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Adaptive agents must act in intrinsically uncertain environments with complex

latent structure. Here, we elaborate a model of visual foraging—in a hierarchical

context—wherein agents infer a higher-order visual pattern (a “scene”) by sequentially

sampling ambiguous cues. Inspired by previous models of scene construction—that

cast perception and action as consequences of approximate Bayesian inference—we

use active inference to simulate decisions of agents categorizing a scene in a

hierarchically-structured setting. Under active inference, agents develop probabilistic

beliefs about their environment, while actively sampling it to maximize the evidence

for their internal generative model. This approximate evidence maximization (i.e.,

self-evidencing) comprises drives to both maximize rewards and resolve uncertainty

about hidden states. This is realized via minimization of a free energy functional

of posterior beliefs about both the world as well as the actions used to sample

or perturb it, corresponding to perception and action, respectively. We show that

active inference, in the context of hierarchical scene construction, gives rise to many

empirical evidence accumulation phenomena, such as noise-sensitive reaction times

and epistemic saccades. We explain these behaviors in terms of the principled drives

that constitute the expected free energy, the key quantity for evaluating policies under

active inference. In addition, we report novel behaviors exhibited by these active

inference agents that furnish new predictions for research on evidence accumulation

and perceptual decision-making. We discuss the implications of this hierarchical active

inference scheme for tasks that require planned sequences of information-gathering

actions to infer compositional latent structure (such as visual scene construction

and sentence comprehension). This work sets the stage for future experiments to

investigate active inference in relation to other formulations of evidence accumulation

(e.g., drift-diffusion models) in tasks that require planning in uncertain environments with

higher-order structure.
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1. INTRODUCTION

Our daily life is full of complex sensory scenarios that can be
described as examples of “scene construction” (Hassabis and
Maguire, 2007; Zeidman et al., 2015; Mirza et al., 2016). In
its most abstract sense, scene construction describes the act of
inferring a latent variable (or “scene”) given a set of (potentially
ambiguous) sensory cues. Sentence comprehension is a prime
example of scene construction: individual words are inspected
in isolation, but after reading a sequence one is able to abduce
the overall meaning of the sentence that the words are embedded
within (Tanenhaus et al., 1995; Narayanan and Jurafsky, 1998;
Ferro et al., 2010). This can be cast as a form of hierarchical
inference in which low-level evidence (e.g., words) is actively
accumulated over time to support disambiguation of high-level
hypotheses (e.g., possible sentence meanings).

We investigate hierarchical belief-updating bymodeling visual
foraging as a form of scene construction, where individual images
are actively sampled with saccadic eye movements in order
to accumulate information and categorize the scene accurately
(Yarbus, 1967; Jóhannesson et al., 2016; Mirza et al., 2016;
Yang et al., 2016; Ólafsdóttir et al., 2019). In the context of
scene construction, sensory uncertainty (e.g., blurry images)
can limit the ability of individual cues to support inference
about the overarching visual scene. Such sensory uncertainty
can be partially “overridden” using prior knowledge, which
might be built into the agent’s internal model, innately or based
on previous experience. While there is an enormous body of
literature on the resolution of uncertainty with prior information
(Trueswell et al., 1994; Rayner and Well, 1996; Körding and
Wolpert, 2004; Stocker and Simoncelli, 2006; Girshick et al.,
2011), relatively little research has examined interactions between
sensory uncertainty and prior information in the context of
a dynamic, active vision task like visual foraging or scene
construction (with notable exceptions: e.g., Quétard et al., 2016).

Building on a previous Bayesian formulation of scene
construction, in this work use we use active inference to
model visual foraging in a hierarchical scene construction
task (Friston et al., 2012a,b, 2017a; Mirza et al., 2016), and to
study different types of uncertainty across distinct “layers of
inference.” We present simulations of active inference agents
performing hierarchical scene construction while parametrically
manipulating sensory uncertainty and prior beliefs. The
(sometimes counterintuitive) results of our simulations invite
new perspectives on active sensing and hierarchical inference,
which we discuss in the context of experimental design for both
visual foraging experiments and perceptual decision-making
tasks more generally. We examine the model’s behavior in
terms of the tension between instrumental (or utility-driven)
and exploratory (epistemically-driven) drives, and how active
inference explains both by appealing to a single pseudo- “value
function”: the expected free energy.

The rest of this paper is structured as follows: first, we
summarize active inference and the free energy principle,
highlighting the expected free energy, a quantity that prescribes
behavior with both goal-satisfying and information-gathering
components, under the single theoretical mantle of maximizing

model evidence. Next, we discuss the original model of scene
construction that inspired the present work, and move on to
introduce random dot motion stimuli and the ensuing ability to
parametrically manipulate uncertainty across hierarchical levels,
which distinguishes the current model from the original. Then
we detail the Markov Decision Process generative model that our
active inference agents entertain, and describe the belief-updating
procedures used to invert generative models, given observed
sensory data. Having appropriately set up our scene construction
task, we then report the results of simulations, with differential
effects of sensory uncertainty and prior belief strength appearing
in several aspects of active evidence accumulation in this
hierarchical environment. These computational demonstrations
motivate our conclusion, where we discuss the implications of
this work for experimental and theoretical studies of active
sensing and evidence accumulation under uncertainty.

2. FREE ENERGY MINIMIZATION AND
ACTIVE INFERENCE

2.1. Approximate Inference via Variational
Bayes
The goal of Bayesian inference is infer possible explanations
for data—this means obtaining a distribution over a set of
parameters x (the causal variables or explanations), given some
observations õ, where the tilde∼ notation indicates a sequence of
such observations over time õ = [o1, o2, . . . oT]T . Note we use the
notation x to refer to a set of causal variables, which may include
(sequences of) states s̃ and/or hyperparameters. This is also called
calculating the posterior probability P(x|õ); it encodes the optimal
belief about causal variables x, after having observed some data õ.
To compute the posterior requires solving using Bayes rule:

P(x|õ) =
P(õ|x)P(x)

P(õ)
(1)

Importantly, computing this quantity requires calculating the
marginal probability P(õ), also known as the evidence:

P(õ) =
∑

x

P(x)P(õ|x) (2)

Solving this summation1 (in the continuous case, integration)
quickly becomes intractable for high-dimensional models,
since the evidence needs to be calculated for every possible
combination of parameters x. The marginalization in Equation
(2) renders exact Bayesian inference expensive or impossible in
many cases, motivating approximate inference methods. One of
the leading classes of methods for approximate inference are the
variational methods (Beal, 2004; Blei et al., 2017). Variational
inference circumvents the issue of exact inference by introducing
an arbitrary distribution Q(x) to replace the true posterior.
This replacement is often referred to as the variational or

1From now on we assume the use of discrete probability distributions for
convenience and compatibility with the sort of generative models relevant to the
current work.
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approximate posterior. By constraining the form of the variational
distribution, tractable schemes exist to optimize it in a way that
(approximately) maximizes evidence. This optimization occurs
with respect to a quantity called the variational free energy, which
is a computable upper-bound on surprise, or the negative (log)
evidence − ln P(õ). The relationship between surprise and free
energy can be shown as follows using Jensen’s inequality:

− ln P(õ) = − ln
∑

x

P(õ, x)

= − ln
∑

x

Q(x)
P(õ, x)

Q(x)

≤ −
∑

x

Q(x) ln
P(õ, x)

Q(x)
= F

H⇒ − ln P(õ) ≤ F (3)

where F is the variational free energy and P(õ, x) is the joint
probability of observations and hidden causes, also known as the
generative model. The free energy can itself be decomposed into:

F = DKL[Q(x)‖P(x|õ)]− ln P(õ) (4)

This decomposition allows us to see that the free energy becomes
a tighter upper-bound on surprise the closer the variational
distribution Q(x) comes to the true posterior P(x|õ), as measured
by the Kullback-Leibler divergence2. When Q(x) = P(x|õ), the
divergence disappears and the free energy equals the negative
log evidence, rendering inference exact. Variational inference
is thus often described as the conversion of an integration
problem (computing the marginal likelihood of observations
as in Equation (2)) into an optimization problem, wherein
the parameters of the variational distribution are changed to
minimize F:

Q(x) = argmin
Q(x)

F ≈ P(x|õ) (5)

2.2. Active Inference and Expected Free
Energy
Having discussed the variational approximation to Bayesian
inference via free energy minimization, we now turn our
attention to active inference. Active inference is a framework
for modeling and understanding adaptive agents, premised
on the idea that agents engage in approximate Bayesian
inference with respect to an internal generative model of
sensory data. Crucially, under active inference both action and
perception are realizations of the single drive to minimize
surprise. By using variational Bayesian inference to achieve
this, an active inference agent generates Bayes-optimal beliefs
about sources of variation in its environment by free-energy-
driven optimization of an approximate posterior Q(x). This
can be analogized to the idea of perception as inference,
wherein perception constitutes optimizing the parameters of an

2The Kullback-Leibler divergence or relative entropy is a non-negative measure of
dissimilarity between probability distributions.

approximate posterior distribution over hidden states Q(s̃|π),
under a particular policy π3. In the context of neural systems,
it is theorized that the parameters of these posterior beliefs
about states are encoded by distributed neural activity in the
agent’s brain (Friston, 2008; Friston and Kiebel, 2009; Huang
and Rao, 2011; Bastos et al., 2012; Parr and Friston, 2018c).
Parameters of the generative model itself (such as the likelihood
mapping P(o|s)) are hypothesized to be encoded by the network
architectures, synaptic strengths, and neuromodulatory elements
of the nervous system (Bogacz, 2017; Parr et al., 2018, 2019).

Action can also be framed as a consequence of variational
Bayesian inference. Under active inference, policies (sequences
of actions) correspond to sequences of “control states”—a type of
hidden state that agents can directly influence. Actions are treated
as samples from posterior beliefs about policies (Friston et al.,
2012b). However, optimizing beliefs about policies introduces an
additional complication. Optimal beliefs about hidden statesQ(s̃)
are a function of current and past observations. However, as the
instantaneous free energy is a direct function of observations, it
is not immediately clear how to optimize beliefs about policies
when observations from the future are not available. This
motivates the introduction of the expected free energy, or beliefs
about the free energy expected in the future when pursuing a
policy π . The free energy expected at future time point τ under
a policy π is given by G(π , τ ). Replacing the expectation over
hidden states and outcomes in Equation (3) with the expectation
over hidden states and outcomes in the future, we have:

G(π , τ ) =
∑

o,s

Q(oτ , sτ |π) ln
Q(sτ |π)

P(oτ , sτ )
(6)

Here, we equip the agent with the prior belief that its
policies minimize the free energy expected (under their
pursuit) in the future. Under Markovian assumptions on the
dependence between subsequent time points in the generative
model P(õ, s̃|π) =

∏T
t P(ot|st)P(st|st−1,π) and a mean-field

factorization of the approximate posterior across time (such that
Q(s̃|π) = Q(π)

∏T
τ=1 Q(sτ )), we can write the prior probability

of a policy as proportional to the sum of the expected free energies
over time under each policy:

P(π) ∝ exp(−
∑

τ

G(π , τ )) (7)

We will not derive the self-consistency of the prior belief that
agents (believe they) will choose free-energy-minimizing policies,
nor the full derivation of the expected free energy here. Interested
readers can find the full derivations in Friston et al. (2015, 2017a)
and Parr and Friston (2019). However, it is worth emphasizing
that different components of the expected free energy clarify
its implications for optimal behavior in active inference agents.
These components are formally related to other discussions of
adaptive behavior, such as the trade-off between exploration and

3Hereafter we refer to observations and hidden states as o and s, respectively. We
use the more generic term hidden causes x to refer to all aspects of the posterior—
including hidden states, policies, and hyperparameters of the generative model.
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exploitation. We can re-write the expected free energy for a
given time-point τ and policy π as a bound on the sum of
two expectations:

G(τ ,π) = EQ(oτ ,sτ |π)[lnQ(sτ |π)− ln P(oτ , sτ )]

≥ −EQ(oτ |π)[DKL[Q(sτ |oτ ,π)||Q(sτ |π)]]

− EQ(oτ |π)[ln P(oτ )] (8)

From this decomposition of the quantity bounded by the
expected free energy G we illustrate the different kinds of
“value” that contribute to behavior in active inference (Friston
et al., 2013, 2015; Parr and Friston, 2017; Mirza et al., 2018).
See the Appendix for a derivation of Equation (8). The left
term on the RHS of the second line is a term that has been
called negative information gain. Under active inference, the
most likely policies are those that minimize the expected free
energy of their sensory consequences—therefore, minimizing
this left term promotes policies that disclose information about
the environment by reducing uncertainty about the causes of
observations, i.e., maximizing information gain. The right term
on the RHS of the second line is often called negative extrinsic (or
instrumental) value, and minimizing this term promotes policies
that lead to observations that match the agent’s prior expectations
about observations, The relationship of these prior expectations
to goal-directed behavior will become clear later in this section.
We also offer an alternative decomposition of the expected free
energy, formulating it in terms of minimizing a combination of
ambiguity and risk:

G(τ ,π) ≥ −EQ(oτ |π)[DKL[Q(sτ |oτ ,π)‖Q(sτ |π)]]
︸ ︷︷ ︸

Epistemic value

− EQ(oτ |π)[ln P(oτ )]
︸ ︷︷ ︸

Instrumental value

]

= EQ(sτ |π)[H[P(oτ |sτ )]]
︸ ︷︷ ︸

Ambiguity

+DKL[Q(oτ |π)||P(oτ )]
︸ ︷︷ ︸

Risk

(9)

See the Appendix for a derivation of Equation (9). The first
term on the RHS of the first line (previously referred to as
information gain) we hereafter refer to as “epistemic value”
(Friston et al., 2015; Mirza et al., 2016). It is equivalent to
expected Bayesian surprise in other accounts of information-
seeking behavior and curiosity (Linsker, 1990; Itti and Baldi,
2009; Gottlieb and Oudeyer, 2018). Such an epistemic drive
has the effect of promoting actions that uncover information
about hidden states via sampling informative observations. This
intrinsic drive to uncover information, and its natural emergence
via the minimization of expected free energy, is integral to
accounts of exploratory behavior, curiosity, salience, and related
active-sensing phenomena under active inference (FitzGerald
et al., 2015; Friston et al., 2017b,d; Parr and Friston, 2017, 2018b;
Mirza et al., 2019b). An alternative formulation of the expected
free energy is given in the second line of Equation (9), where
minimizing expected free energy promotes policies that reduce
“ambiguity,” defined as the expected uncertainty of observations,

given the states expected under a policy. These notions of
information gain and expected uncertainty will serve as a useful
construct in understanding the behavior of active inference
agents performing hierarchical scene construction later.

In order to understand how minimizing expected free energy
G relates to the pursuit of preference-related goals or drives, we
now turn to the second term on the RHS of the first line of
Equation (9). In order to enable instrumental or “non-epistemic”
goals to drive action, we supplement the agent’s generative
model with an unconditional distribution over observations P(o)
(sometimes called P(o|m), where m indicates conditioning on
the generative model of the agent)—this also factors into the
log joint probability distribution in the first line of Equation (8).
By fixing certain outcomes to have high (or low) probabilities
as prior beliefs, minimizing G imbues action selection with an
apparent instrumental or exploitative component, measured by
how closely observations expected under a policy align with
baseline expectations. Said differently: active inference agents
pursue policies that result in outcomes that they a priori expect
to encounter. The distribution P(o) is therefore also often called
the “prior preferences.” Encoding preferences or desires as beliefs
about future sensory outcomes underwrites the known duality
between inference and optimal control (Todorov, 2008; Friston
et al., 2009; Friston, 2011; Millidge et al., 2020). In the language
of Expected Utility Theory (which explains behavior by appealing
to the principle of maximizing expected rewards), the logarithm
of such prior beliefs is equivalent to the utility function (Zeki
et al., 2004). This component of G has variously been referred
to as utility, extrinsic value, or instrumental value (Seth, 2015;
Friston et al., 2017a; Biehl et al., 2018; Seth and Tsakiris, 2018);
hereafter we will use the term instrumental value. A related but
subtly different perspective is provided by the second term on
the RHS of the second line of Equation (9): in this formulation,
prior preferences enter the free energy through a “risk” term.
The minimization of expected risk favors actions that minimize
the KL-divergence between outcomes expected under a policy
and preferred outcomes, and is related to formulations like KL-
control or risk-sensitive control (Klyubin et al., 2005; van den
Broek et al., 2010).

3. SCENE CONSTRUCTION WITH
RANDOM DOT MOTION

3.1. The Original Model
We now describe an abstract scene construction task that will
serve as the experimental context within which to frame our
hierarchical account of active evidence accumulation. Inspired
by a previous active inference model of scene construction
introduced by Mirza et al. (2016), here we invoke scene
construction in service of a categorization game. In each trial
of the task, the agent must make a discrete choice to report its
belief about the identity of the “hidden scene.” In the formulation
by Mirza et al., the scenes are represented by three abstract
semantic labels: “flee,” “feed,” and “wait” (see Figure 1). Each
scenemanifests as a particular spatial coincidence of two pictures,
where each picture is found within a single quadrant in a 2 × 2
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FIGURE 1 | The scene configurations of the original formulation. The three scenes characterizing each trial in the original scene construction study, adapted with

permission from Mirza et al. (2016).

FIGURE 2 | Random Dot Motion Stimuli (RDMs). Schematic of random dot motion stimuli, with increasing coherence levels (i.e., % percentage of dots moving

upwards) from left to right.

visual array. For example, the “flee” scene is defined as when a
picture of a cat and a picture of a bird occupy two quadrants lying
horizontally adjacent to one other. The scene identities are also
invariant to two spatial transformations: vertical and horizontal
inversions. For example, in the “flee” scene, the bird and cat
pictures can be found in either in the top or bottom row of the
2× 2 array, and they can swap positions; in any of these cases the
scene is still “flee.” The task requires active visual interrogation
of the environment because quadrants must be gaze-contingently
unveiled. That means, by default all quadrants are covered and
their contents not visible; the agent must directly look at a
quadrant in order to see its contents. This task structure and the
ambiguous nature of the picture → scene mapping means that
agents need to actively forage for information in the visual array
in order to abduce the scene.

3.2. Introducing Random Dot Motion
In the current work, scene construction is also framed as a
categorization task, requiring the gaze-contingent disclosure of
quadrants whose contents furnish evidence for beliefs about
the scene identity. However, in the new task, the visual stimuli
occupying the quadrants are animated random dot motion or
RDM patterns, instead of static pictographs. An RDM stimulus
consists of a small patch of dots whose correlated displacement
over time gives rise to the perception of apparent directedmotion
(see Figure 2). By manipulating the proportion of dots moving
in the same direction, the apparent direction of motion can
be made more or less difficult to discriminate (Shadlen and
Newsome, 1996). This discriminability is usually operationalized
as a single coherence parameter, which defines the percentage
of dots that appear to move in a common direction. The
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FIGURE 3 | The mapping between scenes and RDMs. The mapping between the four abstract scene categories and their respective dot motion pattern

manifestations in the context of the hierarchical scene construction task. As an example of the spatial invariance of each scene, the bottom right panels show two

possible (out of 12 total) RDM configurations for the scene “RIGHT-DOWN,” where the two constitutive RDMs of that scene are found in exactly two of the four

quadrants. The ‘scene symbols’ at the bottom of the visual array represent the categorization choices available to the subject, with each symbol comprised of two

overlapping arrows that indicate the directions of the motion that define the scene.

remaining non-signal (or “incoherent”) dots are usually designed
to move in random independent directions. This coherence
parameter thus becomes a simple proxy for sensory uncertainty
in motion perception: manipulating the coherence of RDM
patterns has well-documented effects on behavioral measures of
performance, such as reaction time and discrimination accuracy,
with increasing coherence leading to faster reaction times and
higher accuracy (Palmer et al., 2005). In the current formulation,
each RDM pattern is characterized by a unique primary direction
of motion that belongs to one of the four cardinal directions:
UP, RIGHT, DOWN, or LEFT. For example, in a given trial
one quadrant may contain a motion pattern moving (on average)
upwards, while another quadrant contains a motion pattern
moving (on average) leftwards. These RDM stimuli are suitable
for the current task because we can use the coherence parameter
to tune motion ambiguity and hence sensory uncertainty.
Applying this metaphor to the original task (Mirza et al., 2016):
we might imagine blurred versions of the cat and bird pictures,
such that it becomes difficult to tell whether a given image is
of a bird or a cat—this low-level uncertainty about individual
images may then “carry forward” to affect scene inference. An
equivalent analogy might be found in the problem of reading
a hastily-written phone number, such that it becomes hard to
distinguish the number “7” from the number “1.” In our case,
the motion coherence of RDMs controls how easily an RDM of
one direction can be confused with another direction—namely,
a more incoherent dot pattern is more likely to be mistaken as a
dot pattern moving in a different direction.

We also design the visual stimulus→ scenemapping such that
scenes are degenerate with respect to individual visual stimuli,
as in the previous task (see Figure 3). There are four scenes,

each one defined as the co-occurrence of two RDMs in two
(and only two) quadrants of the visual array. The two RDMs
defining a given scene move in perpendicular directions; the
scenes are hence named:UP-RIGHT, RIGHT-DOWN,DOWN-

LEFT, and LEFT-UP. Discerning the direction of one RDM is
not sufficient to disambiguate the scene; due to the degeneracy of
the scene configurations with respect to RDMs, the agent must
always observe two RDMs and discern their respective directions
before being able to unambiguously infer scene identity. The
task requires two nested inferences—one about the contents of
the currently-fixated quadrant (e.g., “Am I looking at an UP-
wards moving RDM?”) and another about the identity about the
overarching scene (e.g., “is the sceneUP-RIGHT?”). During each
trial, an agent can report its guess about the scene identity by
choosing one of the four symbols that signify the scenes (see
Figure 3), which ends the trial. This concludes our narrative
description of the experimental setup.

3.3. Summary
We have seen how both perception and action emerge as
consequences of free energyminimization under active inference.
Perception is analogized to state estimation and corresponds
to optimizing variational beliefs about the hidden causes of
sensory data x. Meanwhile actions are sampled from inferred
sequences of control states (policies). The likelihood of a policy
is inversely proportional to the free energy expected under
that policy. We demonstrated that expected free energy can
be decomposed into the sum of two terms, which respectively
encode the drive to resolve ambiguity about the hidden causes
of sensory data (epistemic value) and to satisfy agent-specific
preferences (instrumental value) (first line of Equation 9). In

Frontiers in Artificial Intelligence | www.frontiersin.org 6 October 2020 | Volume 3 | Article 509354

https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles


Heins et al. Deep Scene Construction

this way active inference theoretically dissolves the exploration-
exploitation dilemma often discussed in decision sciences and
reinforcement learning (March, 1991; Schmidhuber, 1991; Sutton
and Barto, 1998; Parr, 2020) by choosing policies that minimize
expected free energy. This unification of perception and action
under a common Bayesian ontology underlies the power of
active inference as a normative framework for studying adaptive
behavior in complex systems. In the following sections we
will present a (hierarchical) Markov Decision Process model of
scene construction, where stochastic motion stimuli serve as
observations for an overarching scene categorization task. We
then discuss perception and action under active inference in the
context of hierarchical scene construction, with accompanying
computational demonstrations.

4. HIERARCHICAL MARKOV DECISION
PROCESS FOR SCENE CONSTRUCTION

We now introduce the hierarchical active inference model of
visual foraging and scene construction. The generative model
(the agent) and the generative process of the environment
both take the form of a Markov Decision Process or MDP.
MDPs are a simple class of probabilistic generative models
where space and time are treated discretely (Puterman, 1995).
In the MDP used here, states are treated as discrete samples
from categorical distributions and likelihoods act as linear
transformations of hidden states, mapping states at one time step
to the subsequent time step, i.e., P(st|st−1). This specification
imbues the environment with Markovian, or “memoryless”
dynamics. An extension of the standard MDP formulation is
the partially-observed MDP or POMDP, which includes discrete
observations that are mapped (via a likelihood function P(ot|st))
from states to observations at a given time.

A generative model is simply a joint probability distribution
over sensory observations and their latent causes P(õ, x), and is
often factorized into the product of a likelihood and a set of
marginal distributions over latent variables and hyperparameters,
e.g., P(õ|s̃)P(s̃)P(ϕ)P(ζ ) . . . where s̃,ϕ, ζ , . . . ∈ x refer to the
various latent causes. Note that in the current formulation the
only hidden variables subject to variational inference are hidden
states s̃ and policies π . The discrete MDP constrains these
distributions to have a particular form; here, the priors over
initial states, transition and likelihood matrices are encoded
as categorical distributions over a discrete set of states and
observations. Agents can only directly observe sensory outcomes
õ, meaning that the agent must infer hidden states s̃ by inverting
the generative model to estimate the causes of observations.
Hierarchical models take this a step further by adding multiple
layers of hidden-state inference, allowing beliefs about hidden
states s̃(i) at one level to act as so-called “inferred observations”
õ(i+1) for the level above, with associated priors and likelihoods
operating at all levels. This marks a departure from previous
work in the hierarchical POMDP literature (Pineau et al., 2001;
Theocharous et al., 2004), where the hierarchical decomposition
of action is emphasized and used to finesse the exponential costs
of planning; states and observations, on the other hand, are often

coarse-grained using separate schemes or left fully enumerated
(although see Sridharan et al., 2010). In the current formulation,
we adopt a hybrid scheme, where at a given level of depth in
the hierarchy, observations can be both passed in at the same
level (from the generative process), as well as via “inferred”
observations from the level below. Note that as with õ, we use s̃ to
denote a sequence of hidden states over time s̃ = [s1, s2, . . . sT]T .

4.1. Hierarchical MDPs
Figure 4 summarizes the structure of a generic two-layer
hierarchical POMDP model, outlining relationships between
random variables via a Bayesian graph and their (factorized,
categorical) forms in the left panel. In the left panel of Figure 4,
õ and s̃ indicate sequences of observations and states over time.
In the MDP model, the probability distributions that involve
these sequences are expressed in a factorized fashion. Themodel’s
beliefs about how hidden states s̃(i) cause observations õ(i) are
expressed as multidimensional arrays in the likelihood matrix
A(i),m, where i indicates the index of the hierarchical level and m
indicates a particular modality (Mirza et al., 2016; Friston et al.,
2017d). The (x, y) entry of a likelihood matrix A(i),m prescribes
the probability of observing the outcome x under the modalitym
at level i, given hidden state y. In this way, the columns of the A
matrices are conditional categorical distributions over outcomes,
given the hidden state indexed by the column. The dynamics
that describe how hidden states at a given level s(i) evolve over
time are given by Markov transition matrices B(i),n(u) which
express how likely the next state is given the current state—in the
generative model, this is equivalent to the transition distribution
P(st|st−1, ut). Here n indexes a particular factor of level i’s
hidden states, and u indexes a particular control state or action.
Actions in this scheme are thus treated as controlled transitions
between hidden states. We assume that the posterior distribution
over different dimensions of hidden states factorize, leading to
conditional independence between separate hidden state factors.
This is known as the mean-field approximation, and allows the
sufficient statistics of posterior beliefs about different hidden state
variables to be updated separately (Feynman, 1998). This results
in a set of relatively simple update equations for posterior beliefs
and is also consistent with known features of neuroanatomy,
e.g., functional segregation in the brain (Felleman and Van,
1991; Ungerleider and Haxby, 1994; Friston and Buzsáki, 2016;
Mirza et al., 2016; Parr and Friston, 2018a). The hierarchical
MDP formulation notably permits a segregation of timescales
across layers and an according mean-field approximation on
their respective free energies, such that multiple time steps of
belief-updating at one level can unfold within a single time step
of inference at the level above. In this way, low-level beliefs
about hidden states (and policies) can be accumulated over time
at a lower layer, at which point the final posterior estimate
about hidden states is passed “up” as an inferred outcome
to the layer above. Subsequent layers proceed at their own
characteristic (slower) timescales (Friston et al., 2017d) to update
beliefs about hidden states at their respective levels. Before we
describe the particular form of the hierarchical MDP used (as
both the generative process and generative model) for deep scene
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FIGURE 4 | A partially-observed Markov Decision Process with two hierarchical layers. Schematic overview of the generative model for a hierarchical

partially-observed Markov Decision Process. The generic forms of the likelihoods, priors, and posteriors at hierarchical levels are provided in the left panels, adapted

with permission from Friston et al. (2017d). Cat(x) indicates a categorical distribution, and x̃ indicates a discrete sequence of states or random variables:

x̃ = (x1, x2, . . . , xt ). Note that priors at the highest level (Level 2) are not shown, but are unconditional (non-empirical) priors, and their particular forms for the scene

construction task are described in the text. As shown in the “Empirical Priors” panel, prior preferences at lower levels C
(i)
τ can be a function of states at level i + 1, but

this conditioning of preferences is not necessary, and in the current work we pre-determine prior preferences at lower levels, i.e., they are not contextualized by states

at higher levels (see Figure 8). Posterior beliefs about policies are given by a softmax function of the expected free energy of policies at a given level. The approximate

(variational) beliefs over hidden states are represented via a mean-field approximation of the full posterior, such that hidden states can be encoded as the product of

marginal distributions. Factorization of the posterior is assumed across hierarchical layers, across hidden state factors (see the text and Figures 6, 7 for details on the

meanings of different factors), and across time. “Observations” at the higher level (õ(2)) may belong to one of two types: (1) observations that directly parameterize

hidden states at the lower level via the composition of the observation likelihood one level P(o(i+1)|s(i+1)) with the empirical prior or “link function” P(s(i)|o(i+1)) at the level

below, and (2) observations that are directly sampled at the same level from the generative process (and accompanying likelihood of the generative model

P(o(i+1)|s(i+1))). For conciseness, we represent the first type of mapping, from states at i + 1 to states at i through a direct dependency in the Bayesian graphical model

in the right panel, but the reader should note that in practice this is achieved via the composition of two likelihoods: the observation likelihood at level i + 1 and the link

function at level i. This composition is represented by a single empirical prior P(s(i)|s(i+1)) = Cat(D(i)) in the left panel. In contrast, all observations at the lowest level (õ(1))

feed directly from the generative process to the agent.

construction, we provide a brief technical overview of the update
scheme used to solve POMDPs with active inference.

4.1.1. Belief Updating
Figure 5 provides a schematic overview of the belief update
equations for state estimation and policy inference under active
inference. For the sake of clarity here we only consider a single
“layer” of a POMDP generative model, i.e., we don’t include
the top-down or bottom-up beliefs that parameterize priors over
hidden states (from the layer above) or inferred observations
(from the layer below). Note that in this formulation, instead
of directly evaluating the solution for states with lowest free
energy s∗, we use a marginal message passing routine to perform
a gradient descent on the variational free energy at each time
step, where posterior beliefs about hidden states and policies are
incremented using prediction errors ε (see Figure 5 legend for
more details). In the context of deep temporal models, these
equations proceed independently at each level of the hierarchy
at each time step. At lower levels, the posterior over certain

hidden state factors at the first timestep s
(i)
1 can be initialized

as the “expected observations” o(i+1) from the level above, and
“inferred observations” at higher levels are inherited as the final

posterior beliefs s(i)T over the corresponding hidden state at lower
levels. This update scheme may sound complicated; however,
when expressed as a gradient descent on free energy, with respect
to the sufficient statistics of beliefs about expected states, it
reduces to a remarkably simple scheme that bears resemblance
to neuronal processing: see Friston et al. (2015) for details.
Importantly, the mean-field factorization of the generative model
across hierarchical layers allows the belief updating to occur in
isolation at each layer of the hierarchy, such that only the final
posterior beliefs at one layer need to be passed to the layer above.
The right side of Figure 5 shows a simple schematic of how
the particular random variables that make up generative model
might correspond to neural processing in known brain regions.
Evidence for the sort of hierarchical processing entailed by such
generative models abounds in the brain, and is the subject of a
wealth of empirical and theoretical neuroscience research (Lee
and Mumford, 2003; Friston, 2008; Hasson et al., 2008; Friston
et al., 2017c; Runyan et al., 2017; Pezzulo et al., 2018).
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FIGURE 5 | Belief-updating under active inference. Overview of the update equations for posterior beliefs under active inference. (A) Shows the optimal solution for

posterior beliefs about hidden states s∗ that minimizes the variational free energy of observations. In practice the variational posterior over states is computed as a

marginal message passing routine (Parr et al., 2019), where prediction errors επ
τ minimized over time until some criterion of convergence is reached (ε ≈ 0). The

prediction errors measure the difference between the current log posterior over states ln sπ
τ and the optimal solution ln s∗. Solving via error-minimization lends the

scheme a degree of biological plausibility and is consistent with process theories of neural function like predictive coding (Bastos et al., 2012; Bogacz, 2017). An

alternative scheme would be equating the marginal posterior over hidden states (for a given factor and/or timestep) to the optimal solution s∗π ,τ—this is achieved by

solving for s∗ when free energy is at its minimum (for a particular marginal), i.e., ∂F
∂sπ ,τ

= 0. This corresponds to a fixed-point minimization scheme (also known as

coordinate-ascent iteration), where each conditional marginal is iteratively fixed to its free-energy minimum, while holding the remaining marginals constant (Blei et al.,

2017). (B) Shows how posterior beliefs about policies are a function of the free energy of states expected under policies F and the expected free energy of policies G.

F is a function of state prediction errors and expected states, and G is the expected free energy of observations under policies, shown here decomposed into the KL

divergence between expected and preferred observations or risk (oπ
τ · (lnoπ

τ −Cτ )) and the expected entropy or ambiguity (H · sπ
τ ). A precision parameter γ scales the

expected free energy and serves as an inverse temperature parameter for a softmax normalization σ of policies. See the text (Section 4.1.1) for more clarification on the

free energy of policies F. (C) Shows how actions are sampled from the posterior over policies, and the posterior over states is updated via a Bayesian model average,

where expected states are averaged under beliefs about policies. Finally, expected observations are computed by passing expected states through the likelihood of

the generative model. The right side shows a plausible correspondence between several key variables in an MDP generative model and known neuroanatomy. For

simplicity, a hierarchical generative model is not shown here, but one can easily imagine a hierarchy of state inference that characterizes the recurrent message

passing between lower-level occipital areas (e.g., primary visual cortex) through higher level visual cortical areas, and terminating in “high-level,” prospective and

policy-conditioned state estimation in areas like the hippocampus. We note that it is an open empirical question, whether various computations required for active

inference can be localized to different functional brain areas. This figure suggests a simple scheme that attributes different computations to segregated brain areas,

based on their known function and neuroanatomy (e.g., computing the expected free energy of actions (G), speculated to occur in frontal areas).

We also find it worthwhile to clarify the distinction between
the variational free energy of policies F(π) and the expected free
energy of policies G(π), both of which are needed to compute the
posterior over policies Q(π). The final posterior probability over
policies is a softmax function of both quantities (see Figure 5B),
where the former can be seen as the evidence afforded by past
and ongoing observations, that a given policy is currently being
pursued, whereas the latter is the evidence expected to be gathered
in favor of pursuing a given policy, where this expected evidence
is biased by prior beliefs about what kinds of observations the
agent is likely to encounter (via the prior preferences C). Starting
with the definition of the free energy of the (approximate)
posterior over both hidden states and policies::

F = EQ(s̃,π)[lnQ(s̃,π)− ln P(õ, s̃,π)]

= EQ(π)[F(π)]+ DKL[Q(π)||P(π)] (10)

F(π) = −EQ(s̃|π)
[

ln P(õ, s̃|π)
]

−H[Q(s̃|π)]

Q(π) = argmin
Q(π)

F ∝ e(ln P(π)−F(π)) (11)

Where ln P(π) = G(π) is a prior of the generative model that
encodes the self-consistent belief that the prior probability of a
policy is proportional to its negative expected free energy G(π).
Please see the Appendix for a fuller derivation of Equation (10).
Note that (due to the factorization of the approximate posterior
over time, cf. Section 2.2) the variational free energy of a policy
F(π) is the sum of the individual free energies for a given
policy afforded by past observations, up to and including the
current observation:
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FIGURE 6 | Level 1 MDP. Level 1 of the hierarchical POMDP for scene construction (see Section 4.2.1 for details). Level 1 directly interfaces with stochastic motion

observations generated by the environment. At this level hidden states correspond to: (1) the true motion direction s(1),1 underlying visual observations at the

currently-fixated region of the visual array and (2) the sampling state s(1),2, an aspect of the environment that can be changed via actions, i.e., selections of the

appropriate state transition, as encoded in the B matrix. The first hidden state factor s(1),1 can either correspond to a state with no motion signal (“Null,” in the case

when there is no RDM or a categorization decision is being made) or assume one of the four discrete values corresponding to the four cardinal motion directions. At

each time step of the generative process, the current state of the RDM stimulus s(1),1 is probabilistically mapped to a motion observation via the first-factor likelihood

A(1),1 (shown in the top panel as ARDM). The entropy of the columns of this mapping can be used to parameterize the coherence of the RDM stimulus, such that the

true motion states s(1),1 cause motion observations o(1),1 with varying degrees of fidelity. This is demonstrated by two exemplary ARDM state matrices in the top panel

(these correspond to A(1),1): the left-most matrix shows a noiseless, “coherent” mapping, analogized to the situation of when an RDM consists of all dots moving in the

same direction as described by the true hidden state; the matrix to the right of the noiseless mapping corresponds to an incoherent RDM, where instantaneous

motion observations may assume directions different than the true motion direction state, with the frequency of this deviation encoded by probabilities stored in the

corresponding column of ARDM. The motion direction state doesn’t change in the course of a trial (see the identity matrix shown in the top panel as BRDM, which

simply maps the hidden state to itself at each subsequent time step)—this is true of both the generative model and the generative process. The second hidden state

factor s(1),2 encodes the current “sampling state” of the agent; there are two levels under this factor: “Keep-sampling” or “Break-sampling.” This sampling state (a

factor of the generative process) is directly represented as a control state in the generative model; namely, the agent can change it by sampling actions (B-matrix

transitions) from the posterior beliefs about policies. The agent believes that the “Break-sampling” state is a sink in the transition dynamics, such that once it is

entered, it cannot be exited (see the right-most matrix of the transition likelihood BSampling state). Entering the “Break-sampling” state terminates the POMDP at Level

1. The “Keep-sampling” state enables the continued generation of motion observations as samples from the likelihood mapping A(1),1. A(1),2 (the “proprioceptive”

likelihood, not shown for clarity) deterministically maps the current sampling state s(1),2 to an observation o(1),2 thereof (bottom row of lower right panel), so that the

agent always observes which sampling state it is in unambiguously.

F(π) =
∑

τ

F(π , τ )

F(π , τ ) = −EQ(sτ |π)Q(sτ−1|π)
[

[τ ≤ t] ln P(oτ |sτ )

+ ln P(sτ |sτ−1,π)− lnQ(sτ |π)
]

(12)

The Iverson brackets [τ ≤ t] return 1 if τ ≤ t and 0 otherwise.

4.2. From Motion Discrimination to Scene
Construction: A Nested Inference Problem
We now introduce the deep, temporal model of scene
construction using the task discussed in Section 3 as our
example (Figure 6). We formulate perception and action with

a hierarchical POMDP consisting of two distinct layers that are
solved via active inference. The first, shallowest level (Level 1)
is an MDP that updates posterior beliefs about the most likely
cause of visual stimulation (RDM direction), where we model the
ongoing contents of single fixations—the stationary periods of
relative retinal-stability between saccadic eye movements. This
inference is achieved with respect to the (spatially-local) visual
stimuli underlying current foveal observations. A binary policy
is also implemented, encoding the option to continue holding
fixation (and thus keep sampling the current stimulus) or to
interrupt sampling and terminate updates at the lower level. The
second, higher level (Level 2) is another MDP that performs
inference at a slower timescale, with respect to the overarching
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hidden scene that describes the current trial. Here, we enable
policies that realize visual foraging. These policies encode
controlled transitions between different states of the oculomotor
system, serving as a model of saccadic eye movements to different
parts of the visual array. This method of encoding saccades
as controlled transitions between locations is inspired by the
original scene construction formulation inMirza et al. (2016).We
will now discuss both layers individually and translate different
elements of the MDP generative model and environment to
task-relevant parameters and the beliefs of the agent.

4.2.1. Level 1: Motion Discrimination via Motion

Sampling Over Time
Lowest level (Level 1) beliefs are updated as the agent encounters
a stream of ongoing, potentially ambiguous visual observations—
the instantaneous contents of an individual fixation. The hidden
states at this level describe a distribution over motion directions,
which parameterize the true state of the randommotion stimulus
within the currently-fixated quadrant. Observations manifest as
a sequence of stochastic motion signals that are samples from the
true hidden state distribution.

The generative model has an identical form as the generative
process (see above) used to generate the stream of Level 1
outcomes. Namely, it is comprised of a set of likelihoods and
transitions as the dynamics describing the “real” environment
(Figure 6). In order to generate a motion observation, we sample
the probability distribution over motion direction given the true
hidden state using the Level 1 generative process likelihood
matrix A(1),1. For example, if the current true hidden state at
the lower level is 2 (implying that an RDM stimulus of UPwards
motion occupies the currently fixated quadrant), stochastic
motion observations are sampled from the second column
of the generative likelihood mapping A(1),1. The precision of
this column-encoded distribution over motion observations
determines how often the sampled motions will be UPwards
signals and thus consistent with the true hidden state. The
entropy or ambiguity of this likelihood mapping operationalizes
sensory uncertainty and in this case, motion incoherence. For
more details on how states and outcomes are discretized in the
generative process, see Figure 6 and its legend.

Inference about the motion direction (Level 1 state
estimation) roughly proceeds as follows: (1) at time t a

motion observation o
(1),1
t is sampled from the generative process

A(1),1; (2) posterior beliefs about the motion direction at the

current timestep s
(1),1
t are updated using a gradient descent on

the variational free energy. In addition, we included a second,
controllable hidden state factor at Level 1 that we refer to as the
abstract “sampling state” of the agent. We include this in order
to enable policies at this level, which entail transitions between
the two possible values of this control state. These correspond
to the choice to either keep sampling the current stimulus or
break sampling. These policies are stored as two 2 × 2 transition
matrices in B(2),2, where each transition matrix B(2),2(u)encodes
the probability of transitioning to “Keep-sampling” or “Break-
sampling,” given an action u and occupancy in one of the two
sampling states. Note that these policies only consider actions at

the next time step, meaning that the policy-space is identical to
the action-space (there is no sequential aspect to the policies).
Selecting the first action keeps the Level 1 MDP in the “Keep-
sampling” state, triggering the generation of another motion
observation from the generative process. Engaging the second
“Break-sampling” policy moves the agent‘s sampling regime into
the second state and terminates any further updates at Level 1.
At this point the latest posterior beliefs from Level 1 are sent up
as observations for Level 2. It is worth noting that implementing
“breaking” the MDP at the lower level as an explicit policy
departs from the original formulation of deep, temporal active
inference. In the formulation developed in Friston et al. (2017d),
termination of lower level MDPs occurs once the entropy of the
lower-level posterior over the hidden states (only those factors
that are linked with the level above) is minimized beyond a
fixed value4. We chose to treat breaking the first level MDP
as an explicit policy in order to formulate behavior in terms
of the same principles that drive action selection at the higher
level—namely, the expected free energy of policies. In the
Simulations section we explore how the dynamic competition
between the “Break-” and “Keep-sampling” policies induces an
unexpected distribution of break latencies.

We fixed the maximum temporal horizon of Level 1 (hereafter
T1) to be 20 time steps, such that if the “Break-sampling” policy
is not engaged before t = 20 (implying that “Keep-sampling” has
been selected the whole time), Level 1 automatically terminates
after the 20th time step and the final posterior beliefs are passed
up as outcomes for Level 2.

4.2.2. Level 2: Scene Inference and Saccade

Selection
After beliefs about the state of the currently-foveated visual
region are updated via active inference at Level 1, the resulting
posterior belief about motion directions is passed up to Level
2 as a belief about observations. These observations (which can
be thought of as the inferred state of the visual stimulus at
the foveated area) are used to update the statistics of posterior
beliefs over the hidden states operating at Level 2 (specifically,
the hidden state factor that encodes the identity of the scene,
e.g., UP-RIGHT). Hidden states at Level 2 are segregated into
two factors, with corresponding posterior beliefs about them
updated independently.

The first hidden state factor corresponds to the scene
identity. As described in Section 3, there are four possible
scenes characterizing a given trial:UP-RIGHT, RIGHT-DOWN,
DOWN-LEFT, and LEFT-UP. The scene determines the
identities of the two RDMs hiding throughout the four quadrants,
e.g., when the scene is UP-RIGHT, one UPwards-moving RDM
is found in one of the four quadrants, and a RIGHTwards-
moving RDM is found in another quadrant. The quadrants that
are occupied by RDMs for a given scene is random, meaning
that agents have to forage the 2 × 2 array for the RDMs in
order to infer the scene. We encode the scene identities as

4This threshold is referred to as “residual uncertainty,” and by default is set to as
1
64 nats.
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FIGURE 7 | Level 2 MDP. Level 2 of the hierarchical POMDP for scene construction. Hidden states consist of two factors, one encoding the scene identity and

another encoding the eye position (i.e., current state of the oculomotor system). The first hidden state factor s(2),1 encodes the scene identity of the trial in terms of two

unique RDM directions occupy two of the quadrants (four possible scenes as described in the top right panel) and spatial configuration (one of 12 unique ways to

place two RDMs in four quadrants). This yields a dimensionality of 48 for this hidden state factor (4 scenes × 12 spatial configurations). The second hidden state

factor s(2),2 encodes the eye position, which is initialized to be in the center of the quadrants (Location 1). The next four values of this factor index the four quadrants

(2–5), and the last four are indices for the choice locations (the agent fixates one of these four options to guess the scene identity). As with the sampling state factor at

Level 1, the eye position factor s(2),2 is controllable by the agent through the action-dependent transition matrices B(2),2. Outcomes at Level 2 are characterized by

three modalities: the first modality o(2),1 indicates the visual stimulus (or lack thereof) at the currently-fixated location. Note that during belief updating, the observations

of this modality o(2),1 are inferred hidden states over motion directions that are passed up after solving the Level 1 MDP (see Figure 6). An example likelihood matrix

for this first modality is shown in the upper left, showing the conditional probabilities for visual outcomes when the 1st factor hidden state has the value 32. This

corresponds to the scene identity DOWN-LEFT under spatial configuration 8 (the RDMs occupy quadrants indexed as Locations 2 and 4). The last two likelihood

arrays A(2),2 and A(2),3 map to respective observation modalities o(2),2 and o(2),3, and are not shown for clarity; the A(2),2 likelihood encodes the joint probability of

particular types of trial feedback (Null, Correct, Incorrect—encoded by o(2),2) as a function of the current hidden scene and the location of the agent’s eyes, while A(2),3

is an unambiguous proprioceptive mapping that signals to the agent the location of its own eyes via o(2),3. Note that these two last observation modalities o(2),2 and

o(2),3 are directly sampled from the environment, and are not passed up as “inferred observations” from Level 1.

well as their “spatial permutability” (with respect to quadrant-
occupancy) by means of a single hidden state factor that
exhaustively encodes the unique combinations of scenes and their
spatial configurations. This first hidden state factor is thus a 48-
dimensional state distribution (4 scenes × 12 possible spatial
configurations—see Figure 7 for visual illustration).

The second hidden state factor corresponds to the current
spatial position that’s being visually fixated—this can be thought
of as a hidden state encoding the current configuration of the
agent’s eyes. This hidden state factor has nine possible states: the
first state corresponds to an initial position for the eyes (i.e., a
fixation region in the center of the array); the next four states
(indices 2–5) correspond to the fixation positions of the four
quadrants in the array, and the final four states (6–9) correspond
to categorization choices (i.e., a saccade which reports the agent’s
guess about the scene identity). The states of the first and

second hidden state factors jointly determine which observation
is sampled at each timestep on Level 2.

Observations at this level comprise three modalities. The first
modality encodes the identity of the visual stimulus at the fixated
location and is identical in form to the first hidden state factor
at Level 1: namely, it can be either the “Null” outcome (when
there is no visual stimulus at the fixated location) or one of
the four motion directions. The likelihood matrix for the first-
modality on Level 2, namely A(2),1, consists of probabilistic
mappings from the scene identity /spatial configuration (encoded
by the first hidden state factor) and the current fixation location
(the second hidden state factor) to the stimulus identity at
the fixated location, e.g., if the scene is UP-RIGHT under the
configuration where the UPwards-moving RDM is in the upper
left quadrant and the RIGHTwards-moving RDM is in the upper
right quadrant and the current fixation location (the second
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hidden state) is the upper left quadrant, then the likelihood
function will determine the first-modality observation at Level 2
to be UP. When the agent is fixating either an empty quadrant,
the starting fixation location, or one of the response options
(locations 6–9), the observation in the first modality is Null. The
likelihood functions are deterministic and identical in both the
generative model and generative process—this imbues the agent
with a kind of “prior knowledge” of the (deterministic) mapping
between the scenes and their respective visual manifestations in
the 2 × 2 grid. The second observation modality is a ternary
variable that returns feedback to the agent based on its scene
categorization performance—it can assume the values of “No
Feedback,” “Correct,” or “Incorrect.” Including this observation
modality (and prior beliefs about the relative probability of its
different values) allows us to endow agents with the drive to
report their guess about the scene, and to do so accurately in
order to maximize the chance of receiving correct feedback. The
likelihoodmapping for this modalityA(2),2 is structured to return
a “No Feedback” outcome in this modality when the agent fixates
any area besides the response options, and returns “Correct”
or “Incorrect” once the agent makes a saccade to one of the
response options (locations 6–9)—the particular value it takes
depends jointly on the true hidden scene and the scene identity
that the agent has guessed. We will further discuss how a drive to
respond accurately emerges when we describe the prior beliefs
parameterized by the C and D arrays. The final observation
modality at Level 2 is a proprioceptive mapping (similar to
“sampling-state” modality at Level 1) that unambiguously signals
which location the agent is currently fixating via a 9 × 9 identity
matrix A(2),3.

The transition matrices at Level 2, namely B(2),1 and B(2),2,
describe the dynamics of the scene identity and of the agent’s
oculomotor system, respectively. We assume the dynamics
that describe the scene identity are both uncontrolled and
unchanging, and thus fix B(2),1 to be an identity matrix that
ensures the scene identity/spatial configuration is stable over
time. As in earlier formulations (Friston et al., 2012a; Mirza et al.,
2016, 2019a) we model saccadic eye movements as transitions
between control states in the 2nd hidden state factor. The
dynamics describing the eyemovement from the current location
to a new location is encoded by the transition array B(2),2 (e.g., if
the action taken is 3 then the saccade destination is described by
a transition matrix that contains a row of 1s on the third row,
mapping from any previous location to location 3).

Inference and action selection at Level 2 proceeds as follows:
based on the current hidden state distribution and Level 1’s
likelihood mapping A(1),1 (the generative process), observations
are sampled from the three modalities. The observation under
the first-modality at this level (either “Null” or a motion
direction parameterizing an RDM stimulus) is passed down
to Level 1 as the initial true hidden state. The agent also
generates expectations about the first-modality observations via
A(1),1 ·Q(st), whereA(1),1 is the generative model’s likelihood and
Q(st) is the latest posterior density over hidden states (factorized
into scene identity and fixation location). This predictive density
over (first-modality) outcomes serves as an empirical prior for the
agent’s beliefs about the hidden states in the first factor—motion

direction—at Level 1. Belief-updating and policy selection at
Level 1 then proceeds via active inference using the empirical
priors inherited from Level 2 in addition to its own generative
model and process (as described in Section 4.2.1). Once the
motion observations and belief updating terminates at Level
1, the final posterior beliefs about the 1st factor hidden states
are passed to Level 2 as “inferred” observations of the first
modality. The belief updating at Level 2 proceeds as usual,
where observations (both those “inferred” from Level 1 and
the true observations from the Level 2 generative process: the
oculomotor state and rewardmodality) are integrated using Level
2’s generative model to form posterior beliefs about hidden states
and policies. The policies at this level, like at the lower level, only
consider one step ahead in the future—so each policy consists of
one action (a saccade to one of the quadrants or a categorization
action), to be taken at the next timestep. An action is sampled
from the posterior over policies at ∼Q(π), which changes hidden
states in the next time step to generate a new observation,
thus closing the action-perception cycle. In this spatiotemporally
“deep” version of scene construction, we see how a temporally-
extended process of active inference at the lower level (capped at
T1 = 20 time steps in our case) can be nested within a single
time step of a higher-level process, endowing such generative
models with a flexible, modular form of temporal depth. Also
note the asymmetry in informational scheduling across layers,
with posterior beliefs about those hidden states linked with the
higher level being passed up as evidence for outcomes at the
higher level, with observations at the higher level being passed
down as empirical priors over hidden states at the lower level.

4.2.3. Priors
In addition to the likelihood A and B arrays that prescribe
the probabilistic relationships between variables at each level,
the generative model is also equipped with prior beliefs over
observations and hidden states that are respectively encoded in
the so-calledC andD arrays. See Figure 8 for schematic analogies
for these arrays and their elements for the two hierarchical levels.

The C array contains what are often called the agent’s
“preferences” P(o) and encodes the agent‘s prior beliefs about
observations (an unconditional probability distribution). Rather
than an explicit component of the generative model, the
prior over outcomes is absorbed into the prior over policies
P(π), which is described in Section 2.2. Policies that are
more likely to yield observations that are deemed probable
under the prior (expressed in terms of agent’s preferences
P(o)) will have less expected free energy and thus be more
likely to be chosen. Instrumental value or expected utility
measures the degree to which the observations expected under
a policy correlate with prior beliefs about those observations. For
categorical distributions, evaluating instrumental value amounts
to taking the dot product of the (policy-conditioned) posterior
predictive density over observations Q(oτ |π) with the log
probability density over outcomes logP(oτ ). This reinterpretation
of preferences as prior beliefs about observations allows us to
discard the classical notion of a “utility function” as postulated
in fields like reward neuroscience and economics, instead
explaining both epistemic and instrumental behavior using the

Frontiers in Artificial Intelligence | www.frontiersin.org 13 October 2020 | Volume 3 | Article 509354

https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles


Heins et al. Deep Scene Construction

FIGURE 8 | C’s and D’s. Prior beliefs over observations and hidden states for both hierarchical levels. Note that superscripts here index the hierarchical level, and

separate modalities/factors for the C and D matrices are indicated by stacked circles. At the highest level (Level 2), prior beliefs about second-modality outcomes

(C(2),2) encode the agent’s beliefs about receiving correct and avoiding incorrect feedback. Prior beliefs over the other outcome modalities (C(2),1 and C(2),3) are all

trivially zero. These beliefs are stationary over time and affect saccade selection at Level 2 via the expected free energy of policies G. Prior beliefs about hidden states

D(2) at this level encode the agent’s initial beliefs about the scene identity and the location of their eyes. This prior over hidden states can be manipulated to put the

agent’s beliefs about the world at odds with the actual hidden state of the world. At Level 1, the agent’s preferences about being in the “Break-sampling” state

increases over time and is encoded in the preferences about second modality outcomes (C(1),2), which corresponds to the agents umambiguous perception of its own

sampling state. Finally, the prior beliefs about initial states at Level 1 (D1) correspond to the motion direction hidden state (the RDM identity) as well as which

sampling-state the agent is in. Crucially, the first factor of these prior beliefs D(1),1 is initialized as the “expected observations” from Level 2: the expected motion

direction (first modality). These expected observations are generated by passing the variational beliefs about the scene at Level 2 through the modality-specific

likelihood mapping: Q(o(2),1|s(2),1) = P(o(2),1|s(2),1)Q(s(2),1). The prior over hidden states at Level 1 is thus called an empirical prior as it is inherited from Level 2. The red

arrow indicates the relationship between the expected observation from Level 2 and the empirical prior over (first-factor) hidden states at Level 1.

common currency of log-probabilities and surprise. In order
to motivate agents to categorize the scene, we embed a self-
expectation of accuracy into the C array of Level 2; this manifests
as a high prior expectation of receiving “Correct” feedback (a
relative log probability of +2 nats) and an expectation that
receiving “Incorrect” feedback is unlikely (relative log probability
of −4 nats). The remaining outcomes of the other modalities
at Level 2 have equal log-probability in the agent’s prior
preferences, thus contributing identically (and uninformatively)
to instrumental value. At Level 1 we encoded a form of
“urgency” using the C matrix; we encoded the prior belief that
the probability of observing the “Break-sampling” state (via
the umambiguous mapping A(1),2) increases over time. This
necessitates that the complementary probability of remaining
in the “Keep-sampling” state decreases over time. Equipping
the Level 1 MDP with such preferences generates a tension
between the epistemic drive to resolve uncertainty about the
hidden state of the currently-fixated stimulus and the ever-
strengthening prior preference to terminate sampling at Level 1.
In the simulation results to follow, we explore this tension more

explicitly and report an interesting yet unexpected relationship
between sensory uncertainty and fixational dwell time, based on
the dynamics of various contributions to expected free energy.

Finally, the D array encodes the agent’s initial (prior)
beliefs over hidden states in the environment. By changing prior
beliefs about the initial states, we canmanipulate an agent’s beliefs
about the environment independently of the true hidden states
characterizing that environment. In the Section 5.2 below we
describe the way we parameterize the first hidden state factor
of the Level 2 D matrix to manipulate prior beliefs about the
scene. The second hidden state factor at Level 2 (encoding
the saccade location) is always initialized to start at Location
1 (the generic “starting” location). At Level 1, the first-factor
of the D matrix (encoding the true motion direction of an
RDM) is initialized to the posterior expectations from Level 2,
i.e., Q(o(1),1|st) = A(1),1Q(st). The second-factor belief about
hidden states (encoding the sampling state) is initialized to the
“Keep-sampling” state.

In the following sections, we present hierarchical active
inference simulations of scene construction, in which
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FIGURE 9 | Simulated trial of scene construction under high sensory precision. (A) The evolution of posterior beliefs about scene identity—the first factor of hidden

states at Level 2—as a deep active inference agent explores the visual array. In this case, sensory precision at Level 1 is high, meaning that posterior beliefs about the

motion direction of each RDM-containing quadrant are resolved easily, resulting in fast and accurate scene categorization. Cells are gray-scale colored according to

the probability of the belief for that hidden state and time index (darker colors correspond to higher probabilities). Cyan dots indicates the true hidden state at each

time step. The top row of (A) shows evolving beliefs about the fully-enumerated scene identity (48 possibilities), with every 12 configurations highlighted with a

differently-colored bounding box, correspond to beliefs about each type of scene (i.e., UP-RIGHT, RIGHT-DOWN, DOWN-LEFT, LEFT-UP). The bottom panel

shows the collapsed beliefs over the four scenes, computed by summing the hidden state beliefs across the 12 spatial configurations. (B) Evolution of posterior beliefs

about actions (fixation starting location not shown), culminating in the categorization decision (here, the scene was categorized as UP-RIGHT, corresponding to a

saccade to location 6. (C) Visual representation of the agent’s behavior for this trial. Saccades are depicted as curved gray lines connecting one saccade endpoint to

the next. Fixation locations (corresponding to 2nd factor hidden state indices) are shown as red numbers. The Level 1 active inference process occurring within a

single fixation is schematically represented on the right side, with individual motion samples shown as issued from the true motion direction via the low level likelihood

A(1),1. The agent observes the true RDM at Level 1 and updates its posterior beliefs about this hidden state. As uncertainty about the RDM direction is resolved, the

“Break-sampling” action becomes more attractive (since epistemic value contributes increasingly less to the expected free energy of policies). In this case, the

sampling process at Level 1 is terminated after only three timesteps, since the precision of the likelihood mapping is high (p = 5.0) which relates to the speed at which

uncertainty is resolved about the RDM motion direction—see the text for more details.

we manipulate the uncertainty associated with beliefs
at different levels of the generative model to see how
uncertainty differentially affects inference across levels in
uncertain environments.

5. SIMULATIONS

Having introduced the hierarchical generative model for our
RDM-based scene construction task, we will now explore
behavior and belief-formation in the context of hierarchical active
inference. In the following sections we study different aspects of
the generative model through quantitative simulations. We relate
parameters of the generative model to both “behavioral” read-
outs (such as sampling time, categorization latency and accuracy)
as well as the agents’ internal dynamics (such as the evolution
of posterior beliefs, the contribution of different kinds of value
to policies, etc.). We then discuss the implications of our model

for studies of hierarchical inference in noisy, compositionally-
structured environments.

5.1. Manipulating Sensory Precision
Figures 9, 10 show examples of deep active inference agents
performing the scene construction task under two levels of
motion coherence (high and low, respectively for Figures 9, 10),
which is equivalent to the reliability of motion observations
at Level 1. In particular, we operationalize this uncertainty
via an inverse temperature p that parameterizes a softmax
transformation on the columns of the Level 1 likelihoodmapping
to RDM observations A(1),1. Each each column of A(1),1 is
initialized as a “one-hot” vector that contains a probability of
1 at the motion observation index corresponding to the true
motion direction, and 0s elsewhere. As p decreases, A deviates
further from the identity matrix and Level 1 motion observations
becomemore degenerate with respect to the hidden state (motion
direction) underlying them. Note that this parameterization of
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FIGURE 10 | Simulated trial of scene construction with low sensory precision. Same as in Figure 9, except in this trial the precision of the mapping between RDM

motion directions and samples thereof is lower, p = 0.5. This leads to an incorrect sequence of inferences, where the agent ends up believing that the scene identity is

LEFT-UP and guessing incorrectly. Note that after this choice is made and incorrect feedback is given, the agent updates their posterior in terms of the “next best”

guess, which is from the agent’s perspective either UP-RIGHT or DOWN-LEFT (see the posterior at Time step 8 of (A)). (C) Shows that the relative imprecision of the

Level 1 likelihood results in a sequence of stochastic motion observations that frequently diverge from the true motion direction (in this case, the true motion direction

is RIGHT in the lower right quadrant (Location 5)). Level 1 belief-updating gives rise to an imprecise posterior belief over motion directions that are passed up as

inferred outcomes to Level 2, leading to false beliefs about the scene identity. Note the “ambivalent,” quadrant-revisiting behavior, wherein the agent repeatedly visits

the lower-right quadrant to resolve uncertainty about the RDM stimulus at that quadrant.

motion incoherence only pertains to the last four rows/columns
of A(1),1, as the first row/column of the likelihood (A(1),1(1, 1))
corresponds to observations about the “Null” hidden state, which
is always observed unambiguously when it is present. In other
words, locations that do not contain RDM stimuli are always
perceived as “Null” in the first modality with certainty.

Figure 9 is a simulated trial of scene construction with sensory
uncertainty at the lower level set to p = 5.0. This manifests as
a stream of motion observations at the lower level that reflect
the true motion state ∼ 98% of the time, i.e., highly-coherent
motion. As the agent visually interrogates the 2 × 2 visual array
(the 2nd to 5th rows of Panel B), posterior beliefs about the
hidden scene identity (Panel A) converge on the true hidden
scene. After the first RDM in the lower right quadrant is seen
(and its state resolved with high certainty), the agent’s Level 2
posterior starts to only assign non-zero probability to scenes
that include the RIGHTwards-moving motion stimulus. Once
the second, UPwards-moving RDM stimulus is perceived in
the upper left, the posterior converges upon the correct scene
(in this case, indexed as state 7, one of the 12 configurations
of UP-RIGHT). Once uncertainty about the hidden scene
is resolved, G becomes dominated by instrumental value,
or the dot-product of counterfactual observations with prior

preferences. Expecting to receive correct feedback, the agent
saccades to location 6 (which corresponds to the scene identity
UP-RIGHT) and receives a “Correct” outcome in the second-
modality of Level 2 observations. The agent thus categorizes
the scene and remains there for the remainder of the trial to
exploit the expected instrumental value of receiving “Correct”
feedback (for the discussion about how behavior changes with
respect to prior belief and sensory precision manipulations,
we only consider behavior up until the time step of the first
categorization decision).

Figure 10 shows a trial when the RDMs are incoherent (p =

0.5, meaning the Level 1 likelihood yields motion observations
that reflect the true motion state ∼ 35% of the time). In this
case, the agent fails to categorize the scene correctly due to the
inability to form accurate beliefs about the identity of RDMs at
Level 1—this uncertainty carries forward to lead posterior beliefs
at Level 2 astray. Interestingly, the agent still forms relatively
confident posterior beliefs about the scene (see the posterior
at Timestep 7 of Figure 11A), but they are inaccurate since
they are based on inaccurate posterior beliefs inherited from
Level 1. This is because even though the low-level belief is
built from noisy observations, posterior probability ends up still
“focusing” on a particular dot direction based on the particular
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FIGURE 11 | Effect of sensory precision on scene construction performance.

Average categorization latency (A) and accuracy (B) as a function of sensory

precision p which controls the entropy of the (Level 1) likelihood mapping from

motion direction to motion observation. We simulated 185 trials of scene

construction under hierarchical active inference for each level of p (12 levels

total), with scene identities and configurations randomly initialized for each trial.

Sensory precision is shown on a logarithmic scale.

sequence of observations that is sampled; this is then integrated
with empirical priors and subsequent observations to narrow
the possible space of beliefs about the scene. The posterior
uncertainty alsomanifests as the time spent foraging in quadrants
before making categorization (nearly double the time spent by
the agent in Figure 9). The cause of this increase in foraging time
is 2-fold. First of all, since uncertainty about the scene identity
is high, the epistemic value of policies that entail fixations to
RDM-containing quadrants remains elevated, even after all the
quadrants have been visited. This is because uncertainty about
hidden states is unlikely to be resolved after a single saccade to a
quadrant with an incoherent RDM, meaning that the epistemic
value of repeated visits to such quadrants decreases slowly with
repeated foraging. Secondly, since Level 2 posterior beliefs about
the scene identity are uncertain and are distributed among
different states, the instrumental value of categorization actions
remains low—remember that instrumental value depends not
only on the instrumental value of receiving “Correct” feedback,
but also on the agent’s expectation about the probability of
receiving this feedback upon making an action, relative to the
probability of receiving “Incorrect” feedback. The relative values
of the prior preferences for being “Correct” vs. “Incorrect”

thus tune the risk-averseness of the agent, and manifest as a
dynamic balance between epistemic and instrumental value. See
Mirza et al. (2019b) for a quantitative exploration of these prior
preferences and their effect on active inference.

We quantified the relationship between sensory precision
and scene construction performance by simulating scene
construction trials under different sensory precisions p (see
Figure 11). The two measures shown are: (1) categorization
latency (Figure 11A), defined as the number of time steps elapsed
before a saccade to one of the choice locations is initiated; and
(2) categorization accuracy (Figure 11B), defined as percentage
of trials when the agent’s first categorization resulted in “Correct”
feedback. In agreement with intuition, for low values of p
agents take more time to categorize the scene and categorize
less accurately. As sensory precision increases, agents require
monotonically less time to forage the array before categorizing,
and this categorization also becomes more accurate. In the next
section, we explore the relationship between sensory precision
and performance when the agent entertains prior beliefs of
varying strength about the probability of a certain scene.

5.2. Manipulating Prior Beliefs
For the simulations discussed in the previous section, agents
always start scene construction trials with “flat” prior beliefs
about the scene identity. This means that the first factor of the
prior beliefs about hidden states at Level 2 D(2),1 was initialized
as a uniform distribution. We can manipulate the agent’s initial
expectations about the scenes and their spatial arrangements by
arbitrarily sculpting D(2),1 to have high or low probabilities over
any state or set of states. Although many manipulations of the
Level 2 prior over hidden states are possible, here we introduce
a simple prior belief manipulation by uniformly elevating the
prior probability of all spatial configurations (12 total) of a single
type of scene. For example, to furnish an agent with the belief
that there’s a 50% chance of any given trial being a RIGHT-

DOWN scene, we simply boost the probabilities associated
with hidden states 13–25 (the 12 spatial configurations of the
RIGHT-DOWN scene) relative to the other hidden scenes,
so that the total integrated probability of hidden states 13–
25 is 0.5. This implies that the other hidden scenes each now
have (1−0.5)

3 ≈ 0.1667 probability, once respectively integrated
over their 12 configuration states. Figure 12 shows the effect
of parametrically varying the strengths of prior beliefs on
the same behavioral measures shown in Figure 11. Similar to
Figures 11, 12 demonstrates a monotonic increase in accuracy
with increasing sensory precision, regardless of how much the
agent initially expects a particular scene type. This means that
strong but incorrect prior beliefs (over initial states) can still be
“overcome” with reliable enough sensory data. However, agents
with stronger priors are less sensitive to the increase in sensory
precision than their “flat-priored” counterparts, as can be seen
by the lower accuracy level of the most purple-colored lines in
Figure 12. Note that the averages shown are only for agents with
“incorrect” prior beliefs; namely, the prior over hidden states in
the generative model for each trial was always initialized to be
a different scene type than the true scene. This has the effect
of setting the minimum accuracy for the “strongest-priored”
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FIGURE 12 | Effect of sensory precision on scene construction performance

for different prior belief strengths. Same as in Figure 11 but for different

strengths of initial prior beliefs (legend on right). Prior belief strengths are

defined as the probability density of the prior beliefs about hidden states (1st

hidden state factor of Level 2—D(2),1) concentrated upon one of the four

possible scenes. This elevated probability is uniformly spread among the 12

hidden states corresponding to the different quadrant-configurations of that

scene, such that the agent has no prior expectation about a particular

arrangement of the scene, but rather about that scene type in general. Here,

we only show the results for agents with “incorrect” prior beliefs—namely,

when the scene that the agent believes to be at play is different from the scene

actually characterizing the trial.

agents (who typically categorize the scene identity at the first
time step) at 0% rather than 25% (chance performance). These
results are consistent with the fundamental relationship between
the likelihood term and prior probability in Bayes’ theorem (see
Equation 1): the posterior over hidden states is calculated as the
product of the likelihood and the prior. Increasing the precision
of one of these two will “shift” the posterior distribution in
the respective direction of the more precise distribution. This
manifests as a parametric “de-sensitizing” of posterior beliefs
to sensory evidence as priors become stronger. This balance
between sensory and prior precision is exactly manifested in the
prior-dependent sensitivity of the accuracy curves in Figure 12B.

The interaction between sensory and prior precision is not
as straightforward when it comes to categorization latency.
Figure 12A shows that when the sensory precision p is high
enough, most of the variance in latency introduced by prior
beliefs vanishes, since observations alone can be relied on to
ensure fast inference about the scene. For low values of p,

however, latency is highly-sensitive to prior belief strength.
Under weak prior beliefs and low p, the agent displays
ambivalence—beliefs about RDM direction at Level 1 are not
precise enough to enable scene inference, causing the agent
to choose the policies that have (albeit) small epistemic value
while avoiding the risk of categorizing incorrectly. This causes
the agent to saccade among RDM-containing quadrants. Agents
with stronger prior beliefs, however, do not rely on observations
to determine posterior beliefs because their prior beliefs about
the scene already lend high instrumental value to categorization
actions. This corresponds to trials when the agent categorizes
the scene immediately (for the strongest prior beliefs, this occurs
even before inspecting any quadrants) and relying minimally
on sensory evidence. This faster latency comes at the cost of
accuracy, however, as evident from the lower average accuracy
of strongly-priored agents displayed in Figure 12B.

Now we explore the effects of sensory and prior precision
on belief-updating and policy selection at the lower level,
during a single quadrant fixation. Figure 13A shows the effect
of increasing p on the break-time (or to analogize it more
directly to eye movements: the fixational “dwell time”) at Level
1. We observe a non-trivial, inverted-U relationship between the
logarithm of p (our analog of motion coherence) and the time
it takes for agents to break the sampling at Level 1. For the
lowest (most incoherent) values of the likelihood precision p,
the agents dwell for as little time as they do as for the highest
precisions. Understanding this paradoxical effect requires a more
nuanced understanding of epistemic value. In general, increasing
the precision of the likelihood mapping increases the amount of
uncertainty that observations can resolve about hidden states,
thus lending high epistemic value to policies that disclose such
observations (Parr and Friston, 2017). An elevated epistemic
value predicts an increase in dwell time (i.e., via an increase in
the epistemic value for the “Keep-sampling” policy at Level 1)
for increasing sensory precision. However, an increased precision
of the Level 1 likelihood also implies that posterior uncertainty is
resolved at a faster rate (due to high mutual information between
observations and hidden states), which suppresses epistemic
value over time. The rate at which epistemic value drops off thus
increases in the presence of informative observations, since the
posterior converges to a tight probability distribution relatively
quickly. On the other hand, at very low likelihood precisions,
the low information content of observations in addition to the
linearly-increasing cost of sampling (encoded in the Level 1
preferences C(1),2) renders the sampling of motion observations
relatively useless for agents, and it “pays” to just break sampling
early. This results in the pattern of break-times that we observe
in Figure 13A.

It is worth mentioning the barely noticeable effect of prior
beliefs (Figure 13A) about the scene identity on break times at
Level 1. Although prior beliefs about the scene at Level 1 manifest
as empirical priors over hidden states (motion directions) at
Level 2, it seems that the likelihood matrix plays a much
larger role in determining break times than the initial beliefs.
This means that even when the agent initially assigns relatively
more probability to particular RDM directions (conditional on
beliefs about scenes at Level 2), this initial belief can quickly
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FIGURE 13 | Effect of sensory precision on quadrant dwell time. (A) Shows

the effect of increasing sensory precision at Level 1 on the time it takes to

switch to “Break-sampling” policy. Here, 250 trials were simulated for each

combination of sensory precision and prior belief strength, with priors over

hidden states at Level 2 randomly initialized to have high probability about 1 of

the 4 scene types. Break-times were analyzed only for the first saccade (at

Level 2) of each trial. (B) Shows the effect of sensory precision on evolution of

the relative posterior probabilities of the “Keep-sampling” vs. the

“Break-sampling” policies (Policy Differential = PKeep-sampling − PBreak-sampling ).

We only show these posterior policy differentials for the first 10 time steps of

sampling at Level 1 due to insufficient numbers of saccades that lasted more

than 10 time steps at the highest/lowest sensory precisions (see A). Averages

are calculated across different prior belief strengths, based on the lack of an

effect, as is apparent in (A). The policy differential defined in this way is always

positive because as soon as the probability of “Break-sampling” exceeds

that of “Keep-sampling” (i.e., Policy Differential < 0), the “Break-sampling”

policy will be engaged with near certainty. This is due the high precision over

policies at the lower level (here, γ = 512), which essentially ensures that the

policy with higher probability will always be selected.

be revised in light of incoming evidence (namely, observations
at Level 1, inverted through the likelihood mapping to produce
a marginal posterior over hidden states). This also speaks to
the segregation of belief-updating between hierarchical levels;
although beliefs about hidden states and observations are passed
up and down the hierarchy, belief-updating occurs only with
respect to the variational free energy of a particular layer’s
generative model, thus insulating variational updating to operate
at distinct spatiotemporal scales. This results in the conditional
independence of decision-making across hierarchical levels, and
clarifies the dissociable influence of prior about scenes on Level
1 vs. Level 2. For example, even on trials when an agent has
strong prior beliefs about the scene and thus takes fewer saccades

to categorize it, differences in lower-level “dwell time” are still
largely determined by the sensory precision p of the likelihood
mapping and the preference to enter the “Break-sampling”
state, encoded as an increasing probability to observe oneself
occupying this state (in C(1),2).

The curves in Figure 13B clarify the rate at which epistemic
value decreases for high sensory precisions. The “policy
differential” measures the difference between the posterior
probability of the “Keep-sampling” vs. “Break-sampling”
policies at Level 1: PKeep-sampling − PBreak-sampling. At the
lowest sensory precisions, there is barely any epistemic value
to pursuing the “Keep-sampling” policy, allowing the break
policy to increasingly dominate action-selection over time. For
higher sensory precisions, the “Keep-sampling” policy starts
with >10% more probability than the “Break-sampling” policy
since the epistemic value of sampling observations is high,
but quickly loses its advantage as posterior uncertainty is
resolved. At this point the probability of breaking becomes
more probable, since posterior beliefs about the RDM are fairly
resolved and the instrumental of breaking is only getting higher
with time.

6. DISCUSSION

In the current work, we presented a hierarchical partially-
observed Markov Decision Process model of scene construction,
where scenes are defined as arbitrary constellations of random
dot motion (RDM) stimuli. Inspired by an earlier model of
scene construction (Mirza et al., 2016, 2018) and a deep
temporal formulation of active inference (Friston et al., 2017d),
we cast this scene construction task as approximate Bayesian
inference occurring across two hierarchical levels of inference.
One level involves optimizing beliefs about the instantaneous
contents of agent-initiated visual fixations; the second level
involves integrating the contents of different fixated locations
to form beliefs about a higher-level concept like a scene.
Through simulations we showed how this deep, temporal model
formulation can be used to provide an active inference account
of behavior in such compositional inference tasks. Deep active
inference agents performing scene construction exhibit the
Bayesian hallmarks of a dynamic trade-off between sensory and
prior precision when it comes to scene inference and saccade
selection. The hierarchical segregation of inference between
saccadic and fixational levels gives rise to unexpected effects of
sensory uncertainty at the level of single fixations, where we
observe an inverted-U relationship between motion coherence
and fixational dwell time. This non-linear relation can be
explained by appealing to the evolution of epistemic value over
time, under the assumption that the agent entertains beliefs
about the precision of the environmental process generating
visual sensations, while simultaneously optimizing the sufficient
statistics of beliefs about the currently-fixated stimulus. The
fact that the precision of the likelihood mapping increases the
epistemic value of policies that furnish observations sampled
from the generative process, while simultaneously increasing
the rate at which posterior uncertainty is reduced, explains

Frontiers in Artificial Intelligence | www.frontiersin.org 19 October 2020 | Volume 3 | Article 509354

https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles


Heins et al. Deep Scene Construction

the non-monotonic influence of sensory precision on Level 1
decision latency.

These results contrast with the predictions of classic evidence
accumulation models like the drift-diffusion model or DDM
(Ratcliff, 1978; Palmer et al., 2005; Ratcliff and McKoon, 2008).
In the drift-diffusion model, reaction times are modeled as
proportional to the latency it takes for a time-varying decision
variable (or DV) to reach one of two fixed decision boundaries
Z and −Z that respectively correspond to two hypotheses (e.g.,
the equivalent of sufficiently-strong posterior beliefs in one of
two hidden states). At each time step, increments to the DV

are calculated as the log of the ratio between the evidence
for each hypothesis conditioned on observations. In discrete-
time environments this update-rule for DV is equivalent to
the Sequential Probability Ratio Test formulated by Wald and
Wolfowitz (1948). For time-independent decision boundaries
and a fixed initial value of the DV, a drift-diffusion process
yields a monotonic decreasing relationship between motion
incoherence and decision latency (Bogacz et al., 2006; Ratcliff
and McKoon, 2008), where motion coherence factors into the
DDM as the drift rate of the DV—this is analogous to the
sensitivity of theDV to incoming sensory evidence. In the current
active inference model, we have binarized policies at Level 1
in part to invite comparison between our model and DDM
models (which in their classical form handle binary hypotheses).
Rather than modeling actions as discrete perceptual decisions
about the most likely hidden state underlying observations (since
in the current context, we have a 4-dimensional RDM state
space), we instead model the decision as selecting between one
of two “sampling” policies, whose probabilities change over time
due to the dynamics of the expected free energy. This evolving
action-probability weighs epistemic drives to resolve uncertainty
against prior preferences that encode an increasing “urgency”
to break sampling. This parameterization of decision-making
permits a flexible (and in this case, somewhat unexpected)
relationship between sensory uncertainty and decision latency
(see Figure 13). We thus provide a novel, principled prediction
for the relationship between sensory uncertainty and reaction
time at different levels of inference in perceptual decision-
making tasks.

A discussion of the relationship between the current model
and previous hierarchical POMDP schemes is also warranted.
The model most closely related to the current work is the “deep
temporal model” of active reading, proposed by Friston et al.
(2017d); the inference schemes are identical, with the critical
difference being the way in which updating is terminated at
the lower level. In Friston et al. (2017d), policies at the lower
level are driven purely by epistemic value and terminate as a
result of posterior uncertainty being reduced beyond a certain
pre-determined level. In contrast, the current model introduces
an additional “Break-policy” (and corresponding observations
of a “Sampling-state”) at the lower level, whose selection is
used to terminate the Level 1 POMDP. This also allows us
to motivate decision-making at the lower level MDP using
individual costs or goals, as encoded via the “sampling cost” in
the lower level prior over observations P(o), explicitly pitting the
epistemic drive to resolve uncertainty about the currently-fixated

RDM stimulus against the increasing cost of continuing to
fixate. Qualitatively, we found that this leads to a smoother
relationship between sensory uncertainty (inverse precision of
the Level 1 A matrix) and the latencies to engage the break
policy (“reaction times”), allowing easier comparison of the
current model to other evidence accumulation schemes (e.g.,
drift-diffusion models).

Insight from the robotics and probabilistic planning literature
could also be integrated with the current work to extend deep
active inference in its scope and flexibility. For instance, the
framework of “planning to see” proposed in Sridharan et al.
(2010) can be used to drive selective visual processing of
goal-relevant features in the sensorium, an important context-
sensitive aspect of visual processing (selective and feature-based
attention) that is lacking in the current formulation. Mirza
et al. (2019a) introduces an active inference model of selective
attention in a visual foraging task; the approach proposed therein
might be combined with a hierarchical scheme to generate a
fully hierarchical model with goal-driven attention operating at
multiple levels.

The hierarchical active inference scheme could also be
extended to dynamic environments, where the scene itself
changes, either due to intrinsic stochasticity or as a function
of the agent’s (or other agents’) actions. This could simply be
changed by encoding appropriate self-initiated state-changes
into the transition model (the “B” matrices) or by introducing
intrinsic, non-agent-controlled dynamics into the generative
process. Ongoing work in the robotics and planning literature has
highlighted the challenges of dynamic, structured environments
and proposed various schemes to both plan actions and form
probabilistic beliefs in such tasks (Ognibene and Demiris, 2013;
Ognibene and Baldassare, 2014). Future research might find
ways to meaningfully integrate existing approaches from the
hierarchical planning and POMDP literature with deep active
inference models, such as the one proposed here.

In future investigations, we plan to estimate the parameters of
hierarchical active inference models from experimental data of
human participants performing a scene construction task, where
the identities of visual stimuli are uncertain (the equivalent of
manipulating the sensory likelihood at Level 1 of the hierarchy).
Data-driven inversion of a deep scene construction model can
then be used to explain inter-subject variability in aspects of
hierarchical inference behavior as different parameterizations of
subject-specific generative models.
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APPENDIX

We provide the derivation of Equation (8), the expected free
energy as an upper bound on the negative information gain and
negative extrinsic value:

G(τ ,π) = EQ(oτ ,sτ |π)[lnQ(sτ |π)− ln P(oτ , sτ )]

= EQ(oτ ,sτ |π)[lnQ(sτ |π)− ln P(oτ , sτ )

+ lnQ(sτ |oτ ,π)− lnQ(sτ |oτ ,π)
︸ ︷︷ ︸

=0

]

= EQ(oτ ,sτ |π)[lnQ(sτ |π)− lnQ(sτ |oτ ,π)

− ln P(oτ )]+ EQ(oτ |π)[EQ(sτ |oτ ,π)[ln
Q(sτ |oτ ,π)

P(sτ |oτ )
]]

︸ ︷︷ ︸

expected KL divergence ≥0

≥ EQ(oτ ,sτ |π)[lnQ(sτ |π)− lnQ(sτ |oτ ,π)

− ln P(oτ )]

H⇒ G(τ ,π) ≥ −EQ(oτ |π)[DKL[Q(sτ |oτ ,π)||Q(sτ |π)]]

− EQ(oτ |π)[lnP(oτ )] (i)

We also offer a derivation of Equation (9), the formulation of the
expected free energy as the sum of “risk” and “ambiguity,” starting
from its definition as an upper bound on the (negative) epistemic
and instrumental values. We can write G for a given future time
point τ and policy π as follows:

G(τ ,π) ≥ −EQ(oτ |π)[DKL[Q(sτ |oτ ,π)‖Q(sτ |π)]]
︸ ︷︷ ︸

Epistemic value

− EQ(oτ |π)[lnP(oτ )
︸ ︷︷ ︸

Instrumental value

]

= −EQ(oτ |π)[DKL[Q(sτ |oτ ,π)||Q(sτ |π)]

+ lnQ(oτ |π)− lnQ(oτ |π)
︸ ︷︷ ︸

=0

]− EQ(oτ |π)[lnP(oτ )]

= −EQ(oτ |π)[EQ(sτ |oτ ,π)[ln
Q(sτ |oτ ,π)Q(oτ |π)

Q(sτ |π)Q(oτ |π)
]]

− EQ(oτ |π)[lnP(oτ )]

= −EQ(sτ |π)P(oτ |sτ )[ln
Q(sτ |π)P(oτ |sτ )

Q(sτ |π)Q(oτ |π)
]

− EQ(oτ |π)[lnP(oτ )]

= EQ(sτ |π)
[

H[P(oτ |sτ )]
]

︸ ︷︷ ︸

Ambiguity

+DKL[Q(oτ |π)||P(oτ )]
︸ ︷︷ ︸

Risk

(ii)

The above derivation assumes that the mapping from predicted
states Q(sτ |π) to predicted observations Q(oτ |sτ ,π) is given
as the likelihood of the generative model, i.e., Q(oτ , sτ |π) =

P(oτ |sτ )Q(sτ |π).
We provide a derivation of Equation (10), the full variational

free energy of the posterior over observations, hidden states
and policies:

F = EQ(s̃,π)[lnQ(s̃,π)− ln P(õ, s̃,π)]

= −EQ(s̃,π)[ln P(õ, s̃,π)]−H[Q(s̃,π)]

= EQ(π)
[

−EQ(s̃|π)[lnP(õ, s̃|π)]−H[Q(s̃|π)]
]

+ DKL[Q(π)||P(π)]

= EQ(π)[F(π)]+ DKL[Q(π)||P(π)] (iii)
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