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Highlights 41 
- Three PTFs were developed to calculate bulk density of arable top- and subsoil 42 
- WoSIS, WorldClim, and topographic data of the Mediterranean Basin were used 43 
- Model transferability of the three new PTFs was validated with external dataset  44 
- Topsoil ANN-PTF had R2 of 0.89 in training and 0.45 in model transferability 45 
- ANN-PTF outperformed the commonly employed PTF by Manrique and Jones  46 

 47 
Abstract  48 

For the estimation of the soil organic carbon stocks, bulk density (BD) is a fundamental parameter but 49 

measured data are usually not available especially when dealing with legacy soil data. It is possible to 50 

estimate BD by applying pedotransfer function (PTF). We applied different estimation methods with the 51 



aim to define a suitable PTF for BD of arable land for the Mediterranean Basin, which has peculiar climate 52 

features that may influence the soil carbon sequestration. To improve the existing BD estimation methods, 53 

we used a set of public climatic and topographic data along with the soil texture and organic carbon data. 54 

The present work consisted of the following steps: i) development of three PTFs models separately for top 55 

(0-0.4 m) and subsoil (0.4-1.2 m), ii) a 10-fold cross-validation, iii) model transferability using an external 56 

dataset derived from published data. 57 

The development of the new PTFs was based on the training dataset consisting of World Soil Information 58 

Service (WoSIS) soil profile data, climatic data from WorldClim at 1 km spatial resolution and Shuttle 59 

Radar Topography Mission (SRTM) digital elevation model at 30 m spatial resolution.  60 

The three PTFs models were developed using: Multiple Linear Regression stepwise (MLR-S), Multiple 61 

Linear Regression backward stepwise (MLR-BS), and Artificial Neural Network (ANN).  62 

The predictions of the newly developed PTFs were compared with the BD calculated using the PTF 63 

proposed by Manrique and Jones (MJ) and the modelled BD derived from the global SoilGrids dataset.   64 

For the topsoil training dataset (N=129), MLR-S, MLR-BS and ANN had a R2 0.35, 0.58 and 0.86, 65 

respectively. For the model transferability, the three PTFs applied to the external topsoil dataset (N=59), 66 

achieved R2 values of 0.06, 0.03 and 0.41. For the subsoil training dataset (N=180), MLR-S, MLR-BS and 67 

ANN the R2 values were 0.36, 0.46 and 0.83, respectively. When applied to the external subsoil dataset 68 

(N=29), the R2 values were 0.05, 0.06 and 0.41. The cross-validation for both top and subsoil dataset, 69 

resulted in an intermediate performance compared to calibration and validation with the external dataset. 70 

The new ANN PTF outperformed MLR-S, MLR-BS, MJ and SoilGrids approaches for estimating BD. 71 

Further improvements may be achieved by additionally considering the time of sampling, agricultural soil 72 

management and cultivation practices in predictive models.  73 

1. Introduction 74 

Soil bulk density (BD) is directly linked to soil functionality including mechanical support of crop 75 

plants, circulation of soil solution, and soil aeration (Håkansson and Lipiec, 2000). Relatively high 76 



values of BD indicate soil compaction which may lead to reduced water infiltration especially in 77 

agricultural land, where it can hamper the growth of crop root systems (Colombi et al., 2018). Soil 78 

BD is calculated as the dry weight of soil divided by its volume. Volumes include soil particle 79 

volume and pore space between soil particles. Soil BD is typically expressed in g cm-3 or Mg m-3 80 

(SI). Along with soil organic carbon (SOC) concentrations, soil BD is necessary to calculate SOC 81 

stocks (Minasny et al., 2013) and to assess carbon sequestration (Tao et al., 2019). Many soil 82 

physical and chemical properties are expressed on a volumetric basis and in particular the 83 

estimation of soil biological properties depend on BD estimates (Tejada et al., 2009). In arable 84 

lands, tillage and other management practices cause high variation of BD during the year. 85 

Scientists have tried to infer BD from soil properties that are routinely measured such as textural 86 

information and organic carbon content (Acutis and Donatelli, 2003; Alvarez-Acosta et al., 2012; 87 

Pachepsky et al., 1996; Van Looy et al., 2017). The functions enabling the estimation of a given 88 

soil property (e.g. BD) from other variables, routinely obtained through laboratory measurement, 89 

are called pedotransfer functions (PTF) (Bouma, 1989; Patil and Singh, 2016). PTFs have been 90 

used at global scale to estimate the soil water retention, soil particle size, soil BD and SOC stock 91 

(Batjes and Dijkshoorn, 1999; Rawls, 1983; Rawls and Pachepsky, 2002; Reynolds et al., 2000; 92 

Saxton et al., 1986). At this scale, soil BD models had limited predictive ability (Rawls, 1983; 93 

Tietje and Tapkenhinrichs, 1993). Unfortunately, PTFs are not able to fully replace direct 94 

measurements, as highlighted in a recent publication which compared >50 PTFs using high 95 

resolution geodata in at district scale (Nasta et al., 2020; Xiangsheng et al., 2016). PTF are also 96 

frequently chosen at district scales after a sensitivity analysis (Basile et al., 2019).  97 

Accurate models are of high interest for land management and policy-making especially where 98 

sparse data are available. 99 



Today, BD estimates are used to quantify and model the SOC stocks in top- and subsoil at regional 100 

and global scales (Valkama et al., 2020). For example, Sun et al. (2020) recently used PTF in a 101 

meta-analysis to assess the effect of conservation agriculture on carbon stocks but did not provide 102 

an assessment of the PTF function performance. 103 

One of the first attempts to estimate BD was made by Manrique and Jones (1991) who proposed 104 

a PTF based on SOC alone  (BD=1.660-0.318∙SOC0.5) for all soil types. Since then, other PTFs 105 

for BD estimation have been developed based on the fine earth fractions and SOC, which is 106 

important to BD due to its effect on the ratio between soil macro- and micropores (Martín et al., 107 

2017; Throop et al., 2012). Furthermore, many other functions have been proposed to describe 108 

regional (Akpa et al. 2016; Chagas et al., 2016; Chen et al., 2018; Makovníková et al., 2017; 109 

Montzka et al., 2017; Ramcharan et al., 2017; Román Dobarco et al., 2019; Wösten et al., 2013, 110 

1999) and local conditions (Benites et al., 2007; De Vos et al., 2005; Picciafuoco et al., 2019; 111 

Sevastas et al., 2018) and to predict BD in different soil horizons (Hollis et al., 2012; Reidy et al., 112 

2016; Sequeira et al., 2014).  113 

In the absence of measured soil data, the availability of new topographic data such as digital 114 

elevation models and morphometric indices has also improved soil assessment (Lombardo et al. 115 

2018, Schillaci et al., 2017a, b, 2019; Veronesi and Schillaci, 2019) and in particular to develop 116 

PTF  (Leij et al., 2004; Romano and Chirico, 2004). Other geodata (e.g., climate, satellite-derived, 117 

land cover) correlated with BD have also been used to improve estimates (Aitkenhead and Coull, 118 

2020). Various researchers have recently developed new methods to estimate BD.  119 

Bondi et al., (2018) estimated BD for peat soils using soil visual assessment, and decision trees 120 

achieving similar performances, with around 0.6 explained variance. Premrov et al., (2018) 121 



achieved similar performances (R2 from 0.4 to 0.6) using optimal power-transformation of 122 

measured physical and chemical soil parameters. 123 

 Chen et al. (2018) formalized an analytical protocol to test the PTF prediction at regional scales 124 

in France by building a Boosted Regression Tree (BRT) model to obtain reliable predictions (R2 125 

0.7) , and also applied the advanced deep learning modelling framework for the evaluation of in 126 

situ spectral measurement of  SOC with in situ vis-NIR spectroscopy in southeastern Tibet (Chen 127 

et al., 2020) achieving (R2 = 0.92). Rodríguez-Lado et al. (2015) used a dataset consisting of 115 128 

topsoil observations in a catchment of approximately 100 km2 to map soil BD and compared three 129 

methods: Stepwise Multiple Linear Regression (MLR-S), Random Forest (RF) and Artificial 130 

Neural Networks (ANN). In this procedure, RF and ANN appeared the most suitable approaches 131 

to predict the measured data, producing R2 of 0.90 and 0.86, respectively. These results suggest 132 

that soil samples remain essential to obtain good estimates, and that PTFs derived from data 133 

collected in given locations can fail to give accurate estimates when applied elsewhere (Akpa et 134 

al., 2016). PTFs modelling is a relatively new subject and many important steps have been carried 135 

out recently (Chen et al., 2018; Sevastas et al., 2018). To extract all the contributions on soil BD, 136 

simple query can be  used to gather publications from SCOPUS and Web of Knowledge (Schillaci 137 

et al., 2018). Out of this search the most used approach for the BD estimation with PTFs is multiple 138 

linear regression (60%) followed by ANN (20 %), therefore these two approaches are investigated 139 

here.  140 

At present the available PTF models offer wide predictive ranges and none are specifically 141 

developed for the Mediterranean area. The aim of this study was to develop new regionally-142 

specific BD prediction models using data gathered from the literature on soil texture, SOC, 143 

topography and climate in Mediterranean agro-ecosystems. As well as providing a modelling 144 



framework that can be applied in each environmental setting. In the Mediterranean basin area, soil 145 

organic matter mineralization is boosted by high-temperature conditions (Álvaro-Fuentes and 146 

Paustian, 2011), in which rainfall has a peculiar pattern (availability during a short season vs long 147 

dry period). Moreover, the agricultural systems are conventionally plough-based (Mazzoncini et 148 

al., 2011) causing soil compaction and reduced  SOC stocks. 149 

2. Material and Methods 150 

The study was conceptualized during the first annual summer school module “Statistical Analysis 151 

of Spatial Data in Agro-Environmental Research”, organized in cooperation with Lake Como 152 

Advanced School (https://sdae.lakecomoschool.org/), and held from August 26-30, 2019. As a 153 

practical teaching activity, soil legacy data and topographic datasets were compiled to develop a 154 

PTF. The school participants were mainly PhD students and early career researchers. The present 155 

work was carried out after the school as a collaboration between students and teachers. 156 

2.1 Operational procedures  157 
 158 
Study work streams included PTF development using training datasets from public databases, and 159 

PTF validation using an independent validation dataset compiled from systematic review of the 160 

literature (Table 1 and Fig. 1). In the training step, we defined three PTFs – two based on statistical 161 

approaches and one based on ANN. In the validation step, we applied the three newly-defined 162 

PTFs to an external dataset. We then compared the performances of the three PTFs and 163 

benchmarked them against those of the MJ PTF and SoilGrids estimates (see below). The training 164 

and validation datasets were each split into topsoil and subsoil to infer separate PTFs.  165 

  166 



 167 

Table 1. Study overview and workflow to develop pedotransfer functions (PTF) to infer soil bulk 168 
density (BD) in top- (0-0.4m) and subsoil (0.4-1.2) of arable fields in the Mediterranean 169 

  
New PTFs to estimate BD   Reference PTF and BD data 

Study stage 
MLR-S: 
stepwise 
regression 

MLR-
BS: 
backward 
+ 
stepwise 
regression 

ANN: 
artificial 
neural 
network 

  
Manrique-Jones 
(1991): PTF function 
for estimating BD 

SoilGrids: 
estimated 
BD values 
derived 
from WoSIS 
data  

Training  
Developed using WoSIS 
database* + topographic + 
climatic data 

      

Validation and 
Benchmarking 

Applied on external database** + 
topographic + climatic data   Applied on external 

database** 
Available at 
250 m grid 

* WoSIS database: measured data of bulk density (BD, Mg m-3), soil organic carbon (%), sand  170 
** newly compiled database of soil bulk density, organic carbon, sand, silt and clay measurements 171 
of studies from the Mediterranean  172 



 173 

Figure 1. Features of the datasets used to train and validate (training and model transferability) 174 
three new pedotransfer functions (PTF) for arable soils in the Mediterranean. For a description 175 
of the WorldClim Bioclimatic data, please see (Fick and Hijmans, 2017). 176 
 177 

Source 
WoSIS open database of geo-referenced soil profiles 
sampling with soil properties: 
Bulk density, Texture, SOC, Rock fragment content, sample 
depth 

Source 
Soil properties of studies carried out in 
the Mediterranean: 
Bulk density, Texture, SOC, Rock 
fragment content, sampling depth 

Criteria for inclusion in the newly compiled reference dataset: 
-Köppen classification with a buffer of 250 km in the Mediterranean basin  
-Availability of: 

• Bulk density  
• Soil organic carbon % (SOC) 
• Texture (Clay, Silt, Sand) 

-Land use: agricultural soil (CORINE database*) 
-Rock fragments < 5% 
-Depth < 1.2 meters 

Predictors based on soil properties    
Mean depth, texture, SOC. Computation of power terms and interaction between variables:  
Clay2, Sand2, SOC0.5, SOC2, Clay x SOC, Clay x Sand, Clay2x SOC2 

Extraction 
WoSIS shapefile with geo-referenced study locations with 
soil physical and chemical soil data  

Extraction 
Manual compilation in Excel datasheet 
from original publications 

Quality Checking 
0.9 < Bulk Density <2 

Training dataset Validation dataset 

Additional data, compiled from WorldClim Bioclimatic data (Annual Mean T°C (BIO1), 
Mean Diurnal T°C Range (BIO2), Isothermality (BIO3), Temperature Seasonality (BIO4), 
Max T°C of the Warmest Month (BIO5), Min T°C of the Coldest Month (BIO6), Annual 
T°C Range (BIO7), Mean T°C of the Wettest Quarter (BIO8), Mean T°C of the Driest 
Quarter (BIO9), Mean T°C of the Warmest Quarter (BIO10), Mean T°C of the Coldest 
Quarter (BIO11), Annual Precipitation (BIO12), Precipitation of the Wettest Month 
(BIO13), Precipitation of the Driest Month (BIO14), Precipitation Seasonality (BIO15), 
Precipitation of the Wettest Quarter (BIO16), Precipitation of the Driest Quarter (BIO17), 
Precipitation of the Warmest Quarter (BIO18), Precipitation of the Coldest Quarter (BIO19)) 

Topographic data (Elevation, Slope, Northness, Profile curvature, Plan curvature) 

Extraction per location using GIS 



2.2 Data used in the training and validation stages 178 
 179 
2.2.1. Soil datasets  180 
 181 
Training dataset used for PTFs model development: The World Soil Information Service WoSIS 182 

(https://www.isric.org/explore/wosis) was used to retrieve soil textural values, SOC content and 183 

bulk density.  WoSIS is a world scale database containing 196,000 geo-referenced, standardized 184 

soil profile entries for soil data from multiple origins. Approximately 40 different organizations 185 

around the world provide free access to the data via WoSIS and the Soil Profile 186 

(https://www.isric.org/explore/wosis/wosis-contributing-institutions-and-experts). More 187 

information on WoSIS inclusion criteria, quality assurance, and standardization procedures are 188 

available in Batjes et al. (2017). We note that for Europe, one of the main providers of WoSIS data 189 

is the Joint Research Center of the European Community, which has made available the entire 190 

collection of soil profiles included within the Soil Profile Analytical Database (SPADE-2) (de 191 

Souza et al., 2016; Hiederer et al., 2006; Panagos et al., 2013). Using ARCGIS, we selected all the 192 

profiles of the WoSIS database belonging to the Mediterranean basin (and defined surrounding 193 

areas) with geographic coordinates in metric resolution as well as attributes including sand, silt, 194 

clay, organic carbon and bulk density data in at least one soil horizon.  195 

External dataset used to test model transferability: To assess the model transferability, validation 196 

of the three developed PTFs was required. Accordingly, we conducted a systematic literature 197 

analysis to collate information on soil textures, SOC, and BD from studies of field crops cultivated 198 

on mineral soils in Mediterranean basin and close surrounding areas. The search was carried out 199 

in SCOPUS and Web of Science (WoS). The selection criterion was the same as that applied during 200 

the extraction of the WoSIS data: required data were BD, SOC, texture and geo-localization. It is 201 



needed to remark that systematic queries did not result in a adequate number of suitable articles, 202 

so that we used different approaches such as searching for soil dataset within agronomic journals.  203 

To compare the performances of the PTF models developed in this study with well-known 204 

approaches, in the validation phase we applied the MJ PTF (1991; BD = 1.660 - 0.318 ∙ SOC0.5)  205 

and we fitted the available SoilGrids BD values (Hengl et al., 2017) with the data of the external 206 

validation database constructed as above. SoilGrids is a system for digital soil mapping that uses 207 

machine learning methods to map the spatial distribution of soil properties across the globe using 208 

WoSIS data and environmental predictors. 209 

For both training and validation datasets, the analysis focused on samples that alternatively fall 210 

within the 0-0.4 m layer (i.e. topsoil) or the 0.4-1.2 m layer (i.e. subsoil). Due to the presence of 211 

multiple horizons inside the topsoil and subsoil, single observations which are part of the training 212 

dataset were not averaged. The soil sampling depth were considered as predictor. Furthermore, the 213 

inclusion of predictors such as soil properties (soil particle size fractions and SOC stock) allows 214 

to describe the soil sample at the given profile depth (e.g., SOC and clay content tend to decrease 215 

along the soil profile). 216 

The data points used in the training phase which were derived from WoSIS were 129 and 180 for 217 

topsoil and subsoil, respectively.   218 

As SoilGrids data are provided for six soil layers at the fixed depths (0-5, 5-15, 15-30, 30-60, 60-219 

100, 100-200 cm), we computed a weighted average of SoilGrids BD for the comparison with the 220 

BD from the external dataset. For example, if BD is measured for the 10-25 layer then 5 cm belongs 221 

to the 5-15 cm SoilGrids layer and 10 cm to the 15-30 cm layer. Consequently, to obtain the sample 222 

value, we computed a weighted mean between the SoilGrids BD values given for the 5-15 and the 223 

15-30 layers, using a weighting factor of 5 and 10 for the two layers, respectively. We excluded 224 



the BD values lower than 0.9 Mg m-3 because they were not representative of mineral soils in 225 

semiarid regions and, when present, they were likely due to tillage operations occurred close to 226 

the sampling moment. We also excluded BD values greater than 2 Mg m-3 because they are not 227 

representative for agricultural land. Textural plots were prepared using the ggtern software 228 

(Hamilton and Ferry, 2018).  229 

2.2.2. Geodata 230 
 231 
For the terrain analysis, the Shuttle radar topography mission SRTM 30 m DEM (Farr et al., 2007) 232 

was used to obtain topographic data with a resampling at 90 m. The digital elevation model was 233 

downloaded in ten tiles from the open topography website (https://opentopography.org/).The 234 

topographic indices were obtained for the whole study area using the geo-processing terrain 235 

analysis tool in SAGA (Conrad et al., 2015). Data pre-processing and maps were prepared using 236 

ArcGIS. The WorldClim climatic data (Fick and Hijmans, 2017) was used to obtain climatic data 237 

(e.g., mean annual rainfall, average annual temperature). For EU countries, CORINE land cover 238 

(Bossard et al., 2000) was used to select agricultural land use. To assign the target land cover 239 

(Agriculture) CLC was check for all the available periods, 2000, 2006, 2012, 2018. For non-EU 240 

countries – except for Turkey, which was included in CORINE land cover data – we selected soil 241 

profiles belonging to agricultural areas by observing satellite and aerial imagery available in 242 

ArcMap and Google Earth-Pro.  243 

2.3. Study area  244 

The study focused on the Mediterranean Basin, which covers the territory between 30° and 45° 245 

latitudes and, according to the Köppen climate classification system, belongs to the three main 246 

climate groups: B (dry), C (temperate), and D (continental) (Francaviglia et al., 2020) (see Fig. 2). 247 

The influence of the sea plays a key role in shaping the environment including relief characteristics, 248 



which determine the characteristic Mediterranean climate at basin scale (Lionello et al., 2006). 249 

Mediterranean soils are the result of a complex genesis (Lagacherie et al., 2018). Carbonatic and 250 

limestone parent materials are the most widespread minerals in the Mediterranean (Verheye and 251 

De La Rosa, 2005; Zdruli et al., 2011). Long-term agricultural use has altered soil structure and 252 

degraded carbon content. Soil characteristics indicate different ages of soil development and 253 

depths and there is evidence of clay particle translocation within the soil profile (Zdruli et al., 254 

2011). 255 

According to the World Reference Base for Soil Resources (WRB 2006), approximately a dozen 256 

soil orders can be found in the Mediterranenan basin: histosols, anthrosols, leptosols, vertisols, 257 

fluvisols, gleysols, andosols, kastanozems and phaeozems, umbrisols, gypsisols, durisols, 258 

calcisols, luvisols, arenosols, cambisols, and regosols. A brief description of these soil orders can 259 

be found in Zdruli et al., (2011). Figure 2 shows the locations of the sites included in the training 260 

(WoSIS data) and validation (extracted from the literature) datasets.  261 

 262 

 263 

Figure 2.  Study area. The location of the sampling sites (WoSIS data for training and external 264 

data for model transferability).   265 



2.4 Development of PTFs to estimate BD  266 

In this study, we evaluated three methods to estimate BD, namely Multiple Linear Regression 267 

(MLR) models each using two-variable selection criteria, and Artificial Neural Networks (ANN). 268 

These methods were chosen in our analyses because they are suitable when data are sparse and no 269 

spatial structure can be defined. A 10-fold cross-validation frame was used to assess the prediction 270 

accuracy (Veronesi and Schillaci, 2019). The three models were defined using a wide set of 271 

predictors, i.e. independent variables (soil properties, bioclimatic and topographic indicators). 272 

These predictors were derived from the soil and additional database (Fig. 1).  273 

 274 

2.4.1 Multiple linear regression (MLR) 275 
 276 
The first method (MLR-S) used was a stepwise multiple linear regression starting from no 277 

dependent variables (a constant-only model); the first dependent variable that will be included in 278 

the model is the variable that  produces the maximum increase in R2; if the increase in the 279 

explicated variance is significant (partial F test) at a given  P(F), called inclusion threshold, the 280 

variable is retained in the model (forward step). The same procedure is done to evaluate the 281 

possibility to include a second independent variable and so on. At each inclusion step, there is an 282 

exclusion step too, where, among the variables included in the model, the variable that is excluded 283 

causes the lower reduction in explicated variance. If the decrease of explained variability is not 284 

significant at a given P(F), called exclusion threshold and higher than the inclusion threshold, the 285 

variable is excluded from the model. The process stops when no more dependent variables are 286 

included or excluded (Noryani et al., 2019).. In the MLR-S, a predictor is included in the model if 287 

its regression coefficient is significant at P ≤ 0.05 and excluded if the partial F test has a P > 0.1 288 

(Draper and Smith, 1998). 289 



The second approach was a stepwise variable selection, which started by including all independent 290 

variables, then excluded non-significant variables one by one using a backward stepwise approach 291 

(MLR-BS). Variables were excluded when their contribution did not affect the model explication 292 

capability (i.e., when the partial F test have a P>0.1) (Ghani and Ahmad, 2010). 293 

For both methods (MLR-S and MLR-BS), the normality test of Kolmogorov-Smirnov and the 294 

Breush-Pagan test for the homogeneity of variances (Breusch et al., 1979) were applied to the 295 

residuals of the regression models. 296 

2.4.2 Artificial Neural Network 297 
 298 
An ANN is part of a computing system, which is developed to mimic the way the human brain 299 

processes information. ANN allows finding non-linear behavior of the system that cannot be 300 

discovered with traditional regression-based methods. To develop a PTF, the ANN is generally 301 

made by three layers of neurons, i.e. an input layer, a hidden layer and an output layer (Ebrahimi 302 

et al., 2019; Minasny and McBratney, 2002; Schaap et al., 1998). This kind of ANN architecture 303 

is known as Multi-Layer Perceptron (MLP). ANN imposes minimal requirements for model 304 

structure or assumptions because the shape of the relationship is determined during the learning 305 

process (Haykin, 2008). We used an MLP implementation in the IBM-SPSS 26.0.0.1.  One hidden 306 

layer was used with three neurons according to the default settings, using the hyperbolic tangent 307 

activation function and the identity function for the output layer. This is an identity function 308 

because this task is a regression problem. The weighted connections feed forward from the input 309 

layer to the output layer. The training algorithm works by back-propagating the prediction error, 310 

through the parameters of the neural network. In this study, the MLP had 18 input predictors and 311 

one output variable, i.e. BD. The independent variables used as predictors in the three statistical 312 

models for the BD estimation are shown in Fig. 1. The optimal fit was reached in cross-validation 313 



by using 1 hidden layer, combined with three neurons. The Hyperparameters tuning was iteratively 314 

tested by applying an ANN with one hidden layer with 2 to 10 neurons and, alternatively, an ANN 315 

with two hidden layers with 2 to 5 neurons in the first hidden layer combined with 2 or 3 neurons 316 

in the second hidden layer. The use of one single hidden layer resulted to be more effective. This 317 

result agreed with the automatic parameterization proposed by the software: 318 

(ftp://public.dhe.ibm.com/software/analytics/spss/documentation/statistics/27.0/en/client/Manual319 

s/IBM_SPSS_Statistics_Algorithms.pdf). Regarding computation time, the model training phase 320 

takes few second. 321 

2.5. Analysis of models’ performance 322 
 323 
The following evaluation indices were calculated to test the model performance in estimating BD: 324 

i) R2 coefficient of determination of the scatter plot of the predicted against the observed values; 325 

ii) Bias and %Bias (Addiscott and Whitmore, 1987), optimal value is 0, range is from +∞ to -∞; 326 

when the Bias% is < 10% it may be considered very favorable (Moriasi et al., 2007); 327 

iii) Root Mean Square Error (RMSE) and %RMSE (RMSE/(Observed Mean) *100) (Fox, 1981), 328 

optimal value is 0, range is from 0 to +∞; %RMSE value lower than 10% is considered to be 329 

favorable (Bellocchi et al., 2002); 330 

iv) The Pearson correlation coefficient, optimal value is 1, range is from +1 to –1; 331 

v)The slope of the regression of observed data to the estimated ones, optimal value is 1, range is 332 

from +∞ to -∞ (Piñeiro et al., 2008).  333 

Note that Bias is always equal to 0 when the ordinary least square (OLS) method is applied, which 334 

was the case in the two regression training sets. Moreover, in OLS analysis the slope of observed 335 

values against the estimated values is equal to 1. All indices were computed using Irene-DLL (Fila 336 

et al., 2003). 337 



3. Results 338 

3.1 Descriptive statistics  339 

3.1.1 Soil properties 340 
 341 

The highest average BD value was observed in the subsoil training dataset (1.51±0.17 Mg m-3). 342 

The lowest average BD value was observed in the topsoil validation dataset (1.38±0.12 Mg m-3). 343 

The SOC was higher in the topsoil testing (1.28±1 %), and lower in the subsoil testing dataset 344 

(0.61±0.35 %) (Table 3). The most variable soil property was the sand content with a coefficient 345 

of variation ranging from 48 to 85%, while BD was less variable with a coefficient of variation 346 

ranging from 9 to 14%.  The references of the independent dataset for validation are listed in Table 347 

2. The independent external dataset for validation comprised 59 observations for the topsoil and 348 

29 for the subsoil, Table 3. Textural plots of the training and validation datasets are shown in Table 349 

3. 350 

  351 



Table 2. Independent dataset for validation with country, climate and reference. 352 

Country 

Köppen 
climate 
classification Author   

Algeria BSk Chennafi et al., 2006 
Croatia Cfa Bogunovic et al., 2018 
Egypt BWh Mahmoud et al., 2019 
 BWh Salem et al., 2015 
 BWh Zohry et al., 2017 
France Csa Cardinael et al., 2017 
Greece CSa Antonopoulos et al., 2013 
Israel BSh Stavi et al., 2008 
Italy Cfa Pezzuolo et al., 2017 
 Cfa Carozzi et al., 2013 
 Csa Francaviglia et al., 2015 
 Cfa Valboa et al., 2015 
 Cfa Perego et al., 2019 
 Cfa Ceotto et al., 2018 
 Cfa Diacono et al., 2018 
 Csa Vitale et al., 2017 
Lebanon Csa Karam et al., 2007 
Morocco Csa Ichir et al., 2003 
Spain BSk Pareja-Sánchez et al., 2017 
 Cfa Bescansa et al., 2006 
 BSk Pardo et al., 2020 
 BSk Tolon-Becerra et al., 2011 
 Bsk-Cfa Álvaro-Fuentes et al., 2008 
 BWh Visconti et al., 2019 
 BSk Recio et al., 2018 
 Csa Marquez-Garcia et al., 2013 
Syria Bsk Abou Zakhem et al., 2019 
Tunisia Csa Jemai et al., 2013 
Turkey Csb Çelik et al., 2019 

 353 



 354 

Figure 3. Textural plots, a) topsoil validation dataset, b) subsoil validation dataset, c) topsoil test 355 
dataset d) subsoil test dataset.  356 
 357 
 358 
Table 3. Soil properties of the training and testing data for topsoil (0-0.4m) and subsoil (0.4-1.2 359 
m): Bulk Density (BD), Soil Organic Carbon (SOC), Fine earth fractions,  360   

BD (Mg m-3) SOC (%) Sand (%) Silt (%) Clay (%) 

Topsoil Training 

(N=129) 

mean 1.44  1.26 24.4 36.5 39.1 

Stdv 0.20  0.64 17.1 14.1 18.1 

Topsoil Testing 

(N=59) 

mean 1.41  1.28 31.39 40.68 28.21 

Stdv 0.11  1.0 13.82 9.09 14.25 

Subsoil Training 

(N=180) 

mean 1.51  1.15 20.1 38.2 41.7 

Stdv 0.17  0.67 17.0 15.7 17.4 

Subsoil Testing 

(N=29) 

mean 1.48  0.61 29.04 39.49 31.56 

Stdv 0.16  0.35 19.38 12.58 18.4 

 361 
 362 
3.1.2 Environmental variables 363 
 364 
Average precipitation reported in the training dataset was highly variable in the study area with a 365 

minimum value of 426 and a maximum of 1693 mm yr-1. The validation dataset showed a 366 



minimum annual rainfall of 189 and a maximum of 1155 mm yr-1. Mean annual temperature, 367 

Elevation (m), Slope (%) are reported in Table 4. 368 

Table 4. Descriptive statistics of the selected environmental variables 369 
  

Annual  
Average 
Precipitation  
(mm yr-1) 

Mean 
annual 
temperature 
(° C) 

Elevation 
(m) 

Slope  
(%) 

Training (N=77 sites) mean 774.4 10.5 321 4.3 

stdv 294.4 1.5 332 5.4 

Testing (N=36 sites) mean 495.7 16 318 4 

stdv 300 3.1 379 4.9 

 370 

3.2 Model performance and transferability 371 

Homogeneity of variance and normality tests for the MLR models were conducted using the 372 

Breush-Pagan test and Kolmogorov-Smirnov test (Table 5). 373 

Table. 5 Homogeneity of variance and normality tests for Multiple Linear Regression (MLR) 374 
models. 375 
  MLR-S MLR-BS 

  Topsoil Subsoil Topsoil Subsoil 
Homogenity of variance of residuals* 0.056 0.051 0.065 0.051 

Normality of residuals** >0.2 >0.2 >0.2 >0.2 

*Breush-Pagan test; ** Kolmogorow-Smirnov test 376 

Topsoil model metrics are shown in Table 6. The RMSE of the topsoil training dataset (Table 6a) 377 

ranged from 0.07 (ANN) to 0.17 (MLR-S), and similar performances were obtained with the MLR-378 

BS models. The Bias of the ANN was close to zero. The ANN model showed the highest R2 (0.89), 379 

whereas the MLR-S model showed the lowest R2 (0.24). 380 

Table 6. Performance of the newly developed pedotransfer function (PTF) as developed with the 381 
topsoil training and cross validation (a) and tested with the independent external datasets for 382 
model transferability (b). Indices values reported in brackets refer to the cross-validation results. 383 



a) 

MLR-S - 

MLR-S CV 

MLR-BS - 

MLR-BS CV 

ANN - ANN 

CV 

RMSE 0.17 (0.16) 0.14 (0.15) 0.07 (0.16) 

rRMSE %  11.91 (11.53) 9.68 (10.81) 4.56 (11.4) 

Bias  (0.0007) (0.0047) 0.00 (0.01) 

Bias %  (0.144) (0.37) 0.10 (1.11) 

r  0.51 (0.49) 0.72 (0.57) 0.94 (0.67) 

R2 0.26 (0.33) 0.51 (0.37) 0.89 (0.48) 

Slope b  (0.84)  (0.71) 1.00 (0.78) 

Estimated Max 1.61 (1.6) 1.80 (1.67) 1.90 7 (1.75) 

Estimated Min 1.16 (1.22) 1.02 (1.14) 0.88 (1.13) 

N 129 

b)  MLR-S MLR-BS ANN MJ SoilGrids 

RMSE 0.14 0.32 0.16 0.17 0.13 

rRMSE % 9.28 22.26 11.53 11.93 9.12 

Bias 0.06 0.13 0.07 -0.11 0.008 

Bias % 1.1 11.2 1.4 -6.657 0.04 

r  0.34 0.05 0.64 0.24 0.09 

R2 0.12 0.00 0.41 0.06 0.01 

Slope b 0.29 -0.12 1.11 0.23 0.05 

Estimated Max 1.7 2.75 1.94 1.44 1.53 

Estimated Min 1.24 1.03 0.92 0.76 1.28 

N 59 

 384 

The RMSE in the topsoil validation dataset (Table 6b) range from 0.13 (SoilGrids) to 0.32 (MLR-385 

BS). All the Bias values were ≤0.5. The R2 ranged between 0.09 to 0.41, in SoilGrids and ANN, 386 

respectively. 387 

 388 
 389 
 390 
Table 7. Performance of the newly developed pedotransfer function (PTF) as developed with the 391 
subsoil training and cross validation (a) and tested with the independent external datasets for 392 
model transferability (b). Indices values reported in brackets refer to the cross-validation results.  393 
 394 



a)  MLR-S MLR-BS ANN 

RMSE 0.14 (0.13) 0.12 (0.13) 0.07 (0.11) 

rRMSE % 9.04 (9.24) 8.04 (8.67) 4.53 (7.79) 

Bias (-0.0003) (-0.0004) 0.00 (0.003) 

Bias % (0.0056) (0.0008) -0.16 (0.21) 

r  0.49 (0.47) 0.70 (0.58) 0.92 (0.67) 

R2 0.24 (0.21) 0.48 (0.38) 0.84 (0.48) 

Slope b (0.90) (0.90) 0.98 (0.84) 

Estimated Max 1.77 (1.68) 1.79 (1.71) 1.93 (1.76) 

Estimated Min 1.12 (1.32) 1.35 (1.28) 1.10 (1.26) 

N 180 180 180 

b)  MLR-S MLR-BS ANN MJ SoilGrids 

RMSE 0.17 0.39 0.21 0.14 0.17 

rRMSE % 11.78 26.26 13.93 9.54 11.39 

Bias 0.09 -0.04 0.15 -0.07 0.07 

Bias % 2.8 -2.347 1.7 -4.66 0.708 

r  0.38 0.35 0.67 0.26 -0.42 

R2 0.15 0.13 0.45 0.07 0.18 

Slope b 0.37 1.06 0.94 0.001 -0.11 

Estimated Max 1.99 1.95 1.88 1.53 1.64 

Estimated Min 1.38 1.01 1.29 1.20 1.47 

N 30     

 395 

Subsoil model metrics are shown in Table 7. The RMSE in the subsoil training dataset (Table 7a) 396 

ranged from 0.07 (ANN) to 0.14 (MLR-S). The Bias of the ANN was close to zero. The ANN 397 

model showed the highest R2 of 0.84, whereas the MLR-S model showed the lowest R2 of 0.24. 398 

The RMSE in the subsoil external dataset (Table 7b) are very similar and ranged from 0.14 to 0.39. 399 

The Bias % values ranging from -4.6 (MJ) to 2.8% (MLR-S). The R2 ranged between 0.07 (MLR-400 

S) to 0.45 (ANN), respectively.  401 

Since the best performance was achieved with the ANN, we provide a .xlm spreadsheet file that 402 

can be used to execute the PTF developed with the ANN using the soil data, topography and 403 



WorldClim. Furthermore, to allow users to apply the PTF based on the ANN in different statistical 404 

packages a Predictive Model Markup Language file (PMML), which is an XML-based predictive 405 

model interchange format, is available in the supplemental materials.  406 

 407 

Figure 4. Predicted vs observed data (training topsoil and subsoil A and B, validation topsoil and 408 
subsoil C and D), MLR-S model, MLR-BS model, ANN neural network model, MJ PTF SoilGrids. 409 
3.3 Variable importance 410 

Table 8 shows the absolute standardized regression coefficient for each MLR model, considering 411 

100% the highest beta value, to obtain a comparable result to the ANN model. Clay was the most 412 

important predictor in the topsoil MLR-S model. In the topsoil, SOC contributed approximately 413 



25% of BD in the MLR-BS PTF, but it was not present in the MLR-S models. Similarly, Clay2 414 

was not present in the MLR-S models, slope and SOC2 were the most important predictors in the 415 

subsoil using MLR-BS. Bioclimatic predictors such as BIO1 (Annual Mean Temperature), BIO2 416 

(Mean Diurnal) and BIO7 (Annual T°C Range) were the most influential predictors in both topsoil 417 

and subsoil using MLR models. In topsoils, predictors included BIO7 (Annual T°C Range) and 418 

BIO14 (Precipitation of the Driest Month), heavily contributed to BD estimates within the MLR-419 

BS and MLR-S of BD. BIO7 (Annual T°C Range) was more important than BIO14 (Precipitation 420 

of the Driest Month) in any model. Among the topographic predictors, the elevation was important 421 

in subsoil MLR-S models (contributing 24%), whereas it was not important in the topsoil or subsoil 422 

MLR-BS models. In subsoils, BIO3 (Isothermality) contributed 8% and 7% of subsoil BD in 423 

MLR-S and MLR-BS. 424 

Table 8 Normalized variable importance in the MLR-S and MLR-BS (standardized regression 425 
coefficient in %). Conditional formatting is applied, Red color marks the minimum, green color 426 
the maximum and the yellow marks the middle values. 427 
 428 

  MLR-S 
TOP 

MLR-BS 
TOP 

MLR-S 
SUB 

MLR-BS 
SUB 

Clay    4.62 
Sand  5.83   
Silt  2.97 14.67  
SOC  19.15  4.69 
MeanDepth   11.73  
Elevation  2.34  4.53 
Slope   24.97 4.35 
Profile Curvature   13.91  
BIO1    5.70 
BIO2  11.23  5.91 
BIO3  8.73  6.01 
BIO4 36.46    
BIO5  4.59  5.20 
BIO7 46.88 7.56 14.75 4.90 
BIO12    6.09 
BIO13    5.26 
BIO14 16.67 1.21  5.02 
BIO15  1.90   
BIO17    5.08 
BIO18    4.85 



BIO19    4.74 
Clay2  3.17  4.57 
Sand2  2.14   
SOC2  6.10 19.96 4.81 
SOC2*Clay2  3.98  4.76 
SOC^0.5  14.22  4.15 
Clay*SOC  4.87  4.78 

 429 

Table 9 shows the importance of the predictors included in the ANN models, based on sensitivity 430 

analyses using the default option in the MLP tool in IBM SPSS (independent variable importance 431 

analysis). The models included all the predictors except interactions between soil properties which 432 

were calculated within the ANN procedure but hidden to the user. Among the main physical and 433 

chemical properties, Sand was the most important in topsoil (5.6) and SOC in subsoil (5.5) 434 

Within the ANN, the most important predictors were BIO7 (Annual T°C Range) and Profile 435 

Curvature for topsoil and subsoil, respectively. Other important predictors were MeanDepth and 436 

the BIO12 (Annual Rainfall) in topsoil. SOC, BIO1 (Annual Mean Temperature) and BIO16 437 

(Precipitation of the Wettest Quarter) were important in topsoil and subsoil. Soil properties 438 

predicted the BD of subsoil. Clay predicted BD in subsoil (3.2) and topsoil (2.8). Among the 439 

topographic predictors, Profile and plan curvature played a stronger role predicting the BD of the 440 

topsoil (5.3) compared to the subsoil (5.6). 441 

 442 

Table 9. Normalized variable* importance for predicting the bulk density of the top- and subsoil 443 
by means of the pedotransfer function developed by the Artificial Neural Network optimization 444 
approach. *variable description is available in figure 1, Conditional formatting is applied, Red 445 
color marks the minimum, green color the maximum and the yellow marks the middle values. 446 
 447 
 Topsoil Subsoil 
Clay 3.2 2.8 
Sand 5.6 1.2 
Silt 3.4 3.7 
SOC 3.8 5.5 

MeanDepth 
1.4 1.5 



Elevation 3.8 2.7 

Slope 2.6 5.3 

SIN Aspect 
3.3 1.7 

Profile 
Curvature 5.3 4.5 
Plan 
Curvature 3.8 5.6 
BIO1 2.5 2.8 
BIO2 5.3 5.0 
BIO3 2.0 2.7 
BIO4 3.7 4.4 
BIO5 4.7 1.6 
BIO6 3.4 1.8 
BIO7 3.9 5.4 
BIO8 3.5 4.0 
BIO9 3.8 2.9 
BIO10 1.6 2.6 
BIO11 2.9 1.8 
BIO12 1.4 2.6 
BIO13 3.0 2.3 
BIO14 3.2 3.2 
BIO15 5.6 2.3 
BIO16 3.3 1.8 
BIO17 3.9 3.5 
BIO18 4.4 3.3 

BIO19 1.7 2.7 
 448 
4 Discussion 449 

Collaborative work among researchers from different branches of geosciences facilitated a 450 

systematic literature review and compilation of an up-to-date, regionally-relevant geo-dataset; and 451 

this permitted the development and validation of new pedotransfer functions (PTF) to predict the 452 

BD of top- and subsoil in the Mediterranean.  453 

 454 

4.1 Performance of pedotransfer functions  455 

In this study, the performances of three new PTFs to estimate BD (MLR-S, MLR-BS and ANN) 456 

were defined used WoSIS soil data in combination with environmental data. The model 457 



transferability of the new PTFs was carried out using external dataset from Mediterranean 458 

locations derived from literature. Results were also benchmarked against the widely used MJ-PTF, 459 

which uses only soil organic carbon to predict BD, and the global SoilGrids data which are based 460 

on topographic and remote-sensed estimates of BD. Among the MLR approaches, MLR-BS 461 

performed slightly better than MLR-S. The ANN model outperformed the MLR models.  462 

Our PTF development strategy, which implies the use of topographic and climatic variables along 463 

with soil properties, agreed with the approach of  Wang et al., (2014) and Akpa et al., (2016). 464 

However, we also validated our new PTFs by estimating the BD in top- and subsoil using an 465 

external and independent dataset. This resulted in less accurate predictions than those made by the 466 

training datasets as already remarked by (Khaledian and Miller, 2020; Morin and Davis, 2017; 467 

Thompson, 2006). Nevertheless, these authors suggested that the use of external dataset rather than 468 

internal validation methods provides direct evidence about whether study results will replicate 469 

(Thompson, 2006).  470 

Here we initially used MLR because it is a hands-on tool that provides direct quantitative and 471 

easily interpretable results. By contrast, the ANN has provided an alternative machine learning 472 

approach used in relatively recent analyses (Alvarez-Acosta et al., 2012; Ballabio et al., 2016; 473 

Chen et al., 2018; Ghehi et al., 2012; Nussbaum et al., 2018). In this study, the MJ PTF was used 474 

as a simple comparator because it is independent of other physical soil parameters except SOC and 475 

is the most widely used PTF. In our MLR-BS topsoil, MLR-S subsoil, and MLR-BS subsoil 476 

models, we considered inclusion of the key determinant used (i.e., SOC square root), but it was 477 

not included in the final model because it did not significantly improve the predictions. Our MLR-478 

S and MLR-BS performed better than the MJ because our dataset included additional factors that 479 

directly determine BD over the long-term (such as those related to the climate or topography), thus 480 



raising the prediction capability. the SoilGrids database yielded a lower prediction ability in 481 

comparison to the other models. SoilGrids is considered as an interesting solution because it is a 482 

gridded multiple depth dataset at a 250m spatial resolution and it is available worldwide. However, 483 

the present results suggest that SoilGrids BD estimations may not adequately match the observed 484 

BD values (i.e., external dataset) which were measured in specific sites located in the 485 

Mediterranean area.  486 

4.2 Data groupings and reliability of PTFs 487 

The fit of the MLR subsoil models was more satisfactory than for subsoil linear model MLR-S 488 

with an R2 0.12. Subsoil models were also more satisfactory for the ANN (R2 = 0.45). This is in 489 

contrast to previous publications in which grouping input data by soil depths did not improve the 490 

prediction of BD in tropical soils (De Vos et al., 2005), which might have been attributable to 491 

different level of disturbance of the soil in the study areas (Hollis et al., 2012), or differences in 492 

the additional factors analyzed.  493 

Arable soils undergo significant changes over time due to tillage and cultivation. Therefore, 494 

physical soil properties such as BD are more stable in the subsoil than in the topsoil. Statistics for 495 

soil texture and SOC agreed with data reported for other Mediterranean countries (Çelik et al., 496 

2019; Evrendilek et al., 2004). The MJ and SoilGrids models yielded a similar result (Table 6 and 497 

7). Notably, MLR-BS showed an R2 close to zero for the validation datasets. This hampers 498 

discussion of model variability comparing the training and validation datasets. Generally, negative 499 

Bias is observed in the subsoil external dataset. As for the external dataset, slightly positive Bias 500 

indicates that MLR-S, ANN, SoilGrids overestimate the average BD of 2.8%, 1.7 % and 0.7%, 501 

respectively; MJ and MLR-BS underestimate the BD of -4.6% and -2.3% which is not preferable 502 

especially for the subsoil, an exception has been encountered with the topsoil MLR-BS that has 503 



predicted in few cases values very far from the true BD. Mediterranean soils are diverse, their 504 

hydraulic properties reflect pedogenetic factors as well as recent changes in management and 505 

climate (Yaalon, 1997). 506 

4.3 Importance of predictor variables 507 

Previous attempts to estimate soil BD by PTF (Çelik et al., 2019; Gozubuyuk et al., 2014; Tranter 508 

et al., 2007) did not include climate parameters because they were often not readily available or 509 

not immediately obvious as a determinant of BD.  Many factors related to climate, such as 510 

bioclimatic indices, affect BD (e.g., rainfall intensity or pattern, high soil temperature in summer) 511 

(Basile et al., 2019; Chen et al., 2018). Bioclimatic indices and topographic predictors contributed 512 

greatly to the performance of the MLR and comprised 100% of the variables in the MLR-S for the 513 

topsoil, and about the 33% in the MLR-BS. The regression models (MLR-S and MLR-BS) 514 

included soil textural data (MLR-S topsoil) or SOC related (MLR-S subsoil and MLR-BS topsoil 515 

and subsoil). Our results showed that important predictors of BD in the MLR models were slope, 516 

clay, SOC2, and bioclimatic variables such as BIO1 (Annual Mean Temperature), BIO2 (Mean 517 

Diurnal Range) and BIO7 (Annual T°C Range). This is consistent with previous reports (Akpa et 518 

al., 2016). In fact, part of the BD variability is due to the diverse bioclimatic zones within the 519 

Mediterranean Basin (Beck et al., 2018).  520 

In our study, the inclusion of the climatic and topographic data increased the model reliability. 521 

Indeed, models without topographic and climatic predictors had very low performance at the 522 

training stage (data not shown). However, the lack of field management information, which 523 

strongly affects arable soils (e.g., crop type, tillage methods, irrigation, input of organic matter), 524 

hampers the ability to infer a relationship with factors of soil formation  and processes (Wadoux 525 

et al., 2019) which would potentially improve the model prediction. In the Mediterranean Basin, 526 



significant effects of cropping systems and field managements on BD have been demonstrated in 527 

field studies (Álvaro-Fuentes et al., 2008; Bogunovic et al., 2020; Çelik et al., 2019; Perego et al., 528 

2019; Pezzuolo et al., 2017).  529 

5. Conclusions 530 

Arable soils are widely distributed and the estimation of their fertility and carbon sequestration 531 

ability is a prerequisite for their management at wide scale. Reliable PTF to estimate BD are thus 532 

a needed instrument for arable soils management at the regional or higher levels. In the present 533 

study, we developed a robust PTF for BD estimation by exploiting the WoSIS resource, and it was 534 

the first time that such a broad set of data are valorized for PTF development. Moreover, we  535 

considered relevant predictors such as climatic and topographic parameters, which are fully and 536 

freely available and responsible for remarkably improving the predictive capability of the PTF 537 

models.  538 

One of the three developed PTF (i.e., ANN) showed a better capability of estimating BD data than 539 

the well-known function Manrique Jones and the SoilGrids estimation approach; this outcome 540 

proved that the work hypothesis was correct and then developing the PTF with climate-specific 541 

set of data and adding topographic and climate predictors leads to a better predictive capability. 542 

A relevant result of the present work is a ready to be used PTF model (i.e., ANN) for to separate 543 

soil layers (i.e., topsoil and subsoil) for the arable soils in the Mediterranean basin. The potential 544 

users of this result are public authorities interested in estimating soil carbon stock by exploiting 545 

legacy soil data in which bulk density is an often-missing parameter in the large monitoring 546 

campaigns. Researchers can be also interested in a more robust method of BD estimation when 547 

elaborating sets of soil data, especially when the aim is to estimate spatial and temporal variation.  548 



The robustness of the ANN PTF is ensured by the use of an independent external dataset compiled 549 

from the literature for the validation of the PTF models transferability.  550 

Results from the present work provide a reproducible and externally tested tool that can be applied 551 

to obtain a BD estimation at a regional level more reliable than the presently used PTF or gridded 552 

benchmarks. Thus, the present results are an option for policy making and management at a 553 

regional level.  554 

 555 
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