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Vahid Aref(3), Domaniç Lavery(1), Polina Bayvel(1), and Laurent Schmalen(4)

(1) Optical Networks Group, Dept. of Electronic & Electrical Engineering, UCL, WC1E 7JE London, U.K.
(2) Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands b.p.karanov@tue.nl
(3) Nokia Bell Labs, 70435 Stuttgart, Germany
(4) Communications Engineering Lab, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany

Abstract Fiber-optic auto-encoders are demonstrated on an intensity modulation/direct detection test-
bed, outperforming state-of-the-art signal processing. Algorithms for end-to-end optimization using ex-
perimentally collected data are discussed. The end-to-end learning framework is extended for perform-
ing optimization of the symbol distribution in probabilistically-shaped coherent systems.

Introduction
The design of communication transceivers as a
single deep neural network (NN), optimized from
end to end using deep learning[1]–[3] has attracted
great interest in recent years[4],[5]. Such systems,
referred to as auto-encoders (AE), are particu-
larly suitable for communication over channels
where the optimum transceiver is unknown or
its implementation is computationally prohibitive.
An important example is the application to opti-
cal fiber communications, for which advanced de-
signs were developed, addressing the properties
of the dispersive nonlinear channel[6]–[8]. It was
shown that, applied to intensity modulation/di-
rect detection (IM/DD) optical links, such systems
can outperform, for a fixed processing memory
of the algorithms, conventional pulse-amplitude
modulation (PAM) transmission with receivers us-
ing state-of-the-art techniques such as nonlinear
Volterra equalization or maximum likelihood se-
quence detection[7]–[11].

This paper complements the review of end-to-
end deep learning-based optimization in optical
fiber communications[6] by discussing the imple-

mentation and performance of the feedforward
(FFNN) and sliding window bidirectional recur-
rent NN (SBRNN) transceiver on an IM/DD test-
bed. The paper also explains the methods for
performance enhancement via learning with mea-
sured data in both end-to-end and receiver-only
mode. Experimental comparisons with state-of-
the-art classical as well as deep learning-based
DSP for IM/DD are discussed. Finally, to high-
light future directions for end-to-end learning, an
optimization of the input probability distribution in
coherent fiber systems, modeled by the split-step
Fourier method (SSFM), is performed.

AE on an actual transmission link
Within the AE framework, the channel is consid-
ered as a segment of the end-to-end computa-
tional graph representing the complete communi-
cation system[6]. Thus, the concept can be read-
ily applied in scenarios where the channel model
is known and differentiable. In this case, the
transceiver is optimized via simulation transmis-
sion and applied “as is” to the real system, as
shown in Fig. 1 i), presenting a viable perspective
for low-cost systems since no training is required
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Fig. 1: Transmission test-bed and system optimization using i) numerical simulation of the link; ii) & iii) experimental traces.
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Fig. 2: a) BER vs. distance for FFNN and SBRNN AEs optimized in simulation-only; b) BER vs. processing window for 42 Gb/s
SBRNN; c) BER vs. optimization step for FFNN AE optimized end-to-end using generative link model. d) BER vs. distance for

the distance-agnostic FFNN transceiver. e) BER vs. distance for systems with receiver DSP optimized using experimental data.

after deployment. However, the performance of
transceivers learned on a specific model assump-
tion is often deteriorated when applied to an ac-
tual transmission link[3],[8],[9]. In such cases, the
ANN parameters could be optimized to the spe-
cific link properties using experimental data. This
is easier to implement at the receiver (Fig. 1 ii)),
because the back-propagation[12],[13] for comput-
ing gradients extends only to the link output.
The transmission link can be considered a black
box for which only inputs and outputs are ob-
served, precluding back-propagation to the trans-
mitter parameters. To address this, optimization
using a generative model of the optical link was
developed and experimentally demonstrated[14].
It uses a generative adversarial network (GAN)
for approximating the channel conditional distri-
bution p(y|x). As shown in Fig. 1 iii), the obtained
NN model is applied in lieu of the link during opti-
mization, enabling back-propagation and comput-
ing transmitter gradients.

Experimental performance
FFNN and SBRNN AE were successfully demon-
strated in optical IM/DD experiments and their
performance was compared to PAM systems with

receivers using feedforward (FFE) and nonlin-
ear Volterra equalizers as well as sliding window
FFNN (SFFNN) and BRNN[8]–[10]. The test-bed
schematic is shown in Fig. 1. The 32 GHz low-
pass filtered transmitter output was applied to the
DAC, with the obtained electrical waveform mod-
ulating a 1550 nm laser. After fiber propagation,
the received waveform was direct-detected, real-
time sampled and stored for receiver DSP.

In Fig. 2 a) the BER performance of 42 Gb/s
FFNN and SBRNN AE was compared for systems
optimized only in simulation[7],[8]. The SBRNN
showed significantly superior performance, allow-
ing transmission below the 6.7% HD-FEC[15] at
50 km distance. The system reach was enhanced
to 60 km by adjusting the sliding window size to
W = 20 (Fig. 2 b)). In agreement with sim-
ulation[6], diminishing gains for greater W were
observed since system non-linearities and noise
start to dominate when ISI is compensated. AE
and PAM schemes were compared when the re-
ceiver DSP is optimized using experimental data.
As seen in Fig. 2 e) this reduced the BER of
the 42 Gb/s SBRNN AE below HD-FEC at 70 km
and allowed 84 Gb/s at 20 km. Compared to
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classical nonlinear Volterra equalization as well
as state-of-the-art deep learning-based DSP for
PAM, AE increased reach or enhanced data rate
at shorter distances for fixed algorithm processing
memory. The results from experiment, verifying a
novel optimization method for transceivers robust
to distance variation[8],[10] are shown in Fig. 2 d).
The distance-agnostic AE achieved BERs below
HD-FEC for wide range (> 15 km) of distances
around the nominal 40 km, significantly outper-
forming PAM with FFE receivers, optimized sep-
arately for each length. Finally, the results from
the experiment of end-to-end system optimization
using a generative model of the link are shown in
Fig. 2 c), observing a monotonically decreasing
BER at each step. The algorithm outperformed
receiver optimization on measured data, showing
increasing gains as optimization progressed.

Extenson of the AE framework
The optical AE framework can be extended to-
wards different systems and models. For exam-
ple, it has been applied for geometrical shaping
(GS) using simplified models for coherent sys-
tems[16]–[18]. In this section, the concept of an opti-
cal system as an end-to-end computational graph
is used for learning the symbol distribution in
probabilistically-shaped (PS) coherent links mod-
eled by SSFM[19]. For such a model, multiple
Fourier/inverse Fourier transform steps form seg-
ments of the graph, making optimization more
challenging[20],[21]. PS optimization within AE was
recently proposed for AWGN channels[22],[23]. For
fiber communications, PS was highlighted as an
effective method for reach and throughput in-
crease as well as rate adaptation[24]. Neverthe-
less, finding the optimal distribution for the fiber
channel is an open problem, especially for multi-
dimensional modulation formats[25]. The scheme
used for PS distribution optimization in this work
applies the techniques proposed in[22] to fiber
communications. A waveform up-sampled by a
factor of 8 was considered to accurately capture
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Fig. 4: MB and learned probability mass functions for
1024-QAM at the transmission distance of 200 km.

the nonlinear effects. The system consisted of a
single span, single polarization 33 GBaud signal
with dispersion, attenuation and nonlinear fiber
coefficients of 16.3 ps/nm/km, 0.163 dB/km, and
1.2 1/W/km, respectively, emulating the link of[26].
At the transmitter, a single ANN layer was used
to optimize the logits which yield the distribu-
tion probabilities. The layer dimensionality is that
of the transmitted 1024-QAM constellation, kept
fixed for this investigation. The signal is pulse-
shaped by a 0.1 roll-off RRC filter. After matched
filtering and sampling, chromatic dispersion com-
pensation is applied at the receiver before the
ANN. The computed loss was the categorical
cross-entropy between the receiver outputs and
the one-hot vectors representing the transmitted
constellation, corrected by the constellation en-
tropy. This loss can approximate the mutual infor-
mation (MI)[22], which we used as a performance
metric. The launch power was optimized together
with the ANNs. Optimization was performed us-
ing the Adam algorithm[27] with meticulously ad-
justed learning rate and consisted of 4 batches
of 214 transmit symbol sequences. Fig. 3 shows
the MI as a function of distance for the uniform,
Maxwell-Boltzmann (MB), and learned distribu-
tions. We observe that the learned distribution
outperforms the uniform by 0.04 bits/symbol at
200 km with performance close to MB. Interest-
ingly, Fig. 4 shows that the learned distribution
at 200 km significantly differs from MB. The pre-
sented results are the first steps of an ongoing
investigation of end-to-end learning applied to PS
for optical systems as well as joint PS and GS.

Conclusions
Different approaches for implementing auto-
encoders in optical transmission links are dis-
cussed. In an IM/DD test-bed, reach increase
or enhanced data rate are demonstrated as well
as robustness to distance variations compared to
classical DSP. Moreover, deep learning is applied
to coherent systems for optimizing the symbol dis-
tribution in PS coherent optical systems.
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