from Siberia, Beringia, North America (representative of the NNA ancestry) and South America

(representative of SNA). The Guna always show a shared genetic drift with the ancient reference individuals lower than the average

f3 value (dotted line) of all modern IA groups. It could be also noticed that the average f3 value is higher in the comparison with Spirit

Cave than with Anzick-1.

We also built a distance matrix using the inverse values derived from the outgroup f3 statistics on all Central and South American

populations pairs plus Anzick-1, Early San Nicolas (ESN), Spirit Cave and USR-1 (as an outgroup). We retained only populations with

more than 30K overlapping SNPs and significant Z scores (p value�0.001, for Z scores > |3.3|) in all comparisons. This distancematrix

was used to generate a neighbor joining tree (Figure S3C) with the program PHYLIP 3.6 (Nägele et al., 2020). The tree was visualized

with FigTree 1.4.4 (https://github.com/rambaut/figtree).

The f4 statistics was eventually used to identify gene flows among different populations. The comparison was performed in the

form f4(W, X; Y/test, Outgroup), as reported in the software documentation. A graphic explanation of the f4 statistics analyses is

reported in Figure S5. In each figure showing a f4 statistics test the form is reported above the plot(s). Results from f4 analyses

presented in Figure 2C display only tests in which the initial conformation of the tree is rejected (p�0.001, Z score > 3.3 or <

�3.3) (Moreno-Mayar et al., 2018), meaning that the investigated population (Y) has a significantly higher genetic affinity withW rather

than with X if the f4 results are positive, the opposite when values are negative. If the results are not displayed, the proposed tree

cannot be rejected and there are no significant preferential relationships between the test population (Y) and W or X. In Figure S5

the Z score is displayed in abscissa and the region where the tested tree cannot be rejected is highlighted in gray (see above).
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In all f4 statistics, we considered aminimum threshold of 30K SNPs, the comparisons with less SNPs are highlighted with a specific

symbol (X). Due to the low number of SNPs retained in multiple analyses, the following individuals were excluded: Baja_100,

CuevadelPerico_2700, Enoque_3500, Kaillachuro_4000, LosIndios_600, Moraes_5800, SanFranciscoBay_25, ShukaKaa_10300,

SoroMikayaPatjxa_6800 and Tibes_1200.

In particular, to specifically check for the relationships between Anzick-1 and Spirit Cave, with the Isthmian populations as well as

with other ancient andmodern IA individuals fromCentral and South America, we ran two f4statistics in the following forms f4 (Anzick-

1, Spirit Cave; Isthmo, Mbuti) and f4 (Anzick-1, Spirit Cave; Central and South IA, Mbuti). The datasets uIA89, mIA417 and ancient

individuals were used considering different sets of variants: all SNPs, all SNPs without C to T and G to A variants, only transversions

and only transversion with ancient individuals’ coverage downsampled to a maximum of 1X (to avoid coverage biases).

We observed a clear pattern that becomes significant when increasing the number of SNPs. We further verified this pattern using a

f4 statistics in the form f4 (USR-1, Anzick-1/Spirit Cave; Central and South IA, Mbuti) that confirmed a higher proximity to Spirit Cave

in comparison to Anzick-1. The same pattern has been also observed in the outgroup f3 analyses (see above).

TreeMix

In order to obtain a maximum likelihood tree, we ran TreeMix (Pickrell and Pritchard, 2012) on the pruned dataset uIA89 using TSI, CHB

and YRI (Tuscans, Chinese Han and Yoruba) as outgroups. The -noss and -global parameters were added considering zero to five

admixture edges. The trees with the highest likelihood were selected after 1,000 runs (Gnecchi-Ruscone et al., 2019; Moreno-Mayar

et al., 2018).

Ancestry modeling with qpWave

In order to verify that the Isthmo-Colombian ancestry (UPopI) is independent from other IA ancestries, we compared in pairs the Isth-

mian populations with all other modern and ancient IA populations using qpWave (Patterson et al., 2012) to test whether they were

homogeneously related to a set of external outgroups. The outgroups were kept to the minimum and chosen to represent different IA

ancestries identified here and in other papers:

d Mbuti, Papuan, CHB, Malta_24000 and USR-1_11500 as non-IA sources (Nägele et al., 2020; Posth et al., 2018)

d ASO_4000 and Chipewyan for NNA

d LagoaSanta_10400 for SNA1

d SpiritCave_10900 for SNA2

d Mixe for UPopA

d GuayaboBlanco_1700 for Archaic Caribbean

d Ayayema_4500 for Patagonia

d Aymara and KCH (K1 and K19 respectively in Figure S2A) representing modern South American populations.

We took in consideration the p value of ‘‘taildiff’’ for Rank1, a statistically significant p value (< 0.01) means that each compared pair

could be explained by two sources. We observed that one ancestry is usually needed (p value > 0.01) to define pairs of Isthmo-Co-

lombian populations, while pairs of Isthmian and non-Isthmian populations require two ancestries. This pattern is more evident in the

Guna, the best representative of the Isthmo-Colombian component. This pattern confirms that a different ancestry, instead of only

genetic drift by isolation, is needed to explain the distinctiveness of the Isthmo-Colombian populations.

Demographic modeling with qpGraph

We used qpGraph (Patterson et al., 2012), on a merged dataset of the uIA89, mIA417 and ancient individuals (considering only trans-

versions), to reconstruct the best tree modeling the relationships between Isthmian populations and ancient Indigenous genomes. In

our f4 statistics we noted a differential relationship between Isthmian groups and modern/ancient Indigenous Americans in compar-

ison to the individuals older than 10 kya (Figure 6A; Table S4). Therefore, wemodeled a basal tree with three of themost ancient avail-

able genomes of the SNA ancestry, an ancestry that certainly went through the Isthmus to reach South America. Our best tree

revealed that the SNA dispersal involved a complex demographic pattern, with three possible ancestries (Figure S6A). To resolve

the inferred zero-length internal branch, we tested all three possible split orders obtaining similar scores. Therefore, it might represent

a very short branch that we cannot resolve with this dataset power (Lipson, 2020) and the three lineages, Anzick-1 (Montana, �12.6

kya), Lagoa Santa (Brazil, �10.4 kya; SNA1) and Spirit Cave (Nevada, �10.9 kya; SNA2) are statistically consistent with forming a

trifurcation. The best fitting topology was tested by considering an early admixture between the SNA2 source and SNA1 obtaining

a still supported model without zero-length branches (Figure S6B). To increase the resolution power and considering the results of

previous analyses (f3- and f4-statistics), we added to this graph the captured and genotyped data from Lapa do Santos (Brazil,�9.6

kya) as SNA1 and thewhole-genome sequences of ESN (California;�4-5 kya) as SNA2. This allowed us also to check for any bias due

to sequencing methods. Even in this case the best fit tree confirms the trifurcation (Figure S6C). After this step, we added Los Rieles

(Chile,�10.9 kya), themost ancient Pacific coast genome, which turned out to be better modeled as an admixture of SNA1 and SNA2

(|Z| = 2.835) than as non-admixed and considering only geographic origins (|Z| = 3.930) (Figure S6D). This finding confirms that both

SNA1 and SNA2 reached South America and seems to indicate that the latter had a lower impact on the Atlantic side of South Amer-

ica. When Los Rieles is replaced by Lapa do Santos, the tree does not fit (|Z| = 3.930) (Figure S6E).

We then took into account that, in the f4 statistics (Figure 6A; Table S4), there is a significant allele sharing of the Isthmian popu-

lations with Spirit Cave and two Central American ancient genomes, Mayahak Cab Pek (Belize,�9.3 kya) and Saki Tzul (Belize,�7.4
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kya), as well as a higher genetic proximity to Los Rieles relative to Lagoa Santa. Therefore, we attempted tomodel ancient Panama in

relation to these ancient genomes (Figures S6F and S6G). Ancient Panama fits better when considering an admixture between the

Central-South American branch of SNA2 and another ancestry parallel to SNA2 and shows the best score with Mayahak Cab Pek

(Figure S6G). The additions of NNA individuals (Figure S6H), ASO (Ancient Southwestern Ontario,�4.2 kya), 939 (Lucy Island, British

Columbia,�6.1 kya), Kennewick (Washington State,�8.8 kya), ancient Athabaskan (dated 100 and 725 ya), andmodern Chipewyan,

hold better when assuming some admixture events involving these genomes. These findings confirm that we cannot identify an un-

admixed proxy for the NNA ancestry among ancient individuals. The best graph was obtained when including ASO as NNA and

Mayahak Cab Pek as the central American ancient genome.

At this point, we further evaluated the relationship of Panama with SNA1 that we initially linked to Lagoa Santa (Figure S6A). As

before, we started from basal admixture graphs without Guna and considered the conformation with ASO and Mayahak Cab Pek,

based on previous results (Figure S6H). We first tested the tree without admixture in Los Rieles, placing Lagoa Santa as a parallel

branch of SNA2, but the tree would fit only when considering Los Rieles as an admixture between SNA1 and SNA2 (|Z| = 2.896),

the two early South American ancestries that we identified above (Figure S7A). It is worthmentioning, however, that the graphwithout

admixture in Los Rieles became statistically significant (|Z| < 3) when Lagoa Santa was replaced with the younger Laranjal sample

(Brazil,�6.8 kya) (Figure S7B). This confirms our f4 statistics (Figure 6A; Table S4) and the scenario of a widespread population turn-

over in South American during mid-Holocene, as previously suggested (Moreno-Mayar et al., 2018; Posth et al., 2018), a finding that

also correlates with climate changes in the southern continent (Riris and Arroyo-Kalin, 2019). As for the Ancient Panamanians, they

are a mix between the source of SNA2 (prior to Spirit Cave) and the admixture between SNA1 and SNA2 (Figure S7A).

Lastly, we assessed different admixture graphs also including theGuna, whichwas the best representative of the Isthmian-specific

component in our previous analyses (Figure 2A). As for the ancient Isthmians, we first explored the link of Guna with SNA2 (i.e., Spirit

Cave) and in this setting only the admixedmodel was supported, with theGuna group representing a still unsampled population of the

Isthmus, UPopI (Figure S7B). To assess if UPopI might correspond to the previously identified UPopA, we replaced Guna with Mixe,

previously used to identify UPopA (Moreno-Mayar et al., 2018). The resulting admixture graph was not statistically supported (|Z| > 3,

the rightmost graph). Then, we linkedGuna also to SNA1, obtaining the best Z score in the graphwhenUPopI was placed as a parallel

ancestry to SNA1 and SNA2, all radiating from the same early SNA source (Figure S7C). The latter derives from an initial split of the

early Indigenous group into SNA and NNA. In this scenario the ASO group is the result of an admixture between NNA and SNA1. It is

therefore likely that the first split occurred further north and earlier than the diversification of SNA into SNA1 e SNA2. Finally, the same

graph shows that when UPopI reached the Isthmian area, it admixed locally with population groups derived from both SNA1

and SNA2.

Taking into account the presence of a zero-length internal branch in the final tree with UPopI (Figure S7C) and the results obtained

on the basal graph (Figure S6), we modeled a binary tree without zero-length branches when considering an initial migration of pop-

ulation with an early SNA ancestry (SNA1) and a later North American admixture between SNA1 and a different SNA branch (SNA2)

(Figure 7). This admixture gave rise to two ancestries, one, related to Spirit Cave, that reached South America, leaving evident foot-

prints on the Pacific coast, and another restricted to the Isthmo-Colombian area (UPopI) that is well represented in theGuna. The best

topologies were also checked replacing Guna (UPopI) with Mixe (UPopA), Spirit Cave with Anzick-1, and without UPopI (Figures

S7D–S7F), but no statistically supported graphs were found. The other Isthmian Indigenous groups were also tested (replacing

ancient Isthmians) using this final model (Z score always < 2.5) to estimate the differential legacy of the three ancestries in pre-

sent-day populations (inset of Figure 7).

Population genetics analysis based on reconstructed haplotypes
Phasing

Phased haplotypes were generated from the rWD1560 dataset using the Segmented Haplotype Estimation and Imputation tool

SHAPEITv2 (Delaneau et al., 2011) and the HapMap37 human genome build 37 recombination map.

Local Ancestry and Masking

The local ancestry for genomic fragments in the American individuals was estimated using RFMix (Maples et al., 2013). As source

populations, we used Bantu, Esan (ESN), Gambia (GWDwg), Mandenka, Mbuti and Yoruba (YRI) for Africa, Spanish (IBS), British

(GBR), French, Icelandic and Tuscany (TSI) for Europe and Chipewyan, Kichwa Orellana, PaGUNA, Puno, Surui and Karitiana for

Indigenous ancestry. We used ‘‘PopPhased,’’ ‘‘-n 5’’ and ‘‘–forward-backward’’ options as recommended in RFMix manual. Then,

starting from RFMix output files, we built a PLINK file set in which the non-Indigenous SNPs were masked. The masking process

was done with this rationale: if in the ‘‘Viterbi’’ output a particular SNP was not assigned to the Indigenous ancestry and if the prob-

ability of belonging to the Indigenous ancestry (reported in the ‘‘forwardbackward’’ output) was less than a threshold (< 0.9) that allele

was set as missing. In this analysis we kept individuals as separated into the two phased haplotypes.

ChromoPainter

To obtain the painting profile of all the 217 individuals in the uIA217 dataset consisting in a matrix of ‘recipient’ individuals (rows) that

appear as amosaic of the ‘donors’ (columns), we processed the genomic information contained in phased data (haplotypes) through

the use of inferential algorithms implemented in CHROMOPAINTERv2 (Lawson et al., 2012). Technically for this analysis the recom-

bination (-n) and mutation (-m) parameters used were respectively 233.1352 and 0.00084 estimated on five randomly selected
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chromosomes (3, 7, 10, 18 and 22). Since the genetic variability among IA populations is low, we ran CHROMOPAINTER in two runs,

one with standard parameters, the other adding the flag -k 50 (Gnecchi-Ruscone et al., 2019). No significant differences were

observed between the two runs.

fineSTRUCTURE

The CHROMOPAINTER square (2173 217 individuals) chunkcounts.outmatrix was used as input file for fineSTRUCTURE in order to

identify similar genetic clusters. We ran the software with three millions MCMC iterations thinned every 10,000 and preceded by one

million burn in iterations: -x 1000000 ; -y 3000000 ; -z 10000 ; -t 1000000. The MCMC file (.xml) was used to build the tree structure

using both the options –T1 and –T3, without major changes between the two methods.

Initially, we obtained 50 clusters in the final tree (data not shown). However, to obtain more robust genetic inferences the number of

clusters was reduced to 19 considering the number of individuals in each cluster (less than five) and the Total Variation Distance

(TVD < 0.03) as elimination criteria. TVD is an index that measures the similarity between copying vectors of the CHROMOPAINTER

matrix (calculated on the chunklengths) (Leslie et al., 2015); lower values of TVD mean similarity, while higher values indicate

heterogeneity.

Haplotype Analyses on ‘Masked’ Individuals

Themasked haplotypes (mIA417) were initially filtered for the individuals that had amaximumof 50%ofmissing SNPs (considered as

the mean of the summedmissingness of the two haplotypes) and, among these individuals, we selected only those with at least 25%

of SNPs retained in each haplotype. Eventually, we obtained a restricted dataset of 311 masked individuals (rmIA311). This dataset

(rmIA311) was then converted in PLINK1.9 format and subsequently in a CHROMOPAINTERv2 input. To enable missing data in

CHROMOPAINTERv2, we slightly modified CHROMOPAINTERv2 such that a recipient/target’s emission probability is set to 0 at

missing (i.e., masked) SNPswhen tabulating the expected number of segmentsmatched to each ‘‘Donor’’ individual that the recipient

is compared to. Therefore, in regions of high missingness the expected number of segments matched to each ‘‘Donor’’ will tend to-

ward the prior, which assumes equal matching to all ‘‘Donor’’ individuals. However, in our application here we found that inference

seems to be dominated by data at non-missing SNPs, where the usual CHROMOPAINTERv2 machinery is employed. In particular,

we did not identify any correlation between the percentage of missing data (even when reaching 50%) and bad placements/outlier

behaviors in the PCA created from the CHROMOPAINTER output projecting the ‘masked’ individuals (Figure S4A).

Identical by Descent (IBD) Analysis

The pattern of IBD sharing within each population of the uIA217 phased dataset was analyzed using Refined-IBD (Browning and

Browning, 2013), which makes it possible to improve the accuracy and efficiency of identity by descent detection in population

data, using default parameters. The average IBD-sharing was calculated for nine different bin categories corresponding to different

degrees of relatedness (Gnecchi-Ruscone et al., 2019; Moreno Estrada et al., 2014). The total length of shared IBDwas calculated for

each bin, by considering all pairs of individuals within each population group. The summed length was then divided by the numbers of

pairs in each population in order to obtain the average total length of intrapopulation IBD shared blocks for each population in the

uIA217 dataset (y axis in Figure 3C).

In order to reconstruct the population dynamics, we applied IBDne on the uIA217 dataset, using both IBDseq, which does not

require phased data, and Refined-IBD that uses phased data, using different minimum thresholds of IBD segment length (2 and 4

centimorgan, cM). Considering all the Panamanian individuals, lower confidence intervals were obtained when using windows of

2 cM. Moreover, the Ne obtained with Refined-IBD is more compatible with historical estimates of the area’s pre-colonial population

size (see introduction). We observed the same trend in the ancestry-specific effective population size (asIBDne) from the 74 Pana-

manian individuals, masked for the IA component, following the pipeline presented by Browning et al. (2018), as reported in Ongaro

et al. (2019). Therefore, Refined-IBD was applied using 2 cM windows for the comparison between Panamanian and non-Panama-

nian IA individuals present in the uIA217 dataset (inset Figure 3C). This analysis shows a decrease in the region’s population size that

pre-dates the average values of other IA populations considered together. This decrease started in pre-Hispanic times (�1100 ya)

then became steeper in the early colonial period (�500 ya). To retain more information, we used the three macro-clusters from

the fineSTRUCTURE tree: Guna (30 individuals), Emberá (18 individuals) and Western Panama (20 individuals) encompassing Bribri,

Naso and Ngäbe. The Guna group shows a peculiar trend when considering shorter IBD fragments < 6 cM (Figure S4C). However,

even when the Guna were removed from the Panamanian / non-Panamanian comparison, the peculiar pre-Hispanic demographic

contraction of the Panamanian populations was still detectable and with smaller confidence intervals (Figure S4D). The same

approach was applied including all of the macro-clusters obtained with fineSTRUCTURE and considering a minimum threshold of

8 cM. This analysis confirmed the behavior of the Isthmian groups including the Guna (Figure S4E).

Dating Admixture Events with IBD Sharing

In order to date the admixture events between our Panamanian groups and other IA populations included in the uIA217 dataset, we

calculated the IBD sharing segments using RefineIBD as performed by Liu et al. (2020). The IBD blocks were divided into three cat-

egories, based on their length (1-5 cM, 5-10 cM and over 10 cM), each roughly representing different time periods: 1,500-2,500 ya,

500-1,500 ya and < 500 ya (Liu et al., 2020; Ralph and Coop, 2013). We have calculated the mean of summed IBD lengths shared

between population pairs for each length category. To reduce noise and false positives only the pairs that shared at least two blocks

> 5 cM and four < 5 cM were considered.
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ADDITIONAL NOTES

The text has been revised in order tominimize the use of ‘‘colonial language’’ and to avoid the connotation of people asmere samples

or data. The adjective Indigenous has been preferred to Native American with only notable exceptions of Northern Native American

(NNA) and Southern Native American (SNA) ancestries, which were used for consistency with previous papers.

Many figures in the paper have been created using various versions of the software Tableau (https://www.tableau.com/) or with

different R packages.
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Figure S1. Analyses of uniparental markers, related to Figure 5B and Table S1

(A) Schematic phylogenetic trees of the four major mtDNA haplogroups identified in the Isthmian area. The Bayesian phylogenetic trees, rooted on an L2c2

mitogenome from a ‘‘Moreno’’ individual, include all modern mitogenomes belonging to the four major haplogroups of modern and ancient Isthmian individuals

(A2af1, A2w, B2d, C1d1). Black lines highlight branches specific to IA from the Isthmo-Colombian area. The Bayesian age (mean value with standard deviation) is

shown for relevant branches. (B) Ancient Y chromosome classification. SNPs for each macro-haplogroup present in Poznik et al., 2016. In the right panel, SNPs

for each sub-haplogroup Q in Grugni et al., 2019 and Pinotti et al., 2019. Different colors refer to the allele status (green: ancestral; blue: derived), while different

shades indicate the aDNA possible damage. Haplogroup nomenclature as in ISOGG 2019.
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Figure S2. Worldwide ADMIXTURE plot on modern and ancient individuals, related to Figure 2

(A) ADMIXTURE analyseswere performed fromK1 to K20 on themodern rWD1560 dataset, even if only profiles fromK6 to K14 are displayed. The inset shows the

boxplot of 5-fold cross validation (CV) values for Ks from 1 to 20 after 10 runs. The median (most typical) values were plotted indicating 25th and 75th percentiles

(dark and light gray, respectively) and arms extending 1.5 times the IQR (interquartile range). (B) ADMIXTURE analysis projecting ancient Siberian and American

individuals on the modern worldwide variability. (C) ADMIXTURE plot and PCA performed on a comparative dataset (genotyped with Illumina chips) from Scheib

et al., 2018 that includes the following Chibchan-speaking populations: Arhuaco and Kogi from Colombia; Guaymi, Cabecar, Teribe, Bribri, Huetar and Maleku

from Costa Rica (Table S3). The K4 distribution map is also shown.
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Figure S3. f3 statistics involving Isthmian individuals, related to Figures 2, 3, and 6

(A) Heatmap based on outgroup f3-statistics. The shared drift among the Panamanian individuals was analyzed considering those included in uIA217 plus ancient

individuals and masked data in mIA417. Color intensity is inversely proportional to the shared ancestry among individuals, which was used to build the

dendrogram. (B) Outgroup f3 statistics where ancient and modern Isthmian groups (Pop1) were compared to worldwide populations (Pop2) including non-

American groups in the rWD1560 dataset, all populations in themIA417 and uIA217 datasets and all ancient individuals. All comparisons have a Z score > 32.912.

The average f3 value for each population is reported in abscissa. (C) The neighbor-joining tree is built using the inverse values derived from the outgroup f3

statistics on all Central and South American populations pairs plus Anzick-1, Early San Nicolas (ESN), Spirit Cave and USR-1. The latter is considered as an

outgroup in the tree. We retained only populations with more than 30K overlapping SNPs and significant Z scores (> 3.3) in all comparisons. The map shows the

geographic distribution of the populations, which are colored according to their genetic proximity in the tree. (D) We also analyzed the shared genetic history of

modern IA populations (included in mIA417 and uIA89) against ancient reference genomes from Beringia and the Americas (representative of the NNA and SNA

ancestries). Boxplots in gray help to visualize the distribution of f3 values in each comparison, indicating the median (most typical) value, 25th and 75th percentiles

(dark and light gray, respectively), and arms extending 1.5 times the IQR (interquartile range). The dotted line indicates the f3 average value.
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Figure S4. Haplotype-based analyses and estimates of effective population size variation over time, related to Figure 3

(A) The PCA was built using copying vectors inferred using a modified version of ChromoPainter that allows for the presence of missing data. The masked in-

dividuals (rmIA311) have been projected on the variability of the nearly unadmixed individuals (uIA217) regardless of the level of missing data. The unadmixed

individuals are indicated with full filled dots while the masked ones are represented by different shapes, according to the percentage of missing SNPs. The colors

refer to the clusters (donors) of Figure 3A. (B) Heatmap based on individual TVD (Total Variation Distance) values. Dendrogram branches are colored according to

19 clusters (Figure 3A). The TVDwas compared both among andwithin clusters. Lighter colors (lower TVD values) in thematrix mean similarity, while darker colors

(higher TVD values) indicate heterogeneity.

(C) We used RefinedIBD on inferred IBD length to estimate variations in the effective population size (Ne, on a log scale y axis) over time. The x-axes show the time

before the present as years ago (ya) considering a generation time of 25 years and the colored regions show 95% bootstrap confidence intervals (CI). The

analyses were limited to the last ~2,000 years, due to the wide variance of exponentially distributed IBD fragments and were performed on different datasets. The

Guna group was evaluated considering different IBD thresholds (2 cM, 4 cM and 6 cM). (D) We double-checked the trend presented in the inset of Figure 3C

without the Guna. (E) We also compared the IBDne of the Panamanian macro-clusters with the others identified in Figure 3A, Western Panama: Western Isthmus,

PaNASO, PaNGABE; Emberà: PaEMBERA; Guna: PaGUNA; Colombia KCH: Colombia, Ecuador (KCH); South America Peru: SouthAmerica1, SouthAmerica2,

Peru North Coast, SouthAmerica3; North Central Mexico: Central America, North America, Mexico; Brazil all: Brazil, Xavante, Karitiana, Surui, Guarani. (F)

Visualization of the average of summed IBD lengths shared between modern Panamanians and other IA populations in each paired comparison, with identified

IBD blocks in the range of 1–5 cM (oldest), 5–10 cM, and over 10 cM (youngest). Shape sizes are proportional tomean values; only those pairs sharing at least two

blocks > 5 cM and four < 5 cM are plotted.
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Figure S5. f4 statistics involving Isthmian individuals, related to Figures 2 and 4

(A) f4 statistics in which Panamanian populations (W) were compared to Mixe (X), typically used to reveal UPopY among IA, and to four Australasian populations

(Y). (B) Isthmian groups (W) were compared to each other (X) testing for other IA populations (Y, colored according to their geographic location) to test through the

Z score whether a given Isthmian group carries excess of a specific IA ancestry. (C) To specifically test the differential relationships of Isthmian and other Central/

South IA groups with Anzick-1 and Spirit Cave, we ran the f4 -statistics in the form f4 (Anzick1, Spirit Cave; Central and South IA, Mbuti) and reported the average

Z score on a map. The Isthmian populations were also tested separately. In the lower part of the panel, we verified the same relationships in the form f4 (USR,

Anzick1/Spirit Cave; Central and South IA, Mbuti), using USR as outgroup to the Central and South IA populations (again the Isthmian populations were tested

separately, plot on the lower right). The datasets uIA89, mIA417 and ancient individuals were used considering different sets of variants.
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Figure S6. Admixture graphs modeling ancient SNA and NNA genomes and ancient Isthmians, related to Figure 7

(A) Basal tree with three of the most ancient SNA genomes available. The best fitting topology, highlighted in red, was initially tested by (B) considering an early

admixture between the northern American SNA genomes, then extended by adding in turn: (C) Lapa do Santos and ESN; (D) Los Rieles, tested as either un-

admixed or admixed, and then checking Lapa do Santos as admixed (E); ancient Isthmians together with other ancient Central American genomes, i.e., (F) Saki

Tzul and (G) Mayahak Cab Pek; (H) NNA genomes, from the left to right, ASO, 939, Kennewick, Athabaskan_725, Athabaskan_100 and Chipewyan. The best

fitting topologies are highlighted in red. See the legend of Figure 7 for further details.
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Figure S7. Admixture graph modeling Panama’s genetic history linked to ancient SNA and NNA genomes, related to Figure 7

Possible extensions of the best trees in Figure S6 by linking Ancient Isthmians to (A) Lagoa Santa and then testing Laranjal instead of Lagoa Santa (rightmost

graph). Finally, we modeled Guna as representative of UPopI (B-C). The best tree topology is similar to the one in Figure 7, but with multiple splits from the SNA1

node. This tree as well as the final one (Figure 7) were checked multiple times: (D) considering Mixe (UPopA) instead of Guna (UPopI), also in the rightmost tree of

the panel B; (E) replacing Spirit Cave with Anzick-1; (F) without UPopI or without admixture between UPopI and other SNA ancestries. The best fitting topologies

are highlighted in red. See the legend of Figure 7 for further details.
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