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ABSTRACT
We study the performance of the hybrid template machine learning photometric redshift (photo-z) algorithm DELIGHT, which
uses Gaussian processes, on a subset of the early data release of the Physics of the Accelerating Universe Survey (PAUS).
We calibrate the fluxes of the 40 PAUS narrow bands with six broad-band fluxes (uBVriz) in the Cosmic Evolution Survey
(COSMOS) field using three different methods, including a new method that utilizes the correlation between the apparent size
and overall flux of the galaxy. We use a rich set of empirically derived galaxy spectral templates as guides to train the Gaussian
process, and we show that our results are competitive with other standard photometric redshift algorithms. DELIGHT achieves
a photo-z 68th percentile error of σ 68 = 0.0081(1 + z) without any quality cut for galaxies with iauto < 22.5 as compared to
0.0089(1 + z) and 0.0202(1 + z) for the BPZ and ANNZ2 codes, respectively. DELIGHT is also shown to produce more accurate
probability distribution functions for individual redshift estimates than BPZ and ANNZ2. Common photo-z outliers of DELIGHT

and BCNZ2 (previously applied to PAUS) are found to be primarily caused by outliers in the narrow-band fluxes, with a small
number of cases potentially indicating spectroscopic redshift failures in the reference sample. In the process, we introduce
performance metrics derived from the results of BCNZ2 and DELIGHT, allowing us to achieve a photo-z quality of σ 68 < 0.0035(1
+ z) at a magnitude of iauto < 22.5 while keeping 50 per cent objects of the galaxy sample.

Key words: methods: numerical – methods: statistical – galaxies: distances and redshifts.

1 IN T RO D U C T I O N

Photometric redshift (photo-z) estimation continues to be an active
research area as it plays a major role in solving the big questions in
cosmology. Redshifts provide radial information (distance) to the tra-
ditional two-dimensional sky maps of galaxies. They are traditionally
determined through spectroscopic methods (spectroscopic redshifts,
or spec-zs). Yet since the process requires long telescope time for
high completeness, photo-zs are instrumental for the analysis of large
surveys containing of order 108–9 galaxies. Photo-z methodology has

� E-mail: johnsooyh@usm.my

been evolving and improving a lot over the past couple of decades
(e.g. Brescia et al. 2018; Salvato, Ilbert & Hoyle 2019), such that it
had been sufficiently useful for most recent cosmological researches.

Photo-z, as its name suggests, is often determined through the
use of a handful of broad-band photometric filters obtained from
large sky surveys. Photo-z estimation methods are generally catego-
rized into two different types: the template-based method, which
relies on accurate models of spectral energy distribution (SED)
templates of different types of galaxies; and the data-driven empirical
method, which relies on training sets of galaxies and machine
learning algorithms. Each method however has its own limitations:
template-based methods may produce photo-zs with large scatter and
catastrophic rates without representative templates; while machine
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learning methods may perform poorly outside the regions of the
parameters covered by the training sample (D’Isanto et al. 2018). As
a result, hybrid methods have been implemented to utilize the best
of both worlds (Cavuoti et al. 2017; Duncan et al. 2018, 2019).

Many current and upcoming surveys such as the Dark Energy
Survey (DES; The Dark Energy Survey Collaboration 2005), Legacy
Survey of Space and Time (LSST; Ivezić et al. 2019), Euclid (Laureijs
et al. 2011), Kilo-Degree Survey (KiDS; De Jong et al. 2013), Wide-
Field Infrared Survey Telescope (WFIRST; Spergel et al. 2013), and
Hyper Suprime-Cam (HSC; Aihara et al. 2018) have set stringent
photo-z requirements to ensure that they meet their science goals,
forcing the quality of photo-z methodology to constantly improve.
For example, LSST’s photo-z requirement is to reach a root-mean-
square error of σ rms < 0.02(1 + z), while the Euclid requirement
is σ rms < 0.05(1 + z). High-quality photo-zs are required for a
reliable estimation of e.g. weak lensing (Benjamin et al. 2013),
angular clustering (Crocce et al. 2016), intrinsic alignment (Johnston
et al. 2021), structure formation, galaxy classification, and galaxy
properties (Jouvel et al. 2017; Laigle et al. 2018; Siudek et al.
2018).

The aforementioned surveys are predominantly broad-band sur-
veys that use between four and nine broad-band filters ranging from
infrared (IR) to ultraviolet (UV). This work, however, explores
the estimation of photo-zs in narrow-band surveys, focusing on
the Physics of the Accelerating Universe Survey (PAUS; Padilla
et al. 2019), which observes the sky using 40 narrow bands (see
Section 2.1). Producing high-quality photo-zs for such a survey
requires careful optimization between narrow and broad bands,
since machine-learning-based methods have to be optimized for a
larger number of inputs (Eriksen et al. 2020), while template-based
methods require more attention towards the narrow emission line
features.

Martı́ et al. (2014) used simulations to predict that by using
PAUS narrow-band photometry, the photo-z quality could reach an
unprecedentedly low 68th percentile error of σ 68 = 0.0035(1 + z)
at a quality cut of 50 per cent at i < 22.5. This has been verified
by Eriksen et al. (2019), where they combined the 40 PAUS narrow
bands (early data release) with broad bands uBVriz from the Cosmic
Evolution Survey (COSMOS; Laigle et al. 2016), and using their
template-based photo-z code BCNZ2, they showed that this result is
achievable when a 50 per cent photometric quality cut was imposed
on the final testing set. In a more recent work, Eriksen et al. (2020)
used DEEPZ, a deep learning algorithm on the same data set and
showed that it outperformed BCNZ2 by reaching 50 per cent lower in
σ 68. Furthermore, Alarcon et al. (2020) showed that an ever greater
precision can be achieved when using additional photometric bands
available in the COSMOS field (a total of 66 bands).

We are motivated by the work of Eriksen et al. (2019), but
instead of using purely template-based methods, we attempt to
achieve this PAUS photo-z precision by utilizing Gaussian processes
(GPs, see Section 3.1) to make empirical adjustments to templates,
working on the same data set and conditions. We seek to produce
an independent method that is competitive, as that will allow us to
exploit synergies with BCNZ2 by Eriksen et al. (2019) as shown in
this work, DEEPZ (Eriksen et al. 2020), and photo-zs by Alarcon
et al. (2020) in the future. Therefore the contents of this paper
reflect our findings, putting special emphasis on the performance
and application of DELIGHT (Leistedt & Hogg 2017), a hybrid
template machine learning photo-z code. When carefully calibrated
and combined with COSMOS broad-band fluxes, DELIGHT should
achieve equally good results as that of BCNZ2. The main aims of this
paper are threefold:

(i) to optimize and test the performance of the hybrid template
machine learning photo-z code DELIGHT on a narrow-band survey;

(ii) to develop an optimal method to calibrate the fluxes between
the COSMOS broad bands and the PAUS narrow bands;

(iii) to provide an independent photo-z solution for PAUS, en-
abling the study of photometric and spectroscopic redshift outliers.

This paper is structured as follows. In Section 2, we first introduce
PAUS and the sources of photometry and spectroscopic redshifts
used in this work. Section 3 describes the algorithms (DELIGHT,
ANNZ2, and BPZ) used in this work, together with their optimization
settings and SED templates used. Section 4 describes the full details
of how the photometry and spectroscopy from PAUS, COSMOS, and
zCOSMOS are cross-matched, how the galaxy fluxes are selected, the
three methods to calibrate the broad-band and narrow-band fluxes,
and the performance metrics used in this work to compare the results
between runs and codes. Section 5 shows the photo-z results obtained
by DELIGHT, and a thorough analysis is conducted to compare its
performance with ANNZ2, BPZ, and BCNZ2. Finally, in Section 6, we
study the photo-z outliers of DELIGHT and BCNZ2, and derive new
metrics with improved photo-z outlier identifications. Our work is
concluded in Section 7.

2 PHOTO METRY AND SPECTROSCOPY

In this work, photometric data were obtained from PAUS (Sec-
tion 2.1) and COSMOS (Section 2.2), while spectroscopic redshifts
were obtained from zCOSMOS (Section 2.3). In this section, these
surveys will be introduced, together with the selection cuts used to
obtain our training and testing sets.

2.1 PAUS

Physics of the Accelerating Universe Survey (PAUS) is a narrow-
band photometric galaxy survey aimed at mapping the large-scale
structure of the Universe up to i ∼ 23.0. Using 40 narrow bands
spaced by 100 Å in the range between 4500 and 8500 Å (filter
responses visualized in Eriksen et al. 2019, and Fig. 4), PAUS
aims to achieve redshifts with a precision of σ rms < 0.0035(1 +
z) for galaxies with iauto < 22.5. PAUS uses the PAUCam instrument
(Padilla et al. 2019) on the 4-m William Herschel Telescope (WHT)
at Observatorio del Roque de los Muchachos (ORM) in La Palma. It
has observed more than 50 deg2 of sky since the beginning of 2016,
and observations to full depth in all narrow bands for 100 deg2 are
planned.

The PAUS forced-aperture co-added photometry has its aperture
defined by using the 50 per cent light radius (r50), the point
spread function (PSF), ellipticity, and Sérsic index of COSMOS
morphology, such that the fluxes measure a fixed fraction of light.
The reader is referred to Eriksen et al. (2019) for detailed information
on how the PAUS fluxes are measured. In this work, we used the early
data release from PAUS (objects are observed at least five times,
using an elliptical aperture with 62.5 per cent light radius), and select
objects with iauto ≤ 22.5, entries with no missing measurement, and
the COSMOS flag TYPE=0 (extended objects).

2.2 COSMOS

The Cosmic Evolution Survey (COSMOS; Scoville et al. 2007)
covers a sky area of 2 deg2 (149.◦47 ≤ α ≤ 150.◦7, 1.◦62 ≤ δ ≤ 2.◦83)
and is known for its high sensitivity, depth, and an exceptionally low
and uniform Galactic extinction (E(B −V) ∼ 0.02).
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In this work, we used photometry from the COSMOS2015
catalogue (Laigle et al. 2016); it is a highly complete mass-
selected sample to very high redshifts, highly optimized for the
study of galaxy evolution and environments in the early Universe.
The COSMOS2015 catalogue provides 30-band photometry ranging
from near-UV to near-IR wavelengths, all these have been observed
through multiple facilities, two of which are the Canada–Hawaii–
France Telescope (CFHT) and Subaru Telescope (Miyazaki et al.
2002). From this catalogue we only use the CFHT u∗-band (Boulade
et al. 2003) and Subaru B, V, r, i+, and z++ bands (Miyazaki et al.
2002), in conjunction with the narrow-band photometry of PAUS.
For simplicity, these bands will be referred to collectively as the
uBVriz bands; the superscripts are dropped for easier reading.

2.3 zCOSMOS

The zCOSMOS Survey (Lilly et al. 2007) targets galaxies in
the COSMOS field using the Visible Multi-Object Spectrograph
(VIMOS; Le Fèvre et al. 2003). zCOSMOS-Bright observed 20 689
galaxies in a sky area of 1.7 deg2, these galaxies have magnitudes 15
< iauto < 22.5 and redshifts in the range of 0.1 < z < 1.2, its spectral
range is in the red (rest-frame wavelength 5550–9650 Å) to follow
strong spectral features around the 4000 Å break to as high redshifts
as possible.

In this work, we use data from zCOSMOS-Bright Data Release
3 (DR3).1 Galaxies with redshift confidence class 3 and 4 (spectro-
scopic verification rate of 99 per cent and 99.8 per cent, respectively)
are selected and cross-matched with PAUS objects.

2.4 Our data set

Using the aforementioned selection cuts, we cross-matched within
1 acsec the 40-narrow-band photometry from PAUS, six-broad-band
photometry (uBVriz) from COSMOS, and highly reliable redshifts
from zCOSMOS to obtain a data sample of 8406 galaxies, which
is divided randomly into half for training and testing, respectively.
This sample uses a total of 46 bands, and flux calibration between
the broad and narrow bands is required as they are obtained from
different surveys with different flux measurements. The calibration
between these fluxes will be discussed in Section 4.

The colour–magnitude diagram of this sample is shown in Fig. 1,
in comparison with the COSMOS2015 sample (all objects with
TYPE=0 and detected in r and i). The slight incompleteness in
i magnitude is due to the selection effects in brightness of the
spectroscopic redshifts available.

The sample size may seem small, but is sufficient for the GP to
work, since the GP essentially creates 4000 + flux-redshift ‘tem-
plates’ to produce photo-zs for objects in the testing set. However,
we note that such a small training size has a major effect on the
results of ANNZ2 as this training size is close to the lower limit
threshold suggested by Bonfield et al. (2010). We also note that the
sample we have chosen is very similar to that of Eriksen et al. (2019),
the only difference being that they have a more relaxed cut in the
number of bands (N BANDS), being 35<N BANDS<40 (workable
for a template code like BCNZ2), while we used N BANDS=40.2

When comparing results between DELIGHT and BCNZ2, we will only

1http://www.eso.org/qi/catalog/show/65
2The relaxed cut resulted in Eriksen et al. (2019) having a larger sample size
of 10 801 objects.

Figure 1. Colour–magnitude diagram for the PAUS data (red) used in
this work in comparison with the COSMOS2015 sample (all objects with
TYPE=0 and detected in r and i). The contours represent the density of
objects.

compare photo-zs of the exact same objects. Note that we have used
the same broad bands as used by Eriksen et al. (2019).

3 A L G O R I T H M S A N D T E M P L AT E S

3.1 DELIGHT and Gaussian processes

DELIGHT3 (Leistedt & Hogg 2017) is a hybrid template-based and
machine learning photo-z algorithm, which was constructed to
combine the advantages, and minimize the disadvantages, of both
types of algorithms. DELIGHT constructs a large collection of latent
SED templates (or physical flux-redshift models) from training data,
with a template SED library as a guide to the learning of the model.
This conceptually novel approach uses Gaussian processes (GPs)
operating in flux-redshift space. DELIGHT was featured in the results
of the LSST Photo-z Data Challenge 1 (Schmidt et al. 2020), where it
was found to have a low photo-z bias but slightly broader probability
density functions (PDFs).

A GP is a supervised learning method, which finds a distribution
over the possible functions f(x) that are consistent with the observed
data x. Consider Fig. 2: suppose we have a set of observed variables
y = f(x), we can fit it using a GP, denoted as f ∼ GP (μ, k),
which assumes that the probability of all f(x) is jointly Gaussian
and representable by a mean function μ(x) and a covariance matrix
�(x) = k(xi, xj). k(xi, xj) is the kernel function, which relates one
variable xi to another xj. An example case would be μ ≡ 0 and a
kernel function that takes the form of a squared exponential,

k(xi, xj ) = σ 2
f exp

[−(xi − xj )2

2l2

]
, (1)

where σ 2
f is the maximum allowable covariance between data (set by

the errors on the observation), and l is the tunable correlation length
that determines the smoothness of the GP. In this simplistic case, the
GP will try to find a marginalization of all possible functions, but μ

and k can be modified if an underlying model of the data we want to

3https://github.com/ixkael/Delight

MNRAS 503, 4118–4135 (2021)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/503/3/4118/6166758 by U
niversity C

ollege London (inactive) user on 08 O
ctober 2024

http://www.eso.org/qi/catalog/show/65
https://github.com/ixkael/Delight


PAUS: narrow-band photo-zs using GPs 4121

Figure 2. Illustration of a Gaussian process (GP). The left-hand panel shows
data points (black dots), with a single datum to be predicted (green dot). The
GP trains on the given data points to provide a best-fitting function (blue line)
as shown on the right. It also provides a Gaussian confidence interval (blue
shaded area) for the prediction.

fit is known. The covariance function is defined such that a smooth
function is to be predicted.

Assuming that we have a set of training data {xi, f(xi)} and would
like to find the prediction {x∗, f∗(x∗)}, the GP models f and f∗ as
jointly Gaussian, N (μ,�), and therefore(

f (x)

f∗(x)

)
∼ N

((
μ

μ∗

)
,

(
� �∗

�T
∗ �∗∗

))
, (2)

where � = k(xi, xj) is the covariance between the training data, �∗
= k(x∗, xi) the covariance between training and the predicted data
(superscript T denotes the transpose of the matrix), while �∗∗ = k(x∗,
x∗) is the variance of the predicted data.

It follows from the above that the posterior p(f∗|x∗, xi, fi) is also
Gaussian, therefore a predicted point f∗(x∗) is plotted (green dot
in Fig. 2) is modelled by a Gaussian function (smooth blue line)
that runs across all points, with its 95 per cent confidence interval
(±1.96σf∗ ) represented by the navy shaded area.

In the context of DELIGHT, GPs are used to calculate the predicted
fluxes F̂ at a certain redshift z for a training object i with fluxes Fi

and redshift zi. This could be better understood by first defining the
posterior photo-z distribution p(z|F̂ ) of an object in the testing set.
For machine learning methods, it has the form

p(z|F̂ ) ≈
∑

i

p(F̂ |z, zi , Fi) p(z|zi, Fi)p(zi, Fi), (3)

where p(F̂ |z, zi, Fi) is the prediction for fluxes of the training galaxy
at a different redshift z, while p(z|zi, Fi) and p(zi, Fi) are the priors
that provide the redshift distributions and abundances, generated
from the training data, which are multiplied to give the combined
probability p(z, zi, Fi) for a given redshift z and training object with
redshift zi and fluxes Fi. This is analogous to the one derived from
template-based methods,

p(z|F̂ ) ≈
∑

i

p(F̂ |z, ti) p(z|ti)p(ti), (4)

where ti is the template, p(z|ti)p(ti) = p(z, ti) is the prior, and
p(F̂ |z, ti) is the probability of the predicted flux F̂ at redshift z

and for template ti. Both equations are easily differentiated by the
fact that for template-based methods, p(z|F̂ ) is derived using a list of
templates ti, while for machine learning methods it is derived using
the individual training set objects with fluxes Fi and spectroscopic
redshift zi.

DELIGHT differs a little from the usual machine learning method
in the sense that instead of finding a direct empirical relationship
between the fluxes and redshifts of the training objects, it uses a GP

to model the predicted fluxes of a training galaxy at different redshifts
with the help of SED templates. This creates a latent flux-redshift
template for each training object, where for a given set of fluxes in
the testing set, it could be compared to several training templates to
find the best predicted redshift.

The algorithm first fits a best-fitting SED template to a particular
training object i with redshift zi and fluxes Fi (multiple bands);
the best-fitting SED template is then used to formulate the mean
function and kernel of a GP to build a flux-redshift template that could
predict the expected fluxes of certain band filters when this object is
redshifted to a different z. With each training object now becoming
a flux-redshift template, the final photo-z posterior distribution of a
testing set object is determined by making a pairwise comparison of
every training–testing pair, and a weighted solution is obtained based
on the best fits of each pair.

In other words, we are computing the probability that the target
galaxy has the same SED as the training galaxy but at a different
redshift. DELIGHT is thus a hybrid template machine learning photo-
z algorithm in the sense that SED templates are used to ‘guide’ the
creation of flux-redshift templates based on the training objects, or, if
seen from another perspective, the GP ‘corrects’ the SED templates
by using training data. We refer the reader to Leistedt & Hogg (2017)
for more on GPs, and also for the full expressions of the μ and k in
relation to the filter responses, flux normalizations, linear mixtures of
physical SED templates, and the manually configurable SED residual
function of emission lines.

DELIGHT is advantageous over many other photo-z algorithms as
its output is less dependent on representative training data, and it
does not strictly require the training set to use the same photometric
bands. However, it still requires accurate spectroscopic redshifts,
high-quality training fluxes, and representative templates to produce
high-quality photo-z PDFs, or p(z). As such, given a few photometric
bands, DELIGHT is able to predict missing bands or fluxes in an
entirely different set of photometric bands, and this function is
utilized in Section 4.1 to predict and calibrate the flux values between
two surveys.

3.2 DELIGHT optimization

The optimization settings of DELIGHT used in this work are as
follows. For the GP set-up, the number of Gaussians to fit the filter
curves (numGpCoeff) was set to seven instead of the default 20,
appropriately selected to accommodate the smaller full width at half-
maximum (FWHM) of the narrow-band filters. Other than that, we
have mainly used the default hyperparameter settings for DELIGHT

with the exception of the widths of the luminosity and redshift priors
σ � and σ z (ellPriorSigma and zPriorSigma; see Leistedt &
Hogg 2017), which have been lowered to 0.2 and 0.1, respectively,
as they produced better results.

As mentioned earlier, the mean function and the kernel of the GP
are modelled after the choice of emission lines and SED template
sets. We replaced the three default emission lines in DELIGHT with
the list provided by Eriksen et al. (2019), although we note that
the change in result for this is insignificant. As for the templates, we
used the Brown et al. (2014) high-quality templates, which consist of
129 SEDs derived from real nearby galaxies. These templates have
wavelengths covering the UV to mid-IR, and encompass a broad
range of galaxy types including ellipticals, spirals, merging galaxies,
blue compact dwarfs, and luminous IR galaxies. In this work we have
also tested the performance of various other template sets (Coleman,
Wu & Weedman 1980; Kinney et al. 1996; Bruzual & Charlot 2003;
Ilbert et al. 2006; Polletta et al. 2007); however, they do not perform
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as well as those of Brown et al. (2014): the root-mean-square photo-z
errors could range between 21 and 112 per cent higher when these
templates are used. Therefore, the results from these tests are not
shown in this work.

We note that DELIGHT requires all magnitudes mi and magnitude
errors to be converted into fluxes Fi and flux variances, with a zero-
point adjustment of 26.4 in magnitude (i.e. Fi = 10−0.4(mi−26.4)). We
have also added a 3 and 6 per cent flux error in quadrature to the flux
variances for the narrow and broad bands, respectively, to account for
other flux errors from both the data and the model (values estimated
via trial and error). It is also worth mentioning that while DELIGHT is
capable of processing negative fluxes (non-detections), the reference
band (referenceBand) used for flux normalization only handles
fluxes with positive values. In this work, we have selected the narrow-
band nb625 as the reference band, or the COSMOS r band in cases
where narrow bands were not used.

Throughout this work, we use zmap (the maximum a posteriori of
the PDF) to represent the best point estimate photo-z produced by
DELIGHT. The output photo-z PDF bins were set to be linear instead
of logarithmic, with a step size of 0.001, and a range of 0.02 < z <

1.65, keeping close to the limits of the spectroscopic redshifts.

3.3 Other algorithms

We are also interested in how DELIGHT compares to other common-
template-based or machine-learning-based methods besides BCNZ2
and DEEPZ. Therefore two other photo-z algorithms, ANNZ2 and BPZ,
are also used in this work, using the same training and template
sets, to be compared with the performance of DELIGHT. In the
following paragraphs, we briefly introduce the two algorithms and
their optimization settings.

ANNZ24 (Sadeh, Abdalla & Lahav 2016) is a machine-learning-
based photo-z algorithm that has been widely used in recent works
(Bonnett et al. 2016; Jouvel et al. 2017; Bilicki et al. 2018; Soo
et al. 2018; Schmidt et al. 2020) due to its high customizability
and its ability to produce PDFs. It uses the Toolkit for Multivariate
Data Analysis (TMVA; Hoecker et al. 2007) with ROOT (Brun &
Rademakers 1997), which allows it to run multiple different machine
learning algorithms for training, and outputs photo-zs based on a
weighted average of their performance. In this work, we ran ANNZ2
with a mixture of three machine learning methods, namely artificial
neural networks (ANNs), boosted decision trees (BDTs), and k-
nearest neighbours (KNNs); see Hoecker et al. (2007) for detailed
descriptions of these machine learning algorithms. An architecture
of N: 2N+1

3 : N+2
3 :1 was used for the ANN; the bagging method was

used to boost the decision trees; a polynomial kernel was used for
the KNN; while the other hyperparameters for each method were
individually optimized for best performance. ANNZ2 version 2.3.1
was used in this work, and the mean value of the PDF, zpdf, was
chosen to represent the photo-z point estimate.

BPZ5 (Benı́tez 2000), on the other hand, is one of the long-
standing template-based photo-z algorithms, and still widely used
today (Martı́ et al. 2014; Bundy et al. 2015; Cavuoti et al. 2017;
Tanaka et al. 2018; Joudaki et al. 2020; Raihan et al. 2020). Other
than sharing the usual attributes of a template-based code, BPZ uses
Bayesian inference, prior information of redshift distributions, and
template interpolation to improve photo-z results. BPZ version 1.99.3
was used in this work, and similar to DELIGHT the Brown templates

4https://github.com/IftachSadeh/ANNZ
5http://www.stsci.edu/ dcoe/BPZ/

were used, with the interpolation parameter set to 2. We assumed
the same functional form for the Bayesian priors as those used by
COSMOS (Laigle et al. 2016). The peak of the PDF, zb, was used as
the best photo-z point estimate.

Other than ANNZ2 and BPZ, the results of DELIGHT are also
compared to the results of BCNZ2, which was developed specifically
for the PAUS data (Eriksen et al. 2019). BCNZ2 is able to compute
a linear combination of SED templates and is designed to deal with
emission lines, extinction, and adjust zero-points between narrow
and broad bands, all of which are crucial in the context of PAUS. The
introduction of the code BCNZ2 and its early demonstration of PAUS
photo-z can be found in Eriksen et al. (2019).

4 FL U X C A L I B R AT I O N

This work utilizes fluxes obtained from two different surveys: the
PAUS narrow-band fluxes are measured using an aperture that covers
62.5 per cent of light from the galaxy, while COSMOS broad-
band fluxes are measured using a fixed 3 arcsec aperture. Therefore,
calibration is required to ensure that the flux values are consistent
with one another. We only calibrate the broad-band fluxes, leaving the
narrow-band fluxes untouched following Eriksen et al. (2019). The
calibration process is done in two steps: first we derive empirical
corrections to account for differences in the aperture photometry
(calibration for each galaxy), then placing all bands at the same
flux zero-point (calibration for each band). For the correction for
differences in flux aperture, we note that ideally this could have been
easily done if spec-zs are available; however, since the evaluation set
would not have spec-zs available, we present three alternatives in the
following sections to calibrate the fluxes photometrically.

4.1 Correction for differences in flux aperture

In the first step, we define a parameter Rg, a correction factor
estimated for each galaxy to be multiplied with all of its six uBVriz
broad-band fluxes. Ideally, this factor is estimated by first finding the
best-fitting Brown template for each galaxy using only 40 narrow-
band fluxes from PAUS and its true redshift. The best-fitting template
is then used to generate the predicted uBVriz fluxes, and a weighted
mean of the ratios between the predicted flux and the original
COSMOS flux Rg, b is calculated for each band b, given by

Rg =
∑

b Rg,b/σ
2
Rg,b∑

b 1/σ 2
Rg,b

, (5)

where the sum is over the six COSMOS broad bands, and σ 2
Rg,b is the

variance of Rg, b. Here we have assumed that the Brown templates are
sufficiently representative, and therefore the predicted flux derived
from it is the true flux of the broad bands. We have also assumed that
Rg, b should be almost the same across each band for each galaxy.
This calibration is motivated by the fact that each galaxy requires
a calibration between fixed size and adaptive aperture photometry
dependent on its apparent size.

We now explore three different methods to determine Rg from the
photometric data only.

4.1.1 The photo-z calibration method

The first method, which we call the photo-z calibration method,
is very similar to the method above except that we replace the
spectroscopic redshifts used to determine the predicted uBVriz flux
for the testing set with photometric redshifts. We first use DELIGHT
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PAUS: narrow-band photo-zs using GPs 4123

Figure 3. Top: correlation between r50 and Rg for the training set, where Rg

is a calibration correction factor estimated for each galaxy to be multiplied
with all of its six uBVriz broad-band fluxes. Bottom: the distribution of Rg of
the training set, estimated using the size calibration method. N is the number
of galaxies.

and only the 40 narrow bands to produce photo-zs for each object,
and then we use these photo-zs to estimate the predicted fluxes, and
then later Rg for each galaxy. This implies that the better the quality
of the photo-zs produced by only the 40 narrow bands, the better the
calibrated broad-band fluxes will be.

4.1.2 The size calibration method

The second method, hereafter the size calibration method, does not
require the production of predicted fluxes for the testing set. Instead,
this method uses the correlation between the sizes of galaxies with
their values of Rg in the training set, to predict the values of Rg for
objects in the testing set. With the predicted fluxes of the training set
known, we plot Rg against the 50 per cent light radius r50 (measured
in pixels) for each object, and obtain a best-fitting linear-least-squares
regression line in the process,

Rg = m r50 + c, (6)

where the slope and y-intercept are found to be m = 0.0101 and c
= 0.4504, respectively, with a correlation coefficient of r = 0.8349,
implying a strong positive correlation between Rg and r50.

With this relationship derived, the values of Rg for each object in
the testing set can be estimated. This method is motivated by the fact
that the size of galaxies is a defining factor for the difference in their
flux values when measured using a fixed aperture or when measured
using a fixed light radius. Fig. 3 shows a scatter plot of r50 versus
Rg for the training set, where the correlation equation is determined.
The distribution of Rg is also tabulated in the figure, it is shown to

have a median value of 0.6349, implying that on average COSMOS
measures more flux for each galaxy than PAUS. We note that in the
case when galaxies have undefined values of r50, we substitute them
with the mean value of r50 = 22.4934 pixels.

4.1.3 The flux calibration method

The third and final method is the flux calibration method, which is
similar to the method used by Eriksen et al. (2019), but simpler in
that the GP has a larger capacity to accommodate uncertainties. This
method makes use of the fact that there are overlaps in wavelength
between the COSMOS broad bands and PAUS narrow bands: the
V band overlaps with the narrow bands nb505–nb585 (nine bands);
the r band overlaps with nb565–nb685 (13 bands); and the i band
overlaps with nb705–nb835 (14 bands). This overlap is illustrated in
Fig. 4.

Similar to the previous method, no redshift information is required
for flux prediction, the Rg in this case is estimated by first averaging
the narrow-band fluxes within the range of the broad-band of interest
(V, r, or i), and then taking the ratio between the broad-band flux and
the averaged narrow-band fluxes. This will give us three values of
Rg, b for the three Vri bands, and finally Rg for each galaxy is taken
as the weighted average of the three values.

This method is simple yet effective: it does not involve the
spectroscopic redshift, the photo-z derived by 40 narrow bands, or
even the size of the galaxy. Here we assume that the Rg estimated
using Vri is applicable for the uBz bands as well. We will compare
the overall photo-z quality produced by the three methods above in
Section 5.2.

4.2 Correction to flux zero-points

After calibrating the COSMOS broad-band fluxes for each galaxy,
we proceed to calibrate the broad-band magnitude offsets within
each band. We perform a weighted least-squares fit between the
predicted broad-band fluxes (produced by DELIGHT using 40 PAUS
narrow-band fluxes, the respective best-fitting Brown templates, and
zCOSMOS spec-zs) and the original COSMOS uBVriz fluxes in the
training set, by using a simple linear equation,

ln(Fp,b) = ab ln(Fg,b) + cb, (7)

where Fp, b is the predicted flux for band b, Fg, b the COSMOS
broad-band flux after undergoing the per-galaxy calibration, and
ab and cb are constants to be optimized. The values of ab and
cb estimated for each band using the training set are now used to
calibrate the fluxes in the testing set, and these values are tabulated
in Table 1. A weighted fit was implemented, with the inverse
variances of the fluxes used as the weights, since we expect that
objects that are brighter to have relatively lower variances, and by
accounting for the variances of objects the fainter objects would be
upweighted.

As expected from the table, the values of ab and cb are very close to
1 and 0, respectively, since the calibrated flux for aperture correction
Fg, b is already very close to the predicted flux Fp, b. Essentially,
this process ‘straightens’ the correlation line, providing minor yet
essential improvements to the overall calibration.

4.3 Overall calibration performance

Fig. 5 shows the correlation between the broad-band fluxes predicted
by DELIGHT (using spectroscopic redshifts, PAUS 40 narrow bands,
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4124 J. Y. H. Soo et al.

Figure 4. The overlapping wavelengths between 34 PAUS narrow-band filters and three COSMOS broad-band filters: V band overlaps with nb505–nb585
(nine bands); r band overlaps with nb565–nb685 (13 bands); and i band overlaps with nb705–nb835 (13 bands). Note that the filter responses from PAUS and
COSMOS are normalized at different values, respectively.

Table 1. List of the best-fitting parameters ab and cb for
each band b when the predicted and original COSMOS
fluxes from the training set were fitted with a weighted
least-squares fit, using equation (7).

Bands ab cb

u 1.0007 ± 0.0001 0.0354 ± 0.0008
B 0.9906 ± 0.0002 0.2163 ± 0.0009
V 0.9988 ± 0.0002 − 0.0830 ± 0.0009
r 1.0006 ± 0.0002 0.0015 ± 0.0009
i 1.0202 ± 0.0001 − 0.0875 ± 0.0008
z 0.9791 ± 0.0001 0.0424 ± 0.0007

and Brown templates) and the COSMOS broad-band fluxes for
our training set, both before and after calibration (red and blue,
respectively). The figure only shows the result of the flux calibration
method, as the other two methods look very similar graphically
(which translates to a small difference in photo-z results shown later
in Section 5).

The rms values displayed in Fig. 5 show that for all bands, the
scatter between the original fluxes with respect to the predicted fluxes
has reduced by 63–88 per cent after the two-step calibration was done.
The scatter at low fluxes for the u and B bands remains evident,
which originated from the high uncertainty in flux measurements.
Despite the large decrease in scatter, we note that the rms value here
is not a metric of improvement for calibration as we do not have
the true values of the broad-band fluxes in the matched apertures.
However, the calibration of the broad-band fluxes did translate into
an improvement in photo-z scatter and 68th percentile error by about
70–80 per cent, as shown in Section 5.

5 R E SULTS AND DISCUSSION

Table 2 summarizes the results of this work, it shows all the photo-z
metrics we produced, using different algorithms (DELIGHT, ANNZ2,
and BPZ), different calibration methods (flux, photo-z, and size),
and different number of input fluxes (six broad bands, 40 narrow
bands, or both). We divide the analysis of the results into two
sections: Section 5.2 studies the performance between the three
calibration methods used in DELIGHT, while Section 5.3 compares
the best performance of DELIGHT with ANNZ2, BPZ, and BCNZ2. In

the following section, we briefly introduce the performance metrics
we used in this work.

5.1 Performance metrics

In this work, we use three metrics to quantify the performance of
the photo-z point estimates: the root-mean-square error (σ rms), the
68th percentile error (σ 68), and the outlier fraction rate (ηout). With
	z ≡ zphot−zspec

1+zspec
, the above metrics are defined as follows:

σrms ≡
√√√√ 1

N

N∑
i

|	zi |2, (8)

σ68 ≡ Q84.1 per cent (	zi) − Q15.9 per cent (	zi)

2
, (9)

ηout ≡ per cent objects, where |	zi | ≥ 0.15. (10)

Here N is the total number of galaxies, while Q is a per-
centile of the distribution. Since σ rms is calculated without the
outliers removed, it measures the overall scatter of the sample,
whereas σ 68 measures the scatter with reduced sensitivity to
outliers.

With similar motivations as Martı́ et al. (2014) and Eriksen et al.
(2019), we hope to achieve an overall photo-z error of σ 68 ≤ 0.0035(1
+ zspec) for at least 50 per cent of the testing sample after applying
an appropriately chosen quality cut. We use the Bayesian odds (
)
parameter (Benı́tez 2000) in DELIGHT, similar to its implementation
in ANNZ2 by Soo et al. (2018). 
 can be estimated from the photo-z
PDF, p(z), using the equation


 =
∫ zp+k(1+zp)

zp−k(1+zp)
p(z) dz, (11)

where zp is the peak of p(z) and k = 0.01. 
 ranges between 0 and
1, the higher the value, the lower the p(z) width, which implies a
more precisely predicted photo-z (though not necessarily accurate).
The value of k is arbitrary, appropriately selected such that not too
many objects end up having 
 = 1. Therefore, an x per cent quality
cut on the sample keeps the top x per cent of objects with the highest
values of 
.

To assess the quality of the p(z), we use probability integral
transform (PIT) plots and the continuous ranked probability score
(CRPS). The PIT is the cumulative distribution function (CDF) at
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PAUS: narrow-band photo-zs using GPs 4125

Figure 5. The uBVriz broad-band fluxes predicted by DELIGHT plotted against their original COSMOS fluxes, both before and after the two-step calibration
process (red and blue, respectively) for our training set, using the flux calibration method as an example. Based on the root-mean-square errors (σ rms) shown in
each panel, the broad-band fluxes match their prediction much better after calibration.

zspec while asserting the p(z) to have an area of unity. Since the
photo-z CDF is C(z) = ∫ z

0 p(z′) dz′, PIT is defined to be

PIT = C(zspec) =
∫ zspec

0
p(z) dz. (12)

A PIT distribution tells us on average if the p(z) produced are
‘adequately shaped’: the shape of the PIT distribution can tell us
if the p(z) produced are generally too wide/narrow, or if the p(z) are
over-/underpredicting the true redshift.

The CRPS on the other hand tells us how well the p(z)
encapsulates or predicts the true redshift (zspec). The CRPS of a p(z)

can be expressed as

CRPS =
∫ ∞

−∞

∣∣C(z) − H(z − zspec)
∣∣2

dz, (13)

where H(z − zspec) is the Heaviside step function with

H(z − zspec) =
{

1, z = zspec,

0, otherwise.
(14)

In this work, we use the symbol ρCRPS to represent the average CRPS
value of all galaxies in the testing sample, in which the smaller
the value, the better the p(z) are at predicting their true redshifts.
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Table 2. The root-mean-square error (σ rms), 68th percentile error (σ 68), outlier fraction (ηout), mean
continuous ranked probability score (ρCRPS), and the root-mean-square error in redshift distribution (nrms)
for the photo-zs produced in this work, using different algorithms, methods, and number of bands. All results
are produced using six broad bands (BB) and 40 narrow bands (NB) unless stated otherwise.

Photo-z methods σ rms σ 68 ηout (per cent) ρCRPS nrms

DELIGHT (six BB only) 0.0514 0.0441 0.93 0.0388 0.885
DELIGHT (40 NB only) 0.0684 0.0119 4.02 0.0298 0.637

DELIGHT (no calibration) 0.1555 0.0566 9.06 0.0887 0.895
DELIGHT (photo-z calibration method) 0.0335 0.0083 0.71 0.0158 0.634
DELIGHT (size calibration method) 0.0341 0.0095 0.76 0.0165 0.646
DELIGHT (flux calibration method) 0.0331 0.0081 0.86 0.0155 0.636
DELIGHT (flux calibration method, no GP) 0.0442 0.0089 0.98 0.0179 0.639

ANNZ2 0.0556 0.0396 2.66 0.0719 0.465
ANNZ2 (six BB only) 0.0371 0.0202 1.14 0.0522 0.432
BPZ 0.0368 0.0089 0.86 0.0184 0.740

BCNZ2 0.0403 0.0085 1.14 – –

We refer the reader to Polsterer, D’Isanto & Gieseke (2016) for a
detailed description of both PIT and CRPS.

Finally, we also assess the quality of the redshift distribution n(z).
We can find how similar the spec-z distribution nspec(z) is compared
to the photo-z distribution nphot(z) by estimating nrms, the root-mean-
square difference between the distributions:

nrms =
√∫ [

nphot(z) − nspec(z)
]2

dz. (15)

nrms provides us a quantitative measure to compare the performances
of photo-z with distributions produced by different codes.

5.2 Performance of DELIGHT

Rows 1 and 2 from Table 2 show the photo-zs produced when only
trained using the broad and narrow bands individually, and we find
that by combining both broad and narrow bands (rows 4–6), we have
achieved at least 34 per cent and 20 per cent improvement in the
photo-z scatter and σ 68, respectively (visualized in Fig. 6).

Rows 3–7 proceed to show the metrics for each calibration method,
and on average, the performance of each method is quite similar,
all within 4–16 per cent difference in σ rms and σ 68, respectively.
Statistically, the flux calibration method seems to perform slightly
better compared to the remaining ones, with the exception of the
photo-z calibration method having better values of ηout and nrms.
This suggests that while the photo-zs produced by training with only
40 narrow bands are not as competitive as when trained with all
46 bands and calibrated broad bands (see Table 2 and Fig. 6), it
is however sufficient to guide the calibration process. Note that we
have also included the results of DELIGHT run as a pure template code
when calibrated using the flux calibration method for comparison,
and we see that without the help of the GP, the photo-z results are
similar for most metrics except a degradation in scatter of up to
−33.5 per cent. Therefore the good results of DELIGHT shown here
are mainly due to the use of the Brown templates, the flux calibration,
the combination of broad and narrow bands, and also the work of
the GP.

As the three calibration methods presented in Section 4 all result
in very similar photo-z performance, we will only show results for
the flux calibration method in the following. It is notable however
that in all cases, the photo-z requirement of σ 68 < 0.0035(1 + z) is
achievable for all objects at iauto < 20.0, or objects with a 40 per cent


 cut at iauto < 22.5. All three methods also show that despite such
high percentage 
 cuts being implemented, a significant number of
high photo-z objects still remain in the sample.

5.3 Comparison with other algorithms

Since the DELIGHT results for each of the three calibration methods
are very similar to each other, we decided to select only the flux
calibration method to be compared to the results obtained by the two
other algorithms used in this work, ANNZ2 and BPZ. We also include
the point estimates from Eriksen et al. (2019). The values of σ rms,
σ 68, and other relevant metrics obtained from these algorithms are
shown in rows 8–11 of Table 2, and visualized in Fig. 7.

From the figure, it is found that ANNZ2, being a purely machine-
learning-based algorithm, is underperforming compared to the other
algorithms. This machine learning method is unable to make full
use of the extra information provided by the 40 narrow bands, and
is shown to perform better without them. This is partially due to
the problem of the curse of dimensionality (Bellman 1957), sharply
diluting the pattern recognition power of the algorithm as the number
of inputs increases. Besides, the very small training sample size may
have heavily affected the potential of ANNZ2. Here we note however
that the deep learning code DEEPZ is shown to work well on a similar
sample (Eriksen et al. 2020), therefore we hope to do follow-up
evaluations of ANNZ2 on PAUS data in the future when a larger
training set is available.

In terms of the quality of the point estimate photo-zs, DELIGHT is
shown to fare well against BCNZ2 and BPZ (Fig. 7), both of which are
purely template-based methods. As both DELIGHT and BPZ used the
same template sets in this case (i.e. the Brown templates), we find
that the GP contributed to 25 per cent and 9 per cent improvement
in the scatter and σ 68, respectively, as compared to the pure template
fit of BPZ.

Despite the similarities in the point estimates for the entire sample
(Table 2), when we cut the sample in percentages of 
 (Figs 8
and 9), we see two major differences. First, the cut in 
 for
BPZ does not systematically remove objects with high uncertainties
(especially for objects brighter than iauto = 21); and secondly, the
cut in 
 for BPZ selectively removes objects with lower photo-z.
In both cases, DELIGHT is shown to not only perform better in this
regard as compared to BPZ, but also better than all other algorithms
shown.
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PAUS: narrow-band photo-zs using GPs 4127

Figure 6. Plot of photo-z versus spec-z, comparing the photo-zs when trained and tested using only six uBVriz broad bands (BB, left), only 40 narrow bands
(NB, middle), and all 46 bands combined (right). The flux calibration method was used for this plot.

Figure 7. Plots of photo-z versus spec-z, comparing the results of the flux calibration method of DELIGHT (green), ANNZ2 trained with 46 bands/six broad bands
(orange), BCNZ2 (blue), and BPZ (magenta). The same colouring scheme will be used to represent the respective methods in the following plots.

A selection of sample p(z) produced by each algorithm is shown
in Fig. 10, while the overall quality of the p(z) produced is visualized
in the PIT plots as shown in Fig. 11. Once again we see DELIGHT on
average producing superior p(z) compared to ANNZ2 and BPZ: it is
obvious from the PIT plots that the p(z) produced by ANNZ2 are too
narrow (a U-shaped distribution), while those by BPZ are too wide (a

significant central peak). In terms of ρCRPS (see Table 2), DELIGHT

once again performs better than both BPZ and ANNZ2, where the
adequate shapes and accurately positioned peaks of the p(z) provide
good predictions of the true redshift.

We note that the p(z) produced by ANNZ2 are ragged compared
to BPZ and DELIGHT, this is due to the limited training sample
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Figure 8. Plots of σ rms (top) and σ 68 (bottom) with respect to iauto (cumulatively), comparing the performance of DELIGHT (left) with ANNZ2 (middle), BPZ

(right), and BCNZ2 (left, dashed lines). The coloured lines represent the sample when cut systematically in the Bayesian odds (
), keeping only objects with the
best 100 per cent (red), 90 per cent (orange), 80 per cent (green), 70 per cent (blue), 60 per cent (navy), 50 per cent (purple), and 40 per cent (magenta) values.
The black horizontal dashed line with σ 68 = 0.0035(1 + z) represents the photo-z quality target of PAUS for 50 per cent of the objects at i ∼ 22.5.

Figure 9. Plot of percentage of objects within each photo-z bin with respect to the cut in 
 value for the results of DELIGHT (top left), ANNZ2 (top right),
BCNZ2 (bottom left), and BPZ (bottom right). The lines use the same colour scheme as those in Fig. 8, while the histograms in the background show the photo-z
distribution for each method (relative number of objects in each photo-z bin).

size and the low number of network committees used. We in-
tend to look into several methodologies to smoothen machine-
learning-based p(z) that are limited by such conditions; this is
left for future work. The limited testing size has also produced
an nspec(z) distribution that is not smooth, thus despite ANNZ2
producing an n(z) closest to the spectroscopic distribution (lowest
nrms), it may have experienced overfitting. Having said that, for the
different DELIGHT runs shown in Table 2, the values of nrms are
consistent with the other metrics. Therefore, we leave the analysis
of n(z) to future work when a large enough testing sample is
available.

6 A PPLI CATI ON: I DENTI FYI NG PHOTO - z
O U T L I E R S

6.1 Analysing the photo-z outliers of DELIGHT and BCNZ2

As we compared the photo-z results, we discovered that there
are some galaxies that have similar DELIGHT and BCNZ2 photo-z
values; however, these redshift values are far from their respective
zCOSMOS spectroscopic redshifts or broad-band photo-zs. Since
both BCNZ2 and DELIGHT utilize the PAUS narrow bands, we expect
that the photo-zs they produce are more sensitive to emission lines as
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PAUS: narrow-band photo-zs using GPs 4129

Figure 10. Sample redshift PDF p(z) for the ANNZ2 (orange), DELIGHT

(green), and BPZ (magenta). The black vertical lines show the positions of the
spectroscopic redshifts.

compared to photo-zs produced using only broad bands. Therefore,
we suspect that objects that have similar photo-z values for DELIGHT

and BCNZ2 but have disagreeing spec-z values to be an indication of
either having (1) a catastrophic zCOSMOS spectroscopic redshift,6

(2) outlier broad-band or narrow-band fluxes, or (3) misidentification
of close neighbours.

For the purpose of this inquiry, we have selected 30 objects
from the sample that are photo-z outliers in zDELIGHT versus zspec

or zBCNZ versus zspec, yet are not outliers in zDELIGHT versus zBCNZ.
Mathematically, they satisfy the following conditions:

(i) |z DELIGHT−zspec|
1+zspec

≥ 0.15 or |z BCNZ−zspec|
1+zspec

≥ 0.15, and

(ii) |z DELIGHT−z BCNZ|
1+ z DELIGHT+z BCNZ

2
< 0.15.

Note that the zDELIGHT used here refers to the photo-z produced using
the flux calibration method, trained using 46 bands guided by the
Brown templates.

These 30 objects are visualized in the redshift–redshift plots in
Fig. 12. Note that in the following paragraphs, we will define a photo-
z to be catastrophic if it is found to be an outlier with respect to its
spec-z, as defined mathematically above. These objects are found to
have faint magnitudes (iauto > 19.75) and small angular sizes (r50 < 60
ACS pixels, or 1.8 arcsec), which describe most galaxies of interest
for PAUS. We study several different attributes of these objects,
namely their respective photo-zs by DELIGHT, BCNZ2, and LEPHARE,
photo-z PDFs, best-fitting templates (Brown and GP), spectra, and
images. We summarize important observations according to their
respective attributes below.

Photo-zs. While these 30 objects have been identified as outliers
when trained using 46 bands, we find that two-thirds of these objects
have non-catastrophic photo-zs when trained with either only the
broad or narrow bands, respectively. In other words, only one-third
of these objects have catastrophic photo-zs regardless of which bands
were used in the training or fitting process. This suggests that most of
the time, outlier fluxes in the broad or narrow bands may have caused
a degradation in photo-z quality when trained together (more on this
in the templates paragraph below). We have also made a comparison
between DELIGHT photo-zs with those produced by LEPHARE for
the COSMOS2015 catalogue (Laigle et al. 2016), and found that in
fact half of the 30 objects have non-catastrophic LEPHARE photo-zs.
This suggests that the IR yJHK bands could have played a role in
improving the PAUS photo-zs, and could be incorporated in future
trainings in case the PAUS photometry is problematic.7

Photo-z PDFs. We inspected the secondary/tertiary peaks of
the PDFs for all DELIGHT runs (trained with six broad bands, 40
narrow bands, or both), and find that less than 20 per cent of
these secondary/tertiary peaks coincide with their respective spec-zs.
We deduce that despite the importance of secondary PDF peaks in
redshift distributions, they do not significantly influence the photo-z
quality of these 30 objects.

6While we have already selected to use only secure spectroscopic redshifts
in this work, we still deem this as a possibility, since a 1 per cent outlier rate
in 4000 + spec-z measurements may still yield 40 objects, which is within
the same order of number of objects being investigated in this section. Our
results later in this section however have verified that most of the outliers are
not caused by catastrophic spectroscopic redshifts.
7We note that these additional bands will not be available over most of PAUS,
which targets Canada–France–Hawaii Telescope Legacy Survey (CFHTLS)
wide fields W1 to W4. There is however some IR data on these fields provided
by the Wide-field InfraRed Camera (WIRCam) and the VISTA Kilo-degree
Infrared Galaxy (VIKING) survey.
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Figure 11. Probability integral transform (PIT) distributions for the p(z) produced by the four different algorithms: DELIGHT (green), BCNZ2 (blue), ANNZ2
(orange), and BPZ (magenta). The dashed horizontal line indicates the mean of the distribution, and a flat distribution is ideal. A U-shaped distribution indicates
that the p(z) produced are too narrow, while a mountain-peak shaped distribution indicates that the p(z) produced are too wide.

Figure 12. The selected 30 objects (red dots) marked for this outlier analysis. These objects are photo-z outliers of either DELIGHT or BCNZ2 with respect to
zspec, but are not outliers with respect to each other.

Templates. DELIGHT utilizes the 129 Brown et al. (2014) templates
and the 4203 training objects to guide the GP to produce the same
number of new flux–redshift templates, which are used to produce
photo-zs for the objects. In the training process, DELIGHT would
always choose one best-fitting Brown template for each training
galaxy to be trained by the GP. Here we inspected two different
kinds of best-fitting Brown templates to these 30 outliers: one fixed
at the spec-z, and the other with the redshift as a free parameter. In
both cases, we examined

(i) if the objects fit to the same templates when trained with only
broad bands, only narrow bands, or both, respectively;

(ii) if there are any trends in galaxy morphological types, based
on the galaxy type classification indicated by the template;

(iii) if there is any correlation between the χ2 value of the best-
fitting templates and the quality of photo-zs; and

(iv) if any outlier narrow-band fluxes can be identified as the cause
of the degradation of photo-z.

As expected, we find that 70 per cent of the outlier objects
have different best-fitting Brown templates between the fits at fixed

photo-z and spec-z, which contrasts with the case for non-outliers
at only 35 per cent. We also find that only slightly more than a
third of both the outlier and non-outlier objects were fitted to the
same templates when trained using broad bands as compared to
trained with all 46 bands. The high percentage of objects with
different template fits at different reference redshifts (photo-z or
spec-z) and flux combinations (broad bands, narrow bands, or both)
also resulted in no trend in galaxy morphological types among the
outliers.

However, it was found that up to 60 per cent of the objects have
their best-fitting template χ2 value correlating with the quality in
photo-z, which further affirms the usage of this as a metric to remove
unreliable photo-zs (see Section 6.2), as also attempted by Eriksen
et al. (2019, 2020).

Perhaps a more significant finding from the study of the best-fitting
templates is the ability to identify outlier narrow-band fluxes. Fig. 13
shows an example that highlights the importance of identifying
outlier narrow-band fluxes, which is shown to significantly affect
the photo-z results. It was found that a third of the 30 objects
contained outlier narrow-band fluxes, which results in entirely
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Figure 13. A sample of best-fitting Brown templates (unfixed redshift) when
fit to only broad-band fluxes (top), only narrow-band fluxes (middle), and
both fluxes (bottom) for the galaxy with zCOSMOS ID 805216. Lv(λ) is the
rest-frame luminosity density (or SED) of the galaxy. This galaxy has zspec

= 0.736, zp and tb in the figure refer to its photo-z and best-fitting Brown
template number, respectively. The outlier narrow-band flux shown in the
middle panel (red circle) has caused a misfit in template type, resulting in
erroneous photo-zs for both cases.

different template fits and photo-zs when trained with narrow bands,
as compared to when trained with broad bands only. Among these
10 objects, eight of them are shown to have worse photo-z as
compared to training without the narrow bands. We find indications
for a significant fraction of narrow-band flux outliers also for
galaxies without catastrophic redshift failures. Forthcoming PAUS
data reductions will therefore implement methods to identify and
correct flux outliers.

Images. We inspect the individual object images compiled by
zCOSMOS DR3, these are 5 × 5 arcsec2 images observed by the
Hubble Space Telescope/Advanced Camera for Surveys (HST/ACS)
in the F814W filter (Koekemoer et al. 2007). Among the 30 outlier
objects, we find 63.3 per cent and 26.7 per cent of them having bright
neighbours within 5 and 3 arcsec of the primary source, respectively.
Having said that, we have not found any correlation between the
presence of bright neighbours to the other attributes that we have
studied thus far. In fact the opposite is true: we find that 60 per cent
of the objects with outlier narrow-band fluxes actually have primary
sources without any bright neighbours in vicinity.

Spectra. So far we have assumed that the zCOSMOS spectra
obtained are reliable, as only entries with high-confidence quality
flags have been selected for training (see Section 2.3). In order to
probe further, we examined the one-dimensional spectra obtained
by the VIMOS spectrograph, which is processed by the VIMOS

Interactive Pipeline and Graphical Interface (VIPGI; Scodeggio et al.
2005) to produce the zCOSMOS spec-zs used in this work. The
spectra have a range between 5500 and 9450 Å, measured with a
resolution of R ∼ 600 at 2.5 Å pixel−1 (Lilly et al. 2009).

We used the redshift measurement tool EZ (Garilli et al. 2010)
to inspect the spectra of the 30 outlier objects, and compared our
best fits to the spectroscopic redshift produced by zCOSMOS, and
also the photo-zs produced by DELIGHT, BCNZ2, DEEPZ, LEPHARE

(COSMOS2015), and those of Alarcon et al. (2020).
Upon inspection, we find that up to 10 of these objects (33 per cent)

have disputable zCOSMOS spec-z (e.g. two possible redshift values,
different best-fitting redshift values, line confusion, and low signal-
to-noise ratio). However, most of these potential spec-z failures could
be force fitted to the zCOSMOS spec-z and still look satisfactory,
which leaves only two (6.7 per cent) of these objects having truly
catastrophic spec-zs. Both these objects are found to have better EZ

fits at redshift values within 10 per cent uncertainty from the photo-zs
produced by DELIGHT and other algorithms. The spectrum of one of
these objects is shown in Fig. 14. We have also found one isolated
case where the spectra belonged to a bright neighbour and have been
mismatched to the PAUS photometry.

Generally, the higher redshift objects are identified by clear O II

(3727.1 Å) emission lines, while the lower redshift objects are
identified by clear Hα (6564.6 Å) emission lines. We therefore
conclude that although catastrophic spec-zs played a role in this
situation, our results did not provide enough evidence to say that it
is a major cause for catastrophic photo-zs produced by BCNZ2 and
DELIGHT. This is not surprising since we have only selected secure
spectroscopic redshifts from COSMOS to be used in this work.
However this highlights the usefulness of multiple PAUS photo-
zs being used to determine failure rates in insecure spectroscopic
redshifts.

To summarize this part, we believe that the potentially important
source for catastrophic photo-zs in the context of PAUS is the outlier
narrow-band fluxes, with weak evidence for the existence of a small
number of spec-z failures. We leave the tackling of outlier narrow-
band fluxes to future work, but in the following section, we attempt
to improve our process to identify and remove these outlier photo-zs.

6.2 New metrics to remove photo-z outliers

In Figs 8 and 9, we have used the Bayesian odds (
) to cut the
sample, and the aim of this was to keep as many objects as possible
while achieving the goal of σ 68 ≤ 0.0035(1 + z). Here, we extend
our previous results further towards that goal by introducing several
new metrics to better separate the photo-z outliers from the sample.
These metrics are motivated by the inspection of the 30 outliers in
Section 6.1, and they are defined as follows.

(i) The DELIGHT–BCNZ2 metric (	DB),

	DB ≡ |z DELIGHT − z BCNZ|
1 + z DELIGHT+z BCNZ

2

, (16)

a metric used to identify the similarity between DELIGHT and BCNZ2
photo-zs. It is plausible that, in general, the closer the photo-zs
between the two algorithms, the more reliable they are.

(ii) The DELIGHT photo-z standard deviation (σ D), which is the
standard deviation between all DELIGHT photo-z runs regardless of
calibration method and number of bands. Smaller deviations could
indicate more reliable photo-zs.
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Figure 14. Spectral line fitting (red) for the original spectra (black) of the galaxy with zCOSMOS ID 804179. The spec-z given by zCOSMOS is 0.4217 (top),
while the best fit using EZ (Garilli et al. 2010) gives a spec-z of 0.0847 (bottom), which is closer to the photo-z value of 0.1150 estimated by DELIGHT.

(iii) The chi-squared value of the best-fitting Brown template (χ2
t ),

where we identified a trend that the better the fit, the more reliable
the photo-z.

(iv) The broad-band–narrow-band complementary metric (ρ2),

ρ2 ≡
∫

pBB(z)pNB(z) dz, (17)

where pBB(z) and pNB(z) are the p(z) produced by DELIGHT when
trained with only broad bands and only narrow bands, respectively.
By multiplying these two p(z) and summing over the distribution at
each step i, we can identify the consistency between the broad-band
and narrow-band p(z). A higher value of ρ2 means a larger overlap,
which indicates more reliable photo-zs.

Together with 
 and the DELIGHT photo-z error (δz), we yield a
total of six metrics to experiment with. Using the results from the flux
calibration method, we generate and test the individual performance
for each of these metrics. For each metric, we measure the σ rms

and σ 68 after systematically removing objects with the worst metric
values, 10 per cent of the total sample size each time, until we reach
a sample size of only 40 per cent.

We also repeat the exercise by using combined cuts on several
metrics, testing all 57 combinations of the six metrics. We note that
we do not combine the metrics by averaging or multiplying them, as
it would have diluted the impact of the individual metrics. Instead,
we rank the values for each metric individually (from best to worst),
and remove objects rank by rank, starting with metric values lying
in the worst rank. For example, for the combination of metrics 


+ 	DB, we first remove all objects that share the worst values of 


and 	DB, then remove all objects sharing the second worst values of
them, and so on, until we reach a required sample size percentile (90,

80, etc.), where we output the values of σ rms and σ 68. We visualize
the performance of these metric cuts at several percentiles for σ 68

with respect to iauto (cumulative) in Fig. 15.
We find that each performance metric cuts the sample differently:

while metric cuts of σ D and ρ2 reduce the scatter (σ rms) significantly,
metric cuts of 
 and 	DB reduce the σ 68 instead. The metric χ2

t ,
however, does not seem to bring any significant improvement to

the results. We have also plotted a cut in 	z = |zphot−zspec|
1+zspec

(bottom
left-hand panel in Fig. 15), which is the theoretical ‘best metric’,
providing an upper limit to be compared with the performance of
each of the metrics. Here we noticed that even with the theoretical
best metric, a cut of slightly lesser than 70 per cent (blue line) on the
sample is still necessary to fulfil the PAUS target of σ 68 < 0.0035(1
+ z) (dotted line) for DELIGHT.

Therefore, we select the 60 per cent cut (navy line, retaining 60 per
cent of galaxies) as a benchmark to assess the performance of these
metrics, we do so by locating where this line cuts the dotted line (i.e.
finding the maximum value of iauto where the photo-zs achieves the
PAUS target at 60 per cent cut). From Fig. 15, it is clear that cutting
in all six metrics does not necessarily outperform the performance
when cutting with only 
, so we searched for the best combination
of metrics for σ rms and σ 68 separately.

For σ rms, the best combination of metrics is 	DB + σ D + ρ2, and
this combination achieves σ rmS < 0.0035(1 + z) at iauto < 19.27 at
60 per cent cut, a significant improvement to the case when only

 was used, where it did not cut the line at all. For σ 68, the best
combination of metrics is 
 + 	DB where it reached σ 68 < 0.0035(1
+ z) at iauto < 21.25 at 60 per cent cut, which is also a significant
improvement as compared to 
 at iauto < 20.88. Here we note that in
fact using 	DB alone, the target can be reached at a higher limit

MNRAS 503, 4118–4135 (2021)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/503/3/4118/6166758 by U
niversity C

ollege London (inactive) user on 08 O
ctober 2024



PAUS: narrow-band photo-zs using GPs 4133

Figure 15. Plot of 68th percentile error (σ 68) versus iauto (cumulative) when cut using the following metrics: the Bayesian odds (
), best-fitting Brown template
χ2

t value, DELIGHT–BCNZ2 metric (	DB), DELIGHT photo-z error (δz) and standard deviation (σD), and the broad-band–narrow-band complementary metric (ρ2).
The coloured lines follow the same percentile cuts as shown in Fig. 8, with the dotted-coloured lines in the background of the bottom panels depicting the results
of 
 for easier comparison. The bottom left-hand panel shows the cut in 	z (defined in Section 5.1), the unsurpassable theoretical best used for reference. The
bottom-middle panel shows the cuts when all the above metrics were combined, while the bottom right-hand panel shows the combination of metrics that yield
the best results.

of iauto < 21.50, which highlights the significance of a synergy
between DELIGHT and BCNZ2 in selecting a high-quality photo-z
sample.

Finally, we also show the performance of the metrics in terms of
the completeness with respect to the photo-z (using DELIGHT’s flux
calibration method), visualized in Fig. 16. We find that metrics like
σ D and ρ2 tend to selectively remove high photo-z objects, while 
,
χ2

t , and 	DB tend to remove mid-ranged photo-z objects. In general,
a cut using all six performance metrics at 60 per cent cut shows a
balanced result in the completeness, keeping a sufficient number of
high-redshift objects in the sample.

To summarize the performance of the individual metrics,

(i) χ2
t is the least-performing metric here; it does not bring

significant positive impact to the results;
(ii) cuts in σ D and ρ2 help to improve the scatter, however, they

tend to selectively remove higher photo-z objects from the sample;
(iii) 
 and δz show very similar results, however, 
 tends to keep

more high photo-z objects in the sample; and
(iv) 	DB is the best-performing metric here, and we recom-

mend the use of such a metric to remove outlier photo-zs from a
sample.

7 C O N C L U S I O N A N D F U T U R E WO R K

In this work, we have optimized DELIGHT, a hybrid template machine
learning algorithm such that it could be used to obtain photo-zs for
PAUS, by utilizing its 40 narrow-band fluxes combined with six

uBVriz COSMOS broad-band fluxes. We have shown three distinct
methods to calibrate the broad-band and narrow-band fluxes, and
found that all three methods yield comparable results, although the
most stable and the one which produces the lowest value of σ 68 is
what we defined as the flux calibration method: a method where
we calibrate the broad-band fluxes with respect to the narrow-band
fluxes by finding the flux ratio of the filter combinations that overlap.
This calibration method is entirely photometric, and it was able to
produce photo-zs with a scatter reaching as low as σ rms = 0.0331(1
+ z) and σ 68 = 0.0081(1 + z) for the full PAUS galaxy sample at
iauto < 22.5.

We have also compared the results of DELIGHT with a machine
learning algorithm (ANNZ2) and a template-based algorithm (BPZ and
BCNZ2). We find that ANNZ2 underperforms significantly, indicating
that ANNZ2 in its basic form is not suitable for narrow-band surveys
with large number of bands and small number of training objects.

Despite the photo-z performance of BPZ being within 9 per cent
difference of that of DELIGHT, the latter still stood out in terms of the
quality of the photo-z PDF p(z) (16 per cent better in ρCRPS) and the
effectiveness of its Bayesian odds (
) cut in retaining objects with
higher quality photo-z without losing too many high-redshift objects.
DELIGHT is also shown to produce competitive results as compared
to BCNZ2 (5 per cent lower in σ 68), the default photo-z produced for
the PAUS.

Further investigation on the common photo-z outliers of DELIGHT

and BCNZ2 led to the conclusion that outlier narrow-band fluxes are
the main cause for erroneous photo-zs, an insight that will inform
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Figure 16. Plot of percentage of objects within each photo-z bin with respect to the cut in performance metric values listed in Fig. 15. The lines show the
percentiles of the same colour scheme as in Fig. 8, while the histograms in the background show the relative number of objects in each photo-z bin. The bottom
right-hand plot shows when the combination of all six metrics are used to cut the sample.

improvements in forthcoming PAUS data reductions. We have also
inspected the spectra and identified catastrophic spec-zs, however,
the effects are shown to be insignificant in this work. Motivated by
the study of 30 outliers shared between DELIGHT and BCNZ2, we
introduced several new metrics to help improve the identification
of photo-z outliers and remove them from the sample to achieve
better results. From the six metrics compared, our newly introduced
DELIGHT–BCNZ2 metric (	DB) is shown to significantly improve
our photo-z quality, allowing it to reach the PAUS target of σ 68

< 0.0035(1 + z) at iauto < 21.5 while retaining 60 per cent of
the sample objects. These new metrics could be utilized to return
more accurate uncertainties in redshift, which are vital in many
cosmological studies.

This opens the door to future studies in finding synergies between
different photo-z algorithms and between broad-band and narrow-
band photometry. Together with the promising developments of deep
learning approaches to deal with narrow-band data (Eriksen et al.
2020), these insights will pave the way towards unprecedentedly
precise and accurate photometric redshifts for the full PAUS survey
and beyond, like the Javalambre-Physics of the Accelerating Uni-
verse Astrophysical Survey (J-PAS; Benı́tez et al. 2014).
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