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ract 

ava fibrous waste (CFW) valorization on the synthesis of D (-) lactic acid (DLA) h

mous importance, particularly in the production of thermostable and biodegradable polym

is study, microbial kinetic modelling was carried out to investigate the dynamics of cass

us waste enzyme hydrolysate (CFWEH) utilization towards DLA production. Desig

ass approach was attempted to evaluate the natural DLA producing organisms, capabl

bolizing CFWEH into optically pure DLA. Sporolactobacillus inulinus (NBRC 13595) 

d to be the elite strain, resulting the yield of 99.43 % optically pure DLA using CFW

lemented medium. Yeast extract (2 gL-1) was observed to be potential nitrogen source o

r complex nitrogen sources for kinetic modelling investigation. Kinetic parameters predi

 the proposed model for DLA production showed maximum specific growth rate, μmax - 0

; growth-associated product coefficient (α = 0.47 gg-1) and specific productivity (𝑞𝑃,𝑚𝑎

 gg-1h-1) respectively. Experimental data of biomass growth, substrate consumption and D

uction with initial sugar concentrations ranging from 20 – 180 gL-1 was found to

hronized well with the simulated dynamic profiles. Kinetic investigation reported in this st

ovice attempt enumerating the valorization potential of CFW for the synthesis of value-ad

ucts including DLA at commercial scale in near future. 

ords: Cassava fibrous waste, Waste valorization, Designed biomass appro

olactobacillus inulinus, Optical purity, Kinetic modeling. 
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omenclature: 

X Biomass concentration (gL-1) 

S Substrate concentration (gL-1) 

P DLA concentration (gL-1) 

μmax Maximum specific growth rate (h−1) 

Kix Substrate inhibition constant for growth of biomass (gL-1) 

Ksx Substrate limitation constant for growth of biomass (gL-1) 

Pix Threshold DLA concentration for growth of biomass (gL-1) 

Pmx Maximum DLA concentration for growth of biomass (gL-1) 

Kd Death rate constant (h−1) 

qs,max Maximum specific sugar utilization rate (gg-1 h-1) 

Kss Substrate limitation constant for CFWEH consumption(gL-1) 

Kis Substrate inhibition constant for CFWEH consumption(gL-1) 

Pis Threshold DLA concentration for CFWEH consumption(gL-1) 

Pms Maximum DLA concentration for CFWEH consumption(gL-1) 

qp,max Maximum specific DLA production rate (gg-1 h-1) 

Α Growth-associated constant in Luedeking–Piret model (gg-1) Jo
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Ksp Substrate limitation constant for DLA production(gL-1) 

Kip Substrate inhibition constant for DLA production(gL-1) 

Pip Threshold DLA concentration for DLA production(gL-1) 

Pmp Maximum DLA concentration for DLA production (gL-1) 

Yp/s DLA yield on CFWEH consumption (gg-1) 

Yx/s Biomass yield on CFWEH consumption (gg-1) 

R2 Correlation coefficient (dimensionless) 

T Fermentation time (h) 

S0  Initial substrate concentration (gL-1) 
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troduction 

egradable polymers are obtained from starch/cellulose based agricultural feedstocks 

/beverage industry waste either through microbial fermentation directly or by polymeriza

e fermentation-derived monomers (Koller et al., 2017; Liang and Wan, 2015; Reddy Tad

017; Solaiman et al., 2006). Few examples include synthesis of Poly (Lactic Acid) (PL

hydroxybutyrate (PHB) and Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV), a

mer of PHB through metabolic routes of various organisms (Jem and Tan, 2020; Jyothi et

; Moorkoth and Nampoothiri, 2016). PLA is a biodegradable polymer possessing exten

ntages in terms of tensile strength, durability and relatively lower production economic

ith any petrochemical-based polymers.  

 application in the package industry is driven by several factors viz. readily biodegrada

ient municipal waste management and Food-grade package material. D-lactic acid (DLA

nomer of PLA and remains an important platform chemical, its versatile applications suit 

hemical, pharmaceutical, agriculture, textile, and plastic industries (Djukić-Vuković et

). Synthesis of thermostable polymer, poly D (-)/L (+) lactic acid (PDLLA) opened up 

ue for futuristic applications, which is obtained by blending controlled ratio of poly L

c acid (PLLA) with poly D-lactic acid (PDLA) (Jem and Tan, 2020). PDLLA has impro

allinity and enhanced melting point from 180oC to 230oC compared to poly lactic acid (P

ined from optically pure isomers (DLA or L (+) lactic acid (LLA)) alone or racemic mix

ushima et al., 2007). According to lactic acid market analysis report 2019-2025 (Grand v

rch, Inc., USA), the estimated global lactic acid market in 2019 was 3.1 billion USD 

ld reach 8.7 billion USD by 2025 (Crops et al., 2019). The worldwide PLA production capa

estimated to be 375,000 tons by 2020 whereas its market demand would be around 500,
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by 2021 (Jem and Tan, 2020). Industrial production of DLA can be achieved either thro

entional chemical route or microbial fermentation. The petrochemical based chemical pro

s racemic mixture, whereas microbial fermentation by Lactic acid bacteria (LAB) synthes

tiomerically pure D (-)/L (-) lactic acid (Wee et al., 2006). 

omical production of value-added compounds by valorization of 2nd generation agricult

tocks say corn cobs, wheat straw, sugar cane waste, barley husk, etc are advantageous

 for cost-effective production process but also benefits from environmental frien

ective (Ayodele et al., 2020; Nwamba et al., 2021; Pleissner et al., 2016; Saini et al., 20

schel et al., 2019; Kiran et al., 2021). Promoting agro-based feedstocks to synthesize b

icals would cut down the costs of carbonaceous raw materials drastically. Geograph

re of agricultural feedstocks and its characterization about the organization of sugar resid

ther impurities would determine its sustainability; qualify for fermentation, followed by

esis of a bioproduct. Cassava fibrous waste (CFW) is a sago industrial waste, rich in sta

ent (40.1 – 75.1 % on dry weight basis) and generated from cassava processing indust

g the peeling, crushing and sieving process (Jyothi et al., 2005). Cassava, being one of

e crop in the sub-tropical region of the world, produces 291,993 ×103 tonnes as per F

stics 2019 (A Otekunrin and Sawicka, 2019). The waste generated from cassava proces

oth liquid and solid forms have been used for the production of bio-fuels and platf

icals like ethanol, citric acid, lactic acid etc. (Zhang et al., 2016). DLA is an impor

orm chemical of potential commercial interest and can be obtained through microbial r

actic acid bacterial (LAB) fermentations, which naturally synthesizes the product. T

stigation aimed at valorizing the CFW peel wastes by microbial degradation to reduce

all organic loading in the natural environment. Commercial interests of D-lactic acid (D
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 in the production of stereo-complexed poly D (-)/L (+) lactic acid (PDLLA) as discus

iously. LAB preferentially adopt fermentative route than oxidative TCA cycle conserv

 energy and almost all LAB species can be characterized based on its homofermenta

re (Gänzle, 2015). Microbial production of DLA is significantly influenced by the cost of 

rial.  

ing kinetic insight on DLA production from Cassava Fibrous Waste Hydrolysate (CFW

ld be immensely useful in understanding the process behaviour, crucial to optimize, des

rol and improve the sustained production of DLA. Several research groups developed

tic models for the lactic acid production from renewable feedstocks (Alvarez et al., 20

ane and Prigent, 1999; Nandasana and Kumar, 2008; Sharma and Mishra, 2014). Fermenta

c acid production was found to be inhibited at high substrate and product concentrati

h lead to reduction of overall product yield and productivity.  

 present study is a novice attempt involving screening the process factors (e.g., elite strain

gen sources) by Designed Biomass Approach (DBA) (Zhao et al., 2019). Major advantag

loying DBA is that simpler selection of existing wild type strains suitable for the utilizatio

rocessed raw feedstock than genetic manipulation. It is practically easier for selection, ca

sed based on higher product titer, yield and other quality attributes like optical purity 

wing the organism selection, kinetic investigation of experimental data using diffe

uctured models for DLA production from CFWH was dealt in this study. The kinetic mo

eters reported in this study would be of great significance in addressing the techn

enecks for a sustained DLA production. In a nutshell, the proposed study of w

rization, followed by kinetic model and its impact can be explained in the schematic fig

 1). 
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aterials and Methods 

Raw material 

 was procured from small scale sago industries located around Salem, India. Optimizatio

c and enzymatic digestion of raw CFW improved the efficiency of its overall conversion 

able sugars by 2.47 % (w/v) and 7 % (w/v) respectively (Cingadi et al., 2015). Also, opti

entration of HCl for CFW hydrolysis was determined to be 1.67 M. Enzyme hydrolysate 

ined using α- amylase (12 AGU, M/s Himedia Laboratories, Mumbai, India) for the hydrol

ear chain and amyloglucosidase (M/s Richcore Lifesciences Pvt. Ltd., Bengaluru, Karnat

) digesting the branched segment of the CFW biomass, respectively. The temperature and

 maintained at optimized conditions reported (Cingadi et al., 2015). 

Organism and culture conditions 

o-fermentative LAB (HFLAB) organisms used in this study are Lactobacillus delbrue

p. delbrueckii (NBRC 3534 and 3202 strains), Sporolactobacillus inulinus (NBRC 135

olactobacillus laevolacticus (NBRC 102473) and Sporolactobacillus terrae (NBRC 1015

rganisms/strains were procured from NITE (National Institute of Technology and Evaluat

ogical Research Center, Japan. Glycerol stocks (30 % v/v) of the cultures were prepared 

rved at -80ºC. 

AB strains were grown in MRS (de Man, Rogosa and Sharpe) preculture media.

dients are as follows (in gL-1) for 100 mL culture volume: Glucose - 20; Yeast extract

 extract - 10; Peptone - 10; Sodium acetate - 5; Di-potassium hydrogen phosphate - 2; 

onium citrate - 2; Magnesium sulphate heptahydrate - 0.2; Manganese sulphate tetrahyd

5 and Tween 80. Growth of organism in the preculture media was initiated by an ase

fer of preserved stock (organism) into the autoclaved preculture media. 250 mL closed sc
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ottles were used as culture flasks incubated overnight at 37ºC in a static mode for anaer

th. The pH was maintained in a range between 5 – 7 by the addition of CaCO3 (60 w/w %

l substrate concentration) as a neutralizing agent (Wang et al., 2011). Growth was contin

 the cells reach mid-exponential phases (optical density (OD600) ≈ 1) and the cells w

ested by centrifuging the culture at 5000 rpm for 10 minutes. The pellet was washed with

g saline (NaCl) solution and used to inoculate production medium. All the experiments w

ted in duplicates and average of the estimated titer was reported. Standard errors of all

oints, from which 95% confidence intervals (CI) were determined by un-paired 2-ta

nt’s t-tests. 

Production medium 

mal formulation of the production medium composition remains same as preculture med

pt two modifications:  

lucose in standard MRS medium was replaced with the Acidic/Enzymatic hydrolysat

 (CFWH) as carbon source. Henceforth, the production medium (CFWH + MRS) can

ed as Cassava Fibrous waste substituted media (CFWSM);  

oncentration of selected nitrogen source in CFWSM was varied based on one factor at a t

T) approach. 

Screening of elite strain 

HFLAB strains were grown in CFWSM and the initial concentration of CFWH 

tained uniformly at 20 gL-1. Inoculated with the glycerol stocks, the prepared static fl

 incubated overnight at 37ºC. The sample collected at the end of the batch was analyse

ate the DLA concentration and Optical Purity (OP) towards selection of elite strain. The

putation establishes the relationship between the concentrations of DLA and LLA by Eqn
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𝑂𝑃 =  
𝐷𝐿𝐴

𝐷𝐿𝐴 + 𝐿𝐿𝐴
∗ 100 

---Eq

 DLA producer screened from the CFW hydrolysate (Acidic/Enzymatic) exhibiting opti

 productivity and higher OP was chosen for the subsequent nitrogen source screening. 

Screening of nitrogen source by OFAT approach 

t extract, Peptone, Tryptone, and Whey protein hydrolysate were used as nitrogen sources

creening experiments. Selection process considers importance to the higher DLA producti

nantiomeric purity. The combined nitrogen sources (beef extract, peptone and yeast extr

nally present in the MRS medium was replaced by 25 gL-1 of sole nitrogen sources (Eithe

t extract, peptone, tryptone, and whey protein hydrolysate) in CFWSM. Static f

riments intended for the selection of the most appropriate nitrogen source facilitating opti

 productivity were carried out. The selected nitrogen source was further varied at diffe

s by OFAT approach to determine the optimal nitrogen concentration requirement by the e

n i.e. (1, 2, 4, 12, 20 and 25 gL-1).  Thus, an elite nitrogen source and its optim

entration chosen in CFWSM at later stages was employed for DLA production at biorea

. 

Bioreactor experiments 

h reactor experiments were conducted in a 3L bioreactor (M/s Applikon Biotechnolo

erlands) with the different initial CFWH concentration. Autoclaved MRS equivalent CFW

ium substituted with different initial concentration of CFWH (5 – 180 gL-1) served

uction medium and elite producer strain was employed. Purging of nitrogen gas for 15 m

move the traces of oxygen is an important step before preceding the inoculation of anaero
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 (elite strain). Overnight grown preculture (OD600 ≈ 1.0) was transferred aseptically into

or to initiate growth and samples were collected at regular intervals from therein. The pro

erature and agitation rate were set to 37ºC and 180 rpm respectively. The pH was maintai

8 by addition of the minute pulses of 4 M NaOH and 4 M HCl. 

Analytical methods 

ected samples were stored at 4ºC before estimating biomass and metabolite concentrati

 were separated from the broth by centrifuging samples at 10000 rpm for 10 min. Superna

retained separately and pellet was analyzed for biomass estimation (OD600) by UV vis

trophotometer (Gene Quant 1300, M/s GE Health care, NJ, USA). Measured OD values w

erted into dry cell weight (DCW) values by using estimated relationship 1 OD = 0.49 D

). Glucose consumption was estimated enzymatically by glucose oxidase – peroxid

od using GOD-POD kit (M/s Tulip Pharmaceuticals, Mumbai). DLA and LLA concentrat

 assessed by enzymatic method using D/L Lactic acid assay kit (NYZ Tech assay kit) and

e computed from the relationship described previously (Eqn. 1). 

Kinetic modelling 

obial kinetic modelling explains the dynamic behaviour of the culture under given pro

itions. Major metabolic activities can be grouped into either of growth, substrate utiliza

product formation, which can be explained by the mathematical expressions appropriat

rential equations for biomass growth (𝑑𝑋
𝑑𝑡⁄ ), substrate consumption (𝑑𝑆

𝑑𝑡⁄ ) and pro

ation (𝑑𝑃
𝑑𝑡⁄ ) accounting the fermentation processes describes complex biological functi

. Biomass growth kinetics 

 2 addresses biomass growth of a LAB, concerning a steady state balance between spec

th and death rates. 
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𝑑𝑋
𝑑𝑡⁄ = (𝜇 − 𝑘𝑑)𝑋 

---Eq

re μ is the specific growth rate (h-1), can be calculated during the exponential growth ph

𝑘𝑑 is cell death rate constant (h-1). A well-illustrated monod model explains the relation

een the specific growth rate (μ) and substrate concentration (S). As represented in Eqn. 3

od kinetics suits well for the substrate limited growth processes. 

𝑑𝑋
𝑑𝑡⁄ = (

𝜇𝑚𝑎𝑥𝑆

𝐾𝑠 + 𝑆
− 𝐾𝑑) 𝑋 

---Eq

re μmax= maximum specific growth rate (h-1), ks= Substrate limitation constant (gL-1). Hig

trate and product concentrations are the most important factors influencing microbial grow

cially in synthesizing organic acids. Different models were employed to study the propo

obial growth with substrate limitation and lactic acid inhibition on various substrates. 

el equations representing LAB growth reported by Boonmee et al 2003 was adopted for

nt investigation on the assumption that non-competitive type of inhibition founds vali

mely higher substrate concentrations (Boonmee et al., 2003). At higher DLA concentrat

nhibition can be assumed to be in linear manner. Cell death rate was assumed to be neglig

otation, kd finds no relevance to the proposed outcome. The modified equation governing

ass growth can be represented as shown in Eqn.4. 

𝑑𝑋
𝑑𝑡⁄ = 𝜇𝑚𝑎𝑥 ∗ (

𝑆

𝐾𝑠𝑥 + 𝑆
) ∗ (

𝐾𝑖𝑥

𝑘𝑖𝑥 + 𝑆
) ∗ (1 −

𝑃 − 𝑃𝑖𝑥

𝑃𝑚𝑥 − 𝑃𝑖𝑥
) ∗ 𝑋 Jo
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---Eq

. DLA production kinetics 

eking – Piret (LP) model suggests the DLA production rate dependent upon instantane

ass concentration (X) and the specific growth rate (µ) linearly as shown in Eqn. 5 (Luedek

iret, 2000). 

𝑑𝑃

𝑑𝑡
= 𝛼

𝑑𝑋

𝑑𝑡
+ 𝛽𝑋 

---Eq

re α and β are the growth associated and non-growth associated constants. Modified LP m

tion contains substrate limitation, inhibition constants as well as DLA inhibitory terms. 

el was represented in Eqn. 6 

𝑑𝑃

𝑑𝑡
= 𝛼

𝑑𝑥

𝑑𝑡
+ 𝑞𝑝,𝑚𝑎𝑥 ∗ (

𝑆

𝐾𝑠𝑥 + 𝑆
) ∗ (

𝐾𝑖𝑝

𝑘𝑖𝑝 + 𝑆
) ∗  (1 −

𝑃 − 𝑃𝑖𝑝

𝑃𝑚𝑝 − 𝑃𝑖𝑝
) ∗ 𝑋 

---Eq

. Substrate consumption kinetics 

neral, substrate consumption gets channelled towards biomass growth, product formation

he maintenance of the cellular activities/turnover processes. The mathematical form

trate utilization kinetics is given by Eqn. 7.  

𝑑𝑆

𝑑𝑡
= −

1

𝑌𝑋/𝑆

𝑑𝑋

𝑑𝑡
−

1

𝑌𝑃/𝑆

𝑑𝑃

𝑑𝑡
− 𝑚𝑠𝑋 Jo
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---Eq

re, 𝑌𝑋
𝑆⁄  & 𝑌𝑃

𝑆⁄  are respective yields of biomass and product per gram of substrate utilized

e cell maintenance coefficient. Boonmee et al 2003 and Nandasana et al 2008 reporte

tion in yield at different initial substrate concentrations in the batch production of 

nmee et al., 2003; Nandasana and Kumar, 2008). Under this condition, Eqn. 7 is unlikel

plied for studying substrate consumption kinetics. To describe the substrate utilization,

 8 can be employed. 

𝑑𝑆

𝑑𝑡
= 𝑞𝑠,𝑚𝑎𝑥 ∗ (

𝑆

𝐾𝑠𝑠 + 𝑆
) ∗ (

𝐾𝑖𝑠

𝑘𝑖𝑠 + 𝑆
) ∗ (1 −

𝑃 − 𝑃𝑖𝑠

𝑃𝑚𝑠 − 𝑃𝑖𝑠
) ∗ 𝑋 

---Eq

. Kinetic parameters estimation 

h reactor runs operated at different initial substrate concentrations yielding offline biom

trate and product concentrations. The data thus obtained was subjected to determine kin

eters, in which minimization of residual sum of squared errors (RSS) between mo

icted data and experimental data was obtained from the following equation (Eqn. 9) (Gue

). 

𝑅𝑆𝑆 = ∑(𝑋𝑚𝑜𝑑𝑒𝑙 − 𝑋𝑒𝑥𝑝)2

𝑛

𝑖=1

+ ∑(𝑆𝑚𝑜𝑑𝑒𝑙 − 𝑆𝑒𝑥𝑝)2

𝑛

𝑖=1

+ ∑(𝑃𝑚𝑜𝑑𝑒𝑙 − 𝑃𝑒𝑥𝑝)2

𝑛

𝑖=1

 

---Eq

re, Xexp = experimental value, Xmodel = model predicted value and ‘n’ is the number of 

ts. All numerical calculations for modified Monod equations involving substrate inhibi
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s (Table for different substrate inhibition models) were performed in Microsoft Excel (V

.7) solver add-in (Microsoft Inc, USA). The numerical calculations for solving the n

rential equations were performed using MATLAB R2014a version 8.3 (M/s Math Works I

sachusetts, USA). Correlation (regression) coefficient was determined using the statis

sis program, StatPlus: mac LE (Analyst Soft Inc.) for Macintosh Operating System. F

LAB tools ODE 23S solver and ‘fmincon’ optimization tool has been utilized for resolv

plex differential equations of the model. Simulated X, S, P values were derived by minimiz

ctive function and plotted against time and compared with their corresponding offline datas

 23S solver is more efficient to solve complex differential equations with appreciable e

ance. 

esults 

Screening experiments 

. Selection of elite strain and suitable carbon source 

 was adopted in order to assess the performance of HFLAB strains utilizing CFWH based

 DLA titer, 𝑌𝑃
𝑆⁄  and OP (Table 1). Outcomes were promising for the enzymatic hydroly

EH) and LAB strains positively responded by completely utilizing the substituted car

pt for S. terrae. Growth and overall metabolic activities of LAB strains were found to

ively inhibitory for Acid hydrolysate (CFWAH), illustrating lesser DLA productivity 

. Both the strains of L. delbreuckii sub sp delbreuckii (NBRC 3202 and NBRC 35

bited absolutely zero growth in CFWAH, proving the presence of inhibitory by-products. D

(19.13 gL-1), 𝑌𝑃
𝑆⁄  (0.96 gg-1) and OP (99.43 %) were found to be significantly high fo

nus growth in CFWEH among other LAB strains. Therefore, S. inulinus was found m

istic for the subsequent exploration towards large scale DLA production. Also, S. inul
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d to be growing well in static culture conditions. These observations found important that

cted LAB strain is highly robust in CFWSM-based medium. 

. Selection of nitrogen source and optimal concentration 

lementation of various nitrogen sources viz. YE, Tryptone, Peptone, and WPH for S. inul

th were proven to be effective for DLA productivity (>18.89gL-1) and OP (>99 %) (Table

control run (without supplementing nitrogen source) yielded lower DLA titer (7.05 g

trating the significance of nitrogen supplemented cultures in DLA production. All the nitro

ces used in this study were proved to be promising but YE was chosen for subsequ

stigation owing to its complex vitamin and mineral content (Izaguirre et al., 2020). OF

oach in determining appropriate YE concentration supporting DLA yield was represente

2. Increase in YE level upto 2 gL-1 showed improved DLA productivity later which the f

 titer remained constant irrespective of increase in YE concentration (Optimal 

entration ≥ 2 gL-1). Hence, S. inulinus grown in CFWEH as carbon source and YE (2 gL-1

gen source was considered much suitable for lab-scale cultivation and microbial kin

es. 

Kinetic modelling 

le unstructured and non-segregated models were investigated to explain DLA production

obial fermentation. Monod model serves to be universally applicable to all genera of bact

yeast except fewer microbial systems. It reliably explains microbial kinetics of grow

trate utilization and product formation with suitable modifications interpreting substrate 

uct inhibition terms (Alvarez-Ramirez et al., 2019). The resolved differential equations 

 representing growth, DLA formation and CFWEH utilization were plotted with t

ctive offline values at different substrate concentrations of growth-promoting (Fig. 3) 
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itory concentrations (Fig. 4). The kinetic equations enlisted in Table A.1 were evaluated w

ffline estimated µ values against their respective CFWEH concentrations to explain respec

els and other kinetic parameters. All the models could convincingly explain the overall gro

esolve kinetic parameters (µm, KS, KI) were tabulated (Table A.2). The model parameters

ly likely reliable from operational perspective as the regression coefficient, R2 is above 0

tively higher R2 value (0.9994) and lower RMSE value (0.000712) corresponds to Edw

o-Teisser) model indicates the nature of LAB growth closely allied to the estim

eters. 

iscussion 

ral reports are available for L-lactic acid production from renewable resources at pilot s

, but DLA fermentation at larger scale was rarely reported (Liang et al., 2020). E

bolically engineered Bacillus subtilis strain by incorporating thermo-tolerant ldh gene deri

 L. delbrueckii had yielded an OP of 98 % (Awasthi et al., 2018). But DBA-based screen

ted in identification of potential DLA producers with highest OP (Above 99 % purity)

 LAB strains investigated in the study. This technique has been found successful in identify

ble LAB to valorize CFW-based substrate by its natural selection. Yield of DLA (0.96 

the higher OP (99.5 %) were accomplished under controlled operating conditions 

ratory scale. Pre-treatment by mineral acid finds more suitable for any lignocellulosic biom

hieve better recovery of utilizable sugars. But in the present study, acidic hydrolysate did

 for any LAB strains employed except for S. inulinus, showing moderate DLA producti

1 gL-1) and better OP (98.95 %). Significant DLA synthesis in CFWAH-based medium

ulinus can be attributed for its higher survival rate in acidic and bile salts medium, 

mined to be highly stabler than other LAB organisms (Huang et al., 2007). Also, the evolu
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hibitory compounds like furfurals and its derivatives during acid hydrolysis in CFWAH w

mined from preliminary investigation (Cingadi et al., 2015; Tanaka et al., 2019). Enzym

olysate does not have such complications. Drastic improvement in DLA productivity (Ta

hen compared to other LAB strains proves that S. inulinus can grow invariably and metabo

AH actively in the presence of inhibitory compounds (Bai et al., 2016; Zacharof and Lo

). Although organism appears stable in CFWSM containing acidic hydrolysate, but DLA 

significantly lesser than CFWEH containing medium. Owing to the enzyme specificity

ase and amyloglucosidase) and hydrolysis at optimized conditions, availability of free gluc

e CFWEH was higher than in CFWAH. Also, a major fraction of free glucose in CFWEH 

nelized towards product formation and therefore found to be a better substitute as a car

ce in the production medium. S. inulinus was also observed to be highly stable for most of

gen sources and obtained results were found to be highly reproducible (Table-2). No dra

ge in final DLA titers (18.89 – 19.16 gL-1) for various nitrogen sources exhibiting

bility of organism in metabolizing the carbon and nitrogen substrates. YE as a nitrogen sou

ld be highly conducible for reactor studies owing to its rich amino acid and mineral 

ent(Nancib et al., 2005). A significant drop in DLA titer (7.05 gL-1) for control run exempl

gen source supplementation is vital for the fastidious LAB growth (Wang et al., 20

tics of LAB strains are reported and entailed elaborately with different carbon sources 

pared in the Table 2. 

Growth kinetics 

lying simpler monod growth model to account LAB growth can hardly differentiate

nential and stationary phases. Therefore, many reports suggest the adequacy of mathemat

elling can be fulfilled by incorporating logistic equation, explaining various phases of gro
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 reliably (Rohit et al., 2018; Wang et al., 2020). Invariably the depiction of simulated biom

sented in Fig. 3 & 4 showed a good overlapping with the estimated offline values

ssion coefficient above 0.9 shows good reliability of the model with the experimental res

offers better prediction at the given conditions (Akermann et al., 2021). In this study

ssion coefficient, R2 > 0.99 for the proposed logistic equation signifies that the obta

rimental results could be highly reproducible for different initial CFWEH concentrations (

4). Table A.2 illustrates the application of different model equations previously developed

inetic models were fitted with the respective offline µ and 𝑆0 to obtain simulated saturat

d inhibitory concentrations, kI. The obtained/simulated values were found to be more real

omparable with the previous kinetic investigations of other LAB organisms as shown in T

timated specific growth rate is an important indicator and relates the affinity of an organ

e alternate carbon source formulated in this study. Maximum specific growth rate, (

mined to be 0.31 h-1 by offline and could be convincingly predicted by the deployed mo

 h-1) between 20 – 45 gL-1. Biomass limitation rate, ksx was found to be 0.85 gL-1 and in m

e reactor runs yielded a consistent biomass concentration above 1.7 gL-1. Death constan

mined by the simulation was found to be 0.01 h-1 and insignificant compared to the hig

th rate. From Fig. 5 the effect of inhibition can be understood by a steady decline in µ ab

L-1. Another important indicator of inhibition is the extended lag phase at higher 𝑆0 and m

ler lag phases at lower concentrations, as it can be observed from Fig. 3 & 4. Biom

entration was much reduced to 1.8 gL-1 upon a highest substituted CFWEH concentratio

L-1. Unutilized residual substrate concentration was found to be significantly higher at 95

 180 gL-1 and the rate of substrate utilization and biomass growth was significantly redu

 4). These observations confirm that inhibitory substrate concentration was exceedin
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er at higher substrate concentrations above 80 gL-1. From the predicted inhibi

entration of biomass i.e. kix at 193.94 gL-1 may unlikely to occur for lab scale fermentati

efore, the inhibitory effects dealt in this study may be confined to CFWEH and D

entrations. 

Utilization of CFWEH 

ke acid hydrolysate (CFWAH), enzymatic digests remain free from additional inhibi

pounds like furfurals [Cingadi et al., 2015]. The determination of CFWEH inhibi

entration i.e. kI and its relevance to µmax value of S. inulinus could be helpful for

mination of stability of continuous operation of the process. Results of the model poin

9 gL-1 as a threshold limit until which the microbial system suits well for the Monod t

th. Substrate inhibition was imminent beyond the critical concentration and proceed

bilizing the fermentation process (Burgos-Rubio et al., 2000). Based on our previous stu

reated/processed feedstock biomass with sugar residue composition was determined to

r than the inhibitory levels (Cingadi et al., 2015). It would remain non-problematic eve

ng can be carried out continuously to meet inherent metabolic requirements m

mically. The specific substrate utilization rate (1.54 gg-1h-1) was found to be lesser w

pared to other LAB species viz. Lactobacillus helveticus (4.8 gg-1h-1)  and Lactococcus la

 gg-1h-1) (Boonmee et al., 2003; Øyaas et al., 1996). Also, in comparison with other bacte

ra, say Enterococcus faecalis (3.33 gg-1h-1) was also found to be lower for sucrose-ba

tock (Nandasana and Kumar, 2008). But S. inulinus seamlessly engaged to build

ficant biomass, higher DLA productivity and yield (> 0.99 g. DLA/g. DCW) at par with o

 yielding LAB strains, despite its retarded utilization rate. This seemed to be advantageous

train, as it can transformed into industrial workhorse for consistent DLA production. This
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onfirmed from higher affinity constant, ks (0.85 gL-1) reported for S. inulinus in utili

EH shown previously represents the ability of organism in metabolizing the substrate w

 ease. Further it was observed that offline DLA titer showed gradual increment u

asing CFWEH concentrations and reached maximum to 75 gL-1 for the substrate loadin

/L, also achieved product yield of 1.01 g. DLA/g. DCW. Inhibition due to higher subst

entration was visible beyond this point. As a result, DLA titer was significantly redu

7gL-1) at 180 gL-1 of initial CFWEH. The impact of CFWH utilization on the D

uctivity would have positive effects on the kinetic parameters of product formation

lished by Boonmee et.al 2003. These findings and its justifications are crucial for 

pretation of the subsequent DLA production kinetics. 

DLA product kinetics 

odel postulated based on the experimental outcome of recurrent lactic acid produc

esses [Leudeking and Piret, 2000]. The segregation of growth and non-growth-associ

uct coefficient was already proven to be a best fit for DLA production (Mis Solval et al., 20

ma et al., 2021)(Reddy Tadi et al., 2017). From the growth and product profiles (Fig. 3

be well discerned that DLA production is predominantly a growth associated (Sharma 

ra, 2014). Evolution of DLA creates acidic efflux in the reaction broth, inhibiting 

nism growth beyond reaching threshold concentration. The modified model predicts that

icient of growth-assisted DLA production (α) found to be 0.47 gg-1, while non-growth t

as negligible. The lowered production coefficient concomitant with the lower utiliza

le proves that proposed kinetic model was stoichiometrically more appropriate. From

el, S. inulinus projects that the maximum overall product coefficient (𝑞𝑃,𝑚𝑎𝑥) was 1.12 gg

e product coefficient of a raw feedstock at this level is of greater significance in term
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ient product conversion. Yield coefficient (𝑌𝑃
𝑆⁄ ) of most reactor runs accounts 75 – 99 %

otal carbon input and acidic product i.e. DLA competes with regular metabolic machiner

er product concentrations. An extreme proton gradient generated across the cell memb

ssitates spending of higher maintenance energy drawn from the substituted carbon (Altıok

tlı, 2006). The practical difficulties in carrying out fermentations at higher subst

entrations can be eased at the incorporation of adding neutralizing agents/buffers. 

ious investigation on S. inulinus yielded DLA titer of above 200 g/L metabolizing w

in hydrolysed medium by incorporating CaCO3 as a neutralizing agent (Reddy Tadi et

). This investigation exclusively overweighs the sustainable technologies of the future to t

strial wastes of higher carbon loading. Unstructured, non-segregated model elucidated

mic process more reliably to account process level intricacies. 

onclusion 

 study emphasizes the suitability of DBA on valorizing various industrial wastes into a va

d product. LAB strains were successful in utilizing the enzymatic hydrolysate of CFWH

ving 99 % optical purity and the obtained DLA yield coefficients showed promising outco

ulinus exhibited a good track record in adopting to the supplied CFWEH (20 gL-1) and Y

 as limiting nutrients. Application of the kinetic model encumbered monod/inhibition ran

ed for the synthesis of optimal DLA production. The model simulation data showed v

 correlation with the experimental data at different initial substrate concentrations w

gible standard errors. In future, proposed model would be helpful in designing 

lopment of bioprocesses for the sustainable production of optically pure DLA from renew

ultural waste feed stocks at an industrial scale. 
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Table 1 Screening of microbial strains on CFWEH and CFWAH for production of optically pure DLA 

organism Substrate 
Yp

s⁄
a

(gg-1)
 

DLA titer (gL-1) rp
b(gL-1h-1) Optical pur

s delbrueckii 

BRC 3202 

CFWEHc 0.93 ± 0.02 16.22 ± 0.61 0.91 ± 0.01 98.24 ± 

CFWAHd NG NG NG NG

s delbrueckii 

BRC 3534 

CFWEH 0.76 ± 0.05 15.62 ± 0.54 0.67 ± 0.03 93.22 ± 

CFWAH NG NG NG NG

cillus inulinus 

 

CFWEH 0.96 ± 0.02 19.13 ±  0.43 0.89 ±0.03 99.43 ± 

CFWAH 0.97 ± 0.01 15.41 ± 0.71 0.59 ±0.02 98.95 ± 

cillus terrae 

7 

CFWEH 0.80 ±0.04 14.10 ± 0.47 0.59 ± 0.01 75.61 ± 

CFWAH 0.64 ± 0.03 8.25 ± 0.22 0.34 ±0.03 56.64 ± 

YP/S, gg-1) was calculated as a ratio of DLA produced (g) to substrate consumed (g). bVolumetric productivity (rp, gl-1h-1) was calculated as a ratio of con

d (gl-1) to fermentation time (h). cCFWEH – Cassava fibrous waste enzyme hydrolysate. dCFWAH – Cassava fibrous waste acid hydrolysate. All the c

c condition at 37 oC, NG- No growth. 
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le 2 Screening of nitrogen source for production of optically pure DLA from CFWE

. inulinus NBRC 13595 

itrogen source 𝑌𝑃
𝑆⁄  (gg-1) 

DLA titer  

(gL-1) 

𝒓𝑷 (gL-1h-1) Optical purity (%

st extract 0.96 ± 0.01 19.16 ± 0.53 0.48 ± 0.02 99.57 ± 0.17 

tone 0.95 ± 0.02 19.11 ± 0.21 0.39 ± 0.02 99.75 ± 0.11 

ptone 0.94 ± 0.02 18.93 ± 0.64 0.41 ± 0.03 99.50 ± 0.25 

ey Protein 

rolysate 

0.95 ± 0.02 18.89 ± 1.01 0.41 ± 0.02 99.64 ± 0.21 

trol 0.92 ± 0.01 7.05 ± 0.77 0.13 ±  0.01 99.01± 0.13 

iments were performed in static condition at 37oC 
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 comparison with reported values of lactic acid production using unstructured mod

inetic parameter This work 

Lactococcus lactis 

NZ133 grown 

on lactose (Boonmee et 

al., 2003) 

Enterococcus faecalis

RKY1 grown on 

molasses(Nandasana an

Kumar, 2008) 

iomass formation 

model 
   

µmax (h
-1) 0.36 1.1 1.6 

Ksx (gl-1) 0.85 1.32 0.89 

Kix (gl-1) 193.94 304 167.46 

Pix (gl-1) 1.26 1.39 - 

Pmx (gl-1) 27.51 49.9 - 

Kd (h
-1) 0.01 - 0.00318 

SSE 0.231   

RMSE 0.103   

R2 0.969   

WEH consumption 

model 
   

qs, max (gg-1h-1) 1.54 3.42 3.33 

Kss (gl-1) 0.56 2.05 0.1 

Kis (gl-1) 99.59 140 303.17 

Pis (gl-1) 39.74 47.1 - 

Pms(gl-1) 66.71 95.5 - 

SSE 206.349   

RMSE 2.547   

R2 0.979   

DLA production 

model 
   

α (gg-1) 0.47 0.39 0.26 

qp, max (gg-1h-1) 1.12 3.02 3.0 

Ksp (gl-1) 0.56 2.05 0.1 

Kip (gl-1) 99.59 140 303.17 

Pip (gl-1) 39.74 47.1 - 

Pmp(gl-1) 66.71 95.5 - 

SSE 72.406   

RMSE 1.715   

R2 0.985   

Jo
ur

na
l P

re
-p

ro
of
35 



 

 

Figu

 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

Journal Pre-proof
re 1. Schematic representation of production of DLA from cassava fibrous waste. 

 

Jo
ur

na
l P

re
-p

ro
of
37 



 

Figu YE 

conc

 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

Journal Pre-proof
 

re 2. Final DLA titre of the shake flask assessment carried out on varying initial 

entration using OFAT approach. 
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 circles) and DLA (filled orange triangles) to the respective model predicted value

ass (blue continuous), CFWEH (green continuous) and DLA (orange continuous) carried

ast square minimization method for different initial CFWEH concentrations: A. 5 gL-1; 

 C. 20 gL-1 D. 45 gL-1. 
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re 4. Comparison of experimental profiles of biomass (filled blue squares), CFWEH (fi

 circles) and DLA (filled orange triangles) to the respective model predicted value

ass (blue continuous), CFWEH (green continuous) and DLA (orange continuous) carried

ast square minimization method for different initial CFWEH concentrations: A. 60 gL-1

L-1; C. 95 gL-1; D. 180 gL-1. 
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rent substrate inhibition models at different initial sugar concentrations. 
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 High optical purity (99.43 %) was achieved for D-Lactic Acid  

 Valorization potential of cassava fibrous waste was elucidated 

 First kind of study on kinetic modeling, utilizing cassava fibrous waste 

 Potential scope for techno-economic feasibility of cassava fibrous waste  
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