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Abstract 

In recent years, the transformative potential of deep neural networks (DNNs) for analysing and 

interpreting NMR data has clearly been recognised. However, most applications of DNNs in 

NMR to date either struggle to outperform existing methodologies or are limited in scope to a 

narrow range of data that closely resemble the data that the network was trained on. These 

limitations have prevented a widescale uptake of DNNs in NMR. Addressing this, we introduce 

FID-Net, a deep neural network architecture inspired by WaveNet, for performing analyses on 

time domain NMR data. We first demonstrate the effectiveness of this architecture in 

reconstructing non-uniformly sampled (NUS) biomolecular NMR spectra. It is shown that a 

single network is able to reconstruct a diverse range of 2D NUS spectra that have been obtained 

with arbitrary sampling schedules, with a range of sweep widths, and a variety of other 

acquisition parameters. The performance of the trained FID-Net in this case exceeds or matches 

existing methods currently used for the reconstruction of NUS NMR spectra. Secondly, we 

present a network based on the FID-Net architecture that can efficiently virtually decouple 

13Cα-
13Cβ couplings in HNCA protein NMR spectra in a single shot analysis, while at the same 

time leaving glycine residues unmodulated. The ability for these DNNs to work effectively in 

a wide range of scenarios, without retraining, paves the way for their widespread usage in 

analysing NMR data.  
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Introduction 

Artificial intelligence (AI) and deep learning (DL) have led to huge advances in many fields, 

including computer vision and natural language processing, and is a methodology that is now 

embedded in many everyday technologies1. Unlike traditional methods in which a pre-defined 

algorithm for performing a task is provided, in deep learning, neural networks are trained to 

‘learn’ a mapping between an input and a desired output. To achieve this, the network must 

first extract the relevant features from the input data to produce the required output. This 

flexibility has made deep learning particularly successful at performing tasks that are often 

intuitively straightforward for human beings to perform, but difficult to formalise into an 

algorithm2.  

Over several decades, NMR researchers have sought to automate different aspects of 

NMR data analysis, speeding up the process and lowering the requirement for extensive 

training. However, many of these methods currently struggle to match human performance or 

can only do so in cases of data with sharp well-resolved peaks and minimal noise. Given its 

ability to outperform traditional methods at tasks that are intuitive for humans to perform, there 

is a huge potential for deep learning approaches to automate or improve different analysis 

stages within NMR spectroscopy, increasing the efficiency, utility, and ease of use of NMR. 

The current state of deep learning within NMR and potential future directions have been 

reviewed recently by Chen et al3. 

An application of deep learning that has gained particular attention recently is the 

reconstruction of non-uniformly sampled (NUS) NMR spectra4–6. NUS is an important tool for 

recording large multi-dimensional NMR datasets with high-resolution in a practical timeframe. 

In a uniformly sampled multidimensional NMR spectrum all points in the indirect dimensions 

on a Nyquist grid are sampled before the final frequency domain spectrum is obtained by a 

Fourier transform. Conversely, in a NUS spectrum only a subset of the points on the full 

Nyquist grid are collected. The points from the grid that are sampled are given by a sampling 

schedule and the percentage of sampled points from the full grid gives the sparsity. The task of 

a reconstruction algorithm is then traditionally to ‘fill in’ the missing points on the grid so that 

the reconstructed spectrum can be transformed with a discrete Fourier transform. The 

advantage of NUS is that it allows the spectroscopist to attain multidimensional spectra with 

many points and thus high resolution in a fraction of the time, though clearly this requires that 

the NUS spectrum can be reconstructed with high fidelity. With the advent of increasingly 

high-field NMR instruments, NUS is essential for exploiting the full-resolving power of these 
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spectrometers, when both NMR time and sample stability can be limited. The development of 

new and better methods for reconstructing NUS spectra and for determining optimal sampling 

schedules thus remain active areas of research.  

Several excellent algorithms for reconstructing NUS NMR spectra using non-DL 

methods exist including: SMILE7, hmsIST8 and MDD-NMR9. Recent proof-of-principles 

studies have shown that DL based reconstruction methods have the ability to give 

reconstructions more rapidly and with higher fidelity than existing methods10–12. Furthermore, 

these deep neural networks are trained and cross-validated exclusively on synthetic data, before 

being tested on real data. The ability to use synthetic data for training the neural networks 

overcomes a significant potential bottleneck of obtaining large amounts of curated data 

required for training.  

Existing DNNs for reconstructing NUS data follow different strategies. Studies by Qu 

et al. and Luo et al. both reconstruct data from the frequency domain11,12. In these cases, the 

main aim is to remove the aliasing artefacts caused by the non-uniform sampling. Qu et al. 

achieve this using an architecture composed of five stacked ‘dense-convolutional’ layers 

whereas Luo et al. employ stacked encoder-decoder blocks, sandwiched between convolutional 

layers from down and up sampling. On the other hand, we have previously shown that an 

architecture based on reconstructing the points in the time domain using a modified long short-

term memory (LSTM) architecture is able to reconstruct lowly-sampled 2D spectra (12.5%), 

with lower error than either the SMILE or hmsIST algorithms10. 

Despite these successful applications of DL in NMR, all of the existing DL approaches 

for reconstruction still suffer from significant drawbacks. While they show good performance 

on spectra that strongly resemble their training data in terms of number of points, spectral 

width, sampling schedule and sparsity, they fail to match existing algorithms for 

reconstructions when the spectra deviate significantly from this. While the networks can in 

theory be retrained to reconstruct different spectra, the time and expertise required to do this 

likely represents an insurmountable hurdle to the widespread usage of such methods. Thus, an 

important factor that limits DNNs for NUS reconstructions relative to other currently existing 

methodologies is a lack of versatility.  

We present below FID-Net: a versatile DNN architecture that is able to reconstruct the 

time domain of a diverse set of 2D NMR spectra with low error, matching or exceeding the 

performance of leading non-DL algorithms. FID-Net works effectively with arbitrary sampling 

schedules, meaning it can be deployed without further training and with minimal user input. 

We go onto demonstrate that this architecture is particularly adept at processing time domain 
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data beyond reconstruction tasks. We show this network can also be used to virtually decouple 

13Cα-
13Cβ couplings in HNCA spectra in a single step, significantly improving the resolution of 

spectra.  

  

Results 

A Flexible Network Architecture for Analysing Free Induction Decays. A key challenge 

when analysing free induction decays (FIDs; time domain data) is that the information about 

the individual resonances is contained within the entire length of the FID rather than within a 

localised section of it. This is unlike the frequency domain, where the information about a given 

resonance localises to a particular region in frequency space. From the perspective of designing 

DNNs for analysing time domain data it is necessary to find both long- and short-term patterns 

embedded within the whole sequence of data.  

Recurrent neural networks (RNNs) have been successful architectures for analysing 

sequences. Within these networks each item in a sequence is fed through a series of cells and 

the output of cell t is a function of both input t and the output of cell t-1. In this way the network 

is able to keep a track of both the sequence history and current input to identify important 

features. Previously, we showed that a neural network based on a modified LSTM cells was 

capable of reconstructing 2D NUS data with low sampling (12.5%) with very high fidelity10. 

The versatile FID-Net architecture demonstrated below is based on convolutional neural 

networks (CNNs) that connect both long- and short-term patterns to provide both high quality 

reconstructions and a high degree of flexibility. 

Convolutional layers have been crucial in the success of DNNs for analysing images13. 

They are based on the idea that input data often has a hierarchical structure and each layer in a 

CNN learns a filter with a user defined size. These filters are then convolved with the input 

from the previous layer such that they will be activated when certain features in the data are 

identified. Typically, filter sizes in convolutional layers are fairly small giving them a small 

receptive field i.e. they are only sensitive to localised features from an input and cannot ‘learn’ 

long-range patterns. While this is usually advantageous in image analysis, a large receptive 

field is required to extract information about resonances within an FID.  

To overcome the receptive field issue of typical CNNs, FID-Net employs an approach 

similar to WaveNet, which was originally conceived in 2016 as a generative model for raw 

audio14. A raw audio signal is similar to an FID in that many time points are sampled in a short 

period of time and producing realistic audio requires an appreciation of both the short- and 
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long-term patterns within the signal. In the WaveNet architecture, dilated convolution layers 

are used to give the network a large receptive field, which is capable of effectively analysing 

audio signals. Dilated convolutional layers skip a specified number of elements in the data, so 

it is effectively a convolutional layer with ‘holes’. By stacking convolutional layers with 

different dilation size, it is possible to create a block that acts like a normal convolutional layer 

with a very large filter size. This approach is indicated schematically in Figure 1. 

 

 

Fig 1. Schematic illustration of dilated convolutional layers that are extensively employed within FID-

Net. These allow the network to have a large receptive field, required for analysing FIDs, whilst 

individual filters are able to remain relatively small in size. 

 

In FID-Net, the approach of dilated convolutions along with other features from 

WaveNet are employed. Gated activation units, as previously employed in the PixelCNN15 are 

used: these have both hyperbolic tangent and sigmodal activation functions in individual 

convolutional layers to help model the complex signal. FID-Net also employs skip and residual 

connections to aid the training and speed of convergence16. However, a number of significant 

differences between the WaveNet and FID-Net architectures also exist. Firstly, the WaveNet 

architecture was designed as a generative audio model. Therefore, it is important that the 

temporal ordering of data points is maintained and predicted outputs depend only on preceding 

values. Consequently, causal padding is used in the convolutional layers. Conversely, in the 

FID-Net model the aim is to recapitulate the full FID, for example, from a sparse starting point. 

To achieve this the FID-Net architecture needs to look both backward and forwards to help 
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ascertain the correct value of a given FID time point. Secondly, in the WaveNet model a kernel 

size of two was used, whereas in FID-Net this is increased to eight. This is important when 

dealing with sparse data as a small kernel size will result in most inputs to the convolutional 

layers having no information. With a kernel size of eight, when dealing with a sampling rate 

of 12.5% in a 2D NMR spectrum, each time the convolutional filter is applied one of the input 

values will on average be non-zero. Thirdly, the WaveNet model considers a single audio input 

channel at a time. In the context of NMR data, adjacent indirect FIDs will share features, for 

example, when analysing 2D spectra the direct dimension is first Fourier transformed and a 

resonance in such a spectrum, (ω2,t1), spans several ω2 slices. Therefore, in FID-Net 2D 

convolutions are used and four FIDs are simultaneously reconstructed, giving an overall kernel 

size of 8×4. The model is applied as a sliding window across the input data to yield the final 

output. The full FID-Net architecture is given in Figure 2.    

 

 

Fig 2. The full network architecture employed within FID-Net. The architecture is similar to WaveNet14, 

with main differences discussed in the text. The ‘+’ and ‘×’ symbols indicate the elementwise addition 

and multiplication operations. ‘ReLu’, ‘T’ and ‘σ’ symbols refer to rectified linear, hyperbolic tangent 

and sigmoidal activation functions respectively.  

 

Reconstructing 2D NUS Spectra. In its current form, FID-Net is only able to reconstruct four 

FIDs at a time. However, the neural network is applied as a sliding window across the 2D NUS 
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spectrum, Figure 3, so that each individual FID is analysed four times and the average taken to 

yield the final reconstructed or otherwise transformed spectrum. To speed up the 

reconstructions the ability of modern GPUs is leveraged to perform a very large number of 

calculations in parallel and batch the input FIDs into the appropriate number of segments 

containing four points in the direct dimension. The segmented FIDs are then all transformed in 

parallel and the full reconstructed spectra can be stitched back together as indicated in Figure 

3. Using this approach on an Nvidia 1070 Ti GPU card, 2D spectra can be reconstructed in a 

few seconds, a similar timeframe to either the SMILE or hmsIST algorithms. The latter 

algorithms do not require the use of a GPU for rapid performance, but these cards are now 

relatively affordable (the Nvidia 1070 Ti GPU used here is now available for less than $500) 

and users can use freely available resources on NMRBOX17 for the processing of NMR spectra.  

 

 

Fig 3 Schematic illustration of how reconstructions of 2D NUS spectra are performed by FID-Net. The 

NUS spectrum is Fourier transformed in the direct dimension and then segmented. The segmented 

sections form a batch that is then reconstructed in parallel and stitched back together to yield the final 

reconstructed spectrum. 

 

As detailed in the methods (see below) the FID-Net architecture is trained on a diverse 

training set. This includes spectra with varying numbers of complex points, sweep widths and 

for each pass through the neural network a new random sampling schedule is calculated and 

applied to the spectrum and noise is added to the input sparsely sampled spectrum. This endows 

FID-Net with a high degree of robustness and flexibility compared to other DL approaches for 

spectral reconstruction. 

In a very recent and elegant study, it was shown that a neural network could be 

interpretated and thus it was shown how each of the hidden layers can be mapped to specific 

actions and mathematical transformations18. Such an approach is naturally highly attractive in 

order to fully understand the strengths and weaknesses of a DNN. However, with the large size 
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of FID-Net, both in terms of number of hidden layers and number of trainable parameters, 

focus below is on evaluating the robustness and the versatility of FID-Net for reconstruction 

of NUS spectra as well as estimating when the network performs well, as opposed to 

delineating each of the transformations within the network.  

To rigorously test the ability of the FID-Net architecture to reconstruct NMR spectra 

with high fidelity with respect to important spectroscopic parameters (linearity of recovered 

peak intensity, accuracy of recovered frequencies, recovery rate of actual peaks and 

minimisation of false positives) we use a small synthetic spectrum composed of nine partially 

overlapping peaks with different intensities (see supporting material and Fig S1). In this 

synthetic spectrum the ground truth parameters for the peaks can be accurately obtained and 

therefore robustly compared to those obtained for the reconstructions. The reconstructions are 

also carried out using the SMILE and hmsIST algorithms for comparison. This analysis reveals 

that FID-Net is particularly successful at reconstructing spectra at very low sparsity and in the 

presence of appreciable noise compared to the other algorithms (Fig S2-S6). The DNN strikes 

a favourable balance between recovering real peaks with high probability while minimising the 

presence of artefacts even for challenging situations. When dealing with data at a higher 

sampling rate than the DNN is trained at, FID-Net maintains a high level of performance but 

the linearity of recovered peak intensities and accuracy of recovered frequencies is less than 

can be achieved using SMILE or hmsIST. However, the performance of these well-established 

algorithms in the presence of noise drops much more than FID-Net and the lack of false 

positives or false negatives when using FID-Net is a clear advantage.  

To demonstrate the versatility of the FID-Net architecture in the context of 

biomolecular NMR the network is used to reconstruct a varied set of typical biomolecular NMR 

spectra. The results of reconstructing spectra on three different proteins are again compared to 

reconstructions obtained using the SMILE and hmsIST algorithms. Specifically, the spectra 

reconstructed are a 15N-1H HSQC spectrum of T4 Lysozyme (19 kDa) with a large sweep width 

in the indirect dimension10, a 15N-1H HSQC spectrum of the SH3 domain from ABP1P (6.5 

kDa), and a 13C-1H methyl-TROSY HMQC spectrum of HDAC8 (42 kDa). In all cases the 

reconstructions are conducted with 12.5% sampling and reconstructions are performed 200 

times per spectrum with different sampling schedules: 100 sampling schedules with a different 

Poisson-gap sampling schedule19, with sinusoidal 0 → π/2 weighting that biases towards early 

time points, as well as 100 different random sampling schedules. The parameters in each of the 

spectra are summarised in Table 1. Given the very low sparsity of the data and the large number 
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of signals compared to the number of sampled points these reconstructions (particularly for T4 

Lysozyme and HDAC8) are very challenging.  

 

Table 1 Summary of spectral parameters of the spectra employed in benchmarking FID-Net. 

 

 

The reconstruction results are shown in Figure 4. In general, it is clear that all three 

methods, SMILE, hmsIST, and FID-Net, can provide good quality reconstructions, even at the 

low sampling rate (12.5%) considered here. For the hmsIST algorithm, performance improves 

substantially using Poisson-gap sampling schedules over random sampling, which has been 

shown previously8. In contrast, for SMILE there is generally minimal advantage to using 

Poisson-gap sampling schedules. Using FID-Net there is an advantage to using Poisson-gap 

sampling schedules, but this is less marked than with hmsIST and the performance with random 

sampling schedules is also generally good, highlighting the robustness of the neural network 

approach. 

While the performance between the algorithms is not too dissimilar, the ability of a 

single FID-Net to reconstruct a diverse set of spectra, including very challenging cases with a 

large number of signals compared to sampled points, with high quality and without retraining, 

represents a clear advance compared to previous neural networks. Another significant benefit 

of the FID-Net is that it can be run with minimal user input, since, like other DL methods, it 

contains no user adjustable parameters. All that is required is that the data is phased and Fourier 

transformed in the direct dimension and that the sampling schedule is provided so that the non-

sampled points can be filled with zeros prior to reconstruction. This relative ease of use 

facilitates that FID-Net can be easily implemented into automated data-processing pipelines 

incorporating NUS data.   

A further advantage of using FID-Net is its robustness. To test this, we add different 

amounts of additive Gaussian noise to our benchmark spectra prior to performing the 

reconstructions. Algorithms such as hmsIST and SMILE can through multiple iterations 

converge on very accurate reconstructions in the presence of little noise as is the case in the 

benchmark spectra. A key advantage of the DNN approach is its ability to identify underlying 

Protein Spectrum type B0 

(MHz) 

#  complex 

points 

Indirect Sweep 

Width (Hz) 

Half-dwell 1st 

point  

SH3 domain 15N-1H HSQC 600 120 1800 Yes 

T4 Lysozyme 15N-1H HSQC 700 256 5100 No 

HDAC8 13C-1H HMQC 800 192 4500 Yes 
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resonance frequencies even in noisy data. This is demonstrated in Fig 5: while FID-Net does 

not always give the highest fidelity reconstructions in the absence of additional noise, the 

reconstruction quality is maintained better than SMILE or hmsIST in the presence of noise 

(exemplar reconstructions with added noise are shown in the supplementary material Fig S7-

9). As alluded to above with the synthetic spectrum, FID-Net also shows good robustness with 

respect to the sampling rate in the NUS data, even when this is far from the sampling rate 

employed in training20 (Fig S10).  

It should be noted that in the above analyses we have chosen the normalised RMSD 

between the reconstructed and fully sampled spectra as the metric for comparing the different 

reconstruction methods. This is a simple and robust method that penalises missing or lower 

intensity peaks as well as spectral artefacts or higher intensity peaks equally. Given that the 

dynamic range of the peaks in the benchmark spectra considered here is not large, the 

calculation is not dominated by a small number of high intensity peaks. For reconstructions 

performed with SMILE, the intensity of the reconstructed peaks is down-scaled to avoid noise 

spikes appearing as false-positive peaks. Consequently, the normalised RMSD becomes very 

high in the presence of noisy data (Fig 5). The parameters we have employed here for the 

SMILE reconstructions give generally good results over a range of sampling schedules, 

however, the parameters used in SMILE reconstructions may be improved on a case-by-case 

basis to improve the quality of reconstructions. Conversely, with DL methods such as FID-Net 

no such optimisation is required by the user to achieve optimal results.  

One issue that exists with all existing methods for performing reconstructions is that 

they do not provide a direct measure of confidence in their final outputs, although attempts 

have been made to estimate the confidence using statistical methods such as the delete-d 

jackknife procedure21. Deep neural networks provide a relatively easily method for giving a 

measure of confidence by training and deploying an ensemble of networks and measuring the 

variation in their outputs, as was done in the deep neural network processing of DEER data22. 

The relatively long training times required to train an FID-Net preclude training a large 

ensemble of networks, but the fact that FID-Net is applied as a sliding window with four FIDs 

reconstructed simultaneously can be used to provide insight into the confidence in the output. 

Each slice in the reconstructed spectrum is reconstructed four times (at a different point in the 

kernel in the direct dimension). The final reconstruction is found by taking the average of these 

four reconstructions. A measure of confidence in the final result can therefore be provided by 

considering the standard deviation of the four individual reconstructions. The results of this 

analysis for the SH3 domain protein, T4 Lysozyme and HDAC8 proteins are shown in Fig S11.  
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Fig 4 Exemplar reconstructions and algorithm performance for (A) the SH3 domain from ABP1P, (B) 

T4 Lysozyme. and (C) human histone deacetylate 8 (HDAC8). Spectral parameters are listed in Table 

1. In all cases the exemplar spectra are normalised and plotted at the same contour level and only 

positive contours are shown. Exemplar reconstructions are performed from the same Poisson-gap 

sampling scheme with 12.5% sampling, which are listed in the supporting material (Table S1). The bar 

graphs indicate the average and root-mean-squared-deviation (RMSD) between the normalised 
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reconstructed and fully sampled spectra using 100 Poisson-gap sampling schedules and 100 random 

sampling schedules. 

 

Fig 5 Variation in reconstruction quality for the different methods as a function of added Gaussian noise 

with standard deviation between 0.01 and 0.05 for (A) SH3 domain from ABP1P, (B) T4 Lysozyme 

and (C) human histone deacetylate 8 (HDAC8). In all cases the 12.5% sampling is used with 100 

different Poisson-gap sampling schemes. The bars indicate the average normalised RMSD of the 100 

reconstructions between the reconstructed spectra and fully sampled spectrum with no added noise. The 

values in red indicate the RMSD for SMILE reconstructions when these are not within the y-axis range.  

 

Virtual Decoupling of HNCA Spectra. FID-Net is a versatile architecture capable of being 

trained to perform tasks beyond reconstruction. Below, the FID-Net architecture is trained to 

perform the task of virtually decoupling 13Cα-
13Cβ couplings in triple-resonance HNCA and 

HN(CO)CA spectra23. HNCA and HN(CO)CA are amongst the most important three-

dimensional spectra in biomolecular NMR for obtaining backbone 1H, 15N and 13Cα chemical 

shift assignments23. Unfortunately, even when using long acquisition times in the 13C 

dimension, the resolution of the 13Cα peaks is limited by the one-bond scalar coupling between 

13Cα and 13Cβ nuclei. This coupling, of approximately 35 Hz and substantially larger than the 

typical intrinsic linewidth of 13Cα, is present for all residues except for glycine. Successfully 

removing the coupling from spectra improves both their sensitivity and resolution, aiding the 

assignment procedure. This is particularly important for large and/or intrinsically disordered 

proteins where signal overlap becomes more severe.  

A number of approaches have been attempted to experimentally eliminate the 13Cα-
13Cβ 

couplings in HNCA and HN(CO)CA spectra. However, none of these have been completely 

successful and complications include glycine residues, which do not have a 13Cα-
13Cβ coupling 
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as well as serine and threonine residues, where the 13Cβ chemical shifts overlap with the 13Cα 

region. An alternative to experimental decoupling is to record a conventional HNCA or 

HN(CO)CA experiment, potentially with NUS, and then virtually decouple it in a post-

acquisition step. A number of methods have already been developed to perform virtual 

decoupling using deconvolution followed by maximum entropy reconstruction24,25 and in a 

recent study by deconvolution with compressed sensing reconstruction26. With both of these 

methods care must be taken with regards to glycine residues that do not form doublets in the 

13C dimension. In the previous methods, a single average J-coupling constant must also be 

assumed for the entire spectrum, which may lead to distortions in the spectrum if the spectral 

linewidth is less than the difference between the actual and average coupling constant. 

By contrast, as shown below, FID-Net can be trained to virtually decouple the 13Cα-
13Cβ 

doublets in a single step and with no user intervention. Figure 6 shows the application of a FID-

Net to virtually decouple an HNCA spectrum of T4 Lysozyme. Essentially, all non-glycine 

residues are successfully decoupled giving a factor of two increase in the sensitivity and 

significantly improving the spectral resolution, while the glycine residues are left unaltered. 

For both decoupled and unaltered (glycine) residues the line shape following the virtual 

decoupling is excellent and shows no evidence of artefacts. 

The FID-Net for virtual decoupling has no user defined parameters and so can easily 

be applied as part of automated or semi-automated processing routines. It is trained to run on 

fully sampled data and is a separate network with different parameters to the FID-Net described 

above for reconstruction, although the same architecture. The network can be applied to a 

dataset that has been experimentally fully acquired (as is done here) or to a non-uniformly 

sampled dataset that is first reconstructed, either using another FID-Net or another algorithm. 

By combining virtual decoupling with NUS it is possible to dramatically reduce the time 

required to attain highly resolved HNCA and HN(CO)CA spectra, reducing the overall time 

requirement for backbone assignment.  
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Fig 6. 1H-13C projection from an HNCA spectrum of T4 Lysozyme (A) before (blue) and (B) after 

(green) virtual decoupling. Only positive contours are shown. The 1D 13C slices taken from the spectra 

in panels (Ci) and (ii) demonstrate how the doublets in the spectrum are successfully decoupled yielding 

an improvement in resolution and two-fold increase in sensitivity for these peaks while the singlet 

glycine peaks are unaltered.  

 

Methods  

Network Architecture 

The FID-Net architecture consists of many convolutional layers stacked into residual units, as 

shown in Figure 2. Each residual unit consists firstly of a dilated convolutional layer composed 

of n filters (n=128 for reconstruction network and n=64 for decoupling network) with an 8×4 

kernel size. Half of the filters are activated by a sigmoidal activation function and the other half 

by a hyperbolic tangent function. The results of these two activations are then multiplied 

(creating a gated activation unit) and passed through a second convolutional layer, with no 

dilation, also composed of n filters and an 8×4 kernel size. The output of this layer is passed to 

the end layers of the network and also added to the input of the layer to create the input for the 

next gated activation unit in the network.  

The dilations rates employed for FID-Net are cycled through the values: 1, 2, 4, 6, 8, 

10, 12, 14, 16, 20, 24, 28 and 32. These dilations rates were empirically found to give good 

performance at both reconstructing and virtual decoupling. Given the time taken to the train 

the network (on the order of weeks) a detailed comparison of the effects of different dilations 
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rates has not been possible. These dilation rates are cycled through three times to make the full 

FID-Net, as indicated by the three blocks in Figure 2. 

The outputs of all the individual gated activation units are then summed and passed through a 

further convolutional layer with rectified linear activation. The final output is produced with a 

final convolutional layer composed of a single filter followed by hyperbolic tangent activation 

to ensure the values are between -1 and 1. The python code used to create the neural network 

is provided in the supplementary materials.  

The total number of trainable parameters in the reconstruction network is 30,424,897 and 

7,610,273 for the decoupling network, reflecting the increased number of filters in the 

reconstruction network. While the increased number of filters in the reconstruction network 

improves its performance, excellent performance for the decoupling network is achieved with 

a smaller network that has the benefit of being faster to train (vide infra).  

 

Training 

In common with other recent DL networks for reconstructing non-uniformly sampled data, 

FID-Net is trained exclusively on synthetic data. The synthetic data is generated using the 

equation: 

 

𝑆(𝑡1, 𝑡2) = ∑ 𝐴𝑛𝑒𝑥𝑝(−𝑖2𝜋𝜈1,𝑛𝑡1) exp (−𝑅2
(1,𝑛)

 𝑡1) cos(𝜋𝐽𝑛𝑡2) 𝑒𝑥𝑝(−𝑖2𝜋𝜈2,𝑛 𝑡2)exp (−𝑅2
(2,𝑛)

𝑡2)

𝑛

  

 

Where n runs over the number of signals in the plane, An is the amplitude of signal n, ν1,n and 

ν2,n are the frequencies of signal n in the direct and indirect dimensions respectively, 𝑅2
(1,𝑛)

 and 

𝑅2
(2,𝑛)

 are the transverse relaxation rates in the direct and indirect dimensions respectively for 

signal n and Jn is the J coupling constant for signal n. The times t1 and t2 are given by 

multiplying 1/SW (for the relevant sweep width) by the series 0,1,…N-1 where N is the number 

of complex points in this dimension.  

For the reconstruction network: For each plane in the training set parameters are 

randomly (uniformly) selected from the intervals listed in the table below: 

 

Number of signals 50-250 

Amplitude* 0-2.0  
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Direct dimension complex points  128-512 

Indirect dimension complex points 100-256 

Direct dimension SW (Hz) 1500-3000 

Indirect dimension SW (Hz) 1800-5400 

J (Hz) 0.0 

𝑅2
(1)

 (s-1) 5.0-60.0 

𝑅2
(2)

 (s-1) 5.0-60.0 

*Normal distribution with mean 1.0 and SD 0.5 that is truncated to between 0.0-2.0 

 

For the virtual decoupling network: For each plane in the training set parameters are 

randomly (uniformly) selected from the intervals listed in the table below: 

Number of signals 10-70 

Amplitude* 0-2.0  

Direct dimension complex points  128-512 

Indirect dimension complex points 192-256 

Direct dimension SW (Hz) 1800-5400 

Indirect dimension SW (Hz) 4000-8000 

J (Hz) 28-40** 

𝑅2
(1)

 (s-1) 5.0-60.0 

𝑅2
(2)

 (s-1) 5.0-60.0 

*Normal distribution with mean 1.0 and SD 0.5 that is truncated to between 0.0-2.0 

**In training for 12% of residues couplings are randomly set to 0 Hz to reflect the presence of glycine residues 

 

For both networks, frequencies ν1 and ν2 are determined by generating a random number in the 

interval [-0.5, 0.5] and multiplying this by the relevant sweep width for the plane.  

 

To simulate the reconstruction process, the calculated 2D FIDs are phased and Fourier 

transformed in the direct dimension and random Gaussian noise with standard deviation 

between 0.001 and 0.03 is added to the input plane. Four consecutive points in the plane are 

then randomly chosen for each member of a training batch. A random sampling schedule is 

calculated on the fly at a given sampling level (this is always set to 12.5% for applications here 

and the first point is always selected) and applied to the plane to give a non-uniformed sampled 

section. This means that in each epoch of training, the model will be trained on a different part 

of each plane subjected to a different sampling schedule. This substantially increases the 

effective size of the training data and minimises the potential for overfitting. The real and 
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imaginary components of each complex point in the indirect NUS dimension are interleaved. 

To ensure the size of individual tensors in each batch are uniform they are zero filled up to 512 

points so that each input plane in the batch has 512×4 points. The planes are normalised 

according to the highest intensity point.  

The training data for virtual decoupling is very similar except for an average of 88% of 

residues in each plane also have a J-coupling of 28-40 Hz in size to match the size and spread 

of protein 13Cα-
13Cβ couplings. The 12% of peaks with no coupling mimic glycine residues. 

The number of resonances in each plane is also reduced to between 10 and 70, reflecting the 

increased sparsity of three-dimensional spectra.  

The DL models are developed and trained using the Tensorflow library27 with the Keras 

front-end28. The cost function used to optimise the reconstruction network was the mean 

squared error between the fully sampled data (with no noise) and the reconstructed data in the 

frequency domain. The cost function for the virtual decoupling network was the mean squared 

error between the virtually decoupled spectrum produced by the network and the fully 

decoupled synthetic spectra (with no noise) in the frequency domain. The RMSprop optimiser29 

is used for training. Initially the learning rate was set to 10-4 until the change in validation loss 

between epochs plateaus. The learning rate was then reduced to 10-5 and continues until the 

validation loss plateaus. For the reconstruction FID-Net, the RMSD between the fully sampled 

and reconstructed FIDs was 0.0278 at the end of training for the model used here. A batch size 

of 16 was used. On a standard desktop computer (Intel i7-7700 CPU @ 3.6 GHz and 16 GB 

RAM) equipped with an Nvidia Geforce GTX 1070 GPU the total training time was 

approximately two weeks for the reconstruction network. The final RMSD for the virtual-

decoupling FID-Net was 0.0017. The decoupling network was trained on a desktop computer 

with the same specifications and the total training time for the network was approximately one 

week (the faster training time reflecting the smaller network).  

For the application of FID-Nets for the reconstruction and virtual decoupling of actual 

spectra, extensive use is made of the nmrGlue python module for the reading, writing and 

manipulation of spectra30. In these cases, synthetic NUS data at a given sampling level are 

produced from the fully sampled data by removing points in the indirect dimension. The 

performance of the algorithms is then compared by calculating the RMSD with respect to the 

fully sampled spectrum.  

 

NMR Spectroscopy 



19 

 

T4 Lysozyme: A 2D 15N-1H HSQC correlation spectrum was recorded on a uniformly 13C, 15N 

isotope labelled sample of the L99A mutant of T4 Lysozyme. The sample was prepared as 

described previously31. The NMR spectrum was recorded at 298 K on an NMR spectrometer 

operating at 700 MHz 1H Larmor frequency and equipped with a helium-cooled TCI inverse 

cryoprobe. The fully sampled spectrum was acquired as a 1024×256 complex matrix with 

spectral widths of 12 kHz (1H) and 5.1 kHz (15N). An adiabatic 13C inversion pulse was applied 

in the centre of the 15N chemical shift evolution period to refocus 15N-13Cα
 and 15N-13CO scalar 

couplings. Four scans were collected for each t1 increment with a recycle delay of 1 s giving a 

total experiment time of 34 mins.  

The 3D HNCA spectrum was recorded on a triple labelled (2H, 13C, 15N) sample of T4 

Lysozyme at 298 K. The spectrum was recorded on an NMR spectrometer operating at 600 

MHz 1H Larmor frequency equipped with a room temperature TXI HCN inverse probe. The 

fully sampled spectrum was acquired as a 1024×28×256 complex matrix with spectral widths 

of 10.8 kHz (1H), 1.8 kHz (15N) and 5 kHz (13C). 2H decoupling is applied through the sequence 

to eliminate scalar couplings to these nuclei and selective shaped inversion pulses are employed 

to remove couplings to 13CO nuclei. Eight scans were collected for each increment with a 

recycle delay of 1.5 s giving a total experiment time of approximately 112 hours.  

SH3 domain of ABP1P: A 2D 15N-1H HSQC correlation spectrum was recorded on a uniformly 

13C, 15N isotope labelled sample of the SH3 domain of ABP1P, prepared as described 

previously32. The spectrum was recorded at 298 K on an NMR spectrometer operating at 600 

MHz 1H Larmor frequency and equipped with a room temperature TXI HCN inverse probe. 

The fully sampled spectrum was acquired as a 513×120 complex matrix with spectral widths 

of 8 kHz (1H) and 1.8 kHz (15N). A composite 13C inversion pulse was used in the centre of the 

15N chemical shift evolution period to refocus scalar couplings. Eight scans were collected for 

each t1 increment with a recycle delay of 1 s giving a total experiment time of 36 mins. 

HDAC8: A 2D 13C-1H HMQC methyl-TROSY correlation spectrum was recorded on a methyl-

labelled (isoleucine, leucine and valine methyl groups are isotopically 13C-1H labelled with 

specific pro-(S) labelling for leucine and valine groups) HDAC8 sample, prepared according 

to previously reported protocols33. The spectrum was recorded at 298 K on an NMR 

spectrometer operating at 800 MHz 1H Larmor frequency and equipped with a helium-cooled 

TCI inverse cryoprobe. The fully sampled spectrum was acquired as a 1024×192 complex 

matrix with spectral widths of 12.5 kHz (1H) and 4.5 kHz (13C). Four scans were collected for 
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each t1 increment with a recycle delay of 1 s giving a total experiment time of approximately 

28 mins.  

The spectra are phased and Fourier transformed, with the relevant regions subsequently 

extracted using NMRPipe34. 

Reconstructions of NMR Spectra 

Reconstructions using the hmsIST algorithm were performed using the default parameters. For 

reconstructions with SMILE the default parameters are employed except that the -nsigma 

parameter is set to 3; in our hands, using a higher value results in poorer reconstructions for the 

spectra considered here. The Fourier transform and phasing parameters are set as appropriate 

for each spectrum and a squared sine-bell window function is used (-xQ1 0.42 -xQ2 0.98 -xQ3 

2.0). The hmsIST and FID-Net reconstructed spectra are multiplied by the same window 

function and all spectra Fourier transformed in the indirect dimension. For the RMSD 

calculations all spectra are normalised according to the maximum intensity point.  

 

Virtual Decoupling of HNCA Spectra 

For virtual decoupling of 3D HNCA spectra, the spectrum is first processed and Fourier 

transformed in the 1H and 15N dimensions and kept in the time domain in the 13C domain. Each 

1H-13C plane is then decoupled sequentially with the network passed as a sliding window over 

the 1H points as is done for the reconstruction network. After each plane has been decoupled 

the points in the 15N dimension are recombined to give a 3D HNCA with the 13C plane in the 

time domain. This 13C dimension is then processed and Fourier transformed to yield the final 

pure frequency-domain spectrum. Figure 6 shows the 1H-13C projection of the 3D spectrum. 

 

Conclusion 

We demonstrated a new versatile deep learning architecture, FID-Net, that can be trained to 

perform several tasks within common biomolecular NMR spectroscopy, including 

reconstruction and virtual decoupling of spectra. A key strength of the networks presented is 

their robustness and ability to work effectively in a wide range of scenarios without a 

requirement for further retraining and no user adjustable parameters. This flexibility paves the 

way for these analyses to be incorporated as part of automated or semi-automated processing 

schemes and the use of deep learning analyses within the NMR community more generally. 
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Moreover, reconstruction and virtual decoupling with FID-Net also provide the confidence 

level of the performed transformations, something that is unique to the presented method 

compared with other tools for reconstruction. As demonstrated with the virtual decoupling, DL 

approaches can also be trained to perform tasks that are difficult for traditional algorithmic 

approaches without prior assumptions, opening up new opportunities to perform innovative 

analyses with NMR data.  

 

Data availability 

The code (python) used for reconstruction and virtual decoupling is available from the 

corresponding author upon reasonable request. Code for reconstruction and virtual decoupling 

using FID-Net is available on GitHub: https://github.com/gogulan-k/FID-Net.  
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