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ORIGINAL ARTICLE

Discovering and Visualizing Disease-Specific 
Electrocardiogram Features Using Deep Learning
Proof-of-Concept in Phospholamban Gene Mutation Carriers

Rutger R. van de Leur , MD*; Karim Taha , MD*; Max N. Bos , MSc; Jeroen F. van der Heijden, MD, PhD;  
Deepak Gupta, PhD; Maarten J. Cramer, MD, PhD; Rutger J. Hassink , MD, PhD; Pim van der Harst , MD, PhD;  
Pieter A. Doevendans , MD, PhD; Folkert W. Asselbergs , MD, PhD; René van Es , PhD

BACKGROUND: ECG interpretation requires expertise and is mostly based on physician recognition of specific patterns, which 
may be challenging in rare cardiac diseases. Deep neural networks (DNNs) can discover complex features in ECGs and 
may facilitate the detection of novel features which possibly play a pathophysiological role in relatively unknown diseases. 
Using a cohort of PLN (phospholamban) p.Arg14del mutation carriers, we aimed to investigate whether a novel DNN-based 
approach can identify established ECG features, but moreover, we aimed to expand our knowledge on novel ECG features 
in these patients.

METHODS: A DNN was developed on 12-lead median beat ECGs of 69 patients and 1380 matched controls and independently 
evaluated on 17 patients and 340 controls. Differentiating features were visualized using Guided Gradient Class Activation 
Mapping++. Novel ECG features were tested for their diagnostic value by adding them to a logistic regression model 
including established ECG features.

RESULTS: The DNN showed excellent discriminatory performance with a c-statistic of 0.95 (95% CI, 0.91–0.99) and sensitivity 
and specificity of 0.82 and 0.93, respectively. Visualizations revealed established ECG features (low QRS voltages and 
T-wave inversions), specified these features (eg, R- and T-wave attenuation in V2/V3) and identified novel PLN-specific 
ECG features (eg, increased PR-duration). The logistic regression baseline model improved significantly when augmented 
with the identified features (P<0.001).

CONCLUSIONS: A DNN-based feature detection approach was able to discover and visualize disease-specific ECG features in 
PLN mutation carriers and revealed yet unidentified features. This novel approach may help advance diagnostic capabilities 
in daily practice.

GRAPHIC ABSTRACT: A graphic abstract is available for this article.
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Interpretation of the ECG requires expertise and is 
mainly based on physician recognition of patterns that 
are known to belong to a particular disorder. However, 

for rare and relatively unknown cardiac diseases, this may 

be challenging since ECG features are often unknown 
and require expert knowledge to recognize. By automat-
ing the discovery and expanding the knowledge on dis-
ease-specific ECG features, interpretation of ECGs by 
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physicians could be improved. Such a support tool could 
be of particular importance when expert knowledge is 
not readily available or in research settings to automate 
the detection of disease-specific ECG features.

Recently, ECGs have been analyzed using deep neu-
ral networks (DNNs), which are computer algorithms that 
are based on the structure and functioning of the human 
brain.1 Their layers can be trained to discover complex 
patterns in ECGs, without requiring hand-crafted fea-
ture extraction. Several studies have applied DNNs for 
automated predictions from ECGs, and one recent study 
showed that it is feasible to diagnose hypertrophic car-
diomyopathy on the ECG.2–4 However, the methods used 
in these studies all require very large data sets, which are 
often not available for rare diseases. Furthermore, these 
previous studies all focus on prediction, but specific ECG 
patterns used by DNNs are rarely visualized.3,5–8 Visual-
ization of such features takes advantage of the feature 
discovery embedded in DNNs and will help clinicians to 
interpret ECGs more accurately and possibly facilitate 
discovery of novel features.

Cardiomyopathy-related genetic mutations are rare 
but are often associated with typical ECG features. An 
example is the deletion of 3 base pairs (c.40_42delAGA) 
in the phospholamban (PLN) gene, leading to the dele-
tion of Arginine 14 in the PLN protein (p.Arg14del).9–11 
Prevalence of the PLN p.Arg14del mutation is estimated 

to be 0.07% in the northern regions of the Netherlands 
and is present in 12% of Dutch patients developing a 
phenotype of arrhythmogenic right ventricular cardio-
myopathy and in 15% of patients developing dilated 
cardiomyopathy.11–13 With regard to ECG character-
istics, in these mutation carriers, typical features that 
have previously been described are attenuated QRS-
amplitudes and inverted T-waves in the right and left 
precordial leads.12,14,15

Beside using DNNs merely for prediction or diag-
nosis, we hypothesize that DNNs can also be used for 
feature visualization itself. This will potentially enable 
discovery of novel ECG features that belong to a par-
ticular disease. In this study, we used a cohort of PLN 
mutation carriers to investigate whether a novel DNN-
based approach can (1) identify the already well-estab-
lished ECG features in these mutation carriers and (2) 
possibly expand our knowledge on ECG features in 
these mutation carriers.

METHODS
Data Availability
The data used in this study are not publicly available due to 
privacy restrictions. The code for training the DNN and for gen-
erating the visualizations and tables in this article is available 
upon request from the corresponding author.

Data Source and Study Participants
The data set consisted of 12-lead ECGs from patients 
between 18 and 85 years old acquired in the University 
Medical Center Utrecht from January 2000 to August 2019. 
All extracted data were deidentified in accordance with the 
EU General Data Protection Regulation, and written informed 
consent was, therefore, not required by the ethical committee. 
All ECGs were interpreted by a physician as part of the clini-
cal workflow, and these free-text annotations were structured 
using a text-mining algorithm described before.3 We excluded 
all ECGs of insufficient quality and all ECGs with supraven-
tricular and ventricular arrhythmias (excluding premature 
atrial and ventricular complexes), paced rhythms, undefined 
rhythms, and signs of acute ischemia.

All index patients in the data set who carry the genetic PLN 
p.Arg14del mutation and their relatives that tested positive 
were identified. ECGs acquired after the implantation of a left 
ventricular assist device or heart transplantation were excluded. 
Only the first acquired ECG of each mutation carrier was used 
for development of the model.

The control group was derived from the remaining data set 
and consisted of 365 173 ECGs of 147 098 unique patients. 
Per mutation carrier, 20 controls were matched using propen-
sity score matching on age and sex. This number was chosen 
to have sufficient samples to train the DNN without having a 
too severe class imbalance. Only one ECG per control subject, 
sampled without replacement, was used to make sure every 
subject was only used once. The matched groups were ran-
domly split in an 80:20 manner to training and test sets.

Nonstandard Abbreviations and Acronyms

DNN deep neural network
Guided Grad-CAM   Guided Gradient Class Acti-

vation Mapping
PLN Phospholamban

WHAT IS KNOWN?
• Deep neural networks can be used to interpret raw 

electrocardiograms with high accuracy in, for exam-
ple, hypertrophic cardiomyopathy patients.

• Deep neural networks are able to discover complex 
features in ECG signals but are considered black 
box algorithms that lack interpretability.

WHAT THE STUDY ADDS?
• A deep learning-based feature detection approach 

is able to discover and visualize disease-specific 
ECG features.

• In PLN (phospholamban) p.Argdel14 mutation car-
riers, visualizations revealed established ECG fea-
tures (low QRS voltages and T-wave inversions), 
specified these features (eg, R- and T-wave attenu-
ation in V2/V3) and identified novel PLN-specific 
ECG features (eg, increased PR-duration).
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Data Acquisition
For all ECGs, the median beats were exported from the MUSE 
ECG system (MUSE version 8, GE Healthcare, Chicago, IL). 
The median beat data are constructed by aligning all QRS-
complexes of the same shape (eg, excluding premature ventric-
ular complexes) and generating a representative QRS-complex 
by taking the median voltage.16 Acquisition and feature extrac-
tion of the included ECGs is described in more detail in the 
Data Supplement.

Baseline Logistic Regression Model
To demonstrate the capability of DNN in identifying novel rel-
evant features, we first developed a baseline logistic regression 
model, only based on the established ECG features of PLN 
mutation carriers. The matching variables, age and sex, and the 
established PLN-specific ECG features (low QRS voltage and 
right [V2–V3] and left [V4–V6] precordial T-wave inversion) 
were included as predictors in the model.17 The model was 
trained on the training data set and evaluated on the test set.

DNN Development
We constructed a deep convolutional neural network with 
exponentially dilated causal convolutions. The proposed archi-
tecture, inspired by the method described by van den Oord 
et al18 and Franceschi et al,19 compromises several 1-dimen-
sional dilated causal convolution blocks. Eight-fold cross vali-
dation on the training data set was used for optimization of 
the hyperparameters of the network. The simplest network 
with the highest geometric mean of area under the receiver 
operating curve and F2 score averaged over all folds was cho-
sen and trained on the complete training data set. The per-
formance of this network was estimated on the test subset. 
Network training was performed using the PyTorch package 
(version 1.3).20 A detailed description of the architecture of 
the DNN can be found in the Expanded Methods in the Data 
Supplement, and an overview of the network architecture is 
shown in Figure I in the Data Supplement.

Feature Visualization
To identify the parts of the ECG that are important for the 
DNNs prediction, we applied Guided Gradient Class Activation 
Mapping++ (Guided Grad-CAM++), a technique for expla-
nations in convolutional neural networks, to 1-dimensional 
data.5,6 Guided Grad-CAM++ combines the fine-grained and 
lead-specific visualizations of guided backpropagation with 
the class-discriminative and global Grad-CAM technique. The 
median beat visualization methodology is described in more 
detail in the Data Supplement.

Validation of Newly Identified Features in an 
Updated Model
Based on inspection of the visualization output, we identified 
distinctive features with an arbitrary prevalence above 25%. 
The detected important features were translated to quantita-
tive features (eg, R-wave amplitude) and added to the base-
line logistic regression model, starting with the most prevalent. 
If multiple similar features were found in leads belonging to 
the same region, the most prevalent feature in that region was 

used. Leads I, aVL and V4-V6 were grouped as lateral leads 
and II, III and aVF as inferior leads. To evaluate the added value 
of the newly identified ECG features, we determined if the 
nested baseline logistic regression model fit improved using 
the likelihood ratio test and Akaike information criterion.

Subgroup Analyses
In subgroup analyses, we analyzed whether predictive per-
formance and detected features differed between subsets of 
patients. Due to the small sample size, these exploratory sub-
group analyses were performed on the combined training and 
test data sets. We investigated the performance in presymp-
tomatic PLN p.Arg14del mutation carriers. Presymptomatic 
was defined as follows: no cardiac symptoms as per judgment 
of the treating physician, no history of (non)sustained ventricu-
lar arrhythmia, premature ventricular complex burden of <500 
beats per 24 hours and left ventricular ejection fraction ≥45%.

Statistical Analysis
The baseline characteristics were expressed as mean ± SD or 
median with interquartile range, where appropriate. Categorical 
variable differences were tested using the χ2 test or Fisher exact 
test and continuous variables using the Student t test or Mann-
Whitney U test. Multiple testing correction was performed for the 
baseline characteristics using Bonferroni method. The overall 
discriminatory performance of the DNN, baseline and updated 
models were assessed in the test set with the concordance-
statistic (c-statistic) or area under the receiver operating char-
acteristic curve, sensitivities, specificities, positive, and negative 
predictive values. The models were compared at a prespeci-
fied specificity of 94%. The 95% CI around the performance 
measures and odds ratios were obtained using 2000 bootstrap 
samples. All statistical analyses were performed using R version 
3.5 (R Foundation for Statistical Computing, Vienna, Austria).

RESULTS
Study Population
A total of 93 PLN p.Arg14del mutation carriers were 
identified, of which 86 were eligible for this study. Four 
patients were excluded as all their ECGs were acquired 
after left ventricular assist device or heart transplantation 
and 3 patients as all their ECGs were nonsinus rhythm. 
The control group consisted of 135 353 patients after 
exclusions, of which 1720 patients were matched. The 
flowchart is shown in Figure 1 and the baseline charac-
teristics in Table 1.

Baseline Logistic Regression Performance
The discriminative performance (by c-statistic) of the 
baseline logistic regression model was 0.84 (95% CI, 
0.73–0.92) in the test set. The most important predic-
tor of the PLN mutation was the presence of low QRS 
voltage, followed by left precordial inverted T-waves. No 
significant effect of age, sex, or right precordial negative 
T-waves was found.
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DNN Performance
The cross-validated mean c-statistic, sensitivity, specific-
ity, and F2 score obtained in the training data set were 
0.86±0.07, 0.73±0.13, 0.91±0.04, and 0.56±0.05, 
respectively. The c-statistic of the DNN, trained on the 
complete training data set, was 0.95 (95% CI, 0.91–
0.99) in the independent test set. The mean ECG beats 
for the complete data set with a superimposed Guided 
Grad-CAM visualization can be found in Figure 2. Fig-
ure 3 shows a representative example of a mutation 
carrier and a control subject that shows similar preestab-
lished features (low QRS voltage and inverted T-waves) 
but is correctly identified by the DNN.

Feature Detection
Based on the Guided Grad-CAM maps (Figure 2), we 
identified the following 6 most prevalent combined ECG 
segments: (1) R-waves in V2/V3 (58%–99%), (2) PR 
interval (98%), (3) T-waves in V2/V3 (36%–89%), (4) 
R-waves in I/aVL/V4-V6 (34%–59%), (5) R-waves in 
II/III/aVF (22%–46%) and (6) T-waves in I/aVL/V6 
(22%–36%). Figure 4 shows correlation between the 
Grad-CAM maps and the human interpretation, on an 
individual level.

After inspection of the median beat and its SD at 
these locations, the following most prevalent features 
per region were extracted from the ECG and added to 
the baseline logistic regression model: (1) maximum 
R-wave amplitude in V3, (2) PR interval, (3) T-wave 
peak voltage in V3, (4) maximum R-wave amplitude 
in V6, (5) maximum R-wave amplitude in III, and (6) 
T-wave peak voltage in I.

The updated logistic regression models c-statis-
tic was 0.91 (95% CI, 0.83–0.97). The significantly 
associated baseline variables low QRS voltage and 
inverted left precordial T-waves remained significant 
in the updated model. The newly identified features 
were maximum R-wave amplitude in V3 and V6, the 
T-wave amplitude in I and V3 and the PR interval. The 
updated model had a better fit than the baseline model 
with an Akaike information criterion of 388, compared 
with 461 for the baseline model (likelihood ratio test 
P<0.001). The performance measures of all 3 models 
are shown in Table 2. The odds ratios of the variables 
in the baseline and updated models are appreciated 
in Table 3. The summary measures for the quantitative 
translations of the newly identified features, that are 
added to the baseline logistic regression model, are 
shown in Table 4.

Figure 1. Flowchart of the patient selection and model development process.
HTx indicates heart transplantation; LVAD, left ventricular assist device; and PLN, phospholamban.
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Subgroup Analyses
Performance was higher for symptomatic than pres-
ymptomatic patients, with C statistics of 0.97 (95% CI, 

0.95–0.98) and 0.95 (95% CI, 0.91–0.98), respectively. 

Sensitivity was 86% for symptomatic patients (n=75) 

and 64% for presymptomatic patients (n=11), at a similar 

Table 1. Baseline Demographics and ECG Characteristics of All Patients and Patients in the Training and Test Splits, Strati-
fied by PLN Mutation Carriers and Their Matched Controls

 

Overall Train Test

Controls PLN P value Controls PLN P value Controls PLN P value

N 1720 86  1380 69  340 17  

Age, y, mean (SD) 44 (15) 44 (15) 1.0 44 (14) 44 (14) 1.0 42 (16) 42 (17) 1.0

Female sex, n (%) 1040 (61) 52 (61) 1.0 820 (59) 41 (59) 1.0 220 (65) 11 (65) 1.0

PR interval, ms, mean (SD) 151 (24) 162 (28) 0.001 151 (24) 161 (27) 0.001 149 (20) 164 (34) 0.005

QRS interval, ms, mean (SD) 93 (15) 93 (19) 0.74 94 (15) 93 (18) 0.59 93 (15) 94 (20) 0.72

QTc interval, ms, mean (SD) 422 (29) 429 (40) 0.050 422 (29) 427 (39) 0.17 423 (26) 434 (45) 0.086

Maximum voltage extremity leads, mV, 
mean (SD)

1.2 (0.38) 0.79 (0.43) <0.001 1.2 (0.38) 0.81 (0.45) <0.001 1.2 (0.40) 0.72 (0.39) <0.001

Maximum voltage precordial leads, mV, 
mean (SD)

2.2 (0.80) 1.8 (0.74) <0.001 2.2 (0.77) 1.8 (0.75) <0.001 2.3 (0.89) 1.5 (0.69) 0.001

Low QRS voltage, n (%) 41 (2.4) 31 (36) <0.001 27 (2.0) 22 (32) <0.001 14 (4.1) 9 (53) <0.001

T-wave morphology, n (%)   <0.001   <0.001   <0.001

 Aspecific abnormalities 66 (3.8) 27 (31)  48 (3.5) 20 (29)  18 (5.3) 7 (41)  

 Inverted in the extremity leads 33 (1.9) 14 (16)  25 (1.8) 12 (17)  8 (2.4) 2 (12)  

 Inverted in the right precordial leads 34 (2.0) 10 (12)  28 (2.0) 9 (13)  6 (1.8) 1 (5.9)  

 Inverted in the left precordial leads 49 (2.8) 22 (26)  41 (3.0) 20 (29)  8 (2.4) 2 (12)  

PLN indicates phospholamban.

Figure 2. Output of the Guided Grad-CAM visualization algorithm for all PLN (phospholamban) mutation carriers and their controls.
Left: Mean of temporally normalized median 12-lead ECGs of both the PLN mutation carriers (blue) and control patients (red) with their 
respective standard deviations. Right: The same median ECG beat with the Guided Gradient Class Class Activation Mapping output of the 
deep neural network (DNN) superimposed to indicate the importance of a specific temporal segment for the classification of the DNN. The 
colormap represents the proportion of patients where that region was important (ie, had a Guided Gradient Class Class Activation Mapping 
value above the threshold).
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specificity of 94%. Guided Grad-CAM maps showed a 
difference in features between symptomatic and asymp-
tomatic patients, where the prolonged PR interval, atten-
uated R- and T-wave in V3 and attenuated T-wave in V6 
were more important in presymptomatic patients while 
the overall attenuated R-waves were more prominent in 
symptomatic patients. The Guided Grad-CAM maps for 
presymptomatic and symptomatic patients are shown in 
Figures II and III in the Data Supplement.

DISCUSSION
In this study, we demonstrate a novel DNN-based end-
to-end approach that allows for detection and visualiza-
tion of disease-specific ECG features. To the best of our 
knowledge, this is the first time DNNs have successfully 
been applied as an ECG feature detector, in contrast 
to previously developed prediction algorithms. Using a 
unique combination of median ECG beats and visual-
izations, the algorithm was able to automatically reveal 
established ECG features in PLN p.Arg14del muta-
tion carriers (low QRS voltages and T-wave inversions), 

specify these features (R- and T-wave attenuation in V2 
and V3), and find novel features (increased PR-duration). 
Applying this promising concept in more cardiac diseases 
(especially rare or unknown ones) can potentially sup-
port physicians while reviewing ECGs, thereby improving 
ECG interpretation in daily clinical practice.

Previous Literature
Several studies showed that DNNs can be used to make 
predictions from ECGs with a high performance.2–4,7,8 An 
example is the recent study by Ko et al,4 who developed 
a DNN to detect hypertrophic cardiomyopathy, result-
ing in an area under the curve of 0.96. From a clinical 
point of view, this network is very attractive because this 
would allow the clinician to easily and automatically dis-
tinguish hypertrophic cardiomyo in a screening setting. 
However, clinical implementation of such a network is 
still challenging for several reasons. First, such net-
works are often seen as black boxes, and, second, the 
validity of these high-dimensional networks in external 
data sets is still unproven.

Figure 3. Representative examples of an ECG of a PLN (phospholamban) mutation carrier (top) and a control subject (bottom) 
with their respective deep neural network (DNN) probability score for having the PLN mutation.
Note that the control subject ECG also exhibits the established PLN features (low QRS voltages and the presence of inverted T-waves in the 
left precordial leads) but is classified correctly as a control subject. The features as detected by the DNN (decreased R- and T-wave voltage in 
V3) can be used to distinguish the PLN mutation carriers and control subject.
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Similarly, we developed a DNN that recognizes ECGs 
of a specific patient population (ie, PLN mutation car-
riers) with high diagnostic performance.4 A different 
architecture was chosen, as it has an increased diag-
nostic performance in PLN mutation carriers and allows 
for more detailed visualizations. Unique to our study is 
the use of hard outcome data and the focus on feature 
detection, which may directly support clinicians with ECG 
interpretation in daily practice. Moreover, we show that 
these features can be used in a relatively simple logistic 
regression model, which might be easier generalizable.

Disease-Specific ECG Features in PLN Mutation 
Carriers
This novel approach was validated in PLN mutation 
carriers because typical ECG characteristics in these 

subjects have been described extensively before.10,12,14,15 
PLN mutation carriers are at risk of developing an often 
biventricular phenotype of arrhythmogenic right ven-
tricular cardiomyopathy and dilated cardiomyopathy and 
are typically characterized by subepicardial fibrofatty 
replacement.21 This leads to an ECG with low QRS volt-
ages, which can be seen both in the limb leads and in 
precordial leads.10,14 In addition, negative T-waves were 
previously described in both the right precordial leads 
and in the left precordial leads.12,15

Using this novel approach, we could correctly identify 
all of these previously described ECG features (Figure 2) 
and show that the network also uses the preestablished 
features for diagnosis (Figure 4). In addition, we could 
specify the leads in which these features are typically 
present. With the visualization tool, we found attenuated 
R-waves to be particularly present in the lateral leads I, 
aVL and V6, and in the right precordial leads V2 and V3. 
While the low voltages in these mutation carriers are often 
measured as QRS peak-to-peak amplitude, we observed 
that these low voltages were only based on R-wave atten-
uation, while the S-wave seemed unaltered. Furthermore, 
we found attenuated/inverted T-waves to be typically 
present in leads V2, V3 and V6 (as described previously) 
but also in leads I and aVL. Besides the ECG character-
istics that were already identified before in PLN mutation 
carriers, we also found an ECG feature, the PR interval, 
that was not described before in these subjects. This was 
confirmed in the updated logistic regression model. Inter-
estingly, a recent meta-analysis of genome-wide associa-
tion studies also showed an association between a locus 
in the PLN gene and PR interval, which already suggested 
that PLN plays a role in atrioventricular conduction.22
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Figure 4. Relationship of the mean 
gradient class activation mapping 
++ (Grad-CAM++) importance value 
of the T-wave area with the human 
interpretation of the T-wave and 
of the QRS-complex area with the 
human classification of low QRS 
voltage in PLN (phospholamban) 
patients.
In the temporally aligned Grad-CAM++ 
curves, the mean is taken for the area 
of the QRS-complex and the T-wave. A 
boxplot of the importance values (between 
0 and 1) of that region for the network for 
predicting PLN are shown in relationship 
with the human interpretation of the 
corresponding segments.

Table 2. Discriminatory Performance of the Baseline and 
Updated Logistic Regressions Models and the DNN in the 
Independent Test Set

 

Logistic regression models

DNNBaseline Updated

C statistics [95% CI] 0.84  
[0.73–0.92]

0.91  
[0.83–0.97]

0.95  
[0.91–0.99]

Sensitivity 53% 76% 82%

Specificity 94% 93% 93%

Positive predictive value 33% 34% 37%

Negative predictive value 98% 99% 99%

The baseline model includes the currently established ECG features of phos-
pholamban mutation carriers. Features identified by the DNN, translated into 
quantitative measures, are added in the updated model for validation of these 
features. DNN indicates deep neural network.
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In an exploratory analysis, the DNN performed well in 
both presymptomatic and symptomatic mutation carri-
ers. Our approach also suggested that particular features 
were more important in presymptomatic mutation carriers 
(PR interval and R- and T-wave attenuation in V2 and V3), 
as compared to symptomatic carriers. This might indicate 
that our approach can be used in subgroups who are in 
different stages of a disease, to gain knowledge on the 
sequence in which ECG abnormalities naturally occur. In 
particular for PLN mutation carriers, it is important to gain 
knowledge on the first electrical changes because this 
may improve early screening and risk stratification of pre-
symptomatic mutation-carrying family members.

Employed Methodology
The use of DNN for the analysis of data generally 
requires large amounts of balanced data but the group of 

PLN mutation carriers studied in this investigation con-
tained only 86 patients. The focus on features detection 
instead of prediction in this article, however, allowed the 
use of such small data sets, as we were able to reduce 
the highly dimensional DNN to a few important features. 
Moreover, to allow training on this extremely imbalanced 
data set, while also correcting for age and sex differences 
between mutation carriers and controls, we applied pro-
pensity score matching.

In the present study, we used ECG median beats as 
input for the DNN model, which allowed the network 
to focus on morphology rather than rhythm. The use of 
median beats prohibits detection of rhythm specific ECG 
features (eg, premature contractions or heart rate vari-
ability) and can also not be used for detection of beat-
to-beat ECG variations. To our best knowledge, this is 
the first study in which median beats are used for deep 
learning.

Limitations
First, although the proposed approach is feasible in small 
data sets, care should be taken while interpreting results 
derived from small cohort studies as findings may not 
hold up when evaluated on other cohorts. Especially, the 
number of patients in the test set is a major limitation. To 
show clinical applicability of the ECG features and algo-
rithm as described in this study, external validation stud-
ies should be performed. Second, for the PLN mutation 
carriers, the clinical phenotype may be variable among 
mutation carriers. Therefore, it should be noted that this 
approach helps to visualize the most common ECG fea-
tures on a group level, but important ECG features that 
are present in small subgroups may be missed. Subgroup 
analyses in more homogeneous subgroups (eg, pres-
ymptomatic relatives) can be used to reveal important 
features in these specific subgroups. Third, the ECGs 
of the control group were extracted from a large data-
base in which additional patient-specific characteristics 
are not available. Therefore, no comparisons or matching 
between both groups were possible to correct for other 
influencing factors. However, the case-control matching 

Table 3. Odds Ratios and 95% CI for the Variables in the 
Baseline and Updated Logistic Regression Models for Predic-
tion of PLN Mutation Carrier Status in the Training Data Set

 Baseline model Updated model

Age per year increase 0.98 (0.97–1.0) 0.97 (0.94–0.99)

Male sex 0.96 (0.55–1.7) 1.17 (0.61–2.2)

Low QRS voltage 16.6 (8.1–34) 3.7 (1.5–9.0)

Left precordial inverted T-waves 7.4 (2.9–18) 4.5 (1.6–12)

Right precordial inverted T-waves 1.3 (0.37–4.2) 1.3 (0.33–4.9)

R-wave voltage in V3 per 1 mV 
increase

 0.37 (0.15–0.86)

PR interval per 10 ms increase  1.2 (1.1–1.3)

T-wave voltage in V3 per 1 mV 
increase

 1.13 (0.31–3.7)

R-wave voltage in V6 per 1 mV 
increase

 0.073  
(0.0025–0.20)

T-wave voltage in I per 1 mV 
increase

 0.0013 
(0.000013–0.06)

R-wave voltage in III per 1 mV 
increase

 3.5 (1.4–9.0)

The baseline model includes the currently established ECG features of PLN 
mutation carriers. Features identified by the deep neural network, translated into 
quantitative measures, are added in the updated model for validation of these 
features. PLN indicates phospholamban.

Table 4. Summary Measures of the Quantitative Translations of the Newly Identified ECG Features 
of PLN Mutation Carriers

 Controls PLN P value

R-wave voltage in V3, mV, median [IQR] 0.72 [0.47–1.1] 0.31 [0.19–0.61] <0.001

PR interval, ms, mean (SD) 151 (24) 162 (28) <0.001

T-wave voltage in V3, mV, mean (SD) 0.46 (0.29) 0.28 (0.29) <0.001

R-wave voltage in V6, mV, median [IQR] 0.66 [0.46–0.91] 0.28 [0.15–0.45] <0.001

T-wave voltage in I, mV, mean (SD) 0.25 (0.15) 0.11 (0.15) <0.001

R-wave voltage in III, mV, median [IQR] 0.38 [0.18–0.72] 0.22 [0.09–0.56] <0.001

Most prevalent newly identified features for predicting the PLN mutation, as identified by the visualizations of the deep neural 
network, were translated into quantitative measures and tested in the updated logistic regression model for validation. IQR indicates 
interquartile range; and PLN, phospholamban.
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ratio of 1:20 used in this study presumably equalized 
the groups, and the detected features align with litera-
ture on other PLN mutation carriers. Fourth, the con-
duction intervals and P-, QRS-, and T-wave boundaries 
are based on the automated GE algorithm, which might 
cause inaccuracies. Boundary measurements on median 
beats have proven to be very accurate, however.23 Fifth, 
the proposed approach is not possible for ECGs with 
arrhythmias or acute ischemia, as these (temporary) con-
ditions have a large influence on the morphology of the 
median beat. In this study, the algorithm is not intended 
to be used in these situations and only 3 patients were 
excluded for this reason. Finally, the visualization tech-
nique used in this article, Guided Grad-CAM++, is one 
of the most frequently used techniques for fine-grained 
heatmaps but has limitations of its own.6 For example, 
guided backpropagation might be independent on the 
choice of the model or data generating process.24 There-
fore, we validated the detected features in a logistic 
regression model and showed that Grad-CAM++ values 
agree with the preestablished PLN ECG features. Fea-
ture visualization in DNNs is a new and developing field 
and future research should focus on improving visualiza-
tion techniques for DNNs and applying them in ECGs.

Future Perspectives
Future studies should be conducted applying this novel 
approach to other less well-characterized diseases, such 
as new genetic mutations, to discover novel ECG char-
acteristics. The visualizations provide the end-user with 
feedback on the importance and location of detected 
ECG features. Moreover, future studies should con-
sider elucidating the pathophysiological mechanisms of 
newly identified ECG features by using other experimen-
tal methods such as (non)invasive electrophysiological 
mapping. The influence of the discovered ECG features 
on disease penetrance in asymptomatic carriers or pro-
gression of disease in symptomatic carriers should be 
examined with longitudinal ECG or outcome data. Finally, 
combining our approach and a DNN trained on other 
cohorts with a focus on screening, such as family mem-
bers of mutation carriers or large healthy population 
cohorts, might be of interest in clinical practice. Detec-
tion and visualization of possible carrier status in the 
ECG even before the genetic diagnosis is done could 
determine which family members or healthy individuals 
require genetic testing or follow-up.

Conclusions
This study demonstrated a novel DNN-based end-to-
end approach that allows for detection and visualization 
of disease-specific ECG features. In a cohort of PLN 
p.Arg14del mutation carriers, the algorithm showed 
excellent diagnostic performance and revealed already 

established ECG features. Moreover, we were able to 
specify these features and to detect novel features. This 
novel way to use DNNs may help advance diagnostic 
capabilities in daily practice, especially in rare and new 
cardiac diseases.
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