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Some factors of nonsingular Bernoulli shifts

by

Zemer Kosloff (Jerusalem) and Terry Soo (London)

Abstract. We give elementary constructions of factors of nonsingular Bernoulli
shifts. In particular, we show that all nonsingular Bernoulli shifts on a finite set of symbols
which satisfy the Doeblin condition have a factor that is equivalent to an independent and
identically distributed system. We also prove that there are type-III1 Bernoulli shifts of
every possible ergodic index, answering a question of Danilenko and Lemańczyk [Ergodic
Theory Dynam. Systems 39 (2019), 3292–3321].

1. Introduction. Let A be a subset of R, which will usually be an
interval or a finite set. Let (ρi)i∈Z be a sequence of probability measures
on A. Let ρ =

⊗
i∈Z ρi be the product measure on AZ and T : AZ → AZ

be the left-shift given by (Tx)i = xi+1. We say that the dynamical system
(AZ,B, ρ, T ) is a Bernoulli shift, where B is the usual Borel product sigma-
algebra. We say that the product measure ρ and the corresponding system
are nonsingular if the measure ρ◦T−1 is equivalent to ρ; such systems can be
thought of as models for systems that are not in equilibrium. We say that the
system is conservative if for all E ∈ B with ρ(E) > 0, there exists a nonzero
integer n such that ρ(E ∩ T−nE) > 0. If the measures ρi are all identical,
then the Bernoulli shift is nonsingular and conservative, and we say it is an
independent and identically distributed (i.i.d.) system. Ornstein [32] proved
that entropy is a complete isomorphism invariant for i.i.d. systems, but the
case of nonsingular systems appears to be more delicate and it is unclear
what role entropy plays [8, Section 9].

Let ρ and ν be nonsingular product measures on AZ. We say that a
measurable map φ : AZ → AZ is a factor from ρ to ν if φ is equivariant so
that φ ◦ T = T ◦ φ and the push-forward of ρ under φ given by ρ ◦ φ−1 is
equivalent to ν; in the case that the push-forward is ν, we say that the factor
is measure-preserving. If the inverse map φ−1 also serves as a factor from ν
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to ρ, then φ is an isomorphism, and we say that the corresponding Bernoulli
shifts are isomorphic.

A product measure ρ on AZ satisfies the Doeblin condition if there exists
δ > 0 such that for all a ∈ A and i ∈ Z, we have ρi(a) > δ.

Theorem 1 (Low entropy i.i.d. factor). Every nonsingular Bernoulli
shift on a finite set of symbols that is equipped with a product measure which
satisfies the Doeblin condition has an i.i.d. factor.

Theorem 1 is a weak version of Sinai’s celebrated factor theorem [37],
for the nonsingular setting, that will apply to Bernoulli shifts considered by
Krengel [26], Hamachi [16], Kosloff [21, 22], and Vaes and Wahl [40]; see
formula (1).

An isomorphism invariant that is often considered in the study of nonsin-
gular systems is orbit equivalence; two systems are orbit equivalent if there
is a measurable bijection φ : AZ → AZ such that the push-forward of ρ
is equivalent to ν, and φ(orb(x)) = orb(φ(x)) for ρ-almost every x ∈ AZ,
where orb(x) = {Tn(x) : n ∈ Z}. Dye’s theorem [10, 11] states that all er-
godic nonatomic probability-preserving, and thus i.i.d., systems are orbit
equivalent. A nonsingular and conservative Bernoulli shift with an associ-
ated product measure ρ that cannot be endowed with a possible infinite
shift-invariant measure that is equivalent to ρ is said to be of Krieger type-III.

In this paper, we are particularly interested in constructing explicit fac-
tors between various type-III Bernoulli shifts and producing i.i.d. factors
from these type-III shifts. We remark that although some of the results
are confined to specific examples, it is nontrivial to prove the existence of
a type-III Bernoulli shift, and the first construction of this type is due to
Hamachi [16].

Krieger’s theory [27, 28] further assigns a parameter λ ∈ [0, 1] to each
type-III system and tells us that any two type-IIIλ systems are orbit equiva-
lent, provided that λ > 0. Recently, in [25] we constructed the first type-IIIλ
Bernoulli shifts for λ ∈ (0, 1), which were given by an explicit sequence of
step functions on an interval taking the three values 1, λ, and λ−1. We will
specify this construction in Section 3.2.

Theorem 2. Let λ, λ′ ∈ (0, 1]. There exists a type-IIIλ Bernoulli shift,
specified in Section 3, which has a type-IIIλ′ Bernoulli shift as a factor in
each of the three cases:

(i) 0 < λ < λ′ = 1,
(ii) 0 < λ′ < λ = 1,
(iii) 0 < λ < λ′.

We recall that i.i.d. Bernoulli shifts are ergodic so that the left-shift-
invariant sigma-algebra is trivial. It follows from [36, Proposition 4.8] that
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conservative Bernoulli shifts are also ergodic. Unlike the i.i.d. case, it is
not true that the direct product of a conservative Bernoulli shift with itself
remains conservative [40, Corollary 6.3]. The ergodic index of an ergodic
system is the positive integer k such that the k-fold direct product of itself
remains ergodic, but the (k + 1)-fold direct product is no longer ergodic.
Danilenko and Lemańczyk [7, Question 6] asked what are the possible ergodic
indices for type-III1 Bernoulli shifts on two symbols; we will show that every
index is possible.

A particular nonsingular Bernoulli shift on two symbols {0, 1} that we
will make use of in answering Danilenko and Lemańczyk’s question is given
by the half-stationary product measure νc with marginals

(1) νcn(0) =
1

2
+

c√
n
· 1[n≥1, c/√n<1/2],

where c > 0 is a parameter. These shifts were considered by Vaes and Wahl
[40, Corollary 6.3], who proved that the shift is of type III1 and ergodic with
respect to ν1/6, and for k ≥ 73 the k-fold direct product of the ν1/6 Bernoulli
shift is no longer ergodic.

Theorem 3. Let c > 0. Let νc be the probability measures from (1). There
exists D > 1/6 such that ({0, 1}Z,B, νc, T ) is conservative for all c < D and
dissipative for all c > D. In addition, if k ∈ Z+ and c ∈ (D/

√
k + 1, D/

√
k),

then ({0, 1}Z,B, νc, T ) is of ergodic index k.

As a consequence of Theorem 3 and the fact that the ergodic index is
nondecreasing under factors, we immediately obtain the following negative
result.

Corollary 4. Consider the parameterized measures given in (1). Let D
be in as Theorem 3. Let 1 ≤ k′ < k be integers. If c ∈ (D/

√
k + 1, D/

√
k),

but c′ ∈ (D/
√
k′ + 1, D/

√
k′), then the Bernoulli shift given by νc′ is not

a factor of νc.

2. Proof of Theorem 1. We will sometimes refer to a finite string of
symbols as a block. If B = (b1, . . . , bn) = b1 · · · bn is a block of binary digits,
we let

ρi(B) := ρi(b1) · · · ρi+n(bn).

Two blocks of length 8 that will be important to us are

011 01 011 and 011 10 011;

here, we inserted spaces to emphasize how the blocks differ.
The following more technical result implies Theorem 1.
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Theorem 5. A nonsingular Bernoulli shift ρ =
⊗

i∈Z ρi on two symbols
{0, 1} satisfying

(2)
∑
i∈Z

(
ρi(01)

ρi(01) + ρi(10)
− 1

2

)2

<∞,

and

(3) ρi(011 01 011) + ρi(011 10 011) ≥ q
for some q > 0 for all i ∈ Z, has an i.i.d. factor.

Proof of Theorem 1. Without loss of generality, we may assume that the
Bernoulli shift is on two symbols {0, 1} instead of a general finite set A,
since any two-set partition A = A0 ∪ A1 induces a factor map φ : AZ →
{0, 1}Z given by φ(x)0 = 1[x0∈A1], where the push-forward of a product
measure on AZ with the Doeblin condition is again a product measure that
has the Doeblin condition on {0, 1}Z. We will show that nonsingularity and
the Doeblin condition imply the two conditions of Theorem 5.

Let δ > 0 be such that for all i ∈ Z, we have δ < ρi(0) < 1− δ. Thus for
all i ∈ Z, we have

ρi(011 01 011) + ρi(011 10 011) ≥ δ8.
Write εi := ρi+1(0)− ρi(0), so that ρi+1(0) = ρi(0) + εi and

ρi(1) = 1− ρi(0) = ρi+1(1) + εi.

Elementary manipulations show for i ∈ Z that

ρi(10) = ρi(1)ρi+1(0) = (ρi+1(1) + εi)(ρi(0) + εi)

= ρi(01) + (ρi(0) + ρi+1(1))εi + ε2i = ρi(01) + εi,

where the last equality follows from the fact that ρi(0) + ρi+1(1) = 1− εi.
Since the shift is nonsingular, it follows from Kakutani’s theorem [18]

that ∑
i∈Z

ε2i <∞;

consequently, εi → 0 as i→∞, and

C := sup
i∈Z

( 1

4ρi(01) + 2εi

)2
<∞.

Hence,∑
i∈Z

(
ρi(01)

ρi(01) + ρi(10)
− 1

2

)2

=
∑
i∈Z

(
ρi(01)

2ρi(01) + εi
− 1

2

)2

=
∑
i∈Z

(
1

4ρi(01) + 2εi

)2

ε2i ≤ C
∑
i∈Z

ε2i <∞.
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It remains to prove Theorem 5. Let (ρi)i∈Z be a sequence of probability
measures on A. We say that such a sequence satisfies a safe zone condition
if there exists a subset B ⊂ A with at least two elements such that the
measures ρi|B are all identical and nonzero, and ρi(B) is uniformly bounded
away from zero. We proved that any nonsingular Bernoulli shift satisfying
a safe zone assumption has an i.i.d. factor [25, Theorems 5 and 7].

Our proof of Theorem 5 builds upon our previous result; we remove the
safe zone assumption by using a rudimentary version of Keane and Smorodin-
sky’s [19, 20] marker-filler construction to define a suitable replacement.
Previously, Soo and Wilkens [38] used a similar rudimentary marker-filler
construction in the i.i.d. setting of Bernoulli actions of a free group to define
factors respecting the probabilistic condition of stochastic domination. One
of the ingredients in our proof may also be reminiscent of von Neumann’s
[41] procedure on how to generate a fair coin toss given a possibly bias coin
of unknown parameter; see also [33].

Let X be a binary sequence with law ρ, a product measure. We say that
the integer interval {n, n+ 1, n+ 2} is a marker if

XnXn+1Xn+2 = 011.

Any nonempty interval between two markers is a filler ; since markers do not
overlap, the integers are partitioned into alternating intervals of markers and
fillers. We say that a block B appears in a block F if F = KBK ′ for some
blocks K and K ′. Thus the block 011 will not appear in a filler. The filler
measure on an interval [k, k′] is given by conditioning the product measure⊗

k≤i≤k′ ρi so that the block 011 does not appear.
We say that a filler {n, n+ 1} is special if it is of length 2 and is of

the form (Xn, Xn+1) = (1, 0) or (Xn, Xn+1) = (0, 1). Notice that the filler
measure does not require conditioning on a special filler, since the filler is of
length 2, and thus markers cannot appear in it.

We say that an integer interval of length 8 is good if X restricted to the
interval is given by one of the two blocks

011 01 011 or 011 10 011.

Thus, if an interval is good, we know that it contains a special filler.

Lemma 6. Let X have law ρ satisfying (3). Then there are infinitely
many special fillers.

Proof. Partition Z into intervals of length 8. By (3), each of these inter-
vals is independently good with probability at least q > 0.

Lemma 7 (Conditioning). Let X have law ρ satisfying (3). Then the law
of X can be sampled by first sampling the markers, and then independently
sampling the corresponding filler measures.
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Proof. The proof follows from a routine adaptation of [19, Lemma 4],
which Keane and Smorodinsky proved for the i.i.d. case.

Given a random sequence Z ∈ {a, b}Z, a d-equivariant matching
scheme G is an equivariant function of Z such that each integer m with
Zm = b is assigned to an integer n with Zn = a, and each such n has at most
d assignments; the assignment function G is equivariant in the sense that if
m is assigned to n under G(Z), thenm−1 is assigned to n−1 under G◦T (Z).
Thus a d-equivariant matching scheme matches, in a shift-equivariant way,
every b to a, where each a has at most d partners; see also [25, Section 3].

We will use the same construction used in the proof of [25, Proposition
10], which uses an idea going back to Meshalkin [31]; our description here
is adapted from Holroyd and Peres [17]. The Meshalkin matching scheme is
described inductively as follows. Let W ∈ {a, b}Z be a random sequence. If
Wn−1 = b and Wn = a, then n − 1 is matched to n; that is, in a sequence
of a’s and b’s, we match a b to an a if b is immediately followed by an a.
In the next step, we disregard all the b’s that have been matched, and all
the a’s that already have been assigned d partners. We repeat this procedure
inductively, and we say that it is successful if every b is eventually matched to
an a. In [25, Proposition 10], we proved that Z has a d-equivariant matching
scheme provided that it is a Bernoulli shift, where the marginal probability
of a, given by P(Zn = a), is uniformly bounded away from 0. We say that
Z ′ dominates Z if Zi = a implies that Z ′i = a.

Lemma 8 (Monotonicity). Let d ∈ Z+. Let Z and Z ′ be random processes
taking values in {a, b}Z. If Z ′ dominates Z and the Meshalkin d-equivariant
matching scheme is successful for Z, then it is successful for Z ′.

Proof. Define a random sequence W by setting Wn = −1 if Z ′n = b and
Wn = d if Z ′n = a. Let m ∈ Z. If Z ′m = b, then set

RZ′ = inf {k ≥ 1 :Wm + · · ·+Wm+k ≥ 0}.
Observe that

P(m is not matched to m+ ` for all ` ≤ k) = P(RZ′ > k).

Since Z ′ dominates Z, we have RZ′ ≤ RZ and

P(RZ′ > k) ≤ P(RZ > k)→ 0,

as desired.

Given an interval [k, k + n], we will sometimes refer to the integer k as
the initial integer.

Proposition 9 (Matching). Let X have law ρ satisfying (3). There exists
an integer d such that the initial integer of each special filler is assigned to
at most d other integers in an equivariant way.
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Proof. Let Z ′ ∈ {a, b}Z be the random sequence where Z ′n = a if n is
the initial integer of a special filler of X, and Zn = b otherwise. Note that
Z ′ is not an independent sequence and its corresponding dynamical system,
({a, b}Z ,B,P(Z ∈ ·), T ) is not a Bernoulli system. Consider the indexed
partition of the integers of size 8 given by

Z =
⋃
n∈Z

(8n+ [0, 7]).

By (3), each of these intervals is independently good with probability at
least q > 0. Let Z ∈ {a, b}Z be the random sequence where Z8n+3 = a if
the interval 8n + [0, 7] is good with respect to X, and Zn = b otherwise.
Thus Zk = a only if k an initial integer of special filler of X that occurs in
a good interval of this partition, and Z ′ dominates Z. By Lemma 8, it suffices
to show that the Meshalkin matching scheme is successful for Z. Below is
a sample realization of X, Z ′, and Z, where Z misses a special filler that is
recorded in Z ′:

X = · · · 01101011 00000011 10011011 01110011 · · ·
Z ′ = · · · bbbabbbb bbbbbbbb abbbbbbb bbbabbbb · · ·
Z = · · · bbbabbbb bbbbbbbb bbbbbbbb bbbabbbb · · ·

Let d ≥ 8
(
1 + 1−q

q

)
. Again, define a random sequence W by setting

Wn = −1 if Zn = b, and Wn = d if Zn = a. Let m ∈ Z. If Zm = b, then set

RZ = inf {k ≥ 1 :Wm + · · ·+Wm+k ≥ 0} .
We will show that P(RZ > k)→ 0 as k →∞. Let En = Z8n+3. Note that E
is a Bernoulli shift. Set Y ′n = −8 if En = b, and Y ′n = d− 7 if En = a. Then
if m lies in the interval 8`+ [0, 7], we have

(4) Wm + · · ·+Wm+8k−1 ≥ Y ′` + Y ′`+1 + · · ·+ Y ′`+k−1 − d;
here we subtract d to account for the possibility thatm lies in a good interval,
but is to the right of the special filler. Note that the Y ′n are independent,
where P(Y ′n = d−7) > q for all n ∈ Z. By an elementary version of Strassen’s
theorem [39], we define an i.i.d. sequence Y with P(Y0 = d − 7) = q and
P(Y0 = −8) = 1−q such that for all n ∈ Z, we have Y ′n = d−7 if Yn = d−7.
Then

EY ′n ≥ EYn ≥ −8(1− q) +
(
8
(
1 + 1−q

q

)
− 7
)
q = q > 0.

Thus by the law of large numbers it follows that the corresponding partial
sums for Y in (4) will become nonnegative almost surely, and thus the same
also holds for Y ′, so that RZ is finite almost surely.

Proof of Theorem 5. Let X have law ρ. Let S = {nk, nk+1}k∈Z be the
sequence of special fillers, where we agree that n0 ≤ 0 is the largest such
integer. Let Zk = 1 if Xnk

Xnk+1 = 10, and Zk = 0 if Xnk
Xnk+1 = 01. By
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assumption (2) and an application of Katutani’s theorem [18, Corollary 1],
the law of the sequence Z of the corresponding bits is equivalent to an i.i.d.
sequence Z ′ of fair bits. We remark that the special fillers are conditioned to
have the form 10 or 01 and correspondingly the term ρi(01)+ρi(10) appears
in the denominator in (2).

Choose a probability measure β on {0, 1} such that

dH(β) = −d[β(0) log β(0) + β(1) log β(1)] = log 2.

Note that β will be a biased measure on {0, 1}, and the entropy H(β) will
be small if d is large. Let ψ : {0, 1}Z → ({0, 1}d+1)Z be an isomorphism
of the uniform product measure to the product measure (βd)Z. Thus, in an
equivariant way, we can replace a fair bit by d independent low entropy bits.
Note that by Keane and Smorodinsky [20], we may demand the isomorphism
ψ is explicit and finitary.

We apply ψ to Z and obtain, in an equivariant manner, a way to associate
d+1 bits to each special filler. By Proposition 9, we assign, in an equivariant
way, bits to all the other integers, retaining one bit for the initial vertex of
a special filler, discarding any surplus bits. Thus as a factor of X we obtain
a random sequence W of bits.

Notice that the law of W is the push-forward of a function F (S,Z), and
the law of (S,Z) is equivalent to that of (S,Z ′). Since, by construction,
F (S,Z ′)

d
= W ′, where W ′ is an i.i.d. sequence of bits, we conclude that the

law of W is equivalent to that of W ′.

Remark 10. We recall that the isomorphism ψ in the proof of Theo-
rem 5 is finitary if it is continuous almost surely and has a random coding
radius that is finite almost surely. We note that by appealing to Keane and
Smorodinsky [20], the factor map given by Theorem 5 is also finitary, since
the Meshalkin matching scheme is finitary. See [35] for more information on
finitary codes. ♦

3. Proof of Theorem 2

3.1. Essential values. We give a brief overview of how type-III sys-
tems are further parameterized by an additional parameter λ ∈ [0, 1]; for
more details see [34]. Consider a probability space (Ω,F , µ), where µ is not
necessarily a product measure, that is endowed with a group action G. We
say that G is nonsingular if µ ◦ g is equivalent to µ for all g ∈ G, and er-
godic if the group-invariant sigma-algebra is trivial. We say that r ∈ R is an
essential value for the group action G if for all A ∈ F with positive measure



Factors of Bernoulli shifts 9

there exist ε > 0 and g ∈ G such that

µ

(
A ∩ g−1(A) ∩

{
ω ∈ Ω :

∣∣∣∣log d(µ ◦ g)dµ
(ω)− r

∣∣∣∣ < ε

})
> 0.

The Krieger ratio set, which consists of the essential values, is a closed
subgroup of R. For λ ∈ (0, 1), a system is of type IIIλ if the ratio set is
{n log λ : n ∈ Z}, and is of type III1 if the ratio set is all of R. Thus one
way of realizing a type-III1 transformation is to ensure that it contains two
rationally independent essential values.

3.2. Specific type-III Bernoulli shifts. We define the constructions
from [25] that will be used in the proof of Theorem 2. Related constructions
are also defined by Berendschot and Vaes [4] and they also constructed type-
III0 Bernoulli shifts.

For n ≥ 2, set

an :=
1

(n+ 4) log(n+ 4)
.

Let L(A) = |A| denote the Lebesgue measure or length of an interval A.
Let λ ∈ (0, 1). Let {An}∞n=2 and {Bn}∞n=2 be decreasing sequences of open
intervals of [0, 1] satisfying:

(a) For all n ∈ N, An ∩Bn = ∅.
(b) For all n ∈ N, An+1 ⊂ An and Bn+1 ⊂ Bn.
(c) For all n ∈ N, |An| = an = λ−1 |Bn|.
Using these sequences we define a sequence of functions fn : [0, 1] → {λ−1,
1, λ}. For all integers n ≤ 1, set fn ≡ 1. For n ≥ 2, set

(5) fn(u) :=


λ, u ∈ An,
1/λ, u ∈ Bn,
1, u ∈ [0, 1] \ (An ∪Bn).

Identify the densities fn with the associated measures given by

E 7→
�

E

fn(u) du.

We proved in [25, Theorem 1] that the Bernoulli shift(
[0, 1]Z,B,

⊗
n∈Z

fn, T
)

is a nonsingular Bernoulli shift of type IIIλ that satisfies a safe zone condition
on a subset of the interval [0, 1]; namely, there is a set B ⊂ [0, 1] of positive
measure such that

( 	
B fn(u) du

)−1
fn1B ≡ 1.

From the definition of the densities in (5), it is clear that the ratio set is
a subset of {n log λ : n ∈ Z}, so that one only needs to verify that λ is indeed
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an essential value. This is part of the advantage of working in the continuous
setting of densities, as opposed to the case of finitely many symbols, because
we can write down candidates for which it is clear that the ratio set is a subset
of {n log λ : n ∈ Z}.

Remark 11. Our proof of [25, Theorem 1] can be summarized as follows:

• Verify nonsingularity and conservativity.
• Verify that λ is an essential value of the associated action of the group

of all finite permutations on ([0, 1]Z,B,
⊗

n∈Z fn). Note that the action of
the group of all finite permutations is ergodic by [25, Lemma 20], as the
product measure satisfies the tameness condition of Aldous and Pitman [2]
for exchangeability.

• Transfer the result on permutations back to the setting of the left-shift. ♦

Remark 12. It is not surprising that we may extend the safe zone by
considering the densities

gn =
1

2
1[−1,0) +

1

2
1[0,1]fn,

where fn is given in (5); our proof of [25, Theorem 1] implies that the
Bernoulli shift ([0, 1]Z,B,

⊗
n∈Z gn, T ) is still of type IIIλ. ♦

Remark 13. Consider the type-III1 Bernoulli shift given in the following
way. Let L, λ ∈ (0, 1). Let ρ and ν correspond to the type-IIIλ and IIIL
Bernoulli shifts as given above, where the marginals are defined on disjoint
sets [−1, 0) and [0, 1]. If log λ and logL are rationally independent, it is easy
to see that any nontrivial convex combination of ρ and ν corresponds to
a type-III1 Bernoulli shift. See also [25, Example 33]. ♦

Our proof of Theorem 2 consists in considering the type-III1 system from
Remark 13, and erasing one the original type-III shifts by replacing it with
the uniform distribution.

Proof of Theorem 2(ii). Consider the type-III1 system from Remark 13,
with log λ and logL rationally independent and the measure

µ =
⊗
i∈Z

(
1
2ρi +

1
2νi
)
.

Thus if the random sequence Z has law µ, then Z can be sampled by inde-
pendently sampling Zi from ρi or νi with equal probability. In addition, note
that ρi and νi have disjoint supports. We say that i is a ν-index if Zi < 0.
Let (nk)k∈Z be an enumeration of the ν-indices where nk < nk+1 and we
agree that n0 ≤ 0 is the largest such integer.

Let ν satisfy the safe zone condition with a set B ⊂ [−1, 0). We say a ν-
index i is special if Zi ∈ B. Thus conditional on i being a special index, Zi is
uniformly distributed on B. Hence at each special index i, as a deterministic
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function of Zi, we can produce an infinite sequence of random variables that
are uniformly distributed on [−1, 0). By a routine argument [25, Theorem 5],
we distribute these uniform random variables in an equivariant way to each
ν-index. Thus as a factor of Z, we can produce an independent sequence Z ′,
where Z ′i is uniformly distributed on [−1, 0) if i is a ν-index, and Z ′i = Zi
otherwise.

Hence
µ′ =

⊗
i∈Z

(
1
2L|[−1,0) +

1
2ρi
)

is a factor of µ and it follows from Remark 12 that the corresponding
Bernoulli shift is of type IIIλ.

3.3. Piecewise linear transformations. Our proof of part (iii) of The-
orem 2 will be obtained by applying a single piecewise linear transformation
h to each coordinate so that our factor map will be of the form

[φ(x)]i = h(xi).

We will make use of the following special case of an elementary change of
variables formula [14, equation (16), p. 112].

Lemma 14. Let U be a real-valued random variable with a probability
density function fU and h be piecewise linear and finite-to-one. Then the
density of the random variable V = h(U) is given by

fV (v) =
∑

u∈h−1(v)

fU (u)(|h′(v)|)−1,

where we set fV (h(u)) = 0 if h is not differentiable at u.

With Lemma 14, we will be able to modify the densities from Section 3.2
so that the resulting densities have the essential value(s) we desire.

Proof of Theorem 2(iii). Let 0 < λ < λ′ < 1. Set

(6) p :=
λ′ − λ
1− λ′

.

Consider the densities fn in Section 3.2 as expressed in (5), so that the
corresponding Bernoulli shift is of type IIIλ. With minor modifications, such
as re-indexing the sequence an, we assume that

a1 + pa1 < 1/2.

We will also write an = 0 for all n ≤ 0. Define h : [0, 1]→ [0, 1] by

h(x) =


(x− a1)/p, a1 < x < a1 + pa1,

(1− λa1) + λ (1−λa1)−x
p , 1− λa1 − pa1 < x < 1− λa1,

x, otherwise.
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Set φ : [0, 1]Z → [0, 1]Z via

[φ(x)]n = h(xn).

By Lemma 14, and routine calculations, the push-forward of the type-IIIλ
product measures satisfies(⊗

n∈Z
fn

)
◦ φ−1 =:

⊗
n∈Z

gn

with

gn(x) =



λ+ p, 0 < x < an,

1 + p, an < x < a1,

1, a1 + pa1 < x < 1− (λ+ p)a1,

1 + p/λ, 1− λa1 ≤ x < 1− λan,
(1 + p)/λ, 1− λan < x < 1,

0, otherwise,

for all n ≥ 1; when n ≤ 0, we have

gn(x) =


1 + p, 0 < x < a1,

1, a1 + pa1 < x < 1− (λ+ p)a1,

1 + p/λ, 1− λa1 ≤ x < 1,

0, otherwise.

Note that the closure of the support of gn does not depend on n. We write
I ⊂ [0, 1] for the closure of the support of the gn’s.

We will now argue that the Bernoulli shift corresponding to the product
measure

⊗
n∈Z gn is of type IIIλ′ . Again, this newly constructed Bernoulli

shift is a factor of one that is conservative. We will show that the only
possible essential value is log λ′, from which the same reasoning as in our
proof of Theorem 2(i) implies that the new Bernoulli shift is of type IIIλ′ .

From our expressions for gn, we deduce for every n ∈ Z and v ∈ I that
gn−1(v)

gn(v)
∈
{
λ+ p

1 + p
, 1,

λ−1(1 + p)

1 + p/λ

}
.

Our initial choice of p in (6) was such that
λ+ p

1 + p
= λ′ and

λ−1(1 + p)

1 + p/λ
=

1 + p

λ+ p
=

1

λ′
.

Hence the Krieger ratio set of the new Bernoulli shift is contained in (log λ′)Z.
A routine variation of the argument given in [25, Theorem 23] tells us that
log λ′ is an essential value with respect to the action of the group of finite
permutations. Finally, by [3, Section 4] we find that the result regarding
permutations can be exchanged for the desired result with respect to the
left-shift.
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Proof of Theorem 2(i). Consider the type-IIIλ Bernoulli shift defined as
follows. Let λ ∈ (0, 1). Let ρ and ν correspond to the type-IIIλ Bernoulli
shifts as given in (5), where the marginals are defined on the disjoint sets
[−1, 0) and [0, 1]. Then the measure

µ =
⊗
i∈Z

(
1
2ρi +

1
2νi
)

is also of type IIIλ.
Choose λ′ > λ with log λ′ and log λ rationally independent. Let Z =

(Zi)i∈Z have law µ. As in the proof of Theorem 2(ii), we will only modify Z
when Zi < 0. We obtain a random sequence Z ′, by setting Z ′i = Zi if Zi ≥ 0,
and by applying the coordinatewise factor map from Theorem 2(iii), which
takes λ to λ′, to Zi if Zi < 0. Let µ′ be the law of Z ′. Clearly, µ′ is a Bernoulli
shift and is obtained as a factor from µ. By Remark 13, the measure µ′ is of
type III1.

4. Some tools for the proof of Theorem 3. We saw in the proof
of Theorem 2 that we would deduce that a system was conservative sim-
ply because it was a factor of a conservative system. Let (Ω,F , µ, S) and
(Ω′, C, η, R) be nonsingular systems. We will often refer to these systems by
the transformations S and R or their measures µ and η. We say that η is
a factor of µ if there exists a measurable function, a factor map, φ : Ω → Ω′

such that φ is equivariant so that φ ◦ S = R ◦ φ, and the push-forward of µ
under φ is equivalent to η; moreover, we say that η and µ are isomorphic if
φ−1 serves as a factor map from µ to η.

Note that in the case of an i.i.d. Bernoulli shift, the k-fold direct prod-
uct of the left-shift is isomorphic to the k-fold composition of the left-shift.
A version of this elementary fact (Theorem 20) for nonsingular Bernoulli
shifts will be used in our proof of Theorem 3.

Also consider the case where (Ω,F , S) = (Ω′, C, R). If µ and η are equiv-
alent measures on Ω, then we will write µ ∼ ν; in this case, the identity map
is an isomorphism between (Ω,F , µ, S) and (Ω,F , η, S).

Given two systems it is often easier to study them if they are factors
of some constructed larger system that is not merely the direct product of
the two; such techniques are loosely associated with coupling in probability
theory [9, 30] and also joining in ergodic theory [12, 13].

4.1. Some operations on product measures. Given a product mea-
sure µ on AZ and 0 < p < 1 there are several natural operations on µ which
are done by tossing a coin infinitely many times and then using the outcome
as an indication of whether to use the data of µ or some external source.

Let µ =
⊗

i∈Z µi be a product measure on AZ. Let p ∈ (0, 1) and {H,T}
be a set of two elements. We let the probability vector (p, 1− p) also denote
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the probability measure on {H,T} giving mass p to H and 1 − p to T.
Similarly, (p, 1 − p) is a probability measure on the set {0, 1}, giving mass
p to the element 0. Let α be a probability measure on A. Consider the
product space AZ × {H,T}Z × AZ endowed with the product measure µ ⊗
(p, 1 − p)Z ⊗ αZ and the shift T × T × T . Consider the equivariant maps
Θ : AZ × {H,T}Z × AZ → AZ × {H,T}Z and Φ : AZ × {H,T}Z × AZ → AZ

given by

Θ(x, y, z)j =

{
(xj ,H), yj = H,

(zj ,T), yj = T,
Φ(x, y, z)j =

{
xj , yj = H,

zj , yj = T.

Thus, with probability p we stay with the measure µ, and with probabil-
ity 1− p we choose an output from the measure α. The random insertion
operation on µ of parameters p and α is given by the push-forward

RI(µ, p, α) := (µ⊗ (p, 1− p)Z ⊗ αZ) ◦Θ−1.

The randomized product measure of parameters p and α is given by the
push-forward

RPM(µ, p, α) := (µ⊗ (p, 1− p)Z ⊗ αZ) ◦ Φ−1.

Both these measures are factors of the original triple-product measure, and
the randomized product measure is obtained as a measure-preserving factor
of the random insertion operation. Thus, if µ is nonsingular with respect
to the shift on AZ, then both RI(µ, p, α) and RPM(µ, p, α) are nonsingular
with respect to the shift on their corresponding product spaces.

Example 15. Let p ∈ (0, 1) and an → 0 as n→∞. Consider the product
measure µ =

⊗
n∈Z µn on {0, 1}Z with marginals µn(0) = p if p+ an < 0 or

p+ an > 1, and otherwise

µn(0) = 1− µn(1) = p+ an.

Let 0 < q < 1. If µ̂ = RPM(µ, q, (p, 1− p)), then µ̂ is a product measure on
{0, 1}Z with µ̂n(0) = p if p+ an < 0 or p+ an > 1, and otherwise

µ̂n(0) = 1− µ̂n(1) = p+ qan. ♦

Example 15 tells us that the two measures of the form (1) may be coupled
together in the same probability space, where one is a factor of the other
with additional randomization.

4.2. Phase transition. It was proved, in increasing levels of generality,
that a nonsingular Bernoulli shift is conservative or totally dissipative [5,
24]; furthermore, in the conservative case it must be weakly mixing so that
its direct product with every ergodic probability-preserving system remains
ergodic [5, 6].
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We will prove the existence of the following phase transition from dissi-
pativity to conservativity on the type-III1 Bernoulli shift given by (1); this
phase transition will be important in our proof of Theorem 3.

Let p ∈ (0, 1). Consider the following class of bi-infinite sequences. Let
an −→ 0 as |n| → ∞. Let µ =

⊗
n∈Z µn be the product measure on {0, 1}Z

with marginals satisfying

(7) µn(0) = 1− µn(1) = p+ an,

except on possibly finitely many coordinates, where we set µn(0) = p if
p + an < 0 or p + an > 1. In this case, there exists 0 < q < 1 such that
for all n ∈ Z, we have q < µn(0) < 1 − q or in other words µ satisfies the
Doeblin condition. An application of Kakutani’s theorem [18] shows that the
Bernoulli shift is µ-nonsingular if and only if

(8)
∑
n∈Z

(an − an−1)2 <∞.

If (an)n∈Z satisfies the above properties, then we say it is a nonsingular
sequence.

Let p ∈ (0, 1). For a fixed nonsingular sequence (an)n∈Z consider the
linear transformation an 7→ can for c ∈ (0,∞). If µ is the associated product
measure on {0, 1}Z given by (7) we will write µ(p,c) for the product measure
on {0, 1}Z with the marginals µ(p,c)n (0) = p+ can where again we define the
marginals to be µ(p,c)n (0) = p at the finitely many integers where p+ can < 0
or p+ can > 1.

Theorem 16. Let p ∈ (0, 1/2]. Let (an)n∈Z be a nonsingular sequence.
There exists c0(p) ∈ [0,∞] such that the nonsingular Bernoulli shift given by
({0, 1}Z,B, µ(p,c), T ) is totally dissipative for every c > c0(p) and conservative
and ergodic for every c < c0(p). Furthermore, for all 0 < p < q ≤ 1/2, we
have the lower bound c0(p) ≥ (p/q)c0(q).

Proof. As a Bernoulli shift is either totally dissipative or conservative
and in the latter case it is ergodic, in order to show the existence of c0(p) it
suffices to show that if d < c and (the Bernoulli shift corresponding to the
product measure) µ(p,c) is conservative, then µ(p,d) is conservative. Define
c0(p) as the supremum of all c for which µ(p,c) is conservative.

Let d < c be such that ({0, 1}Z,B, µ(p,c), T ) is conservative; this system
is ergodic and weakly mixing [6]. Since i.i.d. Bernoulli shifts are probability-
preserving and ergodic, the measure

µ(p,c) ⊗ (d/c, 1− d/c)Z ⊗ (p, 1− p)Z on {0, 1}Z × {H,T}Z × {0, 1}Z

is ergodic with respect to the product shift T × T × T . By Example 15, the
marginals of RPM(µ(p,c), d/c, (p, 1−p)) and µ(p,c) are the same up to finitely
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many n ∈ N, namely those positive integers n where p + can /∈ (0, 1), but
p+ dan ∈ (0, 1). Thus

µ(p,d) ∼ RPM(µ(p,c), d/c, (p, 1− p)),
and moreover µ(p,d) is isomorphic to a factor of an ergodic system, hence
remains ergodic.

Finally, we note that an ergodic invertible system is conservative and
therefore the shift with respect to µ(p,d) is conservative, finishing the proof
of existence of c0(p).

For the final remark, let p < q ≤ 1/2 and observe that for the degenerate
distribution (0, 1) on {0, 1}, it is easy to see that

µ(p,pc/q) ∼ RPM(µ(q,c), p/q, (0, 1)).

Thus if c < c0(q), then the measure µ(p,pc/q) is isomorphic to a factor of the
conservative system

({0, 1}Z × {0, 1}Z,B ⊗ B, µ(q,c) × (p/q, 1− p/q)Z, T × T ),
and is conservative, so that c0(p) ≥ (p/q)c0(q).

Remark 17. We have not investigated the ergodicity of the system at
the critical value c0(p), even for specific nonsingular sequences. ♦

Remark 18. Previously, we argued that the upper bound c0(p) ≤ p
q c0(q)

also holds, but it is possible to show that this is not true using Theorem 3.
We thank the referee for pointing out a flaw in our previous argument. These
inequalities are no longer required for the proof of Theorem 3. ♦

4.3. Speedups. Let T be the left-shift. Given k ∈ Z+, the k-fold com-
position of T with itself given by T k = T k−1 ◦ T will be referred to as the
k-speedup of T . The following proposition which connects the conservativity
of T with its speedups follows from a result of Halmos [15].

Proposition 19. Let A be a finite set and (AZ,B, µ, T ) be a nonsingular
Bernoulli shift. If µ satisfies the Doeblin condition, then µ is conservative
with respect to T if and only if for all k ∈ Z+ the speedup (AZ,B, µ, T k) is
ergodic.

Proof. Since µ satisfies the Doeblin condition and A is finite, either µ
is conservative or it is totally dissipative [24]. Fix k ∈ Z+. It follows from
a result of Halmos [1, Corollary 1.1.4] that µ is conservative with respect to T
if and only if µ is conservative with respect to the speedup T k. It remains
to argue that the speedup is ergodic.

Let η be the product measure on ({0, 1}k)Z with marginals

(9) ηn =

k−1⊗
i=0

µkn+i.
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The map ζ : {0, 1}Z →
(
{0, 1}k

)Z given by

(10) ζ(x)n = (xkn, . . . , xkn+(k−1))

is an isomorphism of T k on {0, 1}Z and the left-shift on ({0, 1}k)Z and η =
µ◦ζ−1. Thus the speedup is isomorphic to a Bernoulli shift and conservativity
is equivalent to ergodicity. Therefore the speedup (AZ,B, µ, T k) is ergodic if
and only if the Bernoulli shift (AZ,B, µ, T ) is conservative.

Proposition 19 together with the following isomorphism will allow us to
analyze the ergodicity of the k-fold direct product.

Theorem 20. Let p ∈ (0, 1/2]. Let (an)n∈Z be a nonsingular sequence
and µ be the product measure on {0, 1}Z with marginals

µn(0) := p+ an.

Then for all k ∈ Z+, the speedup ({0, 1}Z,B, µ, T k) and the direct product
(({0, 1}Z)k,B⊗k, γ[k]⊗k, T⊗k) are isomorphic, where γ[k] is the product mea-
sure with marginals given by

γ[k]n(0) = p+ akn.

Proof. Fix k ∈ Z+. We already know from the proof of Proposition 19
that ζ given by (10) is an isomorphism of the speedup T k on {0, 1}Z and the
left-shift on ({0, 1}k)Z endowed with the product measure η given by (9).

The map π : ({0, 1}Z)k → ({0, 1}k)Z given by

π(x1, . . . , xk)n = (x1n, . . . , x
k
n)

is an isomorphism between γ[k] and the product measure κ on ({0, 1}k)Z
with marginals given by

κn(b1, . . . , bk) =

k⊗
i=1

γ[k]n(bi),

for (b1, . . . , bk) ∈ {0, 1}k. It remains to show that κ and η are isomorphic,
which we will accomplish by the identity map and Kakutani’s theorem [18].
The following is a diagram depicting the isomorphisms:

(({0, 1}k)Z, κ, T ) π←−−−− (({0, 1}Z)k, γ[k]⊗k, T⊗k)

id

y
(({0, 1}k)Z, η, T ) ζ←−−−− ({0, 1}Z, µ, T k)

Since κ and η satisfy the Doeblin condition, it follows from Kakutani’s
theorem [18] that the measures κ and η are equivalent if and only if

(11)
∑
n∈Z

∑
B∈{0,1}k

(ηn(B)− κn(B))2 <∞,



18 Z. Kosloff and T. Soo

or equivalently, for all B ∈ {0, 1}k,∑
n∈Z

(ηn(B)− κn(B))2 <∞.

Fix B = (b1, . . . , bk) ∈ {0, 1}k. Set α(n) := |ηn(B)− κn(B)|2. For all n ∈ Z,
we have

α(n) =
∣∣∣ k∏
j=1

µkn+j−1(bj)−
k∏
j=1

µkn(bj)
∣∣∣2(12)

=

∣∣∣∣ k∑
`=1

[
(µkn+`−1(b`)− µkn(b`))

`−1∏
j=1

µkn+j−1(bj)
k∏

j=`+1

µkn(bj)
]∣∣∣∣2

≤
( k∑
`=1

∣∣µkn+`−1(b`)− µkn(b`)∣∣)2 = ( k∑
`=1

|akn+`−1 − akn|
)2

≤ k2
k∑
`=1

|akn+`−1 − akn|2 .

Since (an)n∈Z is a nonsingular sequence, for all 1 ≤ ` ≤ k, the speedup T `
is nonsingular with respect to µ, and again by Kakutani’s theorem [18], we
have ∑

n∈Z
(an − an−`)2 <∞.

The right hand side of the inequality (12) is summable over the indices n
and (11) holds, yielding the desired equivalence η ∼ κ.

5. The proof of Theorem 3. We have now assembled all the ingredi-
ents necessary for the proof of Theorem 3. Our proof consists in relating the
k-fold direct product to the k-speedup, from which a scaling argument can
be applied to the family of measures given by (1).

Proof of Theorem 3. As in (1), let νc be the product measure on {0, 1}Z
with marginals

νcn(0) :=
1

2
+

c√
n
· 1[n≥1, c/√n<1/2].

We will start by showing the existence of D ∈ (0,∞) which is a phase
transition between conservative and dissipative behaviour. Vaes and Wahl
[40, Corollary 6.3] proved that for all c ≤ 1/6, the measure νc is conservative.
Let an(c) := c√

n
· 1[n≥1, c/√n<1/2]. In addition, Vaes and Wahl show that

�√dνc ◦ T k
dνc

dνc ≤ exp

(
−1

2

∑
n∈Z

(an−k(c)− an(c))2
)
.
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For all k ∈ Z+, we have∑
n∈Z

(an−k(c)− an(c))2 ≥ c2
k∑
`=1

1

`
≥ c2(log k + 1) as k →∞,

since 1 is greater than the Euler–Mascheroni constant [29]. Thus if c >
√
2,

then
∞∑
k=1

�√dνc ◦ T k
dνc

dνc <∞.

It follows from [23] that µc is dissipative for all c >
√
2.

Hence by Theorem 16 there exists 1/6 ≤ D ≤
√
2 such that for all

c < D, the measure νc is conservative, and for all c > D, the measure νc is
dissipative.

Now we will apply Theorem 20 to show that this family of measures
exhibits every ergodic index. Let k ∈ Z+. Since for all large n ∈ Z+, we
have akn(c) = an(c)/

√
k, we deduce that the product measure γc[k] with

marginals
(γc[k])n(0) := 1/2 + akn(c),

is equivalent to νc/
√
k. By Theorem 20, for all k ∈ N and c > 0, we have the

isomorphism

(13) (({0, 1}Z)k,B⊗k, (νc)⊗k, T⊗k) ∼= ({0, 1}Z,B, νc
√
k, T k).

Let c ∈ (D/
√
k + 1, D/

√
k). Since c

√
k < D, the measure νc

√
k is con-

servative. By Proposition 19, the k-speedup ({0, 1}Z,B, νc
√
k, T k) is ergodic.

Thus the isomorphism (13) implies that the k-fold direct product given by
(({0, 1}Z)k,B⊗k, (νc)⊗k, T⊗k) is ergodic.

On the other hand, since c
√
k + 1 > D, the measure νc

√
k+1 is dissipative.

Similarly, again by Proposition 19, the (k+1)-speedup is dissipative and the
isomorphism (13) implies that (k + 1)-fold direct product is dissipative and
hence not ergodic. We conclude that the ergodic index of the shift with
respect to νc is precisely k.
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