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To interact meaningfully with its environment, an agent must integrate external information with its own internal 

states. However, information about the environment is often noisy. In this study, we identify a neural correlate 

that tracks how asymmetries between competing alternatives evolve over the course of a decision. In our task 

participants had to monitor a stream of discrete visual stimuli over time and decide whether or not to act, on 

the basis of either strong or ambiguous evidence. We found that the classic P3 event-related potential evoked by 

sequential evidence items tracked decision-making processes and predicted participants’ categorical choices on 

a single trial level, both when evidence was strong and when it was ambiguous. The P3 amplitudes in response 

to evidence supporting the eventually selected option increased over trial time as decisions evolved, being max- 

imally different from the P3 amplitudes evoked by competing evidence at the time of decision. Computational 

modelling showed that both the neural dynamics and behavioural primacy and recency effects can be explained 

by a combination of (a) competition between mutually inhibiting accumulators for the two categorical choice 

outcomes, and (b) a context-dependant urgency signal. In conditions where evidence was presented at a low rate, 

urgency increased faster than in conditions when evidence was very frequent. We also found that the readiness 

potential, a classic marker of endogenously initiated actions, was observed preceding movements in all conditions 

- even when those were strongly driven by external evidence. 
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. Introduction 

Human agents often face decisions where there are no compelling ex-

ernal or internal reasons to decide one way rather than another. How-

ver, successful behaviour requires the capacity to break the symmetry

etween alternatives and pick one of them. How do we decide what to

o when the available information is ambiguous? 

Decision-making is often described as a sequential sampling process,

here evidence is continuously sampled and accumulated, triggering a

ecision or action once a given threshold is reached ( Forstmann et al.,

016 ). Decisions in the absence of clear exogenous information may

esult from a combination of noisy accumulation processes either in

ensory or motor areas ( Bode et al., 2013 ; Schurger et al., 2012 ) and

 time-varying urgency signal that modulates the accumulation pro-

ess over time, adjusting the accuracy criterion as time elapses ( Carland

t al., 2019 ; Churchland et al., 2008 ; Thura et al., 2014 ). Here, we used

 temporally-extended decision-making task involving sequential pre-

entation of evidence items to investigate the neural correlates of how

hoices emerge when they are underdetermined (i.e. not strongly sup-

orted) by the available evidence. In particular, we investigated two

eural signals that might reflect the evolution of a decision variable and
∗ Corresponding author. 

E-mail address: eparesp@gmail.com (E. Parés-Pujolràs). 

ttps://doi.org/10.1016/j.neuroimage.2021.117863 

eceived 6 October 2020; Received in revised form 1 February 2021; Accepted 9 Feb

053-8119/© 2021 The Author(s). Published by Elsevier Inc. This is an open access 

 http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
ction initiation: the P3 event-related potential and the Readiness Po-

ential (RP). 

Research in monkeys has shown that the firing rate of single neu-

ons in lateral and medial intraparietal areas (LIP/MIP) build to thresh-

ld tracking decision-making processes in macaque monkeys ( de La-

uente et al., 2015 ; Kiani et al., 2008 ; Roitman and Shadlen, 2002 ;

hadlen and Newsome, 2001 ; Shadlen et al., 1996 ). Because neural pop-

lations respond to specific decision-relevant stimuli, such as leftward-

r rightward- drifting dots, these neural responses have been described

s ‘categorical’ ( Fitzgerald et al., 2011 ; Freedman and Assad, 2006 ;

waminathan et al., 2013 ; Swaminathan and Freedman, 2012 ). While no

EG correlates of such categorical processing during evidence accumu-

ation have been found in humans, the P3 event-related potential and the

elated Centro-Parietal positivity (CPP) are promising candidates. These

ignals have been shown to exhibit build-to-threshold dynamics, corre-

ating with the task difficulty and reaction times ( Kutas et al., 1977 ;

womey et al., 2015 ), tracking the evolution of multimodal decisions

 O’Connell et al., 2012 ; Steinemann et al., 2018 ) and random dot mo-

ion (RDM) stimuli ( Kelly and O’Connell, 2013 ). However, to the best

f our knowledge, it remains unknown whether the P3 or CPP can be

sed to track which decision people will make. Previous EEG studies
ruary 2021 

article under the CC BY-NC-ND license 

https://doi.org/10.1016/j.neuroimage.2021.117863
http://www.ScienceDirect.com
http://www.elsevier.com/locate/neuroimage
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neuroimage.2021.117863&domain=pdf
mailto:eparesp@gmail.com
https://doi.org/10.1016/j.neuroimage.2021.117863
http://creativecommons.org/licenses/by-nc-nd/4.0/


E. Parés-Pujolràs, E. Travers, Y. Ahmetoglu et al. NeuroImage 232 (2021) 117863 

c  

e  

e  

s  

t  

d  

a  

O  

i  

a  

c  

d

 

n  

n  

s  

H  

2  

(  

i  

s  

m  

h  

g  

d  

d  

t  

w

 

a  

l  

f  

E  

+  

e  

s  

s  

T  

t  

t  

d  

r  

a  

(  

2  

r  

a  

t  

-  

d  

c  

s  

t  

2

2

 

d  

h  

k  

o  

a  

b  

p

 

p  

n  

p  

S  

f

2

 

a  

o  

b  

p  

w

2

 

c  

d  

p  

d  

n  

T  

r  

‘  

s  

f  

t  

i  

t  

t  

p  

a  

d  

c  

o  

a  

n  

o  

o  

h  

c  

s  

w  

e  

t  

t  

h  

t

 

t  

t  

t  

d  

s  

I  

o  

p  

w  

c  

o  

f  

b  

t

ould not separately resolve the neural activity evoked by evidence for

ach of two alternative actions, due to the type of stimuli used. For

xample, many studies considered a single composite variable corre-

ponding to the differential evidence for one choice over another rather

han providing separate readouts of the evidence for each choice in-

ependently. The graded contrast measures of O’Connell et al. (2012) ,

nd the centro-parietal positivity during random dot motion ( Kelly and

’Connell, 2013 ) are of this kind. Thus, previous EEG studies could not

ndependently track the emerging neural representation of each choice

lternative and could not identify human equivalents of the ‘categori-

al’ neural responses identified in studies of single unit activity during

ecision-making. 

Finally, we aimed to investigate the potential role of motor

oise accumulation as a symmetry-breaking mechanism. The Readi-

ess Potential (RP) has been identified as a reliable neural precur-

or of spontaneous action ( Deecke and Kornhuber, 1978 ; Keller and

eckhausen, 1990 ; Khalighinejad et al., 2018 ; Schultze-Kraft et al.,

016 ), and since it appears to be absent in cued-reaction tasks

 Jahanshahi et al., 1995 ; Papa et al., 1991 ), it has traditionally been

nterpreted as a marker of intentional action initiation. However, RP

hapes can be obtained by averaging of stochastic fluctuations in the

otor system in humans ( Schurger et al., 2012 ) and spontaneous be-

aviour in mice ( Murakami et al., 2014 , 2017 ). Thus, it has been sug-

ested that the RP may reflect accumulation of internal noise and play a

eterminant role in breaking the symmetry to trigger action in arbitrary

ecisions, but not deliberate ones ( Maoz et al., 2019 ). Here, we aimed

o test this hypothesis by comparing neural precursors of actions either

eakly or strongly informed by evidence. 

In this experiment, participants had to decide whether to make an

ction on the basis of extended sequences of discrete stimuli. Each trial

asted for exactly 25 s and participants were not rewarded for acting

ast, so the timing of their decisions and actions was largely self-paced.

ach discrete target stimulus either favoured acting (positive evidence,

 Ev), or withholding action (negative evidence, -Ev), and the balance of

vidence types varied between an easy and a difficult condition. These

timuli crucially allowed us to track the progressive emergence of choice-

pecific decision signals with each successive, discrete item of evidence.

o do so, we developed a novel ‘snapshot measure’ approach. Rather

han measuring continuous parietal activity from trial onset to decision

ime, we looked at the P3 responses evoked by discrete, sequential evi-

ence items. We assumed that parietal populations hold sustained rep-

esentations of an internal decision variable ( O’Connell et al., 2012 ),

nd that representations for alternative action possibilities are distinct

 Fitzgerald et al., 2011 ; Freedman and Assad, 2006 ; Swaminathan et al.,

013 ; Swaminathan and Freedman, 2012 ). We hypothesised that the P3

esponse evoked by sequential task-relevant items, which should reflect

ctivity of category-selective parietal neural populations, would track

he accumulated evidence for that hypothesis ( + Ev, evidence for Action;

Ev, evidence for No-Action). In that case, P3 responses should evolve

ifferently for selected and unselected options and track participants’

hoices on each trial as they unfold. Further, comparing neural precur-

ors of action in easy and difficult conditions allowed us to test whether

he RP could reflect a symmetry-breaking mechanism at the motor level.

. Methods 

.1. Participants 

All participants were recruited from a departmental participant

atabase (ICN Subject Database). All participants were healthy, right-

anded, young adults with normal or corrected to normal vision, no

nown disabilities and no history of neurological or psychological dis-

rder. The study was approved by the UCL Research Ethics Committee

nd written informed consent was obtained from all participants before

eginning the experiment. Subjects were paid £7.50 per hour, plus a

erformance-dependant reward (see below). 
2 
Nineteen subjects were initially invited to a single EEG session. Three

articipants were excluded from EEG analysis due to excessive EEG

oise in the electrodes of interest (Cz & Pz). Eventually, 16 partici-

ants (13 female) were included in the EEG analysis ( M age = 22.66,

D = 3.19; range: 19–30 years). All participants ( N = 19) were included

or the computational modelling analysis. 

.2. Procedure 

Participants sat in a quiet room and were presented visual stimuli on

 computer monitor. The instructions for the task were first displayed

n the computer screen and then verbally repeated by the experimenter

efore the beginning of the experiment. Before the experiment, partici-

ants performed a practice version of the task (5 trials) to get familiar

ith the experiment. 

.3. Task & experimental design 

The experiment was programmed in Matlab R2015a and Psy-

hophysics Toolbox v3 ( Brainard, 1997 ). Participants performed a

ecision-making task ( Fig. 1 a) . Each trial started with either a blue or a

ink background, and a 4 Hz, 25 s letter stream containing relevant and

istractor stimuli was presented. All letters were lower-case black conso-

ants presented without any blank interval between consecutive letters.

here were two sets of task-relevant (target) letters, to which a task-

elevant colour was assigned (in parenthesis): ‘b’ and ‘d’ ( bd, blue), and

p’ and ‘q’ ( pq, pink). Participants were instructed to monitor the letter

tream and decide whether one set of target letters ( bd ) appeared more

requently than another set ( pq ). Participants’ task was to make sure that

he background colour matched the more frequent group of letters (i.e.

f the most frequent set of targets was bd , the screen should be blue. If

he most frequent set of targets was pq , the screen should be pink). If

he initial colour of the screen on a given trial matched the set of targets

articipants perceived as most frequent, they were not required to do

nything ( No-action trials). If the initial colour of the screen on that trial

id not match the most frequent set of targets, they had to press the key

orresponding to the colour they wanted to switch it to (i.e. either pink

r blue) with the left or right hand respectively ( Action trials ). They were

llowed to switch the colour of the screen only once per trial. There was

o incentive to respond fast, since trials were not terminated at the time

f response and stimuli continued to appear on the screen until the end

f the 25 s. At the end of each trial, participants were asked to report

ow confident they were that changing the colour of the screen (or not

hanging it) was the correct choice using a Visual analog Scale (VAS) by

liding a scrollbar with a standard computer mouse. Confidence ratings

ere obtained as an exploratory measure, as we had no a priori hypoth-

sis regarding its relationship to the neural variables of interest. Given

hat the subjective time of commitment to an action has been linked to

he neural precursors of movement ( Libet et al., 1983 ), if participants

ad acted they were also asked to estimate at what point during the trial

hey acted, again using a VAS. 

The frequencies of the two sets of targets, together with the colour of

he screen at trial onset defined four experimental conditions ( Fig. 1 b ). In

he Informative conditions, the most frequent set of letters would appear

wice as frequently as the other set. The stimuli were presented at a ran-

om time every 1 to 4 s (frequent stimuli) or every 1 to 8 s (infrequent

timuli). Thus, there was strong evidence either for or against action.

n the Informative anti-Action condition, the colour of the screen at trial

nset and the most frequent set of targets matched (i.e. the frequency of

q > bd and the screen was pink, or frequency of pq < bd and the screen

as blue). Hence, participants should not press a key to change the

olour of the screen. In the Informative pro-Action condition, the colour

f the screen and the most frequent set of targets did not match (i.e. the

requency of pq > bd and the screen was blue, or the frequency of pq <

d and the screen was pink). Therefore, participants should press a key

o switch the colour of the screen. 
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Informa�ve -
Blue

Informa�ve –
Pink NH NL

bd 1:16 1:32 1:16 1:32

pq 1:32 1:16 1:16 1:32

a.

b.

b, d

p, q

c.

-Ev
+Ev

i = 100

v m n w d n r x p s
250 msNo-

action

Action

z m d x m n b rv m n w q n r x b s z m p x m n p s
v m n w d n r x p s z m d x m n b wv m n w q n r x b s z m p x m n p v

How confident 
are you?

_________

When did you 
switch?

_________…
…

…
…

i = 1

> > = =

Colour of the screen at trial onset

+Ev
-Ev

Fig. 1. Task and experimental design. a. Each trial started with either a blue or a pink background. A letter stream was presented for 25 s (100 letters, 250 ms 

each), and participants had to decide which of the two target letter sets was most frequent (blue targets: ‘b’ and ‘d’, or pink targets: ‘p’ and ‘q’). Their task was to 

make sure that the colour of the screen matched the most frequent set of targets (e.g. if ‘p’ and ‘q’ were most frequent, the screen should be pink). Sometimes, the 

starting colour of the screen would already match the set of targets participants perceived as most frequent. In those cases, they were instructed to not execute any 

action (No-Action). In other trials, the most frequent targets did not match the given colour of the screen (Action). In those cases, they could change the colour of the 

screen by pressing either the ‘f’ key with their left hand to turn the screen pink, or the ‘j’ key with their right hand to turn it blue. They were only allowed to change 

the colour of the screen once every trial. After 25 s, the letter stream was terminated and participants were asked confidence ratings and estimates of the time at 

which they made a decision in Action trials only. b. The relative frequency of relevant targets defined both conditions. In informative conditions, the most frequent 

set of targets appeared twice as often as the less frequent one (once every 16 letters, or once every 32). In the neutral conditions, both sets of targets appeared equally 

often. In the Neutral High (NH) condition they both appeared relatively often (once every 16 letters), while in the Neutral Low (NL) condition they appeared very 

rarely (once every 32 letters). c. Coding scheme. Relevant letters were coded with respect to action, given the initial colour of the screen. In trials where the screen 

was Blue at trial onset, pq were evidence for action (positive evidence, + Ev), and bd were evidence against action (negative evidence, -Ev). 
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In Neutral conditions, both sets of letters were presented at the same

requency. Two neutral conditions were created so that, on average,

he overall number of relevant stimuli (i.e. rate) across the two neu-

ral conditions would be equivalent to that in the informative ones. In

he Neutral High ( NH ) input condition, evidence was abundant (i.e. one

iece of + Ev and one piece of –Ev were presented at a random time

very 1 to 4 s). In the Neutral Low ( NL ) input condition, evidence was

carce (i.e. one piece of + Ev and one piece of –Ev were presented at a

andom time every 1 to 8 s). In these two neutral conditions, there was

o net evidence for or against switching in any given trial. Note, how-

ver, that participants were not told that in some conditions there was

o net evidence. In all conditions, letters from both sets of targets were

ever presented within intervals shorter than 0.5 s. Possible distractors

ere the following letters: ‘a’, ‘c’, ‘e’, ‘i’, ‘m’, ‘n’, ‘o’, ‘r’, ‘s’, ‘u’, ‘v’, ‘w’,

x’, ‘z’. The precaution was taken not to include letters with ascending

r descending strokes (‘f’, ‘g’, ‘h’, ‘j’, ‘k’, ‘l’, ‘t’, ‘y’) in the letter stream

o ensure that morphological similarities between these and the target

etters would not confound the results. The randomisation procedure

nsured that participants could not build expectations regarding when

arget letters would appear (see below). Trials never started with a tar-

et stimulus, and the presentation times of the remaining target stimuli

ere randomly predetermined before trial start using an iterative pro-

edure. 

To randomise the position of target letters, we sequentially created a

ist of indices for each trial independently. If the frequency of the target

etters on a given trial was 1/16, we picked a random number between 4

nd 20 (e.g. 8) to determine the position of the first target letter on that

rial. We then got another random number between 4 and 20 (e.g. 15),

nd added it to the first index of the vector to obtain the position of the
 t  

3 
econd letter on that trial ([8, 23]). We picked a random number starting

rom 4 rather than 1 to ensure that same-set letters would be separated

y at least 3 distractors. We repeated this procedure until the obtained

ndex was out of bounds ( > 100, end of trial). We generated a vector like

his separately for each type of target letters and for each trial, and we

epeated the procedure as many times as necessary to ensure that target

etters were separated by at least 2 distractor letters. 

In both Informative conditions, 1 penny was added to their bonus

ayment for correct decisions (i.e. acting in the pro-Action trials and

ot acting in the anti-Action trials) and 1 penny subtracted for incor-

ect decisions (i.e. acting in the anti-Action trials and not acting in the

ro-Action trials). In the Neutral conditions, there were no correct or

ncorrect decisions. Hence, 1 penny reward or no reward was assigned

t random on every trial. Participants were informed about the accumu-

ated reward on the breaks between blocks. 

Participants performed a total of 39 trials per condition. The exper-

ment was divided in 3 blocks of 52 trials, and all conditions were ran-

omised within blocks (13 trials per condition per block). 

.4. EEG recording 

EEG was recorded from 26 scalp sites (Fz, FCz, Cz, CPz, Pz, POz,

C1, FC2, C1, C2, CP1, CP2, F3, F4, F7, F8, C3, C4, CP5, CP6, FC5, FC6,

3, P4, O1, O2) using active electrodes (g.LADYbird) fixed to an EEG

ap (g.GAMMAcap) according to the extended international 10/20 sys-

em ( Jasper, 1958 ). EEG data were acquired using a g.GAMMAbox and

.USBamp with a sampling frequency of 256 Hz. Signal was recorded

sing g.Recorder (G.tec, medical engineering GmbH, Austria). All elec-

rodes were online referenced to the right ear lobe. Vertical and hor-
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zontal electroocular activity was recorded from electrodes above and

elow the right eye and on the outer canthi of both eyes. 

. Behavioural data analysis 

.1. Perceived time of switch decision 

After trials where a decision to switch the colour of the screen was

ade and therefore participants acted (in Action trials), participants

ere required to provide an estimate of the time at which they decided

o switch. In order to calculate the bias in their estimation with respect

o the actual time of the decision to switch we first linearly converted

he 100-point VAS on which participants provided the response dividing

t by 4, thus providing a 25-point scale equivalent to the 25 s duration

f the trial. We calculated the difference between the actual time and

he perceived time of action for each individual trial (bias), averaged it

cross all Action trials for each participant and run a t -test against zero.

.2. Primacy effect 

To investigate the extent to which decisions in highly ambiguous

ituations are driven by external evidence, we investigated whether the

rst piece of evidence participants saw in each trial biased their Action

r No-Action choices in neutral conditions. We ran a multilevel logistic

egression using the lme4 package ( Bates et al., 2015 ) to predict the

robability of Action based on the first piece of evidence ( + Ev/-Ev) on

ach single trial, the condition (NH/NL) and the interaction between

oth categorical variables. We included a random intercept to account

or the between subject variability. 

.3. Recency effect 

We developed a measure to estimate the extent to which participant’s

ctions were dependant on immediate external evidence. We assumed

hat, if participants were making a decision completely independently

f the environment, the distribution of + Ev and -Ev preceding an action

hould be uniform, as expected at random. However, if their actions are

riven to some extent by immediate external evidence, the observed dis-

ribution just prior to actions should deviate from the one expected at

andom. To measure the magnitude of this deviation, we compared the

bserved distribution of –Ev (i.e. evidence against making a key press)

nd + Ev (i.e. for making a key press) to the expected uniform distribu-

ion during the 2.5 s preceding an action, divided in 250 ms time bins.

or this comparison, we calculated a Deviation Score (DS) for + Ev and -Ev

eparately (DS ( + Ev) and DS (-Ev) ). For each participant and condition, we

ubtracted the expected number of ± Ev ( ± Ev e = probability of any given

etter being ± Ev × number of Action trials) from the observed number

f ( ± Ev o ) in each time bin. We then divided the result by the expected

umber of targets to normalise the score (Generic formula: DS = ( ± Ev o -

 Ev e ) / ± Ev e ). Positive values in the deviation score indicate that there

ere more targets than expected, while negative values indicate that

here were fewer targets than expected. Finally, we combined these two

eviation scores in a single measure: the Recency Index (RI). The Re-

ency Index was calculated by subtracting the DS (-Ev) from the DS ( + Ev) 

Generic formula: RI = DS ( + Ev) - DS (-Ev) ) . The RI is thus a measure of how

uch the distribution of both + Ev and –Ev combined deviates from the

ne expected at random. The greater the RI, the greater the dependency

f actions on immediate evidence. For statistical analysis, we averaged

he RI in each time bin for the whole 2.5 s epoch preceding actions and a

epeated measures ANOVA and post-hoc pairwise comparisons for each

ondition pair. 

.4. Statistical analysis 

Statistical analysis of the recency effect described above was run on

atlab R2014b. All other analysis of behavioural data were performed
4 
n R using mixed-models regression with the lme4 ( Bates et al., 2015 )

ackage. We fit models to compare the percentage of actions and the

ime of action, and all models included a random intercept to account

or the between subject variability. 

. EEG analysis 

.1. Preprocessing 

EEG data were processed using Matlab R2014b (MathWorks),

EGlab ( Delorme and Makeig, 2004 ) and the Berlin Brain Computer

nterface toolbox ( Blankertz et al., 2016 ). First, scalp and eye electrodes

ere re-referenced to the average of two mastoid electrodes. Contin-

ous EEG and EOG data were low-pass filtered under 30 Hz using a

ero-phase 8th order Butterworth filter. No high-pass filter was applied

o avoid possible distortions of low-frequency signal components con-

ributing to the RP. Second, EEG signals were epoched. For P3 analysis,

EG signal was locked from − 0.5 before to 1 s after the presentation

f relevant letters (‘p’, ‘q’, ‘b’ and ‘d’). For RP analysis, EEG signal was

ocked from − 2.5 s to 0.5 s after the presentation of the letter following

 keypress. Next, baseline correction was performed using the 500 ms at

he beginning of the epoch [ − 0.5 to 0 s in P3 epochs, or − 2.5 s to − 2 s

n RP epochs]. Ocular movements were identified using the runica algo-

ithm in Matlab and removed from the epoched signal. Finally, artefact

ejection was performed by removing all epochs with > 200 𝜇V fluctua-

ions from baseline in the preselected channels of interest (Cz and Pz). 

.2. Sequential P3 analysis 

To study the dynamics of evidence accumulation as encoded in the

3, we extracted the P3 at electrode Pz in response to every instance of

elevant evidence (‘b’, ‘d’, ‘p’ and ‘q’), and we obtained the average am-

litude of the whole duration of the component [0.3 to 0.8 s post stim-

lus], as determined by visual inspection of the grand-averaged traces.

e used these raw values to investigate three research questions. 

First, we investigated how the P3 amplitude evoked by single stimu-

us changed over sequential stimuli presentations as a decision unfolded,

hroughout the whole trial duration. For action trials only, we fitted a

odel to test whether P3 amplitudes could be predicted based on the

ime to action (in s), the type of evidence ( + Ev/-Ev) and the condition

Informative/NH/NL). 

Second, we investigated whether differences in the P3 components

voked by + Ev and -Ev at different times within a trial would reflect

he evolving states of an internal decision variable. For this purpose,

e ran a model to test whether the P3 amplitudes evoked by the first

nd last pieces of evidence presented from trial onset and before action

xecution in Action trials varied between different kinds of evidence

 + Ev/-Ev), conditions (Informative/NH/NL). 

Finally, we directly compared Action and No-Action trials. For this

nalysis, we averaged all the P3 components in response to + Ev and –Ev

eparately for each single trial, and we used these values for statistical

nference. We fit a mixed model to test whether the single-trial average

mplitude of the P3 significantly varied between different kinds of evi-

ence ( + Ev/-Ev), conditions (Informative/NH/NL) and Action decisions

Action/No-Action). 

All models were fit using the lme4 package ( Bates et al., 2015 ) and

ncluded nested random intercepts for each subject and individual trial

o control for trial-by-trial and individual variability. All reported p-

alues were Benjamini-Hochberg corrected to control for the number

f comparisons performed within each model ( Benjamini et al., 2009 ;

enjamini and Hochberg, 1995 ). 

Post-hoc grouping of trials and P3 response averaging cannot, how-

ver, provide evidence for a link between P3 evolution and participants’

hoice formation. To test whether P3 amplitudes had predictive power

t a single trial level, we used a simple classification approach. For each

ingle trial, we used the following heuristic: if the P3 evoked by + Ev
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as greater than that of –Ev, an Action response was predicted for

hat trial. Conversely, if the P3 evoked by –Ev was greater than that

voked by + Ev on average for a given trial, then a No-Action response

as predicted. We then fitted a logistic regression to predict whether

articipants would decide to act or not act on any given trial, based

n the P3-based prediction (Action/NoAction), the condition (Informa-

ive/NH/NL) and their interaction. Further, we repeated this analysis

sing the continuous difference value of the P3 magnitudes rather than

ts sign to test whether the predictive power was linearly related to the

trength of the signal. 

We also investigated how the P3-based classification accuracy

volved over trial time. To do so, we calculated the difference between

he P3 amplitudes evoked by consecutive and competing evidence items.

or example, if the P3 amplitude evoked by + Ev presented at time t was

reater than the P3 amplitude evoked by –Ev presented at time t - 1 ,

n “Action ” prediction was made. A prediction of this kind was made

or each evidence item up to the end of the trial. If the P3 is track-

ng a decisional process, the accuracy of the predictions based on it

hould improve as the decision is formed. If it is tracking a metacog-

itive monitoring process, it might continue increasing even after the

ecision time. We statistically tested whether the predictive accuracy

f the P3 improved towards the time of the decision in Action trials.

e could not do this for no-Action trials, for which the decision time is

nknown. We ran a logistic regression predicting the probability that a

rediction would be accurate based on the time with respect to action

in s), and whether the prediction was made before or after the action

as executed for each condition (Informative/NH/NL). 

.3. RP analysis 

Statistical tests on averaged EEG data were run using FieldTrip

oolbox ( Oostenveld et al., 2011 ) cluster-based permutation analysis

 Maris and Oostenveld, 2007 ). The main contrast of interest was the

omparison between neural activity preceding actions between condi-

ions (pro-Action, NH, NL). One electrode over the medial frontal areas

Cz) was preselected for analysis. The cluster-based tests were performed

n the individual participant averages using the following parameters:

wo-tailed dependent samples t -test, time interval = [ − 2 0 s relative to

ction], number of draws from the permutation distribution = 10,000. 

. Computational modelling 

.1. Model description 

We modelled the integration of evidence over time using two com-

eting accumulators ( Usher and McClelland, 2001 ). Such a model

s a compromise between single-accumulator drift diffusion models

 Ratcliff et al., 2016 ), which track the balance of evidence and therefore

annot account for differences between the Neutral-High and Neutral-

ow conditions, and race models ( Brown and Heathcote, 2008 ) which

rack the evidence in favour of each response but disregard the balance

f evidence ( Bogacz et al., 2006 ). 

We modelled the state of two accumulators, x 1 and x 2 which inte-

rated positive (pro-Action) and negative (anti-Action) evidence respec-

ively. The state of the accumulators was updated at every time step,

t = 0.25 , using the equations: 

𝑥 1 
𝑡 
= 𝑔 ×

(
𝑣 1 + 𝜀 1 

𝑡 

)
− 𝑏 × 𝑥 2 

𝑡 

𝑥 2 
𝑡 
= 𝑔 ×

(
𝑣 2 + 𝜀 2 

𝑡 

)
− 𝑏 × 𝑥 1 

𝑡 

𝑥 𝑡 +1 = 𝑥 𝑡 + 𝑑 𝑥 𝑡 × 𝑑𝑡 

𝑥 0 = 𝑧 

here g is a gain parameter, v 1 and v 1 are the inputs to the positive

nd negative accumulators respectively, 𝜺 is independent Gaussian noise

ith variance 𝝈2 , b is a lateral inhibition parameter, and z is a starting

oint parameter. Each condition was simulated separately, with values
5 
f v 1 and v 2 set to match the probability of positive and negative evi-

ence in each condition. These values are therefore not free parameters.

e simulated 100 time steps (25 s) for each trial. Simulated responses

Action or No-Action) were produced by whichever accumulator was

rst to reach a criterion of 1 , and simulated response times corresponded

o the time at which the criterion was reached. Parameters were esti-

ated separately for each participant. 

In the c onstant gain model, all free parameters were kept constant

cross conditions (number of free parameters k = 4, parameter vector

= [g, b, 𝝈2 , z] ). In the rising urgency model, gain was set to g 𝜶 at

he start of each trial and increased by g 𝜷 with each time step ( k = 5,

= [g 𝜶, g 𝜷 , b, 𝝈2 , z] ). In the context-dependant urgency model, g 𝜷 was

stimated separately for each condition, allowing urgency to increase at

ifferent rates ( k = 8, 𝜽 = [g 𝜶, g 𝜷
Pro-Action , g 𝜷

Neutral-High , g 𝜷
Neutral-Low ,

 𝜷
Anti-Action , b, 𝝈2 , z] ). 

.2. Model fitting 

We fit models to each participant’s behavioural data by maximum-

ikelihood. For a given vector of parameters 𝜽, we simulated 500 trials

n each condition using these parameters and the appropriate values of

 

1 and v 2 . We used the proportion of simulated trials where an action

ccurred as an estimate of the likelihood of action given these parame-

ers, P(Act| 𝜽) . We estimated the response time probability density func-

ion, P(RT = t |Act, 𝜽), by fitting an Epikanhov kernel density estimate

 Turner and Sederberg, 2014 ) to the distribution of simulated response

imes on simulated trials where actions did occur. The log-likelihood on

ach trial was therefore loglik = log(P(Act| 𝜽)) + log(P(RT = t |Act,
)) on trials where the participant acted, and log(1 - P(Act| 𝜽)) on trials

here they did not. The total log-likelihood for each participant’s data,

L = Log(P(Data| 𝜽)) was calculated by summing the log-likelihood

f each trial, across conditions. We used differential-evolution optimi-

ation, implemented in the scipy package for python ( Virtanen et al.,

020 ), to maximise total log-likelihood for each participant. 

.3. Model comparison 

To compare models, we calculate Akaike Information Criterion (AIC)

or each participant, AIC = - 2 × LL + 2 × k , where k is the num-

er of parameters per model. Lower AIC values indicate greater sup-

ort for the model. The differences in the AIC, 𝜹(AIC) , were calculated

s the difference between the AIC of the model being assessed and

he AIC of the best model. These were used to calculate AIC weights,

 i (AIC) = exp{ 𝜹i (AIC)} / 𝚺i 
3 exp{ 𝜹i (AIC)} ( Burnham and Ander-

on, 2001 ), indicating the probability that each model is the best, in

erms of expected out-of-sample predictive accuracy, of the three con-

idered. 

. Results 

.1. Behavioural results 

Participants performed the task well. On average, they duly switched

n most pro-Action trials ( M = 89.58%, SD = 6.03%) and switched rarely

n anti-Action trials ( M = 3.04%, SD = 2.14%). As they were very few

n number, trials with errors of omission ( M = 4.06, SD = 2.35) and

ommission ( M = 1.46, SD = 0.66) were excluded from EEG analy-

is. Thus, all Informative trials reported correspond to Action trials in

he pro-Action condition, and No-Action trials in the anti-Action condi-

ion. Participants decided to switch the colour of the screen more often

 t (15) = 2.57, p = 0.021) and sooner ( t (15) = 3.31, p = 0.004) in the NH

Percentage of Action trials: M = 40.54%, SD = 10.89%, Time of ac-

ion: M = 17.50 s, SD = 2.20 s), than in the NL condition (Percentage of

ction trials: M = 34.13%, SD = 8.25%; Time of Action: M = 18.89 s,

D = 1.56 s; Fig. 2 a ). However, the average number of evidence items

een before action in the NH condition ( M = 12.11, SD = 1.97) was
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Fig. 2. Behavioural results. a. Grand-averaged time of action ( ± SEM) in all conditions. b. Grand-averaged mean ( ± SEM) total number of + Ev and -Ev items 

presented at the time of action for all conditions. Although the net balance of + Ev and –Ev was equivalent in the NH and NL conditions, a smaller number of evidence 

items sufficed to trigger Action in the NL condition. c. Grand-averaged probability ( ± SEM) of Action decisions given the first letter seen on a trial, for NH and NL 

conditions. In both conditions, participants were more likely to act if the first target letter they saw on a trial was + Ev (e.g. ‘b’/‘d’ in a pink screen, or ‘p’/’q’ on a 

blue screen). d. Grand-averaged ( ± SEM) effect of recent evidence on action triggering (see Fig. S1 for full details). Higher values of the Recency Index (RI) indicate a 

greater dependence of action on recent evidence. In the NL condition, single pieces of evidence items were more likely to be followed by an action than in the other 

two conditions. Overlaid grey dots correspond to single-participant data in all plots. 
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ignificantly higher ( t (15 ) = 11.79, p < 0.001) than in the NL condition

 M = 7.94, SD = 0.98), suggesting that participants adjusted their deci-

ion criterion to the amount of available evidence (see Fig. 2 b ). Since the

et balance of + Ev and –Ev was the same in those two conditions, this

trategic adjustment must have depended on an internal signal evolving

hroughout the trial and sensitive to differences between conditions. We

xplore this hypothesis in the computational section below. 

Participants’ subjective reports of their action times significantly pre-

eded the actual movement time by an average of 2.63 s ( SD = 1.45)

cross all conditions ( t -test against zero: t (15) = 7.24, p < 0.001). Unsur-

risingly, participants were more confident about their decisions in the

nformative ( M = 67.55 , SD = 3.99) than both in the NH ( M = 47.56 ,

D = 4.35; t (15) = 11.90, p = < 0.001) and NL ( M = 48.79 , SD = 4.11;

 (15) = 10.54, p = < 0.001) conditions, which did not significantly differ

etween them ( t (15) = 1.11, p = 0.281). 

We then investigated how evidence presented early and late in the

rial influenced participants’ decisions in our neutral conditions. We

ound that the order in which evidence was presented early in the trial

trongly influenced participants’ decision to act or not act ( primacy ef-

ect , see Fig. 2 c) . In particular, the first evidence item participants saw in

ach trial ( + Ev/-Ev) biased their Action or No-Action choices in neutral

onditions (NH/NL). A main effect of the prime on the probability of

eciding to act ( X 

2 
(1) = 20.48, p < 0.001) showed that participants de-

ided to switch the colour of the screen more often when the first letter

hey saw on that trial was + Ev (NH: M = 50.84%, SEM = 2.90% ; NL:

 = 37.10%, SEM = 2.75%) than when it was –Ev (NH: M = 31.08%,

EM = 2.57%; NL: M = 31.21%, SEM = 2.62%) in both the NH and

L conditions. Importantly, the first target stimulus seen on any given

rial was independent of the condition and the colour of the screen. A

ignificant interaction between the first letter seen on the trial and the

ondition indicated that the primacy effect was stronger in the NH con-

ition ( X 

2 
(1) = 5.48, p = 0.019). 

We further quantified the extent to which the time of actions was

nfluenced by immediately-preceding evidence ( recency effect) . We as-

umed that, if participants were making a decision completely indepen-

ently of the environment, the temporal distribution of + Ev and -Ev

vents prior to action should be uniform distributed, as expected at ran-

om. However, if their actions depend on immediate external evidence,

he observed distribution just prior to actions should deviate from ran-

om. We therefore compared the observed distribution of –Ev (i.e. evi-

ence against making a key press) and + Ev (i.e. for making a key press)

o the expected uniform distribution during the 2.5 s preceding an action
6 
see Methods for full details) and obtained a summary measures ( Recency

ndex, RI ). The greater the RI, the more likely participants were to move

hortly after a piece of + Ev evidence, and not to move shortly after a

Ev item. In all conditions, participants tended to move shortly after a

iece of + Ev ( Figs. 2 d; and S1 for full details). However, the deviation

rom the expected distribution was greatest in the NL condition ( F (2,15) =
1.03.03, p < 0.001; see Supplementary note 1 for full statistical details).

These behavioural results therefore suggested two primarily differ-

nt mechanisms of symmetry-breaking in the neutral conditions: a pri-

acy effect driven by early evidence when evidence was abundant (NH),

nd reaction-like responses to late evidence when evidence was scarce

NL). 

.2. The P3 encodes a categorical decision variable 

Based on previous literature suggesting that the P3 encodes a de-

ision variable ( Twomey et al., 2015 ), we first investigated the evolu-

ion of P3 amplitude in response to sequential, discrete presentations

f target letters (i.e. ’b’,’d’,’p’ and ‘q’). We hypothesized that the evolu-

ion of sequential P3 components throughout each trial would exhibit

 pattern of build-up associated with participants’ decision-making pro-

ess. In particular, we hypothesized that the P3 evoked by each stim-

lus would reflect the accumulated evidence for that hypothesis ( + Ev,

vidence for Action; -Ev, evidence for No-Action), and thus encode a

ecision variable driving participants’ choices on a trial-by-trial basis.

ince the time of decision in the No-action trials is unknown, all stimuli

p to the end of the trial were included for the sequential P3 analysis.

n Action trials, only stimuli up to the time of decision were included. 

To study the dynamics of evidence accumulation as encoded in the

3, we extracted the P3 at Pz in response to every instance of relevant

vidence (‘b’, ‘d’, ‘p’ and ‘q’), and we obtained the average amplitude of

he whole P3 component (0.3 to 0.8 s post stimulus). Fig. 3 a shows the

volution of sequential stimulus-locked P3 amplitudes, as a function of

he time within the trial that each target letter appeared. In Action tri-

ls, an overall increase in the P3 amplitude is observed from trial onset,

eaking at the time of the action. This increase is driven by the increase

n the P3 amplitude in response to evidence in favour of the eventual

ecision to act ( + Ev, Fig. 3 b ). In No-Action trials, the time of any deci-

ion to withhold action is unknown, since participants were not required

o produce any response. However, the evolution of the P3 amplitude

hroughout those trials exhibited a pattern similar to that observed in

ction trials. That is, the overall P3 amplitude increased from trial on-
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Fig. 3. The p3 encodes a categorical decision variable. Trials in which participants pressed a key to change the colour of the screen are labelled “Action ” trials, 

and include p3 data only up to the time of movement. Trials where no movement was executed are labelled “No-Action ” trials, and include p3 data up to the end 

of the trial. a. Evolution of p3 amplitude at Pz evoked by sequential evidence items from trial onset, pooled across participants and types of evidence in No-action 

( top ) and Action ( bottom ) trials (loess smoothed, ± SE). The amplitude of the p3 increased over time in all conditions. Single-participant data for this panel can be 

found in Fig. S2 . b. Evolution of the p3 amplitude at Pz from trial onset, pooled across participants for each type of evidence separately in No-Action ( top ) and 

Action ( bottom ) trials (loess smoothed, ± SE). Vertical bars indicate mean time of Action in each condition. c. Evolution of p3 amplitude at Pz aligned to the time of 

action in Action trials, pooled across participants and types of evidence ( ± SE). d. Evolution of the p3 amplitude at Pz aligned to the time of action in Action trials, 

pooled across participants for each type of evidence separately ( ± SE). The amplitude of the p3 only increased significantly in response to + Ev. e. ERP traces ( left ) 

show the grand-average ( ± SEM) p3 in No-Action and Action trials, for + Ev and –Ev (positive values are plotted down). Bar graphs ( right ) show the trial-by-trial 

averaged difference ( ± SE) between + Ev and -Ev ( + Ev minus -Ev), showing that evidence in favour of the selected option (i.e. + Ev in Action, -Ev in No-Action) evoked 

significantly higher p3 amplitudes, on average, within any given trial. f . Grand-averaged ( ± SEM) p3 evoked in response to the first ( left ) and last ( right ) piece of + Ev 

and –Ev presented before action in Action trials only (positive values are plotted down). Single-participant data for this panel can be found in Fig. S3 . 
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et, reaching a peak between 10 and 20 s, and was characterised by a

reater increase in the P3 amplitudes evoked by evidence supporting

he eventual decision (i.e. in this case evidence against action, -Ev). 

To investigate the build-up dynamics of decision-relevant informa-

ion prior to action, we aligned the P3 data to the time of action on

ction trials only ( Fig. 3 c, d ). We fitted a linear multilevel regression

o predict the amplitude of the P3 evoked by each target letter ( bd/pq )

sing the time to action (in seconds), the type of letter that evoked it
7 
 + Ev/-Ev), participants’ decision (Action/No-Action), the condition (In-

ormative/NH/NL) and all possible interactions as predictors. An inter-

ction between the time to action and type of evidence ( X 

2 
(1) = 4.52,

 = 0.033, uncorrected ( p = 0.077, BH-corrected)) indicated that the

mplitude of the P3 tended to increase in response to + Ev towards the

ime of action ( X 

2 
(1) = 18.32, p <> < 0.001), but not in response to –Ev

 X 

2 
(1) = 0.42, p = 0.512). To visualise this gradual increase of the P3 in

esponse to + Ev towards the time of action, we plotted the ERPs for the
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s  
 target letters immediately preceding action ( Fig. S4 ). See Table S1 for

ull statistical details, and Fig. S5 for the unsmoothed data used in the

nalysis. 

We further analysed the trial-by-trial P3 amplitudes to investigate

hether the selective increase in P3 amplitude would be reflected in

he averaged ERPs ( Fig. 3 e ). We averaged all P3 amplitudes for each

rial (i.e. up to the time of action in Action trials, and up to the end of

he trial in No-action trials) and fitted a linear mixed model to predict

he mean P3 amplitude based on the type of evidence ( + Ev/-Ev), the

ecision (Action/No-Action) and the condition (Informative/NH/NL),

gnoring the time at which evidence was presented. We found an inter-

ction between the decision and the type of evidence ( X 

2 
(1) = 31.45,

 < 0.001). In trials in which participants decided to switch the colour

f the screen (Action), the amplitude of the P3 was significantly higher

 X 

2 
(1) = 18.10, p < 0.001) in response to + Ev ( M = 2.73 𝜇V , SEM = 0.43

V) than to –Ev ( M = 0.86 𝜇V , SEM = 0.47 𝜇V). In trials in which par-

icipants decided to not switch the colour of the screen (No-Action), the

ffect was in the opposite direction ( X 

2 
(1) = 12.80, p = 0.001). The am-

litude of the P3 in response to + Ev ( M = 1.16 𝜇V , SEM = 0.38 𝜇V) was,

n average, lower than that in response to –Ev ( M = 1.96 𝜇V , SEM = 0.36

V). There was no three-way interaction between condition, type of ev-

dence and decision ( X 

2 
(2) = 3.22, p = 0.465), suggesting that the effect

as present in both easy ( Informative ) and difficult ( Neutral , NH & NL)

rials (see Table S2 for full statistical details). This shows that the P3 en-

oded an internal decision variable reflecting the most likely decision,

ather than simply the absolute amount of external decision-relevant

vidence. While the momentary evidence at the time of action in the

eutral conditions did favour acting when participants moved ( Fig. S7 ),

he balance of evidence supporting that choice was significantly lower

n Neutral trials than in the Informative condition. Note that given the

rial-by-trial variability, the effect is more apparent in the trial-by-trial

ifferences (bar graphs in Fig. 3 e, right ) than in the grand-averaged ERPs

 Fig. 3 e, left ). 

Finally, we compared the initial and final amplitudes reached by the

3 in Action trials ( Fig. 3 f ). If the P3 genuinely encodes a signed or ‘cat-

gorical’ decision variable, accumulator models predict that differences

etween alternative options should be minimal at the beginning of the

ecision-making process, and maximal at the time a decision is made.

hat is, while the P3 responses to the first (initial) pieces of + Ev and

Ev presented in a trial should not differ, the P3 responses to the last (fi-

al) pieces of + Ev and –Ev should reflect the decision participants will

ake. We fitted a mixed regression to predict the P3 amplitude based

n the time within the trial (first/last), the type of evidence ( + Ev/-Ev)

nd the condition (Inf/NH/NL). Although an interaction between evi-

ence type and time within trial did not survive within-model multiple

omparisons correction ( X 

2 
(1) = 3.95, p = 0.046 uncorrected, p = 0.109,

H-corrected), we further explored differences in P3 amplitude evoked

y the first and last different types of evidence presented in a trial as

riginally planned. While at the beginning of the trial the P3 responses

o + Ev and –Ev did not significantly differ ( X 

2 
(1) = 2.73, p = 0.149), the

3 responses to the last piece of + Ev were significantly higher than re-

ponses to the last piece of –Ev ( X 

2 
(1) = 22.43, p < 0.001). These results

uggest that if any small differences in P3 amplitudes evoked by initial

vidence were present, those differences were more robust by the end

f a trial, as illustrated in Fig. 3 f . 

.3. The P3 predicts choices on a single-trial level 

The previous analyses were based on post-hoc groupings of trials

ccording to participants’ choice to act or not act. Thus, they remain

nconclusive regarding the predictive power of the P3 with respect to

articipants’ choices on a single trial level. Here, we used a simple classi-

cation heuristic to predict choices based on the average P3 amplitudes

voked by relevant letters. The sign of the difference between + Ev and

Ev averaged throughout the whole trial predicted participants’ choices

o act or not to act ( X 

2 
(1) = 21.09, p < 0.001), across all conditions.
8 
lassification accuracy did not differ across conditions: ( X 

2 
(2) = 3.31,

 = 0.190). Further, we found a significant linear relationship between

he signed magnitude of the difference and the probability that partic-

pants would act or not ( X 

2 
(1) = 18.77, p < 0.001; see Fig. 4 b ). Again,

lassification accuracy did not differ across conditions ( X 

2 
(2) = 3.25,

 = 0.196). 

We further investigated how this predictive power progressively

merged over time by looking at the differences in the P3 amplitude

voked by consecutive items. Fig. 4 c shows that classification accuracy

rst improved over time as the trial progressed, and then decreased

gain. This shows that the discriminative power of the P3 as a marker

f choice increases over time, as the decision progresses, and then de-

reases, perhaps reflecting the fact that a decision has been made by

his point. To get a closer insight into these temporal dynamics, we fo-

ussed on the Action trials only, and tested whether predictive accuracy

aried depending on whether predictions were made before or after ac-

ion, how long before or after it (time in s) for each condition (Informa-

ive/NH/NL; see Fig. 4 d ). The predictive accuracy of the P3 amplitudes

voked by competing evidence items significantly improved prior to ac-

ion ( X 

2 
(1) = 24.05, p < 0.001), while there was no evidence of an ef-

ect of time on predictive accuracy post-action ( X 

2 
(1) = 1.47, p = 0.671).

rediction accuracy based on P3s evoked after action was significantly

orse overall than predictions based on P3 occurring before move-

ent ( X 

2 
(1) = 28.81, p < 0.001). These single-trial analyses support the

dea that P3 modulations track an evidence accumulation process re-

ated to decision-making as it unfolds (see Table S3 for full statistical

etails). 

.4. The evolution of the categorical decision variable encoded by the P3 is 

odulated by a context-dependant urgency signal 

We next explored whether participants’ behaviour and the dynamic

hanges in the P3 response could be captured by computational models

f evidence accumulation. We modelled the integration of evidence over

ime using two competing accumulators ( Usher and McClelland, 2001 ),

nd we compared the most simple form of the model to two additional

odels featuring additional time-dependant urgency signals that multi-

licatively modulated the integration of incoming evidence. 

In our first model ( Constant gain ), the decision parameters were not

llowed to vary across conditions and the weight given to incoming

vidence (gain) was constant over time. Based on previous literature

 Braunlich and Seger, 2016 ; Cisek et al., 2009 ; Murphy et al., 2016 ;

hura and Cisek, 2014 ), in the second model ( Rising urgency ) we in-

orporated a growing urgency parameter that dynamically modulated

ain. Due to the multiplicative interaction postulated by this model,

s urgency monotonically increased over time, the gain for both evi-

ence accumulators also increased. This time-varying gain means that,

s time elapses, less evidence is required to reach a decision. It has been

uggested that such a modulation of evidence integration by a grow-

ng urgency signal might facilitate decision-making and provide a bet-

er account of behavioural and neural data in decision-making tasks

 Thura et al., 2012 ). Finally, in the third model ( Context-dependant ur-

ency ), we further allowed the urgency parameter, and thus the increase

n gain over time, to vary separately for each condition. Condition-

pecific modulations in an internal urgency signal could potentially ac-

ount for the different decision thresholds observed in the NL and NH

onditions in our task ( Fig. 2 b ). 

Both urgency models performed significantly better than the first

odel, but did not differ significantly from each other. In aggregate, the

ontext-dependant Urgency (total AIC = 6638.40) was numerically bet-

er than the Rising Urgency model (AIC = 6664.76). Further, the context-

ependant urgency model was the best performing one for the majority

f participants ( n = 12 of 19). This suggests that condition-specific mod-

lations of evidence accumulation occurred, and that they may be ex-

lained by a context-dependant urgency signal. Full details of the model

pecification, comparison and parameter estimation can be found in the
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Fig. 4. Decoding choice based on P3 amplitudes. a . Mean ( ± SEM) percentage of trials that were accurately classified as Action or No-Action trials based on the 

whole-trial averaged P3 amplitudes. Overlaid dots correspond to single-subject average data. b. Probability of action as a function of the difference in P3 amplitudes 

evoked by + Ev and –Ev items on each trial (mean ± SE). Positive values in the x axis indicate that the average amplitude of the P3 evoked by + Ev was greater 

than that evoked by –Ev. Increasing values lead to increasing probability of action. Negative values are associated with greater P3s evoked by –Ev compared to 

+ Ev, and stronger negative differences increase the probability that participants did not move. c. Group mean ( ± SEM, thick lines ) and individual subjects ( thin lines ) 

classification accuracy from trial onset. Predictions were made every time a stimulus was presented by comparing the P3 amplitude evoked by it to the P3 amplitude 

by the immediately preceding item of competing evidence. For example, an “Action ” prediction was made if the P3 evoked by a + Ev item at time t = 3 was greater 

than the P3 evoked by a –Ev item presented at time t = 2. d. Group mean ( ± SEM, thick lines ) and individual subjects ( thin lines ) classification accuracy aligned to the 

time of action (vertical line). The accuracy of P3-based predictions significantly improved towards the time of action. After action execution, the predictive value of 

the P3 was significantly smaller than that preceding it. Note: data in A, B and C include both Action and No-Action trials; data illustrated in D and the corresponding 

analysis include Action trials only. Line graphs in C and D are loess smoothed. 
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upplementary Material. Below we describe the Context-dependant Ur-

ency model in more detail. 

The context-dependant urgency model accurately predicted the

robabilities of action and the reaction times for all 19 participants

 Fig. 5 a). The estimated urgency parameters in this model indicated that

he weight given to individual pieces of evidence was greater in condi-

ions where evidence was less frequent ( Fig. 5 b ). When the rate of evi-

ence was high, the estimated urgency was low (Urgency NH = 0.009).

nstead, when the rate of evidence was low, the estimated urgency was

igher (Urgency NL = 0.045). This means that while in the NH condi-

ion a decision variable evolved towards a threshold mostly driven by

he accumulation of abundant external evidence, in the NL condition

he decision variable approached the threshold thanks to a strong con-

ribution from an internal urgency signal, which boosted the impact

f the scarce available evidence in the accumulation process. Such a

odulation can account for the fact that participants acted after having

een significantly fewer evidence items in the NL condition as compared

o the NH one (see Fig. 2 a ). The inhibition parameter was on average

reater than 0 ( M = 0.19, SD = 0.12), t (18) = 6.58, p < 0.001, and was

reater than 0 for 16 out of 19 participants, indicating lateral inhibition

etween accumulators. 

To explore the dynamics of the model, we set each parameter to its

verage across participants and we simulated 1000 trials per condition
9 
 Fig. 5 c ). These simulations broadly recapitulate the P3 evolution during

rials ( Fig. 2 b) . On trials where participants act, the activity of the + Ev

ccumulator (P3 responses to + Ev stimuli) is stronger than that of the

Ev accumulator (responses to -Ev stimuli). On trials where participants

o not act, this effect is reversed. Furthermore, the difference between

he two accumulators is weak at the start of each trial and increases over

ime. 

.5. Markers of self-paced action in evidence-informed decisions 

Finally, we investigated the neural activity preceding action execu-

ion to test whether the readiness potential would appear in all, some

r no conditions in our task. We found an RP preceding actions in all

onditions. We performed pairwise cluster comparisons between all con-

itions including the two seconds preceding the time of action ( − 2 to

). An RP-like shape was visible in all conditions ( Fig. 6 ), and pairwise

luster comparisons between all conditions found no significant clus-

ers in any of the comparisons (all p > 0.05), suggesting that the RPs

ere not significantly different in amplitude in the different conditions.

iven the lack of differences between conditions in the neural precursors

f action, which have been linked to subjective experience of intention

 Libet et al., 1983 ), behavioural reports of subjective time of decision

ere not further analysed. 
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. Discussion 

The ability to decide when faced with ambiguous information is cru-

ial for functional voluntary behaviour. In this experiment, we devel-

ped a paradigm to investigate the neural mechanisms enabling deci-

ion and action under uncertainty. We focussed on the P3 as a marker of

vidence accumulation and investigated the RP as a neural precursor of

elf-paced action. We show that the P3 components evoked by sequential

vidence items encode a decision variable driving participants’ choices

n a trial-by-trial basis. Further, we show that a combination of compet-

tive evidence accumulation and context-sensitive urgency can account

or two seemingly different behavioural symmetry-breaking strategies:

 primacy effect, where choices are strongly driven by early evidence,

nd reaction-like actions, mostly influenced by immediate evidence at

ate stages in the trial. 

To investigate whether we could track how competing options evolve

uring a decision-making process, we used P3 responses evoked by se-

uential pieces of evidence. Previous research has shown that the mor-

hology of a single P3 ERP tracked reaction times ( Twomey et al.,

015 ). However, that study required responses to individual evidence

tems, and did not involve any evidence accumulation. In contrast, in

ur task, participants did not have to respond to individual evidence

tems – rather, they had to perform a sequential sampling task involv-

ng multiple successive stimuli and evaluate the evidence across the

ntire sequence. Our new ‘snapshot’ measure approach allowed us to

se the individual response evoked by discrete stimulus items to probe

he cumulative state of a signed internal accumulator at different time

oints during the trial as a decision unfolded. We found that the P3 re-

ponses evoked by each individual target stimuli encoded information

bout participants’ impending choices ( Fig. 3 e ). In trials where partic-

pants decided to act, the amplitude of the P3 in response to evidence

avouring Action ( + Ev) was significantly greater than the P3 amplitude

n response to evidence favouring No-Action (–Ev). This was due to a

elective increase in the P3 response to selected evidence as a decision

as formed ( Fig. 3 ). This modulation was visible both in the Informa-

ive and Neutral conditions, suggesting that the P3 captures the state

f an internal decision rather than the objective evidence available to

articipants. Interestingly, in Informative conditions, we found that the

3 evoked by the most frequent targets grew progressively larger in am-

litude as the stimulus sequence progressed. This goes against theories

hat link the P3 to surprise. Surprise theories would predict decreas-

ng P3 amplitude as a stimulus becomes less unexpected ( Neville et al.,

982 ), and would also predict an inverse relation between P3 amplitude

nd stimulus probability ( Duncan-Johnson and Donchin, 1977 ). Further,

hese dynamics recall the activity of neural populations in monkey’s lat-

ral intra-parietal (LIP) area during decision-making tasks ( Churchland

t al., 2008 ; Huk and Shadlen, 2005 ; Roitman and Shadlen, 2002 ), in

hich the activity of neural populations selective for alternative choices

iverges over time, and builds up to threshold only for the population

ncoding the eventual choice. Further, the fact that the P3 amplitude

eached a peak well before the end No-Action trials suggests that par-

icipants did not continue to accumulate evidence until the end of the

etter stream, but rather made a covert decision to not move before hand

nd then stopped accumulating evidence. This is in agreement with pre-

ious literature showing that once a decision bound is reached, further

vidence is not further processed for perceptual decisions ( Balsdon et al.,

020 ; Kiani et al., 2008 ). 

The P3 could further be used to predict participants’ choices on a sin-

le trial basis ( Fig. 4 ). Predictive power was at chance level at the begin-

ing of the trial and progressively converged to a maximum at the time

f action (see Fig. 4 c ). Further, predictive accuracy decreased sharply

fter movement in Action trials. This suggests that the P3 does indeed

rack the evolution of an action-related decision, rather than merely

ost-hoc correlate with the eventual choice. While the P3-based classifi-

ation accuracy was modest (the whole-trial P3 average accuracy across

onditions was M = 54.76%, SEM = 1.15%), it was significantly better
11 
han chance, and comparable to classification performance in other neu-

oimaging datasets (e.g. Hubbard et al., 2019 ). Similar P3 dynamics and

redictive power were visible in all conditions, including neutral trials

hich contained no net evidence. Since the P3 evolution could never-

heless be used to predict responses on a single-trial level, it seems to

rack the state of an internal decision variable rather than objective ev-

dence. However, the P3 cannot track only the mere amount of accumu-

ated evidence items, since the amplitude of the P3 evoked by, say, the

hird evidence item in the NH condition is substantially lower than that

voked by the same item in the NL condition (see Fig. S6 ). Therefore,

ome additional factor must contribute to the evolution of the decision

ariable encoded by the P3. We hypothesized that this additional factor

ould correspond to the concept of urgency . 

Urgency is often conceived as an evidence-independent, time-

rowing signal that facilitates making a decision in various contexts

y modulating the amount of evidence required for a decision as

ime elapses ( Braunlich and Seger, 2016 ; Churchland et al., 2008 ;

itterich, 2006 ; Thura, 2020 ), and it has been shown to depend on

he basal ganglia ( Bogacz et al., 2010 ; Thura and Cisek, 2017 ). Here,

e followed studies showing a multiplicative interaction between evi-

ence accumulation processes and urgency signals ( Cisek et al., 2009 ;

itterich, 2006 ; Thura and Cisek, 2014 ). In our task, conditions differed

ot only in the balance, but also in the amount of evidence available. Our

est-fitting model suggested that participants’ behaviour was best ex-

lained by a competing accumulation process with a condition-specific

ain adjustment, which we postulated to be mediated by a growing and

ultiplicative urgency signal. When evidence was scarce (NL), the ur-

ency signal was estimated to be highest ( Fig. 5 b) . This effectively con-

titutes an adaptive strategy for reaching a decision when evidence is

are: by increasing the gain in such contexts, each new piece of evidence

akes an enhanced contribution to the decision variable. Thus, fewer

vidence items will therefore suffice to reach a decision threshold (see

ig. 2 a ). In turn, reducing gain in contexts where evidence is abundant

llows the accumulation of more pieces of evidence, thus preventing po-

entially hasty and erroneous decisions. Thus, a multiplicative urgency

arameter can naturally account for the behavioural adaptations ob-

erved in our task, and the neural dynamics tracked by the P3. If the

3 reflected urgency only, we would expect the P3 traces to be mod-

lated by the time at which they were evoked, but not by which type

f evidence evoked it. However, we show that the evolution of the P3

voked by category-specific stimuli diverged according to participants’

hoices. Thus, the P3 seems to reflect not only the growing urgency sig-

al, but also evidence accumulation. Our results are compatible with

ecent suggestions that decision-related activity may be modulated by

rgency ( Steinemann et al., 2018 ). It remains unclear whether such ur-

ency effects occur directly at the evidence accumulation stage itself, or

ather result indirectly from accumulation of early sensory representa-

ions that have been modulated by urgency at the encoding stage. 

In sum, based on the neural data and our computational modelling,

e suggest that the amplitude of the P3 evoked by any given stimu-

us depends on 1) the current state of an internal evidence accumula-

or 2) a modulating factor given by a context-dependant urgency signal

rowing over time. Fig. 7 illustrates a schematic of the cognitive mech-

nisms underlying the decision-making process that we believe the P3

racks. We suggest that the P3 reflects the activity of category-specific

eural populations processing accumulating evidence. This is consis-

ent with the fact that distinct neural populations specifically represent

ifferent different decision alternatives in the monkey parietal cortex

 Fitzgerald et al., 2011 ; Freedman and Assad, 2006 ; Swaminathan and

reedman, 2012 ). Finally, modelling suggests that the availability of

vidence modulates the rate at which an internal urgency signal grows,

hich in turn modulates the gain ( g ) of the evidence accumulators. As

 decision-making process about the distribution underlying the stim-

li evolves (i.e. are bd more frequent than pq ?), so the accumulated

vidence ( Σ) moves closer to threshold. Context-specific modulations

f urgency signals have important implications: when evidence is abun-
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Fig. 7. Conceptual model of the cognitive mechanisms underlying the P3. a. Suggested computational mechanisms driving evidence accumulation in our task. 

Evidence is processed sequentially, and each stimulus is processed with a certain gain ( g ) in a category-specific accumulator. The accumulators for competing choices 

are mutually inhibitory. The gain in turn depends on a time-varying urgency signal. The rate at which urgency, and hence gain, increases over time is a function of 

the availability of relevant evidence. The more evidence is available, the smaller the steepness of the urgency signal, allowing the accumulation of more evidence 

items before reaching a threshold. Once one of the accumulators reaches a threshold a decision is made. b. Schematic representation of the evoked P3 responses in 

a condition where evidence is abundant (NH, top ) or rare (NL, bottom ). The evolution along the x axis illustrates the P3 amplitudes over time, which are a function 

of a competitive evidence external accumulation process modulated by a growing internal urgency signal. In turn, this enables crossing the threshold after fewer 

evidence items have been presented. The fact that the P3 amplitudes evoked by + Ev and –Ev are different despite the absolute numbers of evidence being the same 

shows the effect of lateral inhibition. c. Schematic of the multiplicative interaction between external evidence and context-dependant internal urgency signal to 

produce a composite decision variable. When evidence is abundant (NH), the urgency signal grows slowly and the evolution of the decision variable is mostly driven 

by external evidence. When evidence is scarce (NL), the urgency signal grows faster and its contribution to the evolution of the decision variable is greater. 
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ant, decision variables evolve up to threshold driven mostly by external

nformation, even when this evidence is neutral. In turn, when evidence

s scarce, decision variables would rise to threshold driven mostly by an

nternal urgency signal that boosts evidence processing. Can this model

ccount for the observed behavioural patterns of symmetry-breaking? 

In neutral trials, participants were more likely to decide to act if

he first target letter that they saw provided evidence for action, rather

han inaction – irrespective of subsequent evidence ( Fig. 2 b ). Compet-

ng accumulator models like the ones we explored predict this kind

f primacy effect ( Tsetsos et al., 2012 ). Small differences at the be-

inning of an accumulation process are amplified over time thanks

o the mutually inhibiting connections between competing accumula-

ors. In the absence of strong countermanding evidence, decision out-

omes tend to follow early hypotheses. In our study, these asymme-

ries depended on the time at which external stimuli were presented.

owever, early brain activity has been reported to contain informa-

ion that enables decoding free decisions in humans ( Soon et al., 2008 ),

nd it has been suggested that free decisions depend on accumulation

rocesses similar to those operating in perceptual ones ( Bode et al.,

013 ). Thus, early asymmetries of either endogenous or exogenous

rigins can effectively bias accumulation processes and thus act as

ymmetry-breakers. 
12 
In addition, we found that actions typically shortly followed the pre-

entation of a + Ev item ( Fig. S1 ). That is, the time of actions was de-

endant on immediate evidence to a certain extent in all conditions.

his is to be expected, since participants’ decisions were based on ev-

dence. However, the influence of immediate evidence on the time of

ctions was strongest in the NL condition, where external evidence was

articularly rare ( Fig. 2 d and Fig. S1 ). This finding can be explained by

he condition-specific modulations of urgency that we modelled. The in-

reased urgency estimated for the NL condition means that the impact

f any individual piece of evidence on the decision variable is compar-

tively high. Therefore, the probability that any given evidence item

ill make the decision variable cross the threshold is highest in that

ondition, accounting for the recency effects. 

We also investigated whether differences in the neural precursors

f action could account for the observed behaviour. Classic interpreta-

ions of the RP suggest that it reflects endogenous neural activity lead-

ng to action. Research has typically measured the RP in experiments

here the participant acts as and when they wish, without any impera-

ive stimulus or explicit sensory evidence to trigger the decision to act

e.g. Libet et al., 1983 ). However, recent studies have suggested that its

resence may depend on the arbitrariness of action rather than its in-

entionality ( Maoz et al., 2019 ). Our task was a hybrid between classic
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pontaneous action paradigms and cued-reaction tasks: participants had

o strong time pressure to execute actions, and although their actions

ere informed by the evidence, they were not triggered by any spe-

ific individual stimulus. Readiness potentials were visible preceding

ctions in all conditions, and the amplitudes did not significantly differ

cross conditions ( Fig. 6 ). The fact that an RP was also visible preceding

ctions in the pro-Action condition, where actions were deliberate and

trongly determined by the environment is not compatible with the idea

hat the stochastic accumulation of internal noise that the RP reflects

 Schurger et al., 2012 ) precedes actions only in contexts where actions

re arbitrary ( Maoz et al., 2019 ). Thus, while the RP may not act as a

ymmetry-breaking mechanism, the fact that it can be found preceding

eliberate actions suggests it may be related to the precise timing of

elf-paced actions rather than their arbitrariness. Further, we found no

ifferences in RP amplitude between our various evidence conditions.

his suggests that the rate at which the RP builds up does not mirror

he strength or amount of external evidence and may rather depend on

urely internal signals. However, further research is required to clarify

he potential relationship between external evidence strength and RP

hape. 
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