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Summary

The availability of datasets with large numbers of variables is rapidly increasing. The effective
application of Bayesian variable selection methods for regression with these datasets has proved
difficult since available Markov chain Monte Carlo methods do not perform well in typical
problem sizes of interest. We propose new adaptive Markov chain Monte Carlo algorithms to
address this shortcoming. The adaptive design of these algorithms exploits the observation that
in large-p, small-n settings, the majority of the p variables will be approximately uncorrelated a
posteriori. The algorithms adaptively build suitable nonlocal proposals that result in moves with
squared jumping distance significantly larger than standard methods. Their performance is studied
empirically in high-dimensional problems and speed-ups of up to four orders of magnitude are
observed.

Some key words: Expected squared jumping distance; High-dimensional data; Large-p, small-n problem; Linear
regression; Optimal scaling; Spike-and-slab prior; Variable selection.

1. Introduction

The availability of large datasets has led to an increasing interest in variable selection methods
applied to regression models with many potential variables, but few observations, so-called large-
p, small-n problems. Frequentist approaches have mainly concentrated on point estimates under
assumptions of sparsity using penalized maximum likelihood procedures (Hastie et al., 2015).
Bayesian approaches to variable selection are an attractive and natural alternative, and lead to a
posterior distribution on all possible models which can address model uncertainty for variable
selection and prediction. A growing literature provides a theoretical basis for good posterior
properties in large-p problems (see, e.g., Johnson & Rossell, 2012; Castillo et al., 2015).

The posterior probabilities of all possible models can usually only be calculated or approx-
imated if p is smaller than 30. If p is larger, Markov chain Monte Carlo methods are typically
used to sample from the posterior distribution (George & McCulloch, 1997; O’Hara & Sillan-
pää, 2009; Clyde et al., 2011). García-Donato & Martínez-Beneito (2013) discuss the benefits
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of such methods. The most widely used Markov chain Monte Carlo algorithm in this context
is the Metropolis–Hastings sampler, where new models are proposed using add-delete-swap
samplers (Brown et al., 1998; Chipman et al., 2001). For example, this approach is used by
Nikooienejad et al. (2016) in a binary regression model with a nonlocal prior for the regression
coefficients on a dataset with 7129 genes. Some supporting theoretical understanding of conver-
gence is available for the add-delete-swap samplers, e.g., conditions for rapid mixing in linear
regression models have been derived byYang et al. (2016). Others have considered more targeted
moves in model space. For example, Titsias & Yau (2017) introduce the Hamming ball sampler
which more carefully selects the proposed model in a Metropolis–Hastings sampler, in a similar
way to shotgun variable selection (Hans et al., 2007), and Schäfer & Chopin (2013) develop a
sequential Monte Carlo method that uses a sequence of annealed posteriors. Several authors use
more general shrinkage priors and develop suitable Markov chain Monte Carlo algorithms for
high-dimensional problems (see, e.g., Bhattacharya et al., 2016). Nonlocal priors (Johnson &
Rossell, 2012) are adopted in Shin et al. (2018), who use screening for high dimensions. Zanella
& Roberts (2019) combine Markov chain Monte Carlo and importance sampling ideas in their
tempered Gibbs sampler.

The challenge of performing Markov chain Monte Carlo for Bayesian variable selection in high
dimensions has led to several developments sacrificing exact posterior exploration. For example,
Liang et al. (2013) use the stochastic approximation Monte Carlo algorithm (Liang et al., 2007)
to efficiently explore model space. In another direction, variable selection can be performed as
a post-processing step after fitting a model including all variables (see, e.g., Bondell & Reich,
2012; Hahn & Carvalho, 2015). Several authors develop algorithms that focus on high posterior
probability models. In particular, Rockova & George (2014) propose a deterministic expectation-
maximization-based algorithm for identifying posterior modes, while Papaspiliopoulos & Rossell
(2017) develop an exact deterministic algorithm to find the most probable model of any given
size in block-diagonal design models.

Alternatively, Markov chain Monte Carlo methods for variable selection can be tailored to the
data to allow faster convergence and mixing using adaptive ideas (see, e.g., Green et al., 2015,
§ 2.4, and references therein). Several strategies have been developed in the literature for both the
Metropolis-type algorithms (Ji & Schmidler, 2013; Lamnisos et al., 2013) and Gibbs samplers
(Nott & Kohn, 2005; Richardson et al., 2010). Our proposal is a Metropolis–Hastings kernel that
learns the relative importance of the variables, unlike previous work (see, e.g., Ji & Schmidler,
2013; Lamnisos et al., 2013). A similar strategy is used by Zanella & Roberts (2019) in a Gibbs
sampling framework. This leads to substantially more efficient algorithms than commonly used
methods in high-dimensional settings, and for which the computational cost of one step scales
linearly with p. The algorithms adaptively build suitable nonlocal Metropolis–Hastings-type
proposals that result in moves with expected squared jumping distance (Gelman et al., 1996)
significantly larger than standard methods. In idealized examples the limiting versions of our
adaptive algorithms converge in O(1) and result in super-efficient sampling. They outperform
independent sampling in terms of the expected squared jump distance and also in the sense of the
central limit theorem asymptotic variance. This is in contrast to the behaviour of optimal local
random walk Metropolis algorithms that on analogous idealized targets need at least O(p) samples
to converge (Roberts et al., 1997). The performance of our algorithms is studied empirically in
realistic high-dimensional problems for both synthetic and real data. In particular, in § 4.1, for a
well-studied synthetic data example, speed-ups of up to four orders of magnitude are observed
compared to standard algorithms. Moreover, in § 4.2, we show the efficiency of the method in
the presence of multicollinearity on a real-data example with p = 100 variables, and in § 4.3, we
present real-data gene expression examples with p = 22 576 and with p = 79 748, and reliably
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estimate the posterior inclusion probabilities for all variables. The Supplementary Material has
results from three datasets with moderate p and high correlations used in Schäfer & Chopin (2013),
indicating that our algorithms outperform most other methods in the literature. The algorithms
have the potential to be parallelized across the multiple chains and to be applied to non-Gaussian
models or more general prior structures.

2. Design of the adaptive samplers

2.1. The setting

Our approach is applicable to general regression settings, but we will focus on normal linear
regression models. This will allow for clean efficiency comparisons independent of model-specific
sampling details, e.g., of a reversible jump implementation. We define γ = (γ1, . . . , γp) ∈ � =
{0, 1}p to be a vector of indicator variables with γi = 1 if the ith variable is included in the model
and pγ = ∑p

j=1 γj. We consider the model specification

y = α1n + Xγ βγ + e, e ∼ N (0, σ 2In),

where y is an (n × 1)-dimensional vector of responses, aq represents a q-dimensional column
vector with entries a, and Xγ is an (n × pγ )-dimensional data matrix formed using the included
variables. We consider Bayesian variable selection and, for clarity of exposition and validity of
comparisons, we will assume the commonly used prior structure

p(α, σ 2, βγ , γ ) ∝ σ−2 p(βγ | σ 2, γ ) p(γ ), (1)

with βγ | σ 2, γ ∼ N (0, σ 2Vγ ), and p(γ ) = hpγ (1 − h)p−pγ . The hyperparameter 0 < h <

1 is the prior probability that a particular variable is included in the model, and Vγ is often
chosen as proportional to (X T

γ Xγ )−1, a g-prior, or to the identity matrix. In both cases, the
marginal likelihood p(y | γ ) can be calculated analytically. The prior can be further extended
with hyperpriors, for example adopting h ∼ Be(a, b).

We will consider sampling from the target distribution πp(γ ) = p(γ | y) using a nonsymmetric
Metropolis–Hastings kernel. Let the probability of proposing to move from model γ to γ ′ be

qη(γ , γ ′) =
p∏

j=1

qη, j(γj, γ ′
j ), (2)

where η = (A, D) = (A1, . . . , Ap, D1, . . . , Dp), qη, j(γj = 0, γ ′
j = 1) = Aj and qη, j(γj = 1, γ ′

j =
0) = Dj. The proposal can be quickly sampled, the parameterization allows optimization of the
expected squared jumping distance, and multiple variables can be added to or deleted from the
model in one iteration. The proposed model is accepted using the standard Metropolis–Hastings
acceptance probability

aη(γ , γ ′) = min
{

1,
πp(γ

′)qη(γ
′, γ )

πp(γ )qη(γ , γ ′)

}
.

2.2. In search of lost mixing time: optimizing the sampler

The transition kernel in (2) is highly parameterized, with 2p parameters, and these will be
tuned using adaptive Markov chain Monte Carlo methods (see, e.g., Andrieu & Thoms, 2008;
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Roberts & Rosenthal, 2009; Green et al., 2015). These methods allow the tuning of parameters
on the fly to improve mixing using some computationally accessible performance criterion whilst
maintaining the ergodicity of the chain. Suppose that μp is a p-dimensional probability density
function which has the form μp = ∏p

j=1 f . A commonly used result is that the optimal scale of a
random walk proposal for μp leads to a mean acceptance rate of 0.234 as p → ∞ for some smooth
enough f . The underlying analysis also implies that the optimized random walk Metropolis will
converge to stationarity in O(p) steps. This is a useful guide even in moderate dimensions,
and well beyond the restrictive independent, identically distributed product form assumption of
Roberts et al. (1997). Lamnisos et al. (2013) show that this rule can be effectively used to tune
a Metropolis–Hastings sampler for Bayesian variable selection. However, other results suggest
that other optimal scaling rules could work well in Bayesian variable selection problems. Firstly,
Neal et al. (2012) establish, under additional regularity conditions, that if f is discontinuous,
the optimal mean acceptance rate for a Metropolis–Hastings random walk is e−2 ≈ 0.1353 and
the chain mixes in O(p2) steps, an order of magnitude slower than with smooth target densities
f . Rather surprisingly, Lee & Neal (2018) show that the optimally tuned independence sampler
in this setting recovers the O(p) mixing and acceptance rate of 0.234 without any additional
smoothness conditions. Secondly, Roberts (1998) considers optimal scaling of the random walk
Metropolis–Hastings algorithm on � = {0, 1}p for the product measures

μp(γ1, . . . , γp) = spγ (1 − s)p−pγ , γ = (γ1, . . . , γp) ∈ �, 0 < s < 1.

If s is close to 1/2, the optimal O(p) mixing rate occurs as p tends to infinity if the mean
acceptance rate is 0.234. If s → 0 as p → ∞, the numerical results of Roberts (1998, § 3)
indicate that the optimally tuned random walk Metropolis proposes to change two γjs at a time,
but that the acceptance rate deteriorates to zero resulting in the chain not moving. This suggests
that the actual mixing in this regime is slower than the O(p) observed for smooth continuous
densities.

In Bayesian variable selection, it is natural to assume that the variables differ in posterior
inclusion probabilities and so we consider target densities that have the form

πp(γ ) =
p∏

j=1

π
γj
j (1 − πj)

1−γj , γ ∈ �, (3)

where 0 < πj < 1 for j = 1, . . . , p. Consider the nonsymmetric Metropolis–Hastings algorithm
with the product form proposal qη(γ , γ ′) given by (2) targeting the posterior distribution given
by (3). Note that αη(· , ·) ≡ 1 for any choice of η = (A, D), satisfying

Aj

Dj
= πj

1 − πj
for every j. (4)

To discuss optimal choices of η, we consider several commonly used criteria for Markov chains
with stationary distribution π and transition kernel P on a finite discrete state space �. The
mixing time of a Markov chain (Roberts & Rosenthal, 2004) is ρ := min{t : maxγ∈� ‖Pt(γ , ·)−
π(·)‖TV < 1/2}, where ‖ · ‖TV is the total variational norm. If � = {0, 1}p, it is natural to
define the expected squared jumping distance (Gelman et al., 1996) as Eπ

( ∑p
j=1

∣∣γ (0)
j −γ

(1)
j

∣∣2),

where γ (0) and γ (1) are two consecutive values in a Markov chain trajectory, which is the average
number of variables changed in one iteration. Suppose that the Markov chain is ergodic; then, for
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any function f : � → R, 1√
n

∑n−1
k=0 f (γ (k))

D→ N (Eπ f , σ 2
P, f ), where the constant σ 2

P, f depends

on the transition kernel P and function f . Consider transition kernels P1 and P2. If σ 2
P1,f � σ 2

P2,f
for every f , then P1 dominates P2 in Peskun ordering (Peskun, 1973). If P1 dominates all other
kernels from a given class, then P1 is optimal in this class with respect to Peskun ordering. Apart
from toy examples, Peskun ordering can rarely be established without further restrictions. Hence,
for the variable selection problem, where posterior inclusion probabilities are often of interest,
we consider Peskun ordering for the class L(�) of linear combinations of univariate functions,

L(�) :=
{

f : � → R : f (γ ) = a0 +
p∑

j=1

ajfj(γj)

}
. (5)

We consider two proposals which satisfy (4): the independent proposal for which Aj = 1−Dj =
πj, and the informed proposal for which Aj = min

(
1, πj

1−πj

)
and Dj = min

(
1, 1−πj

πj

)
. The

following proposition shows that the informed proposal has more desirable properties.

Proposition 1. Consider the class of Metropolis–Hastings algorithms with target distribution
given by (3), and proposal qη(γ , γ ′) given by (2) with the independent or informed proposal. Let
varπ f be the stationary variance of f under πp(γ ) and π(j) := {1 − πj, πj}. Then:

(i) The independent proposal leads to

(a) independent sampling and optimal mixing time ρ = 1;
(b) the expected squared jumping distance Eπ(
2) = 2

∑p
j=1 πj(1 − πj);

(c) the asymptotic variances σ 2
P, f = varπ f for arbitrary f and σ 2

P, f = varπ f =∑p
j=1 a2

j varπ(j) fj for f ∈ L(�).

(ii) The informed proposal leads to

(a) the expected squared jumping distance Eπ(
2) = 2
∑p

j=1 min(1 − πj, πj), which is
maximal;

(b) the asymptotic variance σ 2
P, f = ∑p

j=1

{
2 max(1 − πj, πj) − 1

}
a2

j Varπ(j) fj for f ∈
L(�), which is optimal with respect to the Peskun ordering for the class of linear
functions L(�) defined in (5).

Remark 1. The differences of the expected squared jumping distance and asymptotic variance
for the two proposals is largest when πj is close to 1/2.

Remark 2. In discrete spaces, Schäfer & Chopin (2013) argue that the mutation rate

āM =
∫

I(γ =| γ ′) aη(γ , γ ′) qη(γ , γ ′) π(γ ) dγ ′ dγ ,

which excludes moves which do not change the model, is more appropriate than the average
acceptance rate. The mutation rate is āM = 1 − ∏p

j=1

{
(1 − πj)

2 + π2
j

}
with independent

sampling and āM = 1 − ∏p
j=1 |2πj − 1| with the informed proposal. Therefore, the informed

proposal always leads to a higher mutation rate.

Remark 3. Zanella (2020) discusses a framework for designing informed proposals in discrete
spaces, and discusses optimal choices under Peskun ordering.
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Fig. 1. The solid black line shows pairs (Aj , Dj) corresponding to π =
1/3 and ζj ∈ [0, 1] in (6). The independent proposal (i), marked with
a triangle, is a shrunk version of the informed proposal (ii), marked

with a bullet.

These results suggest that the informed proposal should be preferred to the independent pro-
posal when designing a Metropolis–Hastings sampler for idealized posteriors of the form in (3). In
practice, the posterior distribution will not have a product form, but can anything be said about its
form when p is large? The following result sheds some light on this issue. We define BFj(γ−j) to be
the Bayes factor of including the jth variable given the values ofγ−j = (γ1, . . . , γj−1, γj+1, . . . , γp)

and denote by γ0 the vector γ without γj and γk .

Proposition 2. Let a = BFj(γk=1,γ0)

BFj(γk=0,γ0)
. If (i) a → 1 or (ii) a → A < ∞ and BFj(γk = 0, γ0)h →

0 then p(γj = 1 | γk = 1, γ0) → p(γj = 1 | γk = 0, γ0).

This result gives conditions under which γj and γk are approximately independent. Condi-
tion (ii) is interesting in large p settings: γj and γk are approximately independent if p is large,
and so h is small, and BFj(γk = 0, γ0) is not large, i.e., the evidence in favour of including γj
is not large. This will be the case for all variables apart from the most important. Although this
result provides some reassurance, there will be some posterior correlation in many problems,
and the informed proposal may propose changing too many variables, leading to low acceptance
rates. This can be addressed by using a scaled proposal of the form

Aj = ζj min
(

1,
πj

1 − πj

)
, Dj = ζj min

(
1,

1 − πj

πj

)
. (6)

The family of these proposals for ζj ∈ [0, 1] form a line segment for (Aj, Dj) between (0, 0)

and
{

min
(
1, πj

1−πj

)
, min

(
1, 1−πj

πj

)}
, which is illustrated in Fig. 1. The independent proposal

corresponds to the point on this line where ζj = max(πj, 1 − πj).
In the next section we devise adaptive Markov chain Monte Carlo algorithms to tune proposals

of the form (2) so that the Aj and Dj lie approximately on this line. Larger values of ζj tend to lead
to larger jumps, whereas smaller values of ζj tend to increase acceptance. These algorithms aim
to find a point which balances this trade-off. We define two strategies for adapting η: exploratory
individual adaptation and adaptively scaled individual adaptation.
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With both forms of adaptation, we run independent parallel chains which share the same
proposal parameters and refer to this as multiple-chain acceleration. Craiu et al. (2009) show
empirically that running multiple independent Markov chains with the same adaptive parameters
improves the rate of convergence of adaptive algorithms towards their target acceptance rate in
the context of the classical adaptive Metropolis algorithm of Haario et al. (2001); see also Bornn
et al. (2013). At this point, it is helpful to define some notation. Let η(i) = (A(i), D(i)) and γ (i)

be the values of η and γ at the start of the ith iteration, and γ ′ be the subsequently proposed
value. Let ai = aη(i) (γ (i), γ ′) be the acceptance probability at the ith iteration. We define, for
j = 1, . . . , p,

γ
A (i)
j =

{
1 if γ ′

j =| γ
(i)
j and γ

(i)
j = 0,

0 otherwise;
γ

D (i)
j =

{
1 if γ ′

j =| γ
(i)
j and γ

(i)
j = 1,

0 otherwise,

and the map logitε : (ε, 1 − ε) → R by logitε(x) = log(x − ε) − log(1 − x − ε), where
0 � ε � 1/2. This reduces to the usual logit transform if ε = 0.

2.3. Remembrance of things past: exploratory individual adaptation

The first adaptive strategy is a general purpose method that we term exploratory individual
adaptation. It aims to find pairs (Aj, Dj) on the line segment defined by (4) which lead to good
mixing. Proposals with larger values of Aj and Dj will tend to propose more changes to the
included variables, but will also tend to reduce the average acceptance probability or mutation
rate. The method introduces two tuning parameters, τL and τU. There are three types of updates
for A(i) and D(i) which move towards the correct ratio Aj/Dj and then along the segment, where

the slope of the segment depends on πj. Unless otherwise stated, A(i+1)
j = A(i)

j and D(i+1)
j = D(i)

j .

Both the expansion step and the shrinkage step change A(i+1)
j , and D(i+1)

j for j in γ A(i) and γ D(i)

to adjust the average squared jumping distance whilst maintaining that A(i+1)
j /D(i+1)

j ≈ A(i)
j /D(i)

j .

The expansion step is used if a promising move is proposed, when ai > τU, and sets A(i+1)
j and

D(i+1)
j larger than A(i)

j and D(i)
j , respectively. Similarly, the shrinkage step is used if an unpromising

move has been proposed, when ai < τL, and A(i+1)
j and D(i+1)

j are set smaller than A(i)
j and D(i)

j .
The correction step aims to increase the average acceptance rate by correcting the ratio between

A and D. If τL < ai < τU, we set A(i+1)
j > A(i)

j and D(i+1)
j < D(i

j if γ
D(i)
j = 1, and A(i+1)

j < A(i)
j

and D(i+1)
j > D(i)

j if γ
A(i)
j = 1.

The following updates achieve these properties:

logitεA(i+1)
j = logitεA(i)

j + φi ×
[
γ

A(i)
j di(τU) + γ

D(i)
j di(τL) − γ

A(i)
j {1 − di(τU)}

]
, (7)

logitεD(i+1)
j = logitεD(i)

j + φi ×
[
γ

D(i)
j di(τU) + γ

A(i)
j di(τL) − γ

D(i)
j {1 − di(τU)}

]
, (8)

for j = 1 . . . , p where di(τ ) = I (ai � τ) and φi = O(i−λ) for some constant 1/2 < λ � 1. The
gradient fields of these updates are shown in the Supplementary Material. The transformation
implies that ε < A(i)

j < 1 − ε and ε < D(i)
j < 1 − ε, and we assume that 0 < ε < 1/2.

It also implies diminishing adaptation, since the derivative of the inverse logit is bounded; see
Lemma 2. Based on several simulation studies, we suggest taking τL = 0.01 and τU = 0.1.
As discussed in § 2.2, targeting a low acceptance rate is often beneficial in irregular cases, so
we expect this choice to be robust in real data applications. In all our simulations with this
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parameter setting, the resulting mean acceptance rate was between 0.15 and 0.35, i.e., in the high
efficiency region identified in Roberts et al. (1997). We also suggest an initial choice of parameters
such that A(1)

j /D(1)
j ≈ h/(1 − h) as this summarizes the prior information on πj/(1 − πj); in

particular, D(1)
j ≡ 1 and A(1)

j ≡ h often works well. The parameter ε controls the minimum and
maximum values of Ai and Di. In the large-p setting, Ai ≈ ε for unimportant variables and the
expected number of those unimportant variables proposed to be included at each iteration will be
approximately pε, since the number of excluded, unimportant variables will be close to p. This
expected value can be controlled by choosing ε = 0.1/p. The exploratory individual adaptation
algorithm is described in Algorithm 1, and we indicate its transition kernel at time i as PEIA

η(i) .

Algorithm 1. Exploratory individual adaptation.

for i = 1 to i = M
sample γ ′ ∼ qη(i) (γ (i), ·) and U ∼ U (0, 1);
if U < aη(i) (γ (i), γ ′) then γ (i+1) := γ ′, else γ (i+1) := γ (i);
update A(i+1) using (7) and D(i+1) using (8);

endfor

2.4. Remembrance of things past: adaptively scaled individual adaptation

Algorithm 1 learns two parameters A(i)
j and D(i)

j for each variable and, we shall see, can slowly
converge to optimal values if p is large. Alternatively, we could learn π1, . . . , πp from the chain
to approximate the slope of the line defined by (4) and use the proposal (6) with the same scale
parameter for all variables. We term this approach the adaptively scaled individual adaptation
proposal. In particular, we use

A(i)
j = ζ (i) min

{
1, π̂ (i)

j /
(
1 − π̂

(i)
j

)}
and D(i)

j = ζ (i) min
{
1,

(
1 − π̂

(i)
j

)
/π̂

(i)
j

}
, (9)

for j = 1, . . . , p, where 0 < ζ(i) < 1 is a tuning parameter and π̂
(i)
j is a Rao–Blackwellized

estimate of the posterior inclusion probability of variable j at the ith iteration. Like Ghosh & Clyde
(2011), we work with the Rao–Blackwellized estimate conditional on the model, marginalizing
over α, βγ and σ 2, in contrast to Guan & Stephens (2011) who condition on the model parameters.
We assume that Vγ = gIpγ , where Iq is the q × q identity matrix. After N posterior samples,
γ (1), . . . , γ (N ), the Rao–Blackwellised estimate of πj = p(γj = 1 | y) is

π̂j = 1

N

N∑
k=1

h̃(k)
j BFj

(
γ

(k)
−j

)
1 − h̃(k)

j + h̃(k)
j BFj

(
γ

(k)
−j

) , (10)

where h̃(k)
j = h if h is fixed or h̃(k)

j = #γ
(k)
−j +1+a
p+a+b if h ∼ Be(a, b). Let Zγ = [1n Xγ ], �γ =(

0 0T
pγ

0pγ V −1
γ

)
, F = (ZT

γ Zγ + �γ )−1 and A = yTy − yTZγ FZT
γ y. If γj = 0,

BFj(γ−j) = d↑
j

−1/2
g−1/2

⎧⎪⎨
⎪⎩

A − 1
d↑

j

(yTxj − yTZγ FZT
γ xj)

2

A

⎫⎪⎬
⎪⎭

−n/2

,
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with d↑
j = xT

j xj + g−1 − (xT
j Zγ )F(ZT

γ xj). If γj = 1, we define zj to be the ordered position of the
included variables, zj = 1 if j is the first included variable, etc.; then,

BFj(γ−j) = d↓
j

−1/2
g−1/2

{
A

A + d↓
j (yTZγ F·,zj+1)2

}−n/2

,

where d↓
j = 1/Fzj+1,zj+1.These results allow the contribution to the Rao–Blackwellized estimates

for all values of j to be calculated in O(p) operations at each iteration if the values of F and A,
which are needed for calculating the marginal likelihood, are stored. Derivations are provided in
the Supplementary Material. The value of ζ (i) is updated using

logitεζ
(i+1) = logitεζ

(i) + φi(ai − τ), (11)

where τ is a targeted acceptance rate.We use ε = 0.1/p as inAlgorithm 1.We shall see in Lemma 2
that adaptively scaled individual adaptation also satisfies diminishing adaptation by verifying that
the Rao–Blackwellized estimate in (10) evolves at the rate 1/i, and reiterating the argument about
inverse logit derivatives. To avoid proposing to change no variable with high probability, we set
ζ (i+1) = 1/
(i+1) if ζ (i+1)
(i+1) < 1, where 
(i+1) = 2

∑p
j=1 min

(
π

(i+1)
j , 1 − π

(i+1)
j

)
. This

ensures that the algorithm will propose to change at least one variable with high probability. The
adaptively scaled individual adaptation algorithm is described in Algorithm 2, and we indicate
its transition kernel at time i as PASI

η(i) . We use κ = 0.001 to avoid the estimated probabilities
becoming very small.

Algorithm 2. Adaptively scaled individual adaptation.

for i = 1 to i = M
sample γ ′ ∼ qη(i) (γ (i), ·) and U ∼ U (0, 1);
if U < aη(i) (γ (i), γ ′) then γ (i+1) := γ ′, else γ (i+1) := γ (i);

Update π̂
(i+1)
1 , . . . , π̂ (i+1)

p as in (10) and set π̃
(i+1)
j = κ + (1 − 2κ) π̂

(i+1)
j ;

Update ζ (i+1) as in (11);
Calculate A(i+1)

j = ζ (i+1) min
{
1, π̃ (i+1)

j /
(
1 − π̃

(i+1)
j

)}
for j = 1, . . . , p;

Calculate D(i+1)
j = ζ (i+1) min

{
1,

(
1 − π̃

(i+1)
j

)
/π̃

(i+1)
j

}
for j = 1, . . . , p;

endfor

3. Ergodicity of the algorithms

Since adaptive Markov chain Monte Carlo algorithms violate the Markov condition, the stan-
dard and well-developed Markov chain theory cannot be used to establish ergodicity and we
need to derive appropriate results for our algorithms. We verify the validity of our algorithms
by establishing the conditions introduced in Roberts & Rosenthal (2007), namely simultaneous
uniform ergodicity and diminishing adaptation.

The target posterior specified in § 2.1 on the model space � is

πp(γ ) = πp(γ | y) ∝ p(y | γ ) p(γ ), (12)
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with p(y | γ ) available analytically, and the vector of adaptive parameters at time i is

η(i) = (A(i), D(i)) ∈ [ε, 1 − ε]2p =: 
ε , with 0 < ε < 1/2, (13)

with the update strategies in Algorithm 1 or 2. The nonadaptive Markov kernel corresponding to
a fixed choice of η is denoted as Pη(γ , ·). Under the dynamics of either algorithm, for S ⊆ � we
have

Pη(γ , S) = P
(
γ (i+1) ∈ S | γ (i) = γ , η(i) = η

)
=

∑
γ ′∈S

qη(γ , γ ′)aη(γ , γ ′) + I(γ ∈ S)
∑
γ ′∈�

qη(γ , γ ′)
{
1 − aη(γ , γ ′)

}
. (14)

In the case of multiple-chain acceleration, where L copies of the chain are run, the model state
space becomes the product space and the current state of the algorithm at time i is γ ⊗L, (i) =
(γ 1, (i), . . . , γ L, (i)) ∈ �L. The single-chain version corresponds to L = 1 and all results apply.

To assess ergodicity, we need to define the distribution of the adaptive algorithm at time i, and
the associated total variation distance: for the lth copy of the chain {γ l,(i)}∞i=0 and S ⊆ � define

Ll,(i){(γ l , η), S
}

:= P
(
γ l, (i) ∈ S | γ l, (0) = γ l , η(0) = η

)
;

T l(γ l , η, i) := ∥∥Ll,(i){(γ l , η), ·} − πp(·)
∥∥

TV = sup
S∈�

∣∣Ll,(i){(γ l , η), S
} − πp(S)

∣∣.
We show that all the algorithms considered are ergodic, see (15), and satisfy a strong law of large
numbers, see (16), i.e., for any starting point γ ⊗L ∈ �L and any initial parameter value η ∈ 
ε ,
we have:

lim
i→∞ T l(γ l , η, i) = 0, for any l = 1, . . . , L; (15)

1

L

L∑
l=1

1

k

k∑
i=1

f (γ l, (i))
k→∞−→ πp(f ) almost surely, for any f : � → R. (16)

To this end we establish the following lemmas.

Lemma 1 (Simultaneous uniform ergodicity). The family of Markov chains defined by tran-
sition kernels Pη in (14), targeting πp(γ ) in (12), is simultaneously uniformly ergodic for any
ε > 0 in (13), and so is the multiple chain acceleration version. That is, for any δ > 0 there exists
N = N (δ, ε) ∈ N such that, for any starting point γ ⊗L ∈ �L and any parameter value η ∈ 
ε ,

∥∥PN
η (γ ⊗L, ·) − π⊗L

p (·)∥∥TV � δ.

Lemma 2 (Diminishing adaptation). Recall the constant 1/2 � λ � 1 defining the adaptation
rate φi = O(i−λ) in (7), (8) or (11), and the parameter κ > 0 in Algorithm 2. Then both algo-
rithms, exploratory individual adaptation and adaptively scaled individual adaptation, satisfy
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diminishing adaptation. More precisely, their transition kernels satisfy

sup
γ∈�

∥∥P•
η(i+1) (γ , ·) − P•

η(i) (γ , ·)∥∥ � Ci−λ, for some C < ∞, (17)

where • stands for exploratory or adaptively scaled individual adaptation.

Simultaneous uniform ergodicity together with diminishing adaptation leads to the following
theorem.

Theorem 1 (Ergodicity and the strong law of large numbers). Consider the target πp(γ ) of
(12), the constants 1/2 � λ � 1 and ε > 0 defining respectively the adaptation rate φi = O(i−λ)

and region in (7), (8) or (11), and the parameter κ > 0 in Algorithm 2. Then, ergodicity (15)
and the strong law of large numbers (16) hold for each of the algorithms, exploratory individual
adaptation and adaptively scaled individual adaptation, and their multiple-chain acceleration
versions.

Remark 4. Lemma 2 and Theorem 1 remain true with any λ > 0; however, λ > 1 results in
finite adaptation (see, e.g., Roberts & Rosenthal, 2007), and λ < 1/2 is rarely used in practice
for finite-sample stability concerns.

4. Results

4.1. Simulated data

We consider the simulated data example of Yang et al. (2016). They assume that there are n
observations and p regressors, and the data is generated from the model y = X β� + e where
e ∼ N (0, σ 2I ) for σ 2 = 1. The first 10 regression coefficients are nonzero, and we use

β� = SNR ×
(

σ 2 log p

n

)1/2

(2, −3, 2, 2, −3, 3, −2, 3, −2, 3, 0, . . . , 0)T ∈ R
p.

The ith vector of regressors is generated as xi ∼ N (0, �), where �jk = ρ|j−k|. In our examples
we use the value ρ = 0.6, which represents a relatively large correlation between the regressors.

We are interested in the performance of the two adaptive algorithms relative to an add-delete-
swap algorithm. The adaptive algorithms do not lead to Markov chains, and so the traditional
estimator of the effective sample size based on autocorrelation is not applicable. We define the
ratio of the relative time-standardized effective sample size of algorithm A versus algorithm B
to be rA, B = (ESSA/tA)/(ESSB/tB), where ESSA is the effective sample size for algorithm A.
This is estimated by making 200 runs of each algorithm and calculating r̂A, B = (s2

BtB)/(s2
AtA),

where tA and tB are the median runtimes, and s2
A and s2

B are the sample variances of the posterior
inclusion probabilities for algorithms A and B.

We use the prior in (1) with Vγ = 9I and h = 10/p, implying a prior mean model
size of 10. The posterior distribution changes substantially with the SNR and the size of the
dataset. All 10 true nonzero coefficients are given posterior inclusion probabilities greater than
0.9 in the two high-SNR scenarios, SNR = 2 and SNR = 3, for each value of n and p, and
no true nonzero coefficients are given posterior inclusion probabilities greater than 0.2 in the
low-SNR scenario, SNR = 0.5, for each value of n and p. In the intermediate SNR scenario,
SNR = 1, the numbers of true nonzero coefficients given posterior inclusion probabilities
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Table 1. Simulated data: median values of r̂A, B for the posterior inclusion probabilities over
all variables where B is the add-delete-swap Metropolis–Hastings algorithm and A is the

exploratory or adaptively scaled individual adaptation algorithm
5 chains 25 chains

SNR SNR
(n, p) 0.5 1 2 3 0.5 1 2 3

(500, 500) EIA 4.9 1.8 5.5 5.1 1.2 1.5 2.4 2.3
ASI 1.7 21.3 31.8 7.5 2.0 36.0 42.7 12.6

(500, 5000) EIA 8.7 2.2 718.0 81.5 7.1 2.9 2267.2 147.2
ASI 29.9 126.9 2053.1 2271.3 53.5 353.3 12319.5 7612.3

(1000, 500) EIA 5.9 16.3 7.7 4.2 1.6 80.7 4.4 1.8
ASI 41.9 2.1 16.9 12.0 32.8 34.0 27.9 14.4

(1000, 5000) EIA 2.2 2.2 9167.2 11.3 5.6 2.5 15960.7 199.8
ASI 15.4 37.0 4423.1 30.8 54.9 53.4 11558.2 736.4

SNR, signal-to-noice ratio; EIA, exploratory individual adaptation algorithm; ASI, adaptively scaled individual
adaptation algorithm.

greater than 0.9 are four and eight for p = 500, and three and zero for p = 5000. Gener-
ally, the results are consistent with our intuition that true nonzero regression coefficients should
be detected with greater posterior probability for larger SNR, larger values of n and smaller
values of p.

Table 1 shows the median relative time-standardized effective sample sizes for the exploratory
individual adaptation and adaptively scaled individual adaptation algorithms with 5 or 25 multiple
chains for different combinations of n, p and SNR. The median is taken across the estimated
relative time-standardized effective sample sizes for all posterior inclusion probabilities.

The results show a wide variation in the relative performance of the adaptive algorithms
and the add-delete-swap algorithm. As is common in work on Bayesian variable selection, see,
e.g., Zanella & Roberts (2019), each result uses a single dataset and so the results have to
be interpreted in a holistic way. Clearly, the adaptively scaled individual adaptation algorithm
outperforms the exploratory individual adaptation algorithm for most settings with either 5 or 25
multiple chains. The performance of the exploratory individual adaptation and, especially, the
adaptive scaled individual adaptation algorithm with 25 chains, is better than the corresponding
performance with 5 chains for most cases. Concentrating on the results with the adaptively scaled
individual adaptation algorithm, the largest increase in performance compared to the Metropolis–
Hastings algorithm occurs with SNR = 2. In this case, there is three or four orders of magnitude
improvement when p = 5000, and several orders of magnitude improvement for other SNRs
with p = 5000. In smaller problems with p = 500 there are still substantial improvements in
efficiency over the add-delete-swap Metropolis–Hastings sampler.

The superior performance of the adaptively scaled individual adaptation algorithm over the
exploratory individual adaptation algorithm is due to the substantially faster convergence of
the tuning parameters of the former algorithm to optimal values. Plotting posterior inclusion
probabilities against A and D at the end of a run shows that, in most cases, the values of Aj are close
to the corresponding posterior inclusion probabilities for both algorithms. However, the values
of Dj are mostly close to 1 for adaptively scaled individual adaptation, but not for exploratory
individual adaptation. If Dj is close to 1, then variable j is highly likely to be proposed to be
removed if included in the model. This is consistent with the idealized super-efficient setting (ii)
in Proposition 1 for πj < 0.5, and leads to improved mixing rates for small πj, since it allows
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Fig. 2. Tecator data: the adaptive parameter η = (A, D) for the exploratory individual adaptation algorithm.
(a) Limiting values of the (Aj , Dj) pairs align at the top ends of the segments of Fig. 1, with the Dj close to 1,
corresponding to the superefficient setting (ii) of Proposition 1; (b) The attained values of the Aj overestimate the
idealized values min

{
1, πj/1 − πj

}
of setting (ii) in Proposition 1, indicating low dependence in the posterior.

for the variable to be included more often in a fixed run length. This can be hard to learn through
exploratory individual adaptation since variables with low posterior inclusion probabilities will
rarely be included and so the algorithm learns Dj slowly for those variables.

4.2. Behaviour of the exploratory individual adaptation algorithm on the Tecator data

The Tecator data contains 172 observations and 100 variables. They have previously been
analysed using Bayesian linear regression techniques by Griffin & Brown (2010), who give
a description of the data, and Lamnisos et al. (2013). The regressors show a high degree of
multicollinearity, so this is a challenging example for Bayesian variable selection algorithms.
The prior used was (1) with Vγ = 100I and h = 5/100. Even short runs of the exploratory
individual adaptation algorithm for this data, such as 5 multiple chains with 3000 burn in and
3000 recorded iterations, taking about 5 seconds on a laptop, show consistent convergence across
runs.

Our purpose was to study the adaptive behaviour of the exploratory individual adaptation
algorithm on this real data example, in particular to compare the idealized values of the Aj and
Dj with the values attained by the algorithm.

We use multiple chain acceleration with 50 multiple chains over the total of 6000 iterations.
The algorithm parameters were set to τL = 0.01 and τU = 0.1. The resulting mean acceptance rate
was approximately 0.2, indicating close to optimal efficiency. The average number of variables
proposed to be changed in a single accepted proposal was 23, approximately twice the average
model size, meaning that in a typical move all of the current variables were deleted from the
model, and a set of completely fresh variables was proposed.

Figure 2(a) shows how the exploratory individual adaptation algorithm approximates set-
ting (ii) of Proposition 1, namely the super-efficient sampling from the idealized posterior (3).
Figure 2(b) illustrates how the attained values of Aj somewhat overestimate the idealized values
min{1, πj/(1 − πj)} of setting (ii) in Proposition 1. This indicates that the chosen parameter values
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τL = 0.01 and τU = 0.1 of the algorithm overcompensates for dependence in the posterior, which
is not very pronounced for this dataset. To quantify the performance, we ran both algorithms with
adaptation in the burn-in only and calculated the effective sample size. With a burn-in of 10 000
iterations and 30 000 draws, the effective sample per multiple chain was 4015 with exploratory
individual adaptation and 6673 with adaptively scaled individual adaptation. This is an impressive
performance for both algorithms given the multicollinearity in the regressors. The difference in
performance can be explained by the speed of convergence to optimal values for the proposal.
To illustrate this, we reran the algorithms with the burn-in extended to 30 000 iterations: the
effective sample per multiple chain was now 4503 with exploratory individual adaptation, but
6533 with adaptively scaled individual adaptation, indicating that the first algorithm had caught
up somewhat. As a comparison, the effective sample size was 1555 for add-delete-swap and
15 039 for the Hamming ball sampler with a burn-in of 10 000 iterations. However, the Hamming
ball sampler required 34 times the run time of the exploratory individual adaptation sampler,
rendering the latter nine times more efficient in terms of time-standardized effective sample
size.

This example and the previous one show that the simplified posterior (3) is a good fit with
many datasets and can indeed be used to guide and design algorithms.

4.3. Performance on problems with very large p

Bondell & Reich (2012) described a variable selection problem with 22 576 variables and 60
observations on two inbred mouse populations. The covariates are gender and gene expression
measurements for 22 575 genes. Three physiological phenotypes are recorded, and used as the
response variable in the three datasets: PCRi, i = 1, . . . , 3. We use prior (1) with Vγ = gI ,
where g is given a half-Cauchy hyperprior distribution, and a hierarchical prior was used for γ by
assuming that h ∼ Be

(
1, p−5

5

)
, which implies that the prior mean number of included variables

is 5. We summarize the results using PCR1, while a more complete analysis of all PCR data is
given in the Supplementary Material.

Another dataset, denoted SNP data, relates to genome-wide mapping of a complex trait. The
data are weight measurements for 993 outbred mice and 79 748 single nucleotide polymorphisms,
SNPs, recorded for each mouse. The testis weight is the response, the body weight is a regressor
which is always included in the model and variable selection is performed on the 79 748 SNPs. The
high dimensionality makes this a difficult problem and Carbonetto et al. (2017) use a variational
inference algorithm, varbvs, for these data. We have used various prior specifications in (1), and
present results for a half-Cauchy hyperprior on g and h = 5/p. Complete results for these data
are also provided in the Supplementary Material.

For all datasets, the individual adaptation algorithms were run with τL = 0.05 and τU = 0.23,
and τ = 0.234. The exploratory individual adaptation algorithm had a burn-in of 2150 iterations
and 10 750 subsequent iterations and no thinning, and the adaptively scaled individual adaptation
had 500 burn-in and 2500 recorded iterations and no thinning, which gave very similar run
times. Rao–Blackwellised updates of π(i) were only calculated during the burn-in, and posterior
inclusion probability for the jth variable was estimated by the posterior mean of γj. In addition,
we show results for the add-delete-swap algorithm and the weighted tempered Gibbs sampler of
Zanella & Roberts (2019), which were the most promising alternatives. Three independent runs
of all algorithms were executed to gauge the degree of agreement across runs. Using MATLAB
and an Intel i7 3.60 GHz processor, each algorithm took about 25 minutes for the PCR data and
around 2.5 hours for the SNP data.
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Fig. 3. PCR1 data: comparisons of posterior inclusion probabilities from pairs of runs with
random g and h using adaptively scaled individual adaptation, ASI, exploratory individual

adaptation, EIA, add-delete-swap, ADS, and weighted tempered Gibbs sampling, wTGS.
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Fig. 4. SNP data: comparisons of posterior inclusion probabilities from pairs of runs with
random g and fixed h using adaptively scaled individual adaptation, ASI, add-delete-swap,

ADS, and weighted tempered Gibbs sampling, wTGS.

Figures 3 and 4 show pairwise comparisons between the different runs for each dataset. The
estimates from each independent chain for the adaptively scaled individual adaptation algorithm
are very similar, and indicate that the sampler is able to accurately represent the posterior dis-
tribution. The weighted tempered Gibbs algorithm performs equally well for the SNP data, but
shows worse performance on the PCR1 dataset. The exploratory individual adaptation algorithm
does not seem to converge rapidly enough to effectively deal with these very high-dimensional
model spaces in the relatively modest running time allocated. Clearly, the add-delete–wap sam-
pler is not able to adequately characterize the posterior model distribution for the PCR data, with
dramatically different results across runs, but performs much better for the SNP data.
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Supplementary material

Supplementary material available at Biometrika online includes proofs, derivations,
details of adaptive parallel tempering versions of the algorithms, using the approach of
Miasojedow et al. (2013), and further results. Code to run both algorithms is available from
https://jimegriffin.github.io/website/.
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