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Abstract

With the advancement of modern technologies, we observe an increasing accumu-

lation of biomedical data about diseases. There is a need for computational meth-

ods to sift through and extract knowledge from the diverse data available in order

to improve our mechanistic understanding of diseases and improve patient care.

Biomedical data come in various forms as exemplified by the various omics data.

Existing studies have shown that each form of omics data gives only partial infor-

mation on cells state and motivated jointly mining multi-omics, multi-modal data to

extract integrated system knowledge. The interactome is of particular importance

as it enables the modelling of dependencies arising from molecular interactions.

This Thesis takes a special interest in the multi-scale protein interactome

and its integration with computational models to extract relevant information from

biomedical data. We define multi-scale interactions at different omics scale that in-

volve proteins: pairwise protein-protein interactions, multi-protein complexes, and

biological pathways. Using hypergraph representations, we motivate considering

higher-order protein interactions, highlighting the complementary biological infor-

mation contained in the multi-scale interactome. Based on those results, we further

investigate how those multi-scale protein interactions can be used as either prior

knowledge, or auxiliary data to develop machine learning algorithms. First, we de-

sign a neural network using the multi-scale organization of proteins in a cell into

biological pathways as prior knowledge and train it to predict a patient’s diagno-

sis based on transcriptomics data. From the trained models, we develop a strategy

to extract biomedical knowledge pertaining to the diseases investigated. Second,

we propose a general framework based on Non-negative Matrix Factorization to
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integrate the multi-scale protein interactome with multi-omics data. We show that

our approach outperforms the existing methods, provide biomedical insights and

relevant hypotheses for specific cancer types.



Impact Statement

Over the last decades, the need for computational methods to process, understand

diverse data has grown along with the exponentially increasing amount of data col-

lected. Machine learning has demonstrated an impressive ability for detecting gen-

eral patterns within large corpora of data in various field such as natural language

and image processing. The application of machine learning to the biomedical field

is a promising avenue to improve the practice of medicine, notably through the anal-

ysis of rich molecular data. In the last decades, medical research has moved away

from the Mendelian paradigm to embrace the concept of Network Medicine, which

highlights the intricate molecular interaction underlying diseases. The biomedical

field is data-rich, particularly due to the diversity of the data that describes a single

organism at different scales.

The contributions of the work presented can be classified in methodological

and biological contributions. We introduce methods that can effectively integrate

multiple, diverse data sources at the different scales of biology. As such, this Thesis

is part of the global effort to bridge the gap between network analysis and ma-

chine learning and to harness diverse biomedical data to further our understanding

of biology and particularly diseases. We take particular interest in how to extract in-

formation from hierarchical interactions between proteins within cells. The molec-

ular organisation is far from random and contains cues that algorithms can exploit

to identify biological hypotheses and directions that experimental research can ex-

ploit to address major health and social crisis, such as cancer or, in light of recent

event, pandemics such as COV-SARS-2. These hypotheses constitute the principal

downstream implications of the methods and results presented in this Thesis. New
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biological hypotheses describing underlying mechanisms of diseases have impor-

tant implication for patients such as more accurate diagnosis and better care as well

as the identification of leads for drug development. In the shorter term, the work

presented opens new directions for future academic research and method develop-

ment. The work was conducted as part of prestigious ERC consolidator grant, and

presented in the largest conference of the field (ECCB, acceptance rate < 20%).
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Chapter 1

Introduction

1.1 Context

The advancement of modern high-throughput capturing and sequencing technolo-

gies, and the subsequent decrease of experimental costs, has led to the dramatic

increase in the amount and speed at which data is collected in a broad spectrum of

biological and clinical experiments. Projects such as the Human Genome project

[2] and The Cancer Genome Atlas (TCGA) project1 are emblematic of this new

era in biology and particularly of the joint efforts to increase our knowledge base.

The work presented in this Thesis is part of ongoing efforts to develop computa-

tional methods to harness the wide range of biological data available to uncover

biomedical insights with an eye towards improving medical practice.

The variety of the existing biological data is best exemplified by the different

types of omics data such as genomics, transcriptomics, and metabolomics. In sec-

tion 2.1.1, we give a brief overview of some omics data within the context of the

cellular machinery. Biomedical applications of computational methods have greatly

benefited from access to omics data. We are now able to obtain molecular-level

characterisations of both healthy and disease states, allowing researchers to identify

molecular alterations that are significantly associated with diseases. However, to be

able to understand the implication of any given alteration (e.g. causative or symp-

tomatic), it is essential to get an accurate depiction of its context within the cellular

1http://cancergenome.nih.gov/.
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machinery. Hardly any entity exists in absolute isolation from others. It is usually

a part of a larger system of greater complexity. This remains true at any scale, and

notably, molecules in cells interact to carry out complex tasks and functions. The

study of single entities in isolation of others ignores the context that shapes their

roles as part of the broader systems of interacting components.

Interactomics studies molecular interactions on which rest the different pro-

cesses required to fulfil a biological roles [3]. Complex traits, such as diseases, are

rarely a consequence of a single gene and typically arise from complex molecular

interactions [4]. In particular, high-level cellular functions are achieved based on

physical bindings between molecules. These include transient bindings which are

parts of cascades of chemical reactions that result in specific processes or signals.

A protein can also bind to the DNA, effectively preventing (or enabling) the tran-

scription of regions of the DNA. This phenomenon is part of what is referred to as

regulation. Furthermore, external stimuli can also trigger processes within a cell,

for instance, neurons can send “instructions” to muscle cells to contract a muscle. It

involves both instruction and coordination messages exchanged between cells in the

form of chemical reactions. Understanding the precise mechanisms of a cell is diffi-

cult and requires mathematical abstraction to model its rich microcosm. Biological

systems are often modelled using graphs (networks) to capture the interactions be-

tween pairs of entities while abstracting much of the detail about them. Briefly, a

graph is given by a set of vertices (nodes), each corresponding to an entity, and a

set of interactions (edges or links) between those entities. We introduce graphs in

details in Section 2.2. There are various examples of molecular networks studied in

the literature and capturing different types of molecular interactions between pairs

of molecular entities; we discuss some examples in Section 2.1.2.

However, as important as molecular networks have been to advancing our un-

derstanding of the cellular machinery, they still only capture reductionist pictures

of biological mechanisms. One particular issue is that these networks only capture

binary (pairwise) interactions, i.e. interactions between pairs of elements. How-

ever, molecular interactions occur at different scales. For instance (see Figure 1.1),
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focusing on proteins, two proteins can physically bind to form a protein-protein

interaction (PPI). Then, multiple proteins can physically bind, forming one cohe-

sive unit, called a protein complex, with specific functional roles. Additionally,

biological pathways, which are associated with specific functions or phenotypes,

involve multiple proteins and complexes. It is through this multi-scale interactome

that emerge the complex phenotypes and functions displayed by cells, tissues, and

organisms [4].

In this Thesis, we take a specific interest in the multi-scale protein interactome.

Notably, we investigate its integration into models designed to study molecular in-

teractions within cells and their pathological states. We demonstrate the importance

of considering the different scales of protein interactions for biomedical data analy-

sis. Our motivation is to obtain models that more accurately capture the multi-scale

molecular organisation and enable the investigation of higher-order entities such as

biological pathways within a pathological context. First, we show that each layer

in the multi-scale protein interactome (see Figure 1.1) contains complementary bi-

ological information, motivating their associations in analytical models. Utilising

this observation, we address some of the challenges in computational biology that

we introduce in the next section. Succinctly, we develop new approaches to study

cell’s pathological states. Our objectives are to get better understandings of diseases

through the identification of perturbed cellular entities and mechanisms at the dif-

ferent scales of molecular interactions. Identifying affected biological functions and

understanding the molecular basis of diseases are crucial steps for the improvement

of medical care and the development, or repurposing, of effective treatments [5].

1.2 Challenges in Computational Biology

Computational biology is facing numerous technical and conceptual challenges that

need to be addressed to extract valuable information from the rapidly increasing

amounts of data. The main objective is to formulate hypotheses and directions for

experimental research, which ultimately could lead to both fundamental biologi-

cal knowledge and improved patient care. An added requirement for models and
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Biological 
pathways

Protein 
complexes

Figure 1.1: Representation of different scale of molecular interactions on a set of genes.
The bottom panel corresponds to Protein-Protein interaction experimentally
validated in BioGrid [6], the middle panel gives protein complexes obtained
from Reactome [7], and the top panel gives biological pathways from Reac-
tome [7].

algorithms in biomedical applications, sometimes overlooked in other fields, is in-

terpretability of the results, that is to say, the ability to explain how and why an

algorithm is making a “decision”. Model interpretability is useful both for exper-

imental design, to test hypotheses, and to understand the underlying mechanisms

uncovered by the models. This is especially relevant in biology where we lack intu-

ition that we naturally have in fields such as image or language processing. Further-

more, the European Union passed a resolution in 2016, the General Data Protection

Regulation, concerning the use of personal information that includes the “right to an

explanation”. The law states that when using a patient’s data to make a decision, a

clinician should be able to detail how the decision has been reached, which includes

decisions resulting from algorithm-aided processes.

Naturally, numerous modern challenges are tied to the staggering amount of

data available. In genomics, since the completion of the first human genome, thou-

sands of human genomes have been assembled. A recent project2 in the UK created

2https://www.genomicsengland.co.uk/the-100000-genomes-project/
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a database of 100,000 genomes (completed in December 2018). The data takes

around 20 petabytes (1015 bytes) of storage. A similar project in the USA an-

nounced a database of 1,000,000 genomes. The Gene Expression Omnibus (GEO)

website offers access to more than 1,000,000 samples. Clinical data, including

Electronic Health Record (EHR), is also on the rise with the US healthcare sys-

tem reporting 150 exabytes (1018 bytes) of data in 2011. Datasets are often highly

heterogeneous, even for the same type of data there are multiple methods and tech-

nologies with different coverage, bias and noise [8]. As the quantity of the available

data keeps increasing, scalable computational methods need to be devised to un-

cover biological knowledge of practical value.

We review below two interlinked modern challenges facing computational bi-

ology that are at the core of this Thesis: data integration and precision medicine.

1.2.1 Data integration

The individual analysis of specific biological data can generate knowledge that is,

to some extent, myopic to the broader context. For instance, complex diseases,

such as cancer, can be caused by combinations of genetic, molecular, environmen-

tal, and lifestyle factors. Hence, no single type of omics data can fully capture

such diseases. Thus, a strategy that has been gaining momentum is the collective

mining of different data to extract integrated knowledge about a system that goes

beyond what any single data source can offer [9] (see illustration Figure 1.2). Those

approaches have numerous advantages, addressing some limitations and caveats in-

herent to each technology that generate data.

Integrative approaches have already shown promising improvements in vari-

ous biomedical applications, such as protein function prediction [10, 11, 12, 13]

and biological network inference [14, 15, 16]. Briefly, protein function prediction

is concerned with the characterisation of the role of each protein within the cellular

machinery, in both normal and pathological context. There are many ongoing ef-

forts to develop methods to annotate proteins and genes automatically. This is best

exemplified by the popularity of the CAFA challenge [17]. The biological network

inference task aims to derive the underlying molecular interactions from biological
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Transcript-
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Figure 1.2: Illustration of omics data integration exploiting their complementarity.

data. The task boils down to predicting associations between biological entities.

Applications include protein–protein interaction predictions [18] and regulatory in-

teraction predictions [14, 19].

Developing efficient computational methodologies to handle and extract infor-

mation from the various data sources is thus a fundamental challenge of computa-

tional biology. Under the no free lunch theorem [20], there cannot be one single

computational model that solves all problems. As such, each research question re-

quires new tailored approaches. We discuss data integration in more details and

review the existing approaches in Section 2.3.

1.2.2 Precision Medicine

A modern challenge, linked to the abundance of patient-specific biomedical data,

is the personalisation of the practice of medicine based on patient-specific infor-

mation, such as genetic background or other omics datasets. This field of com-

putational biology is called precision medicine, also referred to as personalised,

predictive, preventive and participatory (“P4”) medicine. Precision medicine is typ-

ically associated with three main tasks: patient stratification, biomarker discovery,

and drug repositioning.

Patient stratification corresponds to the identification of groups of patients having

similar clinical outcome through their molecular data. The aim is to improve risk
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assessment and prevention, as well as optimise the choice of treatment. The task is

essential to characterise complex, heterogeneous diseases that can be caused by dif-

ferent molecular alterations despite similar phenotype manifestation (e.g., cancers

[21], Alzheimer’s disease [22]). A popular approach to the problem, as highlighted

by Wang et al. [23], is the molecular-based clustering of patients through the in-

tegration of multi-omics data. Kaplan-Meier estimator [24] are typically used to

quantify if the subgroups identified in a cohort significantly correlate with prog-

nosis. The estimator gives a p-value of the significance of the correlation based

on a log-rank statistical test. A problem closely related to patient stratification is

the prediction of a patient’s clinical outcome and prognosis based on both clinical

and biomedical data. Most approaches addressing this problem follow a two-step

framework. First, they start by training machine learning models to predict patients’

survivals; such models are often based on Cox proportional hazards [25]. Second,

they analyse the models to identify covariates that significantly represents a pa-

tient’s risk [26, 27, 28]. These covariates can be further used to stratify the cohort

in subgroups significantly correlated to prognosis.

Biomarker discovery aims to identify biological characteristics (biomarkers) that

can be evaluated objectively and are indicators of healthy or pathogenic biological

processes. Biomarkers can be used to diagnose a disease early, to evaluate an indi-

vidual’s susceptibility to a disease, to assess the evolution and disease risk, and to

predict an individual’s response to a treatment [29]. Identifying prognosis biomark-

ers is a task closely linked to patient stratification. As such, methods are often

designed to address both tasks simultaneously. For instance, the clustering-based

approaches mentioned above generally include a second step that derives molecu-

lar signatures that are representative of each cluster [23]. These signatures can be

used both to classify unseen patients and to identify specific, putative biomarkers

that characterise the subgroup and are linked to survival. Similarly, the second step

used by models that directly predict survival rates can also be used to identify new,

putative biomarkers through the identification of covariates significantly linked to

patients’ survival [26, 27, 28].
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Drug repositioning aims at finding new applications for existing pharmacothera-

pies. Drug discovery is a slow and costly process involving many steps from cre-

ation to clinical trials. It is estimated that developing a new drug takes over 12

years and cost over $1 billion on average [30, 31]. Repurposing existing drugs to

treat new diseases enables circumventing some development steps, reducing cost

and time to bring a drug to market. It also reduces risks associated with new drugs

such as unknown side effects. A wide range of computational methods has been

developed to address the problem as reviewed by Pushpakom et al. [32]. Relevant

to our work, integrative approaches, including network-based, have been used to

mine omics jointly with other biological data to derive new repurposing hypotheses

[33, 34, 35].

1.3 Thesis contributions and outline

In this Thesis, we explore solutions to the data integration challenge to answer some

of the tasks associated with precision medicine. The Thesis breaks down into the

following chapters.

Chapter 2 first describes some omics data types and various molecular networks.

The description motivates the view of cells as multi-faceted systems of interacting

components that operate at different scales. Secondly, the chapter introduces back-

ground notions of graph theory and machine learning that are necessary to frame

the context of the Thesis.

Chapter 3 investigates the information contained in the different scales of protein

interactions: PPI, protein complexes, and biological pathways. We utilise hyper-

graph representations and introduce hypergraphlets as a tool for their analysis. We

show that each type of interactions contains complementary biological information

about proteins. We further demonstrate that new biological insight can be derived

from the multi-scale protein interactome by predicting novel protein functional an-

notations using a simple approach based on hypergraphlet statistics. Our results

motivate the integration of the multi-scale protein interactome to machine learning

models developed for the analysis of biological data. In the following chapters, we
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propose approaches to integrate this information into computational models.

Chapter 4 investigates the use of multi-scale protein interactions as prior knowl-

edge to define and control the structure of a neural network (NN). We train the NN

to predict patients diagnosis based on genes’ differential expression. We then intro-

duce a methodology, based on the analysis of variation of the function parametrised

by the neural network, to derive biomedical knowledge and diseases mechanisms

from the trained NN models. Thus, our methodology gives a way to interpret neu-

ral network models to derive biological hypotheses such as, in this case, putative

diagnostic biomarkers.

Chapter 5 proposes a framework integrating patient omics and clinical data, the

multi-scale protein interactome, drug–protein interactions, and drug similarity data

for pan-cancer analysis. The objectives are to uncover novel molecular cancer

mechanisms, putative biomarkers, and propose new drug indications for the treat-

ment of cancer subtypes. Our framework can identify links, that have not been

studied (or reported) previously, between cancer and higher-order molecular struc-

tures. Furthermore, we demonstrate that our approach captures underlying biologi-

cal mechanisms that govern response to cancer drugs. Our methodology extends to

the derivation of patient-specific knowledge, such as personalised drug recommen-

dations.

Chapter 6 summarizes the contributions, provides a general discussion, and out-

lines future research directions.

The contributions of the Thesis fall within two categories: methodological and

biological.

Methodological contributions are the development of novel network analysis tools

and machine learning approaches. Specifically,

• Introduction of hypergraphlets, and the associated distance metric, to charac-

terise and compare wiring patterns of nodes in hypergraphs.

• A novel neural network design based on prior biological knowledge and an

analytical strategy to derive knowledge from trained models.
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• A joint integrative embedding library based on Non-negative Matrix Factori-

sations.

• A novel framework for association inferences in standard and zero-shot learn-

ing settings.

Biological contribution is in the novel biomedical knowledge derived from the

proposed methodologies. Specifically,

• Prediction of protein function by hypergraph representations of the multi-

scale interactome.

• Uncovering of disease molecular mechanisms at the different scales of the

multi-scale protein interactome.

• Prediction of drugs to be repurposed for the treatment of specific cancer types.

1.4 List of publications
The results presented in this Thesis have been published in peer-reviewed journals

and conferences, or are currently under review for publication. We give below the

list of original articles written as part of the Thesis work.

1. Gaudelet, T., Malod-Dognin, N. and Pržulj, N., 2018. Higher-order molec-
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bridge University Press, pp. 111-150.

3. Gaudelet, T., Malod-Dognin, N., Sánchez-Valle, J., Pancaldi, V., Valencia, A.
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Chapter 2

Background

This chapter introduces the background knowledge necessary to navigate the The-

sis. First, we give an overview of the existing types of biological data. Specifically,

we introduce various omics data and molecular networks. Second, we introduce no-

tions of graph theory that are essential to understand some of the concepts discussed

and used in the Thesis. Finally, we review the literature and discuss methods that

have been developed to address data integration problems and that set the stage for

the Thesis.

2.1 Data
In this section, we introduce different types of biological data within the context of

cellular machinery. The resulting description of the cellular mechanisms is far from

complete and can only barely scratch the surface of the complex organisations at

play. However, the objective is to give an idea of the intricacies of cell mechanisms,

to motivate the view of biology as a multi-faceted system of interacting components

[9, 36], and to introduce some terminology. This short description also allows us to

highlight the different aspects that need to be taken into consideration when study-

ing the inner workings of cells. Note that any biological data typically comes with

noise and biases. Noise can be linked to multiple factors such as human error, ex-

perimental noise, and variability in underlying system [37, 38, 39]. Biases can also

arise at multiple levels such as lack of diversity in patient cohorts [40] or choice of

experiments. For instance, Luck et al. [41] demonstrated that the publicly available
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experimental molecular data tend to be biased towards proteins that have been asso-

ciated with diseases. The use of biased data, notably biased patient data, to improve

medical care might jeopardise the fairness of the final system [42]. Thus, addressing

these issues is essential for both experimental design and downstream data analysis

and, as such, is an important open research problem that, however, falls outside the

scope of this Thesis.

2.1.1 Omics data

Omics data refer to comprehensive data about molecules of the same type and ob-

tained simultaneously with high-throughput assays. There is a wide-ranging array

of omics data. Each captures quantitative information about single entities in the

cellular machinery. We introduce some examples below, discussing technologies

used to capture the data and landmark findings associated with each type of omics.

Genomics data relate to the genetic material in the form of DNA data encapsulated

in the nucleus. Genomics is concerned with the analysis of DNA sequences and in

particular genes. A gene is defined as a region of the DNA that codes for proteins. In

this Thesis, we use the term gene to refer indiscriminately to the gene itself (DNA

sequence), its associated coding RNA transcripts, and all the proteins it encodes.

DNA sequencing technologies have greatly improved over the last decade, both in

quality and speed. The latest next-generation sequencers (NGS) can capture up to

16 human genomes over three days. In comparison, the Human Genome Project,

that generated the first human genomics data, spanned 12 years and cost $3 billion.

The access to full genomes has facilitated the development of Genome-Wide As-

sociation Studies (GWAS) and the identification of genetic markers associated with

phenotypes, for instance, the identification of cancer driver genetic mutations [43].

Transcriptomics measures the presence and relative amount of RNA transcripts

transcribed from the DNA at a fixed point in time. The associated data give in-

formation on the momentaneous state of cells, highlighting the active components.

RNA transcripts are either coding, i.e. that translates into proteins, or non-coding.

The most common approaches to generate transcriptomics data are microarrays [44]

and RNA Sequencing (RNA-Seq) [45]. Typically, transcriptomics data is obtained
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from bulk samples containing multiple cells. However, the ongoing development

of single-cell technologies aims to give a more fine-grained depiction of cellular

states. Transcriptomics data have enabled comparative studies of gene expression

across cohorts, enabling the comparisons of diseases on their molecular expression

profiles [46], and across time, allowing for the tracing of tumorigenesis [47].

Proteomics aims to catalogue, sequence, and provide quantitative information

about proteins, translated from coding RNA in cells, that are responsible for most

cellular functions. Due to alternative splicing, post-translational modifications, and

mRNA editing, a gene can code for multiple proteins. Thus the pool of human pro-

teins is orders of magnitude larger than the numbers of genes in humans, with an

estimated 1.8 million protein [48] compared to around 25,000 genes. Mass Spec-

trometry technologies [49] and reverse phase protein lysate microarrays [50] are

arguably the most popular approaches to collect proteomics data. The development

of proteomics technologies has greatly benefited the study of single proteins with

applications toward protein structure prediction [51] and protein function prediction

[52].

Metabolomics studies the set of metabolites present in a system. The term metabo-

lite encompasses any substance that is produced or consumed in chemical reactions

occurring in a cell. The set of all chemical reactions is called metabolism. MS

and nuclear magnetic resonance (NMR) spectrometry are the methods of choice to

extract metabolites profile. Research has highlighted that a cell’s metabolites vary

under different conditions, for instance, diseased state versus healthy state [53], and

as such metabolomics data can help with identification and diagnosis of diseased

cells, e.g. in cancer [54].

Epigenomics is the study of epigenetic changes, which correspond to reversible

changes on a cell’s DNA, causing perturbation of gene expression. DNA methyla-

tion, histone modification, and chromatin structure alteration are examples of epi-

genetic perturbations [55, 56]. Methods such as ChiP-seq [57] and Bisulfite se-

quencing [58] can be used to identify epigenetic modifications. Changes in the

epigenome have been linked to cellular development and environment [59] as well
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as to the occurrence of diseases [60].

2.1.2 Molecular networks

The omics data described above only give information about single entities without

explicitly considering the underlying molecular interactions. Interactomics inves-

tigate and catalogues molecular interactions that are often represented as networks

(formally introduced in the next section). Below, we describe some of the exist-

ing biological networks, highlighting the wide range of molecular interactions on

which the cellular machinery relies. Notably, for each molecular network, we de-

tail the type of interactions they represent, how the interactions are captured, and

some applications for which the network has been used. Furthermore, we list a few

reference databases for molecular networks in Table 2.1.

Protein-Protein Interaction (PPI) networks are perhaps the most studied molec-

ular networks. They represent physical interactions, or bindings, between the pro-

teins of a species [61, 62, 63, 64]. Experimentally, PPIs are derived using Yeast

Two-Hybrid (Y2H) or affinity capture techniques [65]. A PPI network can be seen

as the blueprint of the protein bindings of a species. It does not mean that at any

given time, one can observe all those interactions in any given cell (e.g., some pro-

teins might not always be expressed in a cell). As each protein is associated with

a specific gene, PPI networks often use genes notation in place of proteins. While

this simplification reduces the size of PPI networks dramatically and facilitate the

comparison and integration to other molecular networks, it does lead to loss of

information and granularity. Research focusing on biological systems has relied

extensively on PPI networks in a wide range of applications such as exploring the

link and evolution of PPIs across species [66], uncovering functional modules in the

network to identify proteins’ function [67], linking network properties to protein’s

essentiality and disease [68, 69], as well as drug discovery [70].

Transcriptional regulatory networks model gene expression regulation [71, 72,

73]. Specific genes code for proteins that regulate the expression of other genes;

such a protein is called a transcription factor. A transcriptional regulation net-

work is a simplified representation of this phenomenon, where gene X is connected
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to gene Y if the protein product of X controls the expression of Y. Such a rela-

tion is asymmetric, as X controls the expression of Y, but Y does not necessarily

influence the expression of X. Regulatory interactions are inferred experimentally

through Yeast One-Hybrid (Y1H) and chromatin immunoprecipitation (ChIP) [65].

Furthermore, numerous computational approaches have been explored to infer reg-

ulatory networks from omics data [14, 19]. Properties of regulatory networks have

been linked to protein’s essentiality and disease [74], and the networks have further

helped uncover disease mechanisms at the molecular level [75, 76, 77].

Metabolic networks model the metabolism of a cell [78, 79, 80]. The set of all

metabolic reactions in a cell forms a metabolic network. A metabolic reaction

transforms one metabolite (small molecule) into another and is catalysed by an en-

zyme (protein). In short, a metabolic reaction involves at least two metabolites

and an enzyme. The interactions are usually asymmetric, as the biochemical re-

actions involved are typically irreversible. Metabolic networks are constructed by

compiling experimental results describing metabolic reactions that are reported in

the literature [65]. As discussed above, metabolomics studies have exposed the

context-dependent composition of the set of metabolites in cells. Under this obser-

vation, metabolic networks can help understand the underlying processes that are

perturbed, or that arise, under certain conditions, such as cancer [81] or Parkinson’s

disease [82].

Co-expression networks [83] represent the correlation of the expression of tran-

scriptomics data across multiple cell samples [84]. Two genes are connected if their

expression is significantly correlated across samples. The underlying assumption

is that either one gene controls the expression of the other or a third party simul-

taneously controls the expression of both genes. Analyses of co-expression net-

works have uncovered functional modules [85], non-coding RNA functions [86],

and system-level properties across cancers [87].
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2.2 Basics of Graph and Network Theory
In this section, we formally define graphs and introduce important related notions.

We adapt this section from the Chapter Introduction to Graph and Network Theory

contributed to the book Analysing Network Data in Biology and Medicine, Cam-

bridge University Press, edited by Nataša Pržulj, published February 2019 [116].

2.2.1 Definitions

A graph, or network, G, is defined by a set of vertices V (also called nodes), a set

of edges E ⊆V ×V (also called links) corresponding to pairs of vertices and repre-

senting interactions between vertices, and a function ω : E 7→Ω associating a label

to each edge, where Ω represents a set of possible labels. A graph is formally de-

noted by the triplet G = (V,E,ω). We also use the notations (V (G),E(G),ω(G))

and (VG,EG,ωG) to denote unambiguously the vertex set, edge set, and labelling

function of graph G. In this Thesis, we focus mainly on unlabelled graphs, where

Ω = {1}, for which the function ω is omitted from the definition, i.e. G = (V,E).

Henceforth, to alleviate notations, and unless specified otherwise, a graph is as-

sumed to be unlabelled.

Graphs are used to represent systems of interconnected entities. Each vertex

v ∈ V represents a unique entity, and each edge e ∈ E traditionally represents a re-

lationship between a pair of vertices (u,v) ∈V ×V (also denoted by uv for brevity).

The label associated with an edge can represent various properties such as the type

of interaction or the confidence level associated with the interaction. An edge can

be undirected or directed. An undirected edge represents a symmetric interaction

between vertices, for instance, a physical contact between two proteins. A directed

edge represents an asymmetric interaction, for instance, an interaction between a

transcription factor and a gene.

A graph is undirected if all its edges are undirected. If it also contains no loop

(edge connecting a vertex to itself) and no multi-edge (multiple edges connecting

the same pair of vertices), the graph is simple. There is a wealth of theoretical

results for simple graphs that can be found in any textbook dedicated to Graph

Theory [117], illustrating their importance. In biology, PPI networks are typically
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modelled by simple graphs. A graph is directed if all of its edges are directed.

Directed graphs model transcriptional regulatory networks.

A graph G = (V,E) is bipartite if we can divide its vertex set V into two non-

overlapping vertex sets A and B, such that V = A∪B and every edge e in E connects

a vertex from A to a vertex from B. Bipartite graphs are used to model interactions

between two separate sets of entities, for instance, drug–gene interactions.

Multi-layer graphs [118, 119] and Hypergraphs [120, 121] are generalisations

of standard graphs that can represent more complex systems and are gaining atten-

tion in the literature. The latter is at the core of Chapter 3. For a complete overview

of these and additional types of graphs, we refer the reader to the book chapter

[116].

2.2.1.1 Graph data structures

Graphs are typically represented as either an adjacency matrix or an adjacency

list. For a graph G = (V,E,ω) containing n vertices, indexed from 0 to n− 1,

i.e. V = {0, ..,n− 1}, the adjacency matrix is denoted by A, with A ∈ Ωn×n. Each

row/column index represents a vertex of the graph and the entries of A are such that:

Ai, j =

ωi j, if edge i j ∈ E,

0, otherwise.

Figure 2.1 presents the adjacency matrix of an unweighted directed graph.

a

b

d

c e

G

A =

a b c d e


a 0 1 1 0 0
b 0 1 1 0 1
c 1 0 0 1 0
d 1 0 0 0 0
e 0 0 0 1 0

Figure 2.1: An illustration of a graph G and its adjacency matrix A. The 1s represent the
existence of a directed edge from the vertex in a row to the vertex in the column,
0s represent the absence of an edge.
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For undirected graphs, weighted or not, the adjacency matrix is symmetric,

i.e. A = AT . Storing a graph represented by its adjacency matrix requires O(n2)

memory. As a special case, bipartite graphs can be represented by a submatrix of

the adjacency matrix where rows are associated to one of the two disjoint sets of the

bipartite network, and columns to the other set.

An adjacency matrix structure is preferred if a graph is dense, which means that

the number of edges is high (of the order O(n2)) with respect to the total number of

possible edges (which is equal to
(n

2

)
= n(n−1)

2 for a simple graph).

a

b

d

c e

G

L :
a → b,c
b → b,c,e
c → a,d
d → a
e → d

Figure 2.2: Graph G and its adjacency list, L.

An adjacency list is a list of vertices and all of their adjacent vertices, as illus-

trated in Figure 2.2. To store an adjacency list, one needs O(m+n) memory, where

m is the number of edges and n is the number of vertices in the graph. Thus, if

the graph is sparse, in the sense that it has O(n) or fewer edges, and the task does

not require a matrix representation, then the adjacency list is a more space-efficient

structure to store a graph.

2.2.1.2 Degree and neighbourhood

The degree of vertex u corresponds to the number of edges incident to u and is

denoted by d(u). The neighbourhood of vertex u is the set of all vertices adjacent

to u, formally defined as N(u) = {v ∈V : uv ∈ E}. Consider graph G of Figure

2.3: vertex b (in red) has degree 3 (d(b) = 3) and the vertices in its neighbourhood

are circled in red. If the edges are directed, each vertex u has an indegree and an

outdegree. The indegree of u corresponds to the number of edges having u as target
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vertex and the outdegree of u is the number of edges having source vertex u. In

graph H of Figure 2.3, these notions are illustrated on vertex d: the indegree of d is

2 and the outdegree is 1, illustrated by red and blue edges, respectively.

a

b

d

c e a

b

d

c e

G H
Figure 2.3: Examples illustrating neighbourhood and degree notions in undirected graph G

and directed graph H.

2.2.1.3 Subgraphs

A subgraph H of graph G contains a subset of vertices of G and a subset of edges

connecting those vertices. Formally, if V (H)⊆V (G) and E(H)⊆ E(G), then H is

a subgraph of G. If H contains all edges from G that connect its vertices, then H

is induced, or node-induced. Consider graph G = (V,E) and set of vertices A⊆V ,

then G[A] denotes the subgraph induced (or node-induced) by A on G. Its vertex set

is the set A and its edge set includes all the edges in E that have both ends in A.

Figure 2.4 illustrates these concepts. In graph G, red denotes a non-induced

subgraph. G is not induced, because it does not contain ed edge. The red subgraph

in graph H is induced by the set of vertices {a,c,d,e}.

a

b

c

e d

a

b

c

e d

G H
Figure 2.4: Examples illustrating in red in graph G a subgraph and in graph H an induced

subgraph for the same graph.
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2.2.1.4 Graph isomorphism

Two graphs G and H are isomorphic if there exists a function f : VG 7→VH such that

uv ∈ E(G) if and only if f (u) f (v) ∈ E(H). The function f is a bijection, which

means that f is a one-to-one mapping of the vertices of G onto the vertices of H.

Figure 2.5 gives an example of two isomorphic graphs. Finding approximately

isomorphic mappings between biological networks is a recurrent problem, such as

network alignment tasks [122].

a

b

c

e d u

v

w

y

x

G H
Figure 2.5: Examples of isomorphic graphs G and H. The isomorphic function maps the

vertices a, b, c, d, and e of graph G to the vertices u, v, w, x, and y of graph H,
respectively.

The generalisation of the graph isomorphism problem is to find if a graph

contains a copy of another graph. This problem is called the subgraph isomorphism

problem and has long been known to be NP-complete [123, 124]. In short, it means

that there is no fast and efficient method in general. The clique problem is a par-

ticular case of the subgraph isomorphism problem. A clique is a fully connected

subgraph. The clique problem refers to searching for the largest clique in graph G.

Detection of cliques in molecular networks has been used to identify groups of con-

sistently co-expressed genes [125, 126] and to match three-dimensional structures

of molecules [127, 128]. In the latter example, subgraph isomorphism is used to

identify similarities between compounds based on theirs substructures.

An exact comparison of networks is a challenging problem due to the NP-

completeness of the underlying subgraph isomorphism problem [129]. Thus, simple

heuristics, such as the various centrality measures (see [130, 131, 116] for details
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and other network statistics), have been used to capture network properties through

which networks can be analysed and compared. We next introduce graphlets that

are used to extract topological statistics from graphs and to define heuristics for

network analysis.

2.2.2 Graphlets

Graphlets are small, non-isomorphic, connected, and induced subgraphs of a simple

graph, which are used to characterise and quantify the local wiring patterns around

each node of a network [132, 133].

Within a given graph, automorphic nodes are nodes whose labels can be ex-

changed without changing adjacency relationships. Formally these nodes can be

mapped to each other by an automorphism, which is an isomorphism of a graph

with itself. Each set of automorphic nodes of a graphlet form what is called an or-

bit. For instance, consider the graphlet corresponding to a path of three nodes (first

3-node graphlets in Figure 2.6). This graphlet has two orbits: the first contains the

end nodes of the path and the second contains only the central node. For all 2- to 5-

node graphlets, there are a total of 73 different orbits (set of automorphic nodes; see

Figure 2.6). In practice, due to the exponential increase in the number of graphlets,

existing approaches stop at 5-node graphlets.

Orbits are used to precisely capture the wiring pattern around a node of a sim-

ple graph. Specifically, the notion of graphlet degree of a node is introduced as an

extension to the degree of a node that only captures the number of direct neigh-

bours. The ith graphlet degree of a node, v, corresponds to the count of graphlets

in the network containing v and in which v is in orbit i. The 0th graphlet degree

of a node corresponds to the traditional node’s degree. For each node, we define

a graphlet degree vector (GDV) of size 73 with entry i corresponding to the ith

graphlet degree of the node. The GDV of a node gives a purely topological descrip-

tion of the wiring pattern around the node. In practice, for each node, we consider

the extended neighbourhood, specifically up to the 4th neighbourhood of the node

which corresponds to all nodes within the shortest path distance of 4 from the node

of interest. Within this set of nodes we consider all connected and induced sub-
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Figure 2.6: Representation of the 30 two- to five-node graphlets and their 73 orbits.

graphs that can be formed with 2 to 5 nodes (including the node of interest). For

each of these subgraphs, we first identify to which graphlet the subgraph is isomor-

phic to (i.e. which graphlets it corresponds to) and then identify the orbit the node

of interest belongs to and finally we increment the corresponding graphlet degree of

the node (see Figure 2.7). This process gives the GDV of the node and is repeated

for all nodes of a network.

Based on GDVs of the nodes of a network, one can define a similarity measure

to compare the relative wiring patterns of two nodes. This can then be integrated

into a kernel, a symmetric matrix capturing similarities (or distance) between entries

in an unspecified space (see Section 2.3.2.2 for formal definition), that can further be

used to cluster nodes, to relate the wiring patterns of genes in biological networks to

their function and to propagate biological annotations to previously uncharacterised
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orbits 0 1 2 3 4 5 6 . . . 41 42 43 44 . . . 72
degree 5 3 8 2 0 7 1 . . . 0 0 0 1 . . . 0

Figure 2.7: Example of the counting process for a node highlighted in red. Thick lines cor-
respond to the bold numbers and highlight specific kind of graphlets. On the
left, it corresponds to single edges (orbit 0), giving the degree, 5, of the high-
lighted node. On the right, we highlight triangle graphlets (orbit 3) containing
the highlighted node (3rd orbit degree of the node is 2). Part of the resulting
GDV is given in the table below.

genes [134, 135, 136].

The distribution of orbit’s degrees can be used to characterise a network. For

instance, Yaveroğlu et al. [135] proposed the Graphlet Correlation Matrix (GCM)

as a network descriptor. Specifically, it computes the correlation between pairs of

orbit degree distributions giving a 73×73 matrix (if all graphlets of size 2 to 5 are

considered). This matrix can then be used to compare two networks by defining a

matrix distance, such as the Graphlet Correlation Distance (GCD) defined in [135].

Network distances can be used to compare biological networks and uncover their

functional organisation [132, 133, 134, 135]. It can also be used to guide network

alignment algorithms [137, 138].

A wealth of tools to analyse real-world networks have been built upon

graphlets. Note that, the (original) graphlets are defined only for mining simple

graphs, which are sometimes not sufficient to capture the complexity of real-world

networks. Graphlets have been extended to various kind of networks, among which

directed networks [139], ordered graphs (graphs with a global ordering on the ver-

tices) [140], and simplicial complexes [141]. We extend the definition to hyper-

graphs in Chapter 3, introducing hypergraphlets.

Graphlets and extensions offer heuristics to extract node features from com-

plex networks that can then be used as input to machine learning algorithms. Other
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popular approaches to extract features from graph representations are based on ran-

dom walks (e.g., DeepWalk [142], node2vec [143]), matrix factorisations discussed

in Section 2.3 (e.g., Laplacian eigenmaps [144], HOPE [145]), or graph kernels

[146]. For a review of those methods see [147]. In the following section, we dis-

cuss the principles of machine learning and the various approaches used to integrate

multi-source data.

2.3 Machine Learning for Data Integration

With the advent of the Big Data era, the field of machine learning has been the fo-

cus of growing interests over the last decades due to its ability to detect patterns in

large scale datasets. The uncovered pattern can be used, for instance, to predict fu-

ture data or to highlight fundamental properties of the data source. The underlying

mathematical concepts in machine learning are often not new, e.g., neural networks

were first used in the 1940s, but their applications were often restricted to small

problems and hindered by the limited computing power available at the time. Tech-

nological advances have allowed researchers to revisit these ideas and apply them to

concrete and data-rich problems leading to some of the most notable achievements,

such as the victory of AlphaGO over top human players of the game of GO in 2016

[148]. Designing an algorithm able to master the game of GO was long thought to

be too hard or even impossible due to the high complexity of the game. An estimate

of the number of legal, possible board settings is of the order of O
(
10170). To put

it into perspective, researchers estimate that the entire universe contains O
(
1086)

atoms.

In computational biology, machine learning has been extensively used to ad-

dress the problem of multi-omics data integration. As discussed in the Introduction,

each molecular data type captures different, complementary functional informa-

tion about cells, tissues, and individuals. Integrating various data type in the same

framework, giving more complete representations of the molecular machinery, has

proved an efficient strategy in several applications [149, 150, 151]. We give here a

brief introduction to data integration, as well as a succinct overview of the existing
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: Machine learning models : Model results

Figure 2.8: Illustration of early, intermediate, and late integration approaches.

data integration methods used in computational biology.

2.3.1 Definition

Data integration is the process of combining multi-source data into a single, unified

view to answer specific questions. Integrative approaches can be decomposed based

on the choice of integration process itself. There are three resulting classes: early,

intermediate, and late data integration (illustrated in Figure 2.8). Methods that first

combine all datasets into one then design a model to analyse the new, integrated

dataset fall into the early class [152, 153]. Methods in the late class start by devel-

oping a model for each separate dataset and then use ensemble learning approaches

to combine the resulting models. The inherent limitations of those approaches are

that they do not make use of the datasets’ complementarity, which might diminish

performance [152, 153]. Intermediate integrative approaches aim to infer a joint

model over all datasets. Such methods implicitly exploit the complementarity of

the data, which can palliate each dataset’s intrinsic limitations and seems to lead to

better predictive results in practice [154, 152, 155, 153].

Data integration tasks can be further classified as homogeneous or heteroge-



2.3. Machine Learning for Data Integration 44

neous depending on the type of data considered. In the former case, datasets cap-

ture different information about the same group of entities, obtained, for instance,

with biological experiments under different conditions. This is the case when con-

sidering multiple networks sharing the same set of nodes, e.g., molecular networks

with genes as nodes such as PPI, co-expression networks, and genetic interactions

networks [156]. A heterogeneous task involves data relating to different, but inter-

linked entities. For instance, Gligorijević et al. [157] integrate patient genetic mu-

tations data with drug–target interactions as well as molecular networks and drug

chemical similarities.

2.3.2 Methods for data integration

Here, we review broad (overlapping) classes of machine learning approaches to the

data integration task: Bayesian-based methods, Kernel-based methods, Network-

based methods, Matrix factorisation-based methods, and neural networks-based

methods. We give a brief description of each approach, tying in some of their ap-

plications to biomedical data integration.

2.3.2.1 Bayesian based integration

A Bayesian network is a directed acyclic graph that captures conditional proba-

bilities between variables (the nodes). More precisely, the network represents a

factorisation of the joint probability distribution p(x|θ), where x = {x1,x2, . . . ,xn}

are the nodes of the networks and θ the parameters of the model. The distribution

factorises as p(x|θ) = ∏
n
i=1 p(xi|ai,θ), where ai is the set of ancestors of xi in the

network, i.e. nodes that are the source of edges connecting to xi. The construction

of a Bayesian network requires both learning the network, structure learning, and

identifying the optimal parameters of the model, parameter learning. The variables

can be of different types, hence facilitating the integration of heterogeneous data.

Bayesian networks have been instrumental in a number of biomedical applications.

For instance, Gevaert et al. [158] integrated clinical and microarray data of

breast cancer patients in Bayesian networks. The authors then used the resulting

network to stratify the cohort into two subgroups that significantly correlate with
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prognosis. Furthermore, Zhu et al. [159] combined genomics, transcriptomics,

and interactomics data of yeast using a Bayesian network approach to identify gene

regulatory interactions.

Bayesian networks offer a flexible framework for data integration; however,

it suffers from a few limitations. First, Bayesian integrative approaches do not

scale well. The number of possible Bayesian networks is super-exponential in its

number of nodes. This implies that searching for the optimal configuration is an

NP-complete problem [160] and inference in a Bayesian network is intractable.

Second, Bayesian networks are directed acyclic graphs that are unable to capture

feedback loops, which are an essential component of biological systems as they

model control mechanisms.

2.3.2.2 Kernel-based integration

Kernel-based approaches first embed a dataset in a higher dimensional feature

space. The embedding is given by a function φ that maps sample xi of a dataset

to a point, φ(xi), in the higher dimensional feature space. The embedding is repre-

sented by a kernel matrix, K, capturing the similarity between samples as defined

by the kernel function k(xi,x j) =< φ(xi),φ(x j) >. The transform, φ , and the fea-

ture space need not be specified explicitly. By definition, the kernel is a symmetric,

positive semi-definite matrix. The gaussian kernel is arguably the most common

kernel that is defined with the kernel function k(xi,x j) = exp(−‖xi−x j‖2
2σ2 ). Another

example is the graphlet kernel introduced by Shervashidze et al. [161] for graph

analysis. Many other graph kernels exist and we refer the reader to the review from

Borgwardt et al. for more details [146]. Well-known methods that make use of

kernels include support vector machines (SVM) [162] and spectral clustering [163].

In an integrative framework, each dataset is represented by a kernel. Each

kernel can then be analysed separately before using ensemble learning methods to

combine the results (late data integration approach), or the problem can be framed

as a multiple kernel learning task (intermediate integration) [164]. Kernel-based ap-

proaches enable the integration of heterogeneous data and homogeneous data alike
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and have been extensively used in biomedical applications.

He et al. [165] recently proposed a kernel-based approach to derive disease

comorbidities based on the integration of various disease data. The authors first

collect disease information, such as associated genes and phenotypes. Then, they

define four disease kernels based on 1) interactions of disease genes in a PPI net-

work, 2) overlap of the set of pathways associated to the diseases through their

genes, 3) overlap of disease phenotypes, and 4) overlap of the set of functional an-

notations associated to the diseases through their genes. The authors finally define a

rule to integrate those four kernels to derive a final disease–disease similarity score

that is interpreted as a comorbidity risk index.

Collier et al. [11] introduced LOTUS, a kernel-based integrative method to

predict cancer driver genes for both single cancer and pan-cancer settings. In the

latter, they first define a gene similarity kernel and a cancer subtype similarity ker-

nel each based on multiple data sources such as PPI network, genes mutation fre-

quency across cohorts, and cancer type-specific features. The two kernels are then

combined to create a (cancer type, gene) similarity kernel that is fed to a Support

Vector Machine (SVM) model. The SVM is then trained to predict for each (cancer

type, gene) pair if, for that cancer types, the gene is either an oncogene, a tumour

suppressor, or neither.

Kernels give a practical framework for data integration; however, it has its own

limitations. In particular, kernel-based approaches can become quickly expensive

when reasoning about multiple groups of entities at a time [8].

2.3.2.3 Network-based integration

Network-based integration methods focus on integrating datasets that correspond to

relational data between entities, and that can be represented as networks.

Basic network integration approaches first collapse all networks into one and

can be seen as a case of kernel-based integration by interpreting each network adja-

cency matrix as a kernel. For instance, consider n datasets that can be represented by

networks G1 = (V1,E1),G2 = (V2,E2), . . . ,Gn = (Vn,En). For homogeneous data,

all network representations share a common set of nodes V (=V1 =V2 = . . .=Vn).
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Heterogeneous data can be handled by projecting all datasets to a single set of nodes

V [166], for instance, the union of all node sets, effectively casting the problem to a

homogeneous setting.

The simplest approach to derive one integrated network is to take the union

of all networks. Thus, the integrated network is defined by node set V and edge

set E containing all the edges from the different networks, E = E1 ∪E2 ∪ . . .∪En

[167]. However, an issue with this process is that it treats all input networks equally,

which might not always be optimal due to the variety of noisiness and completeness

levels across datasets. A solution is to take a weighted union of the networks by

associating to each network a weight representing its contribution to the optimised,

integrated network [168]. This procedure is equivalent to a multi-kernel learning

approach applied to the graphs adjacency matrices. Other existing methods rely on

more advanced strategies based on message passing theory [169].

Alternatively, methods have been proposed to jointly analyse multiple net-

works without having to define one unified network. Such approaches typically

use diffusion processes that spread information along the edges of the various net-

works [170]. For instance, Luo et al. [171] proposed a network-based approach

to repositioning drugs based on bi-directional random walks across two networks

representing disease–disease links and drug–drug links. More recently, Ruiz et al.

[172] introduced a white-box method to link disease and drugs based on random

walks through multiple networks: a disease–gene network, a PPI network, a gene–

pathway network, a network capturing pathway hierarchy, and a drug–gene net-

work. The authors show that by comparing signatures of random walks starting

from drugs to signatures of random walks starting from diseases, they can retrieve

known drug indications as well as mechanistic insights into how a drug treats a

given disease and how genetic mutations can impact a drug’s efficacy.

Network-based integration has been essential in many biomedical tasks; how-

ever, those methods are not suited for most omics data that cannot be represented as

networks without transformations.
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2.3.2.4 Matrix factorisation based integration

Matrix factorisation approaches encompass all methods that decompose a matrix A

into the product of n low-dimensional, latent feature matrices Ui, i ∈ {1..n}, also

called latent factors. In practice, this is achieved by finding optimal latent factors

U∗i , i ∈ {1..n} such that

U∗i = argminUi
d(A,

n

∏
i=1

Ui + ε), (2.1)

where d is a function quantifying the distance between its inputs, such as Euclidean

distance or Kullback-Leibler divergence, and ε represents noise. Many models ig-

nore the presence of noise and set ε = 0. Henceforth, to alleviate notation, we will

simply represent a matrix factorisation with the notation A≈∏
n
i=1Ui+ε , where the

meaning of the symbol ≈ implicitly depends on the function d chosen.

Matrix factorisations have been originally developed for applications such as

dimensionality reduction, missing data imputation, and clustering. The objective

of matrix factorisation methods can effectively be seen as finding embeddings for

all entities in a dataset on a low-dimensional, latent manifold under user-defined

constraints such that the original data can be best reconstructed.

The most widely known matrix factorisation methods use two factors, i.e.

A≈UV , those include principal component analysis (PCA) [173] and non-negative

matrix factorisation (NMF) [174]. The former, PCA, solves Equation 2.1 indirectly

through the eigendecomposition of the covariance matrix of the dataset, i.e. the

covariance matrix of A with our notation. The latter, NMF, solves Equation 2.1

directly through an iterative optimisation procedure, enforcing positivity of the en-

tries of U and V as an additional constraint to facilitate the interpretation of the

factors. There exist multiple extensions of NMF that are designed to address dif-

ferent contexts. One example is non-negative matrix tri-factorisation (NMTF) that

approximates a matrix by the product of three low-dimensional factors, and that

was originally proposed for bi-clustering tasks [175]. NMF-based approaches have

gained popularity in the last decade, notably in biomedical applications, due to their

successes in various fields and applications. In particular, NMF methods have been
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used to develop integrative frameworks to mine multi-source datasets jointly.

The underlying mechanism of general matrix factorisation based integration is

the collective factorisation of the various datasets through latent factors constraints.

These constraints take multiple forms; we discuss two main strategies below, that

are sometimes associated together.

The first strategy factorises each dataset in parallel while imposing con-

straints between factors in different decomposition. For instance, consider two

datasets about the same set of entities and represented by matrices X1 and X2.

The two datasets could be integrated through the factorisation of both matrices as

Xi ≈UiVi, i ∈ {1,2} with a constraint applied on a function of factors denoted by

f (U1,U2). The constraint can either be a hard constraint, f (U1,U2) = a, or an auxil-

iary objective to optimize in the decomposition, e.g., maxU1,U2 f (U1,U2). The most

common formulation sets U1 =U2, i.e. it enforces the explicit sharing of latent fac-

tors across factorisations [176, 177]. In this case, the integration problem can simply

be rewritten with a shared latent factor U as Xi ≈UVi, i ∈ {1,2}. This effectively

means that each entity has a unique embedding across all decompositions. Alter-

natively, the Partial Least Square (PLS) formulation adds an objective in the joint

decomposition: maximising the covariance between pairs of factors [178]. With our

notations and our small example, PLS sets f (U1,U2) = covariance(U1,U2) and the

algorithm aims to find factors U1 and U2 that minimises the factorisation objective

function while maximising the covariance between the two latent factors.

The second strategy utilises some data sources to define regularisations for

the latent factors of matrix decompositions. Graph regularisation, for instance, has

been a popular regularising constraint of latent factors in NMF models. It is used to

encourage similar entities, according to data sources typically in the form of a graph

(or kernel), to be embedded closer on the latent manifold. For instance, Hofree et al.

[179] used NMF to factorise a patient–gene matrix representing patients’ somatic

mutation profiles with graph regularisation based on gene networks that encourage

similar embeddings for interacting genes.

Matrix-based data integration has been a popular approach to mine multi-
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omics datasets. For instance, Malod-Dognin et al. [156] derived an integrated cell

model, iCell, by integrating three tissue-specific molecular interaction networks in

an NMTF-based framework. The authors identified cancer-related genes through

the comparative analysis of rewiring in cancer and control iCells. Liu et al. [180]

proposed a framework based on NMF to integrate heterogeneous physical and func-

tional genomics datasets to predict regulatory chromatin interactions between more

than 20,000 promoters and 1.8 million enhancers across 127 human epigenomes.

Matrix factorisations provide a principled framework to analyse multiple ho-

mogeneous and heterogeneous datasets collectively. The framework has two main

advantages. First, unlike kernel-based approaches, no arbitrary data transformation

is required. Note however, that the underlying assumption that the data can be rep-

resented in a latent space can lead to some information loss. Second, it enables the

joint modelling of all types of relations in the data. Chapter 5 introduces an integra-

tive framework exploiting this feature to jointly model various biomedical entities

based on their associations for the analysis of multiple cancers.

2.3.2.5 Deep learning based integration

Deep learning has been one of the main focus of modern Machine Learning owing

to its success in numerous applications, such as image processing [181], natural

language processing [182], or with powerful algorithms for games such as GO and

chess [148]. Deep learning is a broad term that used to qualify machine learning

models based on artificial neural networks [183]. The epithet “deep” comes from

the use of multiple layers in the models. There exist various kinds of layers, such

as feed-forward layers, convolutional layers, and recurrent layers [183]. Each layer

is typically followed by an activation function that introduces non-linearities. Non-

linear activations are essential according to the universality theorem [184] that states

that any arbitrary function can be parametrised by the superposition of non-linear

functions, i.e. by a neural network.

Deep learning has been behind most of the recent progress in Artificial Intel-

ligence. However, there are some specific challenges in its application to biology,

as highlighted by the collaborative and thorough review in [185]. The challenges
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lie in the design and implementation of algorithms that can handle the complex-

ity and heterogeneity of the biological data, and in the interpretability of resulting

models and associated results. Model interpretability is a challenge that concerns

most methods mentioned in this section. However, it is especially relevant to deep

learning due to the high complexity of the models, often presented as black boxes.

However, the deep learning framework is well suited for a variety of data inte-

gration problems, and various recent deep learning models have been proposed for

the integration of multiple biological data sources. We review some below.

Gligorijevic et al. [186] proposed the use of auto-encoders to integrate mul-

tiple biological networks for protein function prediction. Auto-encoders models

learn both an encoding function that embeds the input into a low-dimensional, la-

tent space, and a decoding function, that reconstructs the input from the embedding.

The authors make use of auto-encoders to learn a joint latent space embedding for

the networks, then use the learnt features as input to a Support Vector Machine

(SVM) model to predict a protein’s biological functions.

Deep factorisation models have also been proposed to replace standard matrix

factorisation techniques [187, 188]. Those models can be naturally extended to

handle data integration problems tackled by matrix factorisation approaches and

discussed above. For instance, in the related task of knowledge-graph embedding,

Dettmers et al. [189] proposed an approach that embeds each entity and each type

of relation of the knowledge-graph on a latent manifold, and then uses a model

based on convolutional layers to predict (entity,relation,entity)-triplets.

Another approach, baptised Visible Machine Learning, to integrate biological

information in the deep learning framework is to use the biological information as

prior knowledge to define the structure of neural networks [190]. For instance, Ma

et al. [191] used the Gene Ontology [192] directed acyclic graph as a template for a

feed-forward neural network. The neural network, named DCell, is then trained to

predict phenotype related to cellular fitness from genotype data. The trained DCell

predicts cellular growth almost as accurately as laboratory observations. We explore

a similar approach in Chapter 4.
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Additionally, deep learning techniques such as auxiliary losses, model pre-

training, and transfer learning, enable researchers to add and combine biological

sources in their model. For instance, Yao et al. [193] proposed DeepCorrSurv, a

method to integrate slide images of cancer patients with omics data for prognosis

prediction. The authors used an auxiliary function to maximise the correlation

between the projections of each data modality and to extract a common represen-

tation used to predict a patient’s risk. For the same task, Hao et al. [194] recently

introduced PAGE-net, a similar model that integrates genomics, slide images, and

clinical data from cancer patients, using molecular networks to define part of the

network architecture. PAGE-net jointly learns projections for all data modalities,

concatenating the resulting features in a final layer that predicts a final patient’s risk

score.

In this section, we have given a brief description of the various methods used to

integrate multi-source datasets, referencing relevant literature in the process. Each

of the following chapters will present a more detailed review of the literature rele-

vant to the biomedical problems that it addresses.



Chapter 3

The multi-scale protein interactome

captures biological function

In this chapter, we propose a new, multi-scale, protein interaction hypernetwork

model that utilises hypergraphs to capture different scales of protein organisation,

including PPIs, protein complexes and pathways. In analogy to graphlets, we intro-

duce hypergraphlets, small, connected, non-isomorphic, induced sub-hypergraphs

of a hypergraph, to quantify the local wiring patterns of these multi-scale molecular

hypergraphs and to mine them for new biological information. We apply them to

model the multi-scale protein networks of baker’s yeast and human and show that

the higher-order molecular organisation captured by these hypergraphs is strongly

related to the underlying biology. Importantly, we demonstrate that our new models

and data mining tools reveal different but complementary biological information

compared to classical PPI networks. The content of this chapter is adapted from

and extends Gaudelet et al. [195], presented at the ECCB’18 conference.

3.1 Introduction
In biological systems, molecules do not interact solely in a pairwise fashion. Protein

complexes, for instance, are groups of two or more associated proteins. Biological

pathways also typically involve multiple molecules. Simple graphs cannot capture

the multi-scale organisation of such systems [196, 121]. In the example in Figure

3.1, we observe that the simple graph representation, on the right, of the system on
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the left blurs the higher-order organisation of the system. Given only the network

representation on the right, one might, for instance, falsely assume that the nodes

b, c, and d form a complex of three elements, while it is true that b and d form a

complex, b and c form a complex, and c, d and e form a complex.

a

b
c

d
e
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b
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e

Figure 3.1: Illustration of a system with higher order interactions (left) and its simple graph
representation (right).

A solution to overcome this limitation is to model a molecular system using

hypergraphs [196, 121]. A hypergraph is defined by a set of nodes, V , and a set

of edges, E, called hyperedges, where each hyperedge corresponds to a set of in-

teracting nodes of any size [120]. This means that a simple graph is a special case

of a hypergraph in which all hyperedges are sets of two nodes. The representation

of the system in Figure 3.1 (left) is a hypergraph. To analyse data modelled as hy-

pergraphs, it is necessary to develop methods to mine the structure of hypergraphs.

A number of simple measures from graph theory have already been extended to

hypergraphs, e.g., the clustering coefficient [197], degree distribution [198], and

centralities [197, 199]. However, hypergraphs lack more advanced descriptors of

local topology. Hence, we introduce hypergraphlets, an extension of graphlets to

hypernetworks.

We investigate biological hypernetworks in which nodes are proteins and hy-

peredges capture PPIs, protein complexes, or biological pathways. The main aim

is to check if the topology of these hypernetwork representations of the data carries

biological information that goes beyond the information that can be obtained from

PPI networks. We use hypergraphlets in this investigation.
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3.2 Contributions
We motivate studying the higher-order molecular interactions as models that cap-

ture additional and different biological information than the widely studied PPI net-

works. We introduce hypergraphlets as a new tool that unveils the observation of

the close link between the multi-scale molecular organisation and biological func-

tion. Hypergraphlets can serve as an underlying methodology for many new tools

to further study the multi-scale organisation of molecular systems.

We analyse the hypergraph representation of protein interactions of yeast sac-

charomyces cerevisiae and human and show that proteins that are similarly wired

in a hypernetwork, independently of their location in the hypernetwork, tend to

have similar biological functions. Also, we use the Canonical Correlation Analy-

sis (CCA) [200] to correlate hypergraphlets around proteins in these networks with

their biological functions. The results confirm the link between the local wiring pat-

terns of the multi-scale molecular organisation of the cell and biological functions.

We use these findings to predict biological functions of uncharacterised proteins

from the wiring patterns of the multi-scale molecular organisation. We validate our

predictions in the literature.

3.3 Materials & Methods

3.3.1 Data

We consider six different protein networks across two species, human and baker’s

yeast. For each species, we consider the protein-protein interaction (PPI) network

and two hypernetworks corresponding to protein complexes and biological path-

ways. Depending on the hypernetwork considered, a hyperedge represents either a

protein complex or a biological pathway. These data are used jointly to build hy-

pernetworks capturing multi-scale organisation of proteins in a cell, as detailed in

Section 3.3.6 below.

The PPI data is obtained from the BioGRID database [6] (version 3.4.145).

Both pathways hypernetworks come from the Reactome database [7] (accessed in

April 2017). We only collect the lowest pathways in the Reactome hierarchy. The
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human protein complexes are downloaded from the CORUM database [201, 202]

(all complexes file, accessed in May 2017), while the yeast protein complexes are

collected from the CYC2008 database [203] (last updated in 2009). Table 3.1 gives

an overview of the sizes of the data sets.

Database # proteins # (hyper-) interactions
CORUM 3,145 2,138

Human Reactome 9,466 1,461
PPI 16,008 216,865

Reactome 1,465 400
Yeast Cyc2008 1,607 406

PPI 5,931 87,225

Table 3.1: Sizes of the data.

To investigate the links between networks and biological functions, we collect

gene annotations from the Gene Ontology Consortium (GO) database [192] (down-

loaded at the end of January 2017). For each protein, we keep only the most specific

annotations that are experimentally derived. We separate the annotations based on

the three categories: Biological Process (BP), Molecular Function (MF), and Cel-

lular Component (CC). In the analysis, we focus on Biological Process annotations

(GO-BP) as they cover a broader set of proteins than the other two categories.

3.3.2 Hypergraphlets: the local topology of hypergraphs

We define hypergraphlets as small, connected, non-isomorphic, induced sub-

hypergraphs of larger hypergraphs. Berge [120] defines an induced sub-hypergraph

of a hypergraph H = (V,E) on a set of nodes A⊂V as the hypergraph HA with set

of nodes A and set of unique hyperedges

EHA = {e∩A|e ∈ E,e∩A 6= /0}. (3.1)

Note that with this definition, hyperedges containing only one node exist for each

node. With this definition, an induced hypergraph is simple, i.e. it has no duplicated

edges.

Within a given hypergraph, automorphic nodes are nodes whose labels can be
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exchanged without changing adjacency relationships. Formally these nodes can be

mapped to each other by an automorphism, which is an isomorphism of a hyper-

graph with itself. A set of automorphic nodes form what is called an orbit. Here,

we consider all 1- to 4-node hypergraphlets, which contain a total of 6,369 different

orbits. For 5-node hypergraphlets, we estimate that there are more than a hundred

thousands orbits; hence we restrict ourselves to 4-node hypergraphlets. In Figure

3.2, we illustrate all 65 orbits that occur in the 1- to 3-node hypergraphlets.
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Figure 3.2: Illustration of all 1- to 3-node hypergraphlets (H0 to H33) and the 65 orbits.
Each closed set corresponds to a hyperedge and each node is represented by an
integer between 0 and 64 corresponding to the orbit it belongs to.

Analogous to graphlets, we use hypergraphlet orbits to quantify the wiring

patterns around each node in a hypergraph. For each orbit i in hypergraphlet h, we

define the ith hypergraphlet degree of a node in the hypergraph H as the number of

hypergraphlet orbits i that the node touches.

For each node in a hypergraph, we compute all 6,369 hypergraphlet degrees
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resulting in a 6,369-dimensional vector where entry i corresponds to the ith hyper-

graphlet degree of the node. We term this vector capturing the local wiring around

a node the Hypergraphlet Degree Vector (HDV).

Considering a hypergraph with n nodes, with maximal size of hyperedge l and

with a maximal degree of a node d, where the degree of a node corresponds to the

number of hyperedges that contain it, an upper bound on the complexity of counting

all 1- to k-node hypergraphlets is O(n(ld)k−1).

Lugo-Martinez et al. [204] introduced an alternative definition of hyper-

graphlets in the context of binary classification problems. They define kernels based

on their definition of hypergraphlets and use support vector machines to classify the

proteins. The key difference with our definition of hypergraphlets is that they con-

sider the hypergraphlets of a hypergraph as partial sub-hypergraphs, thus ignoring

some overlaps between hyperedges [204]. A partial sub-hypergraph of a hypergraph

H = (V,E), on a set of nodes A⊂V and a set of hyperedges J ⊂ E, is defined as the

hypergraph HA,J with set of nodes A and set of unique hyperedges

EHA,J = {e∩A|e ∈ J,e∩A 6= /0}. (3.2)

The counting process in [204] is decomposed in two steps. In the first step, they

ignore all hyperedges containing more than four nodes, i.e. J = {e ∈ E|card(e) ≤

4}. Hyperedges with more than four nodes are taken into consideration indepen-

dently in the second step, which decomposes a hyperedge of size n > 4 into the
(n

4

)
subsets of four nodes. Hence, their counting process overlooks an important part of

the hypernetwork’s topological information. This motivates our redefinition of hy-

pergraphlets as a direct extension of graphlets. However, we could not compare the

two approaches, as their implementation is not publicly available, and they recently

agreed with us that their definition needed to be changed to alleviate these issues1.

1Personal communication.



3.3. Materials & Methods 59

3.3.3 Related approaches to analyse hypergraphs’ topology

A classical approach in the literature when studying a hypergraph H = (V,E) is first

to project it to a binary graph. Two often used methods to achieve this are the Clique

Expansion (CE) and the Star Expansion (SE) [205].

The Clique Expansion (CE) transforms each hyperedge of a hypergraph in a

clique. The weight ω associated to an edge between nodes u and v is such that it

minimises the sum ∑e∈E:u,v∈e (ω−ωe)
2, where ωe is the weight associated to the

hyperedge e. As we consider hypergraphs with unweighted hyperedges, from the

weight formula, their CE will be unweighted graphs. As a baseline for comparison

to evaluate hypergraphlets, we use 2- to 5-node graphlet counts on the CE of a

hypergraph.

The Star Expansion (SE) transforms a hypergraph H = (V,E) into a bipartite

graph B. The sets V and E give the two disjoint node sets of B, and the edge set is

defined by {(v,e) : v ∈V,e ∈ E,v ∈ e}. Furthermore, SE associates a weight to each

edge (v,e), corresponding to the ratio of the weight of hyperedge e to its size. We do

not use this method for three reasons. First, it has been shown that the hypergraph

and bipartite graph representations are not statistically equivalent [197]. Second, by

definition, bipartite graphs do not have 3-cycles. This limits the number of features

that would be given by graphlets. Lastly, graphlets have not yet been extended to

handle weighted graphs.

Another approach is to view the hypergraph as a simplicial complex from com-

putational geometry [206]. We define simplicial complexes in Appendix A.1. In

short, a hypergraph can be seen as a simplicial complex where each hyperedge e

is a simplex of dimension n− 1, where n is the number of nodes the hyperedge

connects. To mine simplicial complex, Malod-Dognin et al. [141] recently intro-

duced simplets, an extension of graphlets to simplicial complexes. Hence, one can

compute for each node of a simplicial complex a Simplets Degree Vector (SDV).

As in [141], we limit ourselves to simplets up to four nodes; thus, our SDVs are

32-dimensional. The main difference between the hypergraph and simplicial com-

plex representations is that, with the latter, any subset of the nodes of a simplex is
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also a simplex, which is not the case with hyperedges and can lead to information

loss. Figure 3.3 gives an illustration of this distinction: we observe that in the sim-

plicial complex representation, we lose the information that nodes b and c interact

independently of the triangle a, b, and c. Effectively, simplets are a restriction of

hypergraphlets, and we can define a mapping from HDV to SDV. We include the

simplets statistics in our analysis.
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Figure 3.3: Hypergraph (left) and simplicial complex (right) representations of the same
underlying system. Each closed set corresponds to either a hyperedge of the
hypergraph or a facet of the simplicial complex.

3.3.4 Topological distance

We define a distance measure to compare the wiring patterns of two vertices in a hy-

pernetwork (or network, depending on the model considered) as follows. Consider

a set of proteins P = {p1, p2, . . . , pm} and let M be the matrix representing our data

where row i corresponds to the HDV, SDV or GDV of protein pi. Then, we define

the distance, δ , between two proteins pi and p j as

δ (pi, p j) =

∑
k∈K

(
log(Mik +1)− log

(
M jk +1

)
σk

)2
 1

2

, (3.3)

where K corresponds to the set of orbits considered, Mik denotes the entry of M on

the ith row and kth column, and σk denotes the standard deviation of the distribution

of the kth hypergraphlet (or graphlet) orbit degree across our set of data value. We

apply to M an element-wise log transformation to reduce the impact of very large



3.3. Materials & Methods 61

orbit counts. Note that this distance is a proper metric as it corresponds to the

Euclidean distance between rescaled topological feature vectors (using logarithm

and orbit-specific rescaling).

3.3.5 Linking local structure to function

We explore two ways to evaluate the link between the local structure of a molecular

network and the biological functions of its molecules. First, we cluster the nodes

based on the similarity of their wiring patterns defined in Section 3.3.4, and we

do the enrichment analysis of the resulting clusters (Section 3.3.5.1). Second, we

use CCA to test if biological functions tend to be characterised by specific wiring

patterns (Section 3.3.5.2).

3.3.5.1 Cluster enrichment

We cluster proteins that are similarly wired in a hypergraph, a graph or a simplicial

complex as measured by distance δ (see Equation 3.3) between the HDVs, GDVs

or SDVs of the nodes and test if the proteins within the same cluster share GO

functions.

More precisely, clusters are obtained by using the k-means method [207] based

on the distance between pairs of degree vectors of proteins defined in Equation 3.3

(see Appendix A.2). To account for the randomness in the k-means method, we

run the clustering algorithm 50 times for each tested value of k. For each cluster-

ing obtained, we compute the enrichment of its clusters in biological annotations

for each GO category. We use the Benjamini-Hochberg procedure to correct for

multiple hypothesis testing [208]. We consider a cluster enriched if at least one GO

annotation is significantly enriched in the cluster (p-value < 5%). For each value of

k, we also compute the average of Sum of Squared Error (SSE) and the Normalised

Mutual Information (NMI) [209] across all 50 repeats. SSE gives a measure of how

close proteins within a cluster are on average according to our similarity measure,

and NMI evaluates the stability of the clustering across the 50 runs, i.e. if proteins

are consistently clustered together or not. Then, to choose the optimal number of

clusters, we use ”the elbow” heuristics on the SSE and NMI plots. For the resulting
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number of clusters, we select the clustering giving the highest enrichment percent-

age across the 50 runs of k-means. We test the significance of the enrichment with

random permutation tests: we keep the same number and size of clusters and ran-

domly assign proteins to each cluster and measure the enrichments of the resulting

clusters. We repeat this process 1,000 times and compute the significance.

To see whether the different models capture the same or different but comple-

mentary biological information, we compare the results across models. First, we

quantify the similarity between two models’ clusterings with the Adjusted Mutual

Information (AMI) [209] score. It measures if any pair of proteins are consistently

clustered together or apart in both clusterings, adjusting for chance. Second, we

compute the overlap between two models’ set of enriched GO annotations using the

Jaccard Index [210].

3.3.5.2 Canonical correlation analysis

CCA is used to infer correlations between two sets of features, X and Y . Consider

features X = (X1, ...,Xn) and Y = (Y1, ...,Ym) over the same elements. Then CCA

will identify K pairs (L k
X ,L

k
Y ), called canonical variates, of linear combinations

of features of X and of features of Y , with K = min(m,n), such that the correlations

of L k
x and L k

y are maximal over all k. Each canonical variate is associated a score

corresponding to the correlation between its two linear combinations.

In our case, the elements are proteins, the first set of features corresponds to

the wiring patterns of proteins in networks or hypernetworks, and the second to the

biological functions of proteins from GO. As mentioned above, each protein (node)

has a GDV from the PPI network, a HDV from the hypernetwork, a GDV from the

CE of the hypernetwork, and a SDV from the simplicial complex derived from the

hypernetwork. Hence, we have four matrices of topological features where entries

(i, j) correspond to the jth graphlet’s, simplet’s or hypergraphlet’s orbit degree of

protein i. Also, we associate to each protein a vector of GO–BP annotations. In

this vector, an entry is equal to 1 if the gene is annotated with the corresponding

GO term, and 0 otherwise. Hence, we form a matrix of biological features, where

entries (i, j) correspond to the presence or absence of GO annotation j for protein i.
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We compute CCA for each combination of topological features and biological

annotations to uncover topology-function relationships in the data.

3.3.6 Summary of the analysis

As stated above, our main aim is to examine if modelling the higher order of molec-

ular organisation harbours additional biological information and to demonstrate that

the wiring patterns of biological hypernetworks are strongly linked to the underly-

ing biology.
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Figure 3.4: The overlaps of the protein sets of baker’s yeast (left) and human (right). Left:
3,481 proteins participate in PPIs only, 843 in PPIs and pathways, 618 in PPIs,
pathways and complexes, 989 in PPIs and complexes, while 4 are in pathways
only. Right: 6,640 proteins participate in PPIs only, 6,388 in PPIs and path-
ways, 2,511 in PPIs, pathways and complexes, 469 in PPIs and complexes,
23 in complexes and pathways, while 1,643 are in pathways only and 19 in
complexes only.

We first focus on parts of PPI networks that we know are rich in biological

information: protein complexes and pathways. Not all proteins in a PPI network be-

long to complexes or pathways (see Figure 3.4). Hence to validate our method, we

consider four sets of proteins of the PPI networks: those belonging to pathways in

human (human-pathways), those belonging to pathways in yeast (yeast-pathways),

those belonging to complexes in human (human-complexes), and those belonging

to complexes in yeast (yeast-complexes). For each protein in each of these sets, we
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have four topological signatures: one from the standard graphlets counted on the en-

tire PPI network, one from the hypergraphlet counts in the hypergraph (HG) that we

constructed by using only protein complexes (and equivalently pathways), one from

the simplet counts on the simplicial complex (SC) derived from the hypergraph, and

one from the graphlet counts on the clique expansion (CE) of the hypergraph. For

each protein, we also have biological signatures derived from GO annotations. We

use these as input into the methods described in Sections 3.3.5.1 and 3.3.5.2. The

results of these validations are presented in Sections 3.4.1.1 and 3.4.1.2.

The reason for doing these validations on the sets of data for which we know

that they are enriched in biological information (i.e., pathways and complexes) is

to demonstrate that our new model and method can correctly identify the biological

information. After these validations of the methodology, we use it to perform the

analysis of multi-scale protein interaction network data of yeast and human and

uncover new biological information. In particular, for each species, we construct

a hypergraph that contains all of its PPIs, all of its protein complexes, and all of

its pathways; i.e., nodes are proteins, and hyperedges correspond to PPIs, protein

complexes, and pathways. The results of analysing these hypergraphs with our

methods are presented in Section 3.4.2.

3.4 Results & Discussion

3.4.1 Validation of our methodology

3.4.1.1 Enrichment Analysis

Having computed the topological vectors from all network models (PPI, HG, CE,

and SC) for each protein of each of the four sets of proteins described in Section

3.3.6 (human-pathways, human-complexes, yeast–pathways and yeast–complexes),

we apply the methodology detailed in Section 3.3.5.1 to investigate if similarly

wired proteins have similar functions. Interestingly, the percentage of enriched

clusters is relatively stable as we increase the number of clusters. Hence, any par-

titioning of the proteins based on the local wiring patterns in a network, quantified

by using graphlets, simplets or hypergraphlets, captures the underlying biological
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information (see Figure 3.5). This result highlights the crucial role played by the

way proteins interact in determining protein function without any information about

their sequence, or interacting partners. Furthermore, when examining the cluster-

ings obtained at a specific number of clusters, k (see Section 3.3.5.1 for details on

how k is chosen), we observe that the enrichments (top table in Figure 3.6) are all

statistically significant, except for the one in grey. Importantly, clusters obtained

from models capturing higher-order interactions are more enriched than those ob-

tained from PPI networks. This result shows the importance of higher-order protein

interactions, highlighting their links to the underlying biological information. How-

ever, based on this enrichment analysis, we can not conclude which representation

is best among CE, SC, and HG models.
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Figure 3.5: The panels give the average percentage of clusters enriched with respect to
the total number of clusters for a) human-pathways, b) human-complexes, c)
yeast-pathways, and d) yeast-complexes. The coloured areas around the lines
represent the standard deviation. The colors represent the models from which
the clustering is obtained. We only represent the enrichments with respect to
GO–BP annotations, the findings are similar for the other type of annotations.
The black vertical lines signal the number of clusters selected from the set of
NMI and SSE curves according to the procedure described in Section 3.3.5.1.

To further investigate the clusterings, we compute for each the average shortest

path distances between pairs of proteins belonging to the same clusters (”within-

clusters”) and between pairs of proteins which are in different clusters (”between-

clusters”; see the bottom panel in Figure 3.6). We observe a wider gap between
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HG PPI CE SC
Human-pathways 98.2% (111) 59.2% (120) 100% (120) 100% (117)
Human-complexes 94.3% (105) 40.3% (119) 96.4% (111) 99.1% (112)
Yeast-pathways 100% (71) 45% (80) 100% (74) 100% (76)
Yeast-complexes 100% (51) 53.75% (80) 100% (47) 100% (51)

Human Pathways Human Complexes Yeast Pathways Yeast Complexes0

2

4

6

8

10

12

Av
er

ag
e 

sh
or

te
st

 p
at

h 
di

st
an

ce HG-wc
HG-bc
PPI-wc
PPI-bc
CE-wc
CE-bc
SC-wc
SC-bc

Figure 3.6: The top table presents the maximum enrichment measured across clusterings
obtained with the “optimal” number of clusters (80 for yeast and 120 for hu-
man). The number in parenthesis is the number of non-empty clusters. The
color indicates the statistical significance of the maximum enrichment with re-
spect to random permutation tests: black indicates a significant value, grey a
non-significant one. The bottom panel gives, for each type of model the aver-
age of the shortest path lengths within the clusters (wc) and between clusters
(bc) of the best clustering obtained for GO–BP annotations. The results are
similar for other GO categories.

within-cluster and between-clusters average shortest path lengths for clustering ob-

tained from the higher-order molecular organisation than from clusterings obtained

from PPI networks. Hence, proteins that are topologically similar in the HG, CE,

and SC models in addition to sharing biological functions tend to be at shorter dis-

tances from each other. This result is consistent with the literature on ”guilt by asso-

ciations”, which predicts protein functions from their neighbourhoods in molecular

networks [211].

Finally, we observe that the clusterings obtained from the PPI model are dif-

ferent from those obtained from the three alternative models both in terms of GO

annotations that are enriched and in terms of clustered proteins (see Figures A.1

and A.2 in Appendix). This is because a Jaccard Index close to 0 means that the

sets of the enriched GO terms in the PPI and HG clusterings tend not to overlap.

Also, AMI scores below 0.1 mean that pairs of proteins belonging to the same clus-
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ters in one clustering are typically in different clusters in the other clustering. This

demonstrates that higher-order interactomes uncover new biological information

that cannot be uncovered from the analysis of PPI networks. Also, it demonstrates

the complementarity of the multi-scale representations and that they are capturing

different underlying biological information. However, despite observing relatively

high AMI scores, greater than 0.5, between the clusterings obtained from HG, CE

and SC models (see Figure A.1), the Jaccard Indices measured remain low in com-

parison, with scores below 0.4 in most cases (see Figure A.2). This result indi-

cates that the different representations of higher-order interactome do not capture

the same underlying information.
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Figure 3.7: Canonical correlation score distribution for a) human-pathways, b) human-
complexes, c) yeast-pathways, and d) yeast-complexes. The canonical variates
represented are all statistically significant (p-value≤ 5%) and are sorted by cor-
relation score. The colours represent the models and the topological signatures
from which the canonical variates are obtained.

3.4.1.2 Canonical Correlation Analysis

We investigate the existence of specific topology-function links, i.e. the connection

between specific hypergraphlets (or simplets or graphlets) and GO annotations by

using CCA described in Section 3.3.5.2. We apply it on the same yeast and human
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data used in the clustering and enrichment analysis (Section 3.4.1.1): for each set

of proteins, we compute the CCA between the topology–containing vectors of each

of the associated models (PPI, CE, SC, and HG) and the vector of GO annotations

for each category (BP, MF, and CC).

We observe that each model has a number of canonical variates with correla-

tion scores close to 1 (Figure 3.7), which indicates a strong topology-function re-

lationship in these data that was previously highlighted in the context of economic

network data [135]. In particular, this means that some functions are strongly linked

to specific wiring patterns, and thus, local topology can potentially be used for pre-

dicting protein functions. For that purpose, hypergraphlets of HGs have a strong

advantage over graphlets of PPI networks or of CEs and the simplets of SCs in the

number of canonical variates with a score close to 1, which is 3 to 13 times more

variates with HGs.

In Figure A.3, we take a closer look at the most significant CCA variate ob-

tained between HDVs of the proteins of yeast-pathways and their GO–BP annota-

tions. The variate score of 1.0 links a linear combination of GO annotations to a

linear combination of hypergraphlets orbits. For instance, this means that a gene

annotated with positive regulation of barrier spectrum assembly (GO:0010973) will

likely have a relatively large 2644th orbit degree in the hypernetwork. Why these

specific orbits are linked to these functions is a question that is outside of the scope

of this study, and that needs to be further investigated. We find that the GO terms

identified here are also biologically coherent: each of the GO–BP terms denoted

in blue text in Figure A.3 is annotating at least one protein conjointly with at least

one other annotation, that is also denoted in blue text in A.3, according to QuickGO

[212]. Furthermore, the only remaining annotation, cell cycle arrest (GO:0007050),

has been linked to the MAPK pathway in the literature [213], as have been most

of the other terms [214, 215]. Hence, the entire set of GO annotations presented in

Figure A.1 is biologically coherent, which validates the relevance of the canonical

variate and of our hypergraph-based methodology in capturing functional informa-

tion.
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3.4.2 Analysing multi-scale molecular organisation

To explicitly capture the multi-scale organisation of protein interactions, we model

them by a hypernetwork containing all PPIs, all protein complexes and all biological

pathways as hyperedges (detailed in Section 3.3.6). To assess if the wiring patterns

in our new proteins interaction hypernetwork capture the biological functions of its

nodes, we do the clustering and enrichment analysis (Section 3.3.5.1), as well as the

canonical correlation analysis (Section 3.3.5.2) on these hypernetworks of baker’s

yeast and human using the same HG, SC, and CE models. We compare the results

with those that we obtain by applying the same methodologies to PPI networks.
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Figure 3.8: The panels give the average percentages of clusters enriched with respect to the
total number of clusters for a) human and b) yeast. The coloured areas around
the lines represent the standard deviation. The colours represent the models
from which the clustering is obtained. We only represent the enrichments in
terms of GO–BP annotations. Similar results are obtained for the other types.
The black vertical lines denote the number of clusters selected from the set of
NMI and SSE curves according to the procedure described in Section 3.3.5.1.

In these unifying hypernetwork models of multi-scale molecular organisation,

we observe that clusterings of the proteins based on their topological vectors in a

network, obtained by using simplets or hypergraphlets, capture the underlying bio-

logical information (see Figure 3.8). Furthermore, the clusters obtained from the hy-

pernetwork topology lead to higher enrichments in GO–BP annotations compared

to the one obtained from the PPI topology. This shows that our newly proposed
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Figure 3.9: The top table presents the maximum enrichment measured across clusterings
obtained with the ”optimal” number of clusters (denoted by the black vertical
lines in the top panels) for GO–BP annotations. The number in parenthesis is
the number of non-empty clusters. All enrichments are significant. The bottom
panel gives, for each type of model, the average of the shortest path lengths
within the clusters (wc) and between clusters (bc) of the best clustering ob-
tained for GO–BP annotations. The results are similar for other GO categories
and are not presented here.

model, regardless of the choice of the total number of clusters, k, captures more

protein biological function in its topology than the standard PPI networks. Inter-

estingly, using graphlets on the CE of the hypergraphs leads to poor performances,

with the percentage of clusters enriched consistently close to zero. This result mo-

tivates further the need for statistics, such as hypergraphlets and simplets, that can

capture the multi-scale organisation of proteins interactions. Due to the poor re-

sults, we exclude the CE model from the rest of our analysis. On a different note,

we observe that our hypergraphlets perform better than simplets in the sense that we

obtain a higher percentage of clusters enriched, on average. This observation sug-

gests that taking into consideration sub-interactions (e.g. the interaction between b

and c in Figure 3.3 within the hyperedge {a,b,c}) is necessary to mine our unified

hypernetwork.

When choosing the number of clusters, k, according to the criteria detailed

in Section 3.3.5.1, we observe that all enrichments are statistically significant and

that the HG models allow for an increase of over 15% in the number of enriched
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Figure 3.10: The panel represents the results of the comparison of the clusterings ob-
tained with the different models. We compute the Adjusted Mutual Infor-
mation (AMI, left heatmaps) between the clusterings and the Jaccard Index
(JI, right heatmaps) between the sets of enriched GO–BP terms for human
(top heatmaps) and yeast (bottom heatmaps).

clusters when compared to the PPI networks (see the table in Figure 3.9). This

finding underlines the link between multi-scale interaction patterns and biological

functions. Interestingly, when investigating the clusters, we observe that a majority

of the proteins in the non-enriched clusters only have reported PPIs, but not any

associated pathways or complexes. This observation holds for 59% of the proteins

in the hypernetwork of yeast and 38% of the proteins in the hypernetwork of human.

This might be due to the incompleteness of the pathways and protein complexes

data. Our results indicate that when more complete data on complexes and pathways

become available, our methodology will be able to extract additional biological

information.

We observe that proteins clustered using topological features derived from rep-

resentations of the multi-scale molecular organisation tend to also be closer in terms
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of shortest path distances compared to those obtained by clusterings based on the

topology of PPI networks (see the bottom panel in Figure 3.9). Interestingly, most

proteins clustered together in the HG and SC models are direct neighbours or second

neighbours. Hence, the fact that we obtain enriched biological functions in those

clusters is consistent with empirical evidence showing that 70-80% of interacting

proteins share at least one function. Those evidences were the motivation for the

majority rule often used in the literature for functional prediction [211].

Finally, we observe that the clusterings obtained from the PPI models are dif-

ferent from those obtained from the HG and SC models both in terms of GO anno-

tations that are enriched, with a Jaccard Index below 0.2, and in terms of similarity

of clusters, with an AMI below 0.4 (see Figure 3.10). This confirms that our multi-

scale model is not equivalent to the standard PPI network and uncover additional

biological information complementary to that of the PPI network. When consid-

ering the human hypernetwork, we observe that the clusterings obtained from the

HG and SC models share a relatively high number of enriched GO–BP annotations

with JI score around 0.8. However, this observation does not hold with the yeast

hypernetwork. This result confirms further that despite the link between the two

models discussed in Section 3.3.3, they are not equivalent.
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Figure 3.11: Canonical correlation score distribution for human hypernetwork. The canon-
ical variates represented are all statistically significant (p-value≤ 5%) and are
sorted by correlation score. The colours represent the model and the topologi-
cal signatures from which the canonical variates are obtained: HG in blue and
PPI in orange.

Using CCA (Section 3.3.5.2), we observe that each model has high scoring
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canonical variates, which indicates that some functions are strongly linked to spe-

cific wiring patterns (see Figure 3.11). For that purpose, hypergraphlets of our new

HG models have an advantage over graphlets of PPI networks and simplets of the

SC models in the number of canonical variates with high correlation score: it has

over 300 canonical variates with a score greater than 0.9 compared to only 10 for

PPI networks and 4 for SCs. This result indicates that the HG model’s local wiring

patterns are more correlated with the underlying biology that those of the PPI net-

works.

Finally, we use the clusterings to investigate the potential of our newly pro-

posed models in conjunction with our hypergraphlets to predict protein functions.

As demonstrated above, we identified clusters of proteins with significantly en-

riched GO annotations. We use these clusters to predict the functions of proteins.

For each GO category, we identify two disjoint sets of proteins in each of our hy-

pernetworks: the set of proteins that are experimentally annotated with at least one

of the enriched GO terms in their cluster (on which the enrichment computations

are based) and the set of proteins that have some predicted annotations in the GO

database.

Figure 3.12: Percentages of proteins that have at least one of the enriched terms of their
clusters in their set of predicted GO annotations (obtained from the GO
database [192]). The values correspond to the number of such proteins out
of the number of proteins that have at least one putative annotation in the GO
database and are not experimentally annotated with any of the enriched terms
of their clusters.
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GO ID Proteins Symbol
GO:0006334 HIST1H2AJ
GO:0001580 LOC107987462; LOC107987425; LOC102725035
GO:0006364 LOC101929876
GO:0035987 MIR711
GO:0051292 MIR4260
GO:0016579 MIR6764
GO:0030199 MIR3606
GO:0030216 KRTAP4-7
GO:0006997 LOC101060521; MIR1181
GO:0052695 UGT2A2; LOC102724788; GUCY2EP

Table 3.2: Top 10 predictions of GO–BP annotations. The bold font highlight predictions
validated by litterature curation.

First, we consider the second set and investigate how many of those proteins

have at least one of the enriched terms of their cluster as their predicted GO anno-

tation [192]. For GO–BP, this set contains 11,686 proteins for human (4,161 for

yeast). For GO–MF, it contains 7,243 proteins for human (3,586 for yeast). For

GO-CC, it contains 6,589 proteins for human (3,510 for yeast). We show that out

of these proteins, about 5% for yeast and 15–23% for human have been putatively

annotated in GO with at least one of our enriched functions in their clusters (see

Figure 3.12), which validates our approach.

Second, we focus on the proteins of the hypernetworks that are unannotated in

GO database (this corresponds to 994 proteins for human and 97 proteins for yeast)

and investigate the GO–BP annotations we predict for them. We predict function for

each of these proteins by associating it with the enriched experimentally obtained

GO term that annotates the most proteins in its cluster. We survey the literature to

validate our predictions2 for human (see Table 3.2, the predictions are sorted by sta-

tistically significance of the enrichment). We predict that HIST1H2AJ is involved

in nucleosome assembly (GO:0006334), which is confirmed in the literature [216].

For microRNA mir–3606, we predict a role in collagen fibril organisation

(GO:0030199). Collagen plays a crucial role in cell adhesion, which can involve

integrin [217, 218] and mir–3606 has been linked to integrin in the literature as

2All predictions are available online at http://www0.cs.ucl.ac.uk/staff/natasa/hypergraphlets/
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it has been suggested that mir–3606 can bind to ITGA4 (integrin subunit alpha 4)

[219]. We propose that LOC101929876 (40S ribosomal protein S26) is involved in

rRNA processing (GO:0006364), which is corroborated by the Reactome database

in which the protein is associated with a major pathway of rRNA processing in the

nucleolus and cytosol [7]. We also find that microRNA mir–6764 is linked to pro-

tein deubiquitination (GO:0016579), which is backed by the Reactome database in

which the microRNA is associated to the deubiquitination pathway [7]. We further

predict that KRTAP4-7 is linked to keratinocyte differentiation (GO:0030216). Re-

actome database [7] links KRTAP4-7 to the pathway responsible for keratinisation

(GO:0031424) which is a child term of keratinocyte differentiation in the Gene On-

tology [192]. We finally find that UGT2A2 is involved in cellular glucuronidation

(GO:0052695) which is confirmed by the fact that UGT2A2 is a member of the

UDP glucuronosyltransferase family which is responsible for the process of glu-

curonidation [220].

These results confirm the ability of our hypergraphlets to predict biological

functions of proteins from the wiring patterns in our novel model capturing multi-

scale organisation of proteins in a cell.

3.5 Conclusion

We highlight the importance of considering the higher-order organisation of protein

interactions in conjunction with the standard PPI networks. We propose a novel

methodology, hypergraphlets, to quantify the local wiring patterns of hypergraphs.

We apply it to biological hypernetworks representing protein complexes and path-

ways of yeast and human and demonstrate a strong link between hypernetwork

structure and the function of the proteins. Our novel methodology can mine the bi-

ological information hidden in the multi-scale architecture of the molecular organi-

sation. Furthermore, our analysis highlights the superiority, in terms of uncovering

the underlying biology, of our multi-scale model when compared to the standard

PPI networks. Additionally, we demonstrate that our new hypernetwork model,

combined with our hypergraphlets, can be used for functional predictions.
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Despite a simple, functional prediction approach, we obtain promising results

when using hypergraphlets on our new multi-scale model for functional predictions.

It would be interesting to train an advanced machine learning model, such as random

forest, using HDVs as features to improve predictions.

Finally, we have demonstrated that the union of networks capturing the multi-

scale molecular organisation is strongly linked to the underlying biology of the

molecules. However, as discussed in the previous chapter, the simple union of

networks give the same weights to each network which, precisely, here blur lines

between the different scale of interactions. In the following chapters, we explore in-

tegrative approaches that preserve the hierarchical nature of the multi-scale protein

interactome. Our methods focus primarily on identifying pathological molecular

mechanisms to understand and classify diseases better.



Chapter 4

Multi-scale protein interactome as

prior knowledge to unveil new

disease, pathway, and gene

associations

In Chapter 3, we have demonstrated that the multi-scale protein interactome cap-

tures strong biological signals even with a simple model that does not explicitly use

the hierarchical structure of the multi-scale protein interactome.

In this Chapter, we utilise the hierarchical links between protein and biolog-

ical pathways as prior knowledge to design a Visible Machine Learning model.

Specifically, we propose a neural network with a structure based on the multi-scale

organisation of proteins in a cell into biological pathways to predict the diagnosis of

patients based on differential gene expression. Importantly, through the analysis of

our trained model, we uncover disease–disease, disease–gene and disease–pathway

associations. The results presented in this chapter are published in Gaudelet et al.

[221].

4.1 Introduction
Symptoms and affected tissues often describe a disease. However, to give a definite

diagnosis, physicians often need to analyse patient samples (e.g., blood samples, or
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biopsies) for typical disease indicators, commonly referred to as disease biomark-

ers. These may include dysregulated genes, or pathways [222, 223]. Taking into

consideration the history of a patient’s past and present conditions identifying ge-

netic predispositions, as well as considering associations between diseases, aid in

achieving accurate diagnostics and treatments [224]. By also taking advantage of

the increasing availability of large scale molecular data, precision medicine aims

at improving the understanding of the molecular base of diseases on an individual

basis, as well as the relationships between different conditions [225, 226]. The ben-

efits from such work are multiple and include drug re-purposing and identification

of new disease biomarkers to improve treatments and diagnoses.

Many studies have investigated disease–gene and disease–pathway associa-

tions to improve diagnoses [227, 228, 229, 230]. For instance, Zhao et al. [229]

propose a ranking of disease genes based on gene expression and protein interac-

tions using Katz-centrality. Hong et al. [230] design a tool that identifies signif-

icantly disrupted pathways by comparing patient gene expression against controls

collected from other experiments. Cogswell et al. [231] identify putative gene and

pathway biomarkers through change in miRNA in Alzheimer’s disease. In specific

cancers, Abeel et al. [227] use support vector machines and ensemble feature se-

lection methods to select putative gene biomarkers.

A key issue is that most of these studies consider diseases in isolation, i.e. com-

paring patients having a disease of interest to healthy individuals; thus, the predicted

biomarkers could be shared between various diseases. This limits the discrimina-

tive potential of such studies for accurate diagnoses. Indeed, network medicine

has shown that diseases can share significant molecular background, as evidenced

by numerous studies based on patient historical records [1, 224, 232], biological

knowledge of the diseases [225, 226, 165], or patient gene expression profiles [46].

For instance, Goh et al. [225] build a disease network, which connects diseases that

share at least one gene which, when mutated is linked to both conditions. Lee et

al. [226] construct a disease network of metabolic diseases, connecting pairs of dis-

eases for which associated mutated enzymes catalyse adjacent metabolic reactions.
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Hidalgo et al. [1] take a different approach by building a disease network based on

disease comorbidities, i.e. two diseases are connected if they tend to co-occur sig-

nificantly in the patient populations. They used Medicare records of elderly patients

to build the network. He et al. [165] propose PCID (Predicting Comorbidity by In-

tegrating Data), an approach to predict disease comorbidities by aggregating disease

similarity scores derived from different data including protein–protein interactions

(PPIs), pathways, and functional annotations.

Sánchez-Valle et al. [46] define a disease network, named the Disease Molec-

ular Similarity Network (DMSN) based on patient’s differential expression profiles.

In their study, the DMSN is generated using positive and negative relative molecular

similarities (RR) to measure disease similarity and dissimilarity, respectively, that

is then interpreted as an estimate of risk. First, a patient-patient similarity network

is generated based on patients’ differential expression profiles similarities. Next,

using the relative similarity score, diseases are related to each other. The resulting

network is directed, and each edge is associated with a positive or negative label

indicating either an increased or decreased risk of developing the target disease if

the patient has the source disease. The underlying assumption is that having a given

disease can increase the risk of developing a disease characterised by a similar gene

expression profile.

In these various approaches, a key issue is that either a single data source is

used, such as disease–gene mutational data [225], or no new biological knowledge

about a specific disease could be derived from the results (e.g., PCID [165]).

4.2 Contributions

In this work, we propose an integrative framework based on artificial neural net-

works (NN) to predict disease–disease links, as well as disease–pathway and

disease–gene associations. We train the model to predict patients’ diagnoses based

on differential gene expression. The NN’s structure is designed to mimic the cellular

multi-scale functional organisation by integrating gene–pathway annotations. This

approach follows on from the Visible Machine Learning body of work introduced
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in Section 2.3.

We show that our framework achieves good predicting performances on our

dataset. By analysing the trained NN, i.e. the underlying weight matrices, we show

that we can extract biological knowledge relevant for each disease. Specifically,

we use the trained NN to predict novel disease–pathway and disease–gene links

and from those predictions we extract disease similarity score used to identify pu-

tative comorbidities. We show that our predictions are biologically relevant against

established ground-truths and verify the top predictions through manual literature

curation ensuring that the sources do not use the same data, to mitigate the risk of

argument circularity.

4.3 Material & Methods

4.3.1 Datasets

The base data used in this project was provided by our collaborators Sanchez-

Valle et al. [46]. It consists of multiple datasets of gene expressions captured by

micro-array technology [233]. The datasets are downloaded from Gene Expression

Omnibus (GEO, [234]) and ArrayExpress [235] databases. Each dataset contains

measurements from healthy (controls) and affected (patients) subjects. For a given

dataset, the measurements originate from bulk samples extracted from the same

tissue in each subject. Not all datasets use the same tissue for measurements, as

diseases do not necessarily affect the same tissue. Each patient is diagnosed with a

single disease. For comparisons, the data is normalised by using the frozen robust

multiarray procedure [236] to remove experimental bias. Furthermore, to remove

tissue effects, each patient sample is normalised against all the control samples of its

original dataset using the Limma method [237]. Up to this point, the data is identical

to those used to derive the DMSN network [46]. Then we use the corrected p-values

output by Limma to define, for each patient, a vector with size corresponding to the

number of genes and in which the ith entry is equal to 1, −1, or 0 depending on

whether the ith gene is significantly (with 5% cutoff) over-, under-, or normally ex-

pressed, respectively, for that patient. Additionally, we exclude patients that have
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no significantly dysregulated genes, as we cannot learn anything from them.

The set of diseases is curated by hand for associations with Disease Ontol-

ogy codes [238], standard ICD9 and ICD10 codes, MeSH terms, and OMIM codes

[239]. Some of the datasets come from studies investigating subtypes of diseases

that are studied by projects linked to other datasets. Based on the number of pa-

tients in each study, either these datasets were merged with the more global disease

or the patients associated with the more global disease were dropped from the study.

Specifically, we drop the global disease if the subtype has many more patients as-

sociated with it and merge otherwise. Finally, we exclude diseases that have less

than 10 associated patients to capture disease heterogeneity in the final dataset and

to have sufficient data for each disease to split in a training and testing set.

Pathway annotations were collected from Reactome database [240] (accessed

December 2018). Only the lowest pathways in the hierarchy are considered to avoid

dealing with pathway interactions (i.e. pathways containing other pathways). The

hierarchy of pathways defined in Reactome could be used to define additional layers

in the network. This was not tested as we expect the low number of pathways on the

highest level to constrain the overall architecture too much for our number of target

classes. Of those pathways, only the ones that have a Traceable Author Statement

(TAS) are kept. In total, we consider 1,708 pathway annotations.

The final dataset contains 4,788 samples (patients) diagnosed by one of 83

diseases (see Appendix Table B.1). In total, 20,525 genes have their expressions

measured. However, only a subset is used as input to our method described in the

following Section, as we restrict ourselves to genes associated with at least one

pathway, which leaves 9,247 genes.

4.3.2 Neural network based data–integration framework

We propose a neural network (NN) predicting a patient diagnosis based on differ-

ential gene expression. The structure of the neural network is based on molecular

organisation, more specifically gene–pathway annotations downloaded from Reac-

tome (see Figure 4.1). We integrate molecular organisation data into our model to

reflect the idea that complex diseases, such as cancer, can be the results of the per-
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turbations of groups of genes, as opposed to a single gene. Using Reactome data

allows us to incorporate prior knowledge into our model in the form of biologically

meaningful groupings of genes.

A feed-forward neural network can be expressed as a series of matrix multi-

plications interleaved with non-linear functions, formally the output Y of a neural

network with n−1 hidden layers can be written as

Y = fn (Wn fn−1 (. . . f1((W1X)))

where X represents the input data, Wi the weights of layer i, and fi(·) the non-

linear function applied to the output of the ith layer. The optimization problem can

be written as the minimization of the loss function L = g
(
Ŷ,Y

)
, where Ŷ is the

objective, or ground truth, and g(·) is a predefined function.

Here, we use the softmax function[183] as the last non-linear function of the

NN (common choice for multiclass classification problems) and the hyperbolic tan-

gent non-linear function for hidden layers to allow a hidden unit to have values lying

in [−1,1] to represent up- and down-regulations. We use the classical cross-entropy

function to define the loss function. Our neural network architecture has only one

hidden layer capturing gene–pathway links. Hereafter, we refer to this model as

GPD (for Gene–Pathway–Disease). Multinomial logistic regression (MLR) and the

proposed GPD architecture can be written as

Y1 = s
(
W1X

)
(4.1)

Y2 = s
(
W2

2 tanh
(
W2

1X
))

(4.2)

where s is the softmax function and tanh denotes the hyperbolic tangent. Matrices

X and Ŷ represent our data. Each column of X corresponds to the differential gene

expression of a patient, and each column of Ŷ corresponds to a patient’s diagnosis

(the prediction of which is the objective of the framework). W1 ∈Rnd×ng and W2
2 ∈

Rnd×np correspond to fully-connected layers. The layer corresponding to W2
1 ∈

Rnc×ng represents biological pathway membership of the genes, i.e. the trainable
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weights of the matrix correspond only to entries (i, j) where gene j is part of the ith

pathways.
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Figure 4.1: Example of neural network architecture. For the first layer, the connections are
defined by biological information, i.e. a unit representing a gene is connected
to all the biological pathways that the gene is involved in. We do not add any
prior knowledge on the last layer, thus it is fully connected.

MLR and GPD have a different number of parameters (or free weights):

(573,314) for MLR and (137,838) for GPD. Note that, due to this imbalance, we

do not expect GPD to outperform MLR in the diagnosis prediction task.

To train both GPD and MLR, we first perform a 10-fold cross-validation to fix

the number of training epochs. To fix the number of training epochs, we compute

the average number of epochs at which the test loss is the smallest across the runs

(see Figure 4.2). As the dataset is imbalanced, we use stratification to split the data,

ensuring that at least one patient per disease is in the test set. Using this number of

epochs, we perform another 10-fold cross-validation to evaluate the performance of

our models. We use the Adam optimizer [241] with learning rate 0.01 and the layer

weights are initialized to small values using the initialization process proposed by

He et al. [242]. We investigated the addition of classical regularisation techniques –

L1, L2, and dropout regularisation – as a mean to reduce the capacity of the model
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to overfit. We found that, given our setting, the performances were better without

any regularisations (see Table 4.1).
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Figure 4.2: Train and test loss curve for the MLR model (left) and GDP model (right) with
respect to the number of epochs during the cross-validation. The vertical black
line indicates the number of epochs which give the lowest loss.

hyperparameter 10 0.1 0.01 0.001 0
L1-regularization 2026±4.3 24.5±0.046 6.39±0.003 2.71±0.047 1.09±0.066
L2-regularization 4.42±4.8e−7 4.38±0.012 3.48±0.032 2.02±0.026 /

dropout ratio 0.25 0.5 0.75 0.9 0
dropout 1.14±0.121 1.10±0.130 1.12±0.086 1.10±0.081 /

Table 4.1: Results of cross-validation to fix regularisation hyperparameters (L1-, L2-, or
dropout regularisations). The scores correspond to cross-entropy loss. The best
results are obtained with no regularisation (score in bold).

The neural networks are implemented with Tensorflow [243].

4.3.3 Predicting disease–disease, disease–pathway, and disease–

gene relationships

To identify associations between diseases and genes or pathways, we perform sen-

sitivity analysis [244].

Formally, the local variations δ f of a single-argument function f due to a

change δx = x− x0 in input can be approximated with the first order Taylor expan-

sion as

δ f (x) =
d f
dx

(x0)δx+O(x2).

Thus, the magnitude of the local variations of f with respect to perturbation δx

from x0 is given by |d f
dx (x0)|. Based on this approximation, we extract from each
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neural network a score between an entity represented by a unit of the neural net-

work (e.g., a pathway, or a gene) and each disease (output unit). Specifically, for

a neural network NN, we denote nni : [0,1]ni 7→ Rno the function corresponding to

the operation of a neural network NN from the ni outputs of layer i to the final no

logits of the neural network, i.e. scores before softmax. E.g., for GPD, we have

nn1
2(x) = W2

2 tanh
(
W2

1x
)
. Then, the association score si, j,k between the jth output

unit of layer i, denoted ui
j, of neural network NN, and disease k is given by

si, j,k =

∣∣∣∣∣
[

∂nni

∂ui
j
(x0)

]
k

∣∣∣∣∣ ,
where the reference point is chosen as the null vector, x0 = 0, which corresponds

implicitly to a healthy state in our formulation.

The association score between disease d and unit u (representing a gene, or

a pathway) is thus measured by the intensity of the local variation of the output

unit associated with d with respect to perturbation of u. Intuitively, this score

measures how the prediction score of disease d is affected by dysregulation of a

gene/pathway: we quantify the change in one disease score induced by a dysregu-

lation in the gene expression or pathway activation. We test this scoring approach

for the prediction of disease–gene and disease–pathway associations. In particular,

we rank disease–gene and disease–pathway pairs based on this score and test if the

score correlates with known associations through a Precision-Recall and Receiver

Operating Characteristic (ROC) analysis. We focus on manual validation of the

top-scoring associations.

Based on this score, we represent each disease by a set formed by the kgenes

highest scoring genes and a set containing the kpathways highest scoring pathways.

We then score disease–disease associations using the Jaccard Index of their sets.

The Jaccard Index of two sets S1 and S2 is defined as |S1∩S2|
|S1∪S2| , where | · | represents

the cardinality of a set. Following on from a similar approach used in DisGeNET

[245], we interpret those associations as comorbidities. The number of highest

scoring pathways and genes considered is set to 150 and 300, respectively, as those
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numbers gave the best results.

4.4 Results & Discussion

4.4.1 Classification performances

To validate the relevance of our model, we verify that the classification perfor-

mances are at least on par with competing methods: MLR, Random Forest (RF),

Bernoulli Naive Bayes (nB), and Support Vector Machine (SVM) algorithms (we

use the implementation available through the scikit-learning python package [246]).

We perform 10-fold cross-validation for the algorithms to fix the hyperparameters

(numbers of trees 100, smoothing parameter 0.001 and penalty parameter 100, re-

spectively) and retain the best performing models in terms of cross-entropy loss (the

objective function of the neural networks).

We evaluate performances by computing 3 different scores: cross-entropy loss

(CEL), micro-average and macro-average precision (Preµ and PreM). Details of

each score are given in Appendix B.1.1.

Algorithm CEL Preµ PreM

GPD 1.09±0.06 0.80±0.01 0.71±0.02
MLR 1.01±0.07 0.84±0.01 0.76±0.01
RF 1.56±0.24 0.80±0.01 0.70±0.03
nB 10.63±0.55 0.66±0.01 0.60±0.02
SVM 1.42±0.04 0.72±0.02 0.59±0.02

Table 4.2: Performances of different classifiers in terms of cross-entropy loss (CEL),
micro- and macro-average precisions (Preµ and PreM, respectively). Each score
is computed across the 10-fold cross-validation and we provide the standard de-
viation. Bold scores highlight the best scores for each metric.

We observe that the neural networks; MLR and GPD, give better, or at least

on-par, performances when compared to RF, nB, and SVM classifiers as measured

by our three metrics (see Table 4.2). This observation justifies the relevance of

our GPD model. The best model appears to be the multinomial logistic regression

(MLR), which corresponds to the most complex neural network model in terms

of the number of parameters (or degree of freedom) since MLR has ∼ 4 times

more parameters than GPD. This analysis shows that using biological knowledge
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to guide the structure of neural networks, in the limit of the models proposed, does

not improve classification performance compared to the multiclass logistic regres-

sion (MLR) and only offers slight improvement when compared to a RF classifier

(see Table 4.2). However, we show, in the following Sections, that the trained GPD

models can be more successfully exploited than MLR to extract biological informa-

tion. Note as well that the gene–pathway information on which GPD relies is both

noisy and incomplete, as biological data often is, and those performances should

improve as knowledge improves.

Hereafter, we consider for each model (GPD and MLR) the trained NN that

gave the lowest cross-entropy loss during the 10-fold cross-validation.

4.4.2 Our GPD model uncovers molecular mechanisms of dis-

eases

To uncover molecular mechanisms of disease, i.e., genes and pathways that are as-

sociated with specific diseases, we extract predictions from MLR and GPD using

the approach described in Section 4.3.3. We test the performance of our disease–

pathway and disease–gene associations predictions by comparing against estab-

lished databases. We investigate the top predictions of the GPD model through

a manual search of the literature.

4.4.2.1 Predicting disease–gene associations

For each model, we compute disease–gene association scores as described in Sec-

tion 4.3.3, and we test the validity of our predictions against DisGeNET database

[245]. We compare the entire set of predictions against two baselines (see Appendix

B.1.2 for details): the Frequency of Differential Expression (FDE) and the approach

introduced by Zhao et al. [229] for de novo disease–gene association prediction

(Katz).

We use precision–recall and ROC curves to evaluate the performance of our

approach and compute the areas under the curves (see Figure 4.3). Interestingly, we

observe that the FDE score is a poor predictor of disease–gene associations. We fur-

ther observe that GPD is the best performing models for this task with Katz coming
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second. The relatively low overall performances can be partially attributed to the

incompleteness of the reported disease–gene associations in DisGeNET. To corrob-

orate this hypothesis, we search the literature for support for the top 10 predicted

disease–gene associations by the best performing model, GPD (see Table 4.4). Note

that none of those associations is reported in DisGeNET.
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Figure 4.3: Precision-recall curve and ROC curve of our predictions for disease–genes as-
sociations.

Disease Gene Literature support
Asthma UBB
Schizophrenia RHOA PMID:16402129
Alzheimer’s disease FGF23 PMID:26674092
Autistic disorder FGF20 PMID:19204725
Prostate cancer RPS27A PMID:15647830
Amyotrophic lateral sclerosis PSMD13
Amyotrophic lateral sclerosis CASP3 PMID:11715057
Chronic obstructive pulmonary disease SKP1 PMID:23713962
Autistic disorder PSMB2
Irritable bowel syndrome PSMA1 PMID:28717845

Table 4.3: Top 10 disease–gene predicted by GPD.

We are able to find literature support for 70% of the top 10 predicted disease–

gene associations (see Table 4.3). Furthermore, we find indications that some of

our top-scoring, non-validated predictions could be relevant, such as the associa-

tions of asthma with UBB and amyotrophic lateral sclerosis (ALS) with PSMD13.

Ubuquitin B (UBB) belongs to the ubiquitin-proteasome (UPS) and it is known

that aberration in the UPS is responsible for inflammatory and autoimmune dis-
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eases such as asthma[247]. Moreover, ALS onsets occur typically after age 50 and

manifest partially through muscle weakness. PSMD13 is linked to aging [248] and

high expression of the gene has been found in skeletal muscle of athletes [249],

suggesting that under-expression could be a sign of muscle weakness.

These results validate the relevance of our framework for de novo disease–gene

association prediction and confirm the incompleteness of DisGeNET.

4.4.2.2 Predicting disease–pathway associations

For our GPD model, we compute disease–pathway association scores as described

in Section 4.3.3, and we test the validity of our predictions by comparison with CTD

database [250]. As a baseline, we consider disease–pathway scores corresponding

to the average FDE (AFDE) of genes within the pathway for patients having the

disease.

We evaluate the results as done previously for disease–gene associations (see

Figure 4.4). We observe that GPD convincingly outperforms AFDE. The seemingly

poor performances of both approaches can partially be attributed to the incomplete-

ness of CTD database. To test this hypothesis, we search the literature for support

for the top 10 disease–pathway associations predicted with our GPD (see Table 4.4).

Note that none of these predicted associations is reported in CTD database.
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Figure 4.4: Precision-recall curve and ROC curve of our disease–pathways associations
predictions.

We find literature support for 7 out of the top 10 predicted disease–pathway

associations (see Table 4.4). Furthermore, we find indications that some of our
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Disease Pathway R-HSA- Literature support
Autistic disorder 5653890
Irritable bowel syndrome 532668 PMID:20338921
Irritable bowel syndrome 391906 PMID:16835707
Type 2 diabetes mellitus 499943 doi:10.2337/diabe-tes.51.2007.S363
Asthma 391906 PMID:8603274
Schizophrenia 71288 PMID:22465051
Major depressive disorder 8934903 PMID:27063986
Type 2 diabetes mellitus 8939245 PMID:19667185
Schizophrenia 5683371
Sjogren’s syndrome 389661

Table 4.4: Top 10 disease–pathway predictions derived from GPD.

top-scoring, non-validated predictions could be relevant, such as the association of

autistic disorder with the lactose synthesis pathway (R-HSA-5653890) and the asso-

ciation of schizophrenia with pathway R-HSA-5683371 linked to microphthalmia.

The lactose synthesis pathway (R-HSA-5653890) contains three genes: LALBA,

SLC2A1, and B4GALT1. All of those genes might be associated with autistic dis-

orders. One patented method to detect autistic disorder (US20140349977A1) in-

cludes LALBA as one of the genes of interest. SLC2A1 mutation has been reported

in patients diagnosed with autism [251]. Finally, B4GALT1 has been linked with

developmental disorders [252]. The pathway R-HSA-5683371 is linked to the eye

disease microphthalmia. It is known that schizophrenia is linked to eye abnormal-

ities [253]. Among the 28 genes involved in that pathway, 12 have been linked to

the disease in the literature (GOT2, PDHA1, DLD, GCSH, DLAT, PDHB, DAO,

OGDH, DHTKD1, GNMT, DDO, PRODH2).

These results show the relevance of our framework for de novo disease–

pathway associations prediction despite relatively low retrieval scores against the

ground–truth.

4.4.3 Our GPD model predicts disease–disease relationships

We rank disease–disease pairs based on the score described in Section 4.3.3 and test

our results against a high confidence comorbidity disease network obtained from a

large cohort study by Hidalgo et al. [1]. We compare our method against DMSN
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network [46], restricted to our set of diseases, and three alternatives baselines. For

the first alternative, we compute disease–disease association score using our ap-

proach defined in Section 4.3.3 on the trained MLR network, representing each

disease by the top 300 highest scoring genes (which gave the best results based on

grid search). The last two baselines associate to each disease–disease pair a Jaccard

Index score based on 1) the set of genes associated to each disease in DisGeNET

[245] and 2) the set of pathways associated to each disease in CTD database[250].

The results of the comparison are presented using a precision–recall curve (see Fig-

ure 4.5).

Figure 4.5: Precision–recall (top) and ROC (bottom) curves of the test against the disease
co-morbidity network built by Hidalgo et al. [1].

We observe that our approach outperform convincingly the other approaches

in the task of retrieving existing comorbidity links between diseases with over 10%

increase compared to DMSN and 30% improvement over DisGeNET in terms of

area under the precision–recall curve (auprc). These results strongly support our

methodology. The scoring based on disease–gene is performing better than disease–

pathway, hence we investigate the top 10 scoring disease–disease associations de-

rived from it (see Table 4.5).

We present and discuss below literature support for the predicted associations

between the diseases.

Atrial fibrillation has been linked in the literature to thyroid disease [254]

which is known to be comorbid with vitiligo [255]. Atrial fibrillation and pe-

ripheral vascular disease are well known comorbid conditions [256]. Alcoholism
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Disease 1 Disease 2
Atrial fibrillation Vitiligo
Atrial fibrillation Peripheral vascular disease
Alcoholic hepatitis Osteosarcoma
Rhabdoid cancer Medulloblastoma
Cornelia de Lange syndrome Vitiligo
Peripheral vascular disease Vitiligo
Atrial fibrillation Osteosarcoma
Leishmaniasis Alcoholic hepatitis
Sotos syndrome Vitiligo
Follicular lymphoma Osteosarcoma

Table 4.5: Top 10 disease–disease links predicted using our approach based on the trained
GPD.

has been linked to the onset of some cancers notably implicating the transcription

factor Nanog which itself has been linked to osteosarcoma [257]. Additionally,

a drug used to treat alcoholism, Disulfiram, has recently been proposed as a po-

tential treatment for osteosarcoma [258]. These observations together suggest a

shared molecular background for the two conditions. Rhabdoid cancer is a rare

form of aggressive cancer affecting young children and with very poor prognos-

tic, which makes it challenging to evaluate comorbid conditions. However, rhab-

doid cancer is frequently mistaken for medulloblastoma, indicating some similarity

[259]. We found no evidence in the literature supporting a connection between the

rare Cornelia de Lange syndrome and vitiligo. Some studies have observed signif-

icant comorbidity between vitiligo and psoriasis, and the combination of the two

has been linked to cardiovascular diseases, which include peripheral vascular dis-

ease [260, 255]. Atrial fibrillation and cardiac complications have been observed

as the result of osteosarcoma [261, 262]. Leishmaniasis and alcoholic hepatitis are

an unlikely comorbid connection since it would require a patient both to have been

infected by parasites of the Leishmania type and have had excessive alcohol intake.

This suggests that the interpretation of links based on similarity as co-morbidity can

be hasty. However, both disease affects the liver and leishmaniasis has sometimes

been misdiagnosed for cirrhosis [263], which suggests that the two diseases might

share some similar molecular processes that we would be capturing here. A case
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of co-occurrence of Sotos syndrome and vitiligo has been reported in the medical

literature [264]. It has been postulated that non-Hodgkin’s lymphoma (which in-

clude follicular lymphoma) and osteosarcoma share underlying mechanisms [265].

Additionally, miR-202 has been identified as a potential tumour suppressor for both

conditions [266].

Through this analysis, we have shown that most predicted pairs have either

been observed co-occurring or can be connected through underlying mechanisms,

thus validating our approach.

4.5 Conclusions

In this study, we propose a multi-scale neural network based framework that in-

tegrates gene expression data associated with diseases and gene–pathway infor-

mation. Our integrative framework allows for simultaneously uncovering novel

disease-disease associations and molecular disease mechanisms from patient gene

expression profiles through the analysis of trained neural networks. We show that

GPD achieves good diagnosis prediction on our dataset showing the validity of our

integrative process. Furthermore, we show that the associations predicted from the

trained models are biologically meaningful and supported by the literature, thus val-

idating our approach and motivating the use of the multi-scale protein interactome

as prior knowledge for Visible Machine Learning models.

While the current knowledge about these diseases supports our uncovered

molecular disease mechanisms, a next step would be to identify among the pre-

dicted genes and pathways suitable biomarkers and drug targets that could be used

to improve diagnosis, prognosis, and treatment. We leave this for future work.

Also, while our multi-scale NN framework integrates the hierarchical functional or-

ganisation of a cell (from genes to biological pathways), our methodology can be

extended to include any dataset about diseases of interest, e.g., uncovering molecu-

lar mechanisms of cancer from patient somatic mutation profiles or linking diseases

to non-coding RNA.

Finally, while we focus on patient data with application to diseases, our
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methodology can be extended to integrate additional omics data to get more bi-

ologically accurate models for the analyses of patients, tissues, and cells. Some

further applications include studies of diseases linked to a specific tissue, studies

of cell’s specialisation, and any study that can benefit from the integration of the

hierarchical functional organisation of cells.



Chapter 5

Multi-scale protein interactome as

auxiliary data to enhance cancer

precision medicine

In Chapter 4, we proposed a model using the multi-scale protein interactome as prior

knowledge to identify links between diseases, pathways, and genes. In this Chapter,

we take a different approach: we integrate the multi-scale protein interactome to a

general framework as auxiliary data. Specifically, we use joint matrix factorisation

to integrate PPIs, protein complexes, and biological pathways with patients’ omics

and clinical data, as well as drugs target and similarities. By this process, we de-

rive for each biomedical entity an embedding within the multi-source data context.

This enables us to identify molecular mechanisms and drug indications for specific

cancer types. The results presented in this chapter have been submitted and are

currently under review for publication, a preprint is available on arXiv [267].

5.1 Introduction
Over 18 million new cases of cancer and 9 million deaths were recorded worldwide

in 2018 [268]. This makes cancer one of the leading causes of death. Cancer is a

multi-faceted, complex disease arising from an accumulation of somatic mutations

within the genome of normal cells that eventually leads to loss of normal cellular

functioning and appearance of tumours that can spread across the body. Technologi-
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cal advances have enabled measurements from patients’ tumour biopsies, including

gene expression levels, DNA methylations, and somatic mutations. The research

into cancer causes, and treatments, has greatly benefited from this wealth of patient

data [269, 270].

Cancer projects, including The Cancer Genome Atlas (TCGA) and the Inter-

national Cancer Genome Consortium (ICGC), have made publicly available wide-

ranging, multi-modal, multi-omics cancer data, such as patient whole slide images,

genome alterations, transcriptome, and epigenome [271, 272]. Free access to these

large-scale, diverse databases has dramatically facilitated studies of the biologi-

cal mechanisms of specific cancer types [271, 273, 274]. The available data have

also enabled pan-cancer analyses that study cancer in general to identify common

mechanisms and differences across cancer types [275, 274]. Recently, the Pan-

Cancer Analysis of Whole Genome (PCAWG) project [274] has informed that our

knowledge about cancer is far from complete, as 5% of their cohort was without

any known cancer driver mutations. Importantly, these large databases have paved

the way for the field of Precision Medicine, whose overarching aim is to improve

medical care for patients by tailoring treatment to their individual molecular pro-

files [276]. Precision medicine has diverse intermediary objectives, for instance,

uncovering diagnostic and prognostic biomarkers. This is especially relevant to a

heterogeneous disease, such as cancer, which manifests uniquely in every patient.

Cancer can be caused by combinations of genetic, molecular, environmental,

and lifestyle factors. Any single type of biological data cannot fully capture such

diseases. As such, collective mining of different data has been gaining momentum

as a means to extract integrated system knowledge that goes beyond what any single

data source can offer [9]. This principle applied to the study of cancer has enabled

the discovery of cancer-related genes, or group of genes [277, 157, 156] and the

identification of cancer sub-types significantly correlated with patient prognoses

[179, 157].

Biological data often have a small number of samples relative to the number of

available features. For instance, a typical dataset in TCGA contains a few hundred
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patients that are each characterised by tens of thousands of features (e.g., expression

levels of around 20,000 genes). However, biological features are often redundant

due to underlying molecular interactions among biological entities [278]. This has

been a motivation for the use of dimensionality reduction and embedding algorithms

that are pervasive in bioinformatics [279]. Additionally, due to the low sample to

features ratio, dimensionality reduction techniques are often necessary as data pre-

processing for machine learning models [279], at the cost of interpretability.

Non-negative matrix factorisation (NMF) approaches are unsupervised algo-

rithms that have extensively been used both as a means to integrate heterogeneous

data and to reduce data dimensionality (see Section 2.3). They encompass all meth-

ods that decompose a matrix, representing relational links between two sets of enti-

ties, into the product of low-dimensional, latent, non-negative matrices, or factors,

whose sizes control the degree of dimensionality reduction [280]. Importantly, they

can be used to derive an embedding in an unspecified latent space for each entity.

Matrix factorization approaches have had numerous applications, including collab-

orative filtering [281] and biological data integration for cancer analysis [179, 157].

Reconstructing a matrix based on a factorisation has often been used to make pre-

dictions and infer new knowledge [157]. NMF approaches have been successfully

applied as pre-processing steps for downstream machine learning classifiers [282]

5.2 Contributions

We propose a pan-cancer framework to uncover cancer type-specific molecular

mechanisms and identify drugs that could be re-purposed (see Figure 5.1). Our

framework relies on the simultaneous integration and dimensionality reduction of

various data using a joint non-negative matrix factorisation model. Our frame-

work includes more data than the previous studies, integrating patient-specific di-

agnosis, gene expression, and single nucleotide variants as well as generic net-

work data on human: protein–protein interactions, protein complex associations,

biological pathways, drug–target interactions, and drug chemical similarities. To

integrates the wealth of data in one framework, we rely on three types of ma-
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trix factorisations: non-negative matrix factorisation (NMF), non-negative matrix

tri-factorisation (NMTF), and symmetric non-negative matrix tri-factorisation (SN-

MTF). Data integration is achieved by jointly optimising for multiple factorisation

objectives with shared factors. We obtain a context-aware embedding of each entity

(cancer type, patient, gene, complex, pathway, and drug) that takes into account all

the input data. Using boosted decision trees, we predict biologically relevant as-

sociations between cancer types and genes, drugs, pathways, and complexes based

on the context-rich embeddings of our entities. We choose boosted decision trees

due to their simplicity and high performances in a number of competitions [283].

One key insight is that the integration step, by construction, embeds the entities into

three latent spaces, each associated with a different family of entities: 1) patient-

related entities (i.e., patients and cancer types), 2) gene-related entities (i.e., genes,

complexes, and pathways), and 3) drugs. This means that the entities in a given la-

tent space can be substituted with each other when using a model trained to predict

associations between one of these classes of entities and cancer types. In this re-

spect, our approach is similar to zero-shot learning [284], which aims to accurately

classify at test time samples that belong to classes unseen at training time. In our

case, we aim to predict the association of cancer types to unseen classes of entities

at training time. Finally, our approach can predict a patient’s response to drugs,

implying that our framework captures important biology that governs response to

cancer drugs.

5.3 Material & Methods

5.3.1 Data source and processing

We download protein-protein interactions (PPI) data from BioGRID (version

3.5.176). We only keep interactions that have been validated experimentally using

yeast-to-hybrid or affinity capture techniques. We obtain protein complexes data

from CORUM and Reactome databases (both accessed in April 2019). Reactome is

also used to collect all existing pathways of which we only keep pathways that have

a traceable author statement (TAS). We further remove disease pathways which are
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only relevant in the associated disease context.

Patients data are obtained from the DCC Data release of the International Can-

cer Genome Consortium. We collected patients from 21 cancer cohorts from TCGA

studies (see Table 5.1) and kept patients that have RNA-sequencing data, which adds

up to 7,998 patients. We consider all Single Nucleotide Variations (SNV) reported

in the data releases.

Cancer Cohort size Abbreviation Cancer Cohort Size Abbreviation
Acute Myeloid
Leukemia

173 LAML Bladder Urothe-
lial Carcinoma

295 BLCA

Brain Lower
Grade Glioma

439 LGG Breast invasive
carcinoma

1,041 BRCA

Cervical squa-
mous cell car-
cinoma and
endocervical
adenocarcinoma

259 CESC Colon adenocar-
cinoma

428 COAD

Glioblastoma
multiforme

159 GBM Head and Neck
squamous cell
carcinoma

480 HNSC

Kidney renal
clear cell carci-
noma

518 KIRC Kidney renal pap-
illary cell carci-
noma

222 KIRP

Liver hepatocel-
lular carcinoma

173 LIHC Lung adenocarci-
noma

477 LUAD

Lung squamous
cell carcinoma

428 LUSC Ovarian serous
cystadenocarci-
noma

262 OV

Pancreatic adeno-
carcinoma

142 PAAD Prostate adeno-
carcinoma

375 PRAD

Rectum adeno-
carcinoma

153 READ Skin Cutaneous
Melanoma

430 SKCM

Stomach adeno-
carcinoma

415 STAD Thyroid carci-
noma

500 THCA

Uterine Corpus
Endometrial
Carcinoma

508 UCEC

Table 5.1: List of cancer types considered in this study with associated abbreviations from
TCGA.

We consider the set of 15,224 genes whose transcripts are measured for by the

RNA-sequencing technology across all datasets and that have at least one PPI with
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another selected gene according to BioGRID data. We derive a gene expression vec-

tor from RNA-seq measurement for each patient that is normalised to Transcripts

Per Million (TPM) and rescaled using logarithm in base 2, i.e. the expression score

of a gene is given by log2(TPM+1). Note that 559 patients do not have any muta-

tion on any of the 15,224 genes considered.

Drug–target and chemical data is obtained from DrugBank (version 5.1.3)

[285]. We consider all drugs that are approved, experimental, or investigational.

Drugs chemical similarity is computed using the Tanimoto similarity [286] between

circular fingerprints of drugs. The details of the data used can be found in Table 5.2.

Data Size Density Symbol
Gene expression npatients×ngenes n.a Xexp

Gene SNV npatients×ngenes 1.7% Xsnv
Patient cancer type ncancers×npatients n.a. Xpct

PPI ngenes×ngenes 0.21% Xppi
Protein complexes npc×ngenes 0.05% Xpc

Biological pathways nbp×ngenes 0.32% Xbp
Drug–target ndrugs×ngenes 0.013% Xdt

Drug tanimoto similarity ndrugs×ndrugs n.a. Xts

Table 5.2: Details of the data used. The columns correspond to: 1) the type of data, 2) the
size of the matrix representing the data, 3) the density, where applicable, indi-
cates the percentage of the existing links between the entities out of all possible
links, and 4) the symbol used in the document to refer to the matrix containing
the corresponding data.

Genes’ annotations used in enrichment analyses are obtained from Gene On-

tology (GO) [287] (release 10/06/2019). We keep annotations that have an experi-

mental evidence code (one of EXP, IDA, IPI, IMP, IGI, and IEP). We consider all

three GO annotation subtypes separately: Biological Processes (GO–BP), Molecu-

lar Function (GO–MF) and Cellular Component (GO–CC). For each, we build a di-

rected acyclic graph (DAG) that connects annotations based on “is a” relationships

(we use the go-basic.obo file giving annotations relationships available on GO’s

website). Then, we propagate the annotations for each gene up the corresponding

DAG, which means that we add to the set of annotations of a gene the union of

ancestors of the annotations. We remove annotations that annotate less than 0.1%,
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or more than 10% of the 15,224 genes considered, i.e. we prune annotations that

are either too rare, or too common. These thresholds were picked by inspecting the

distribution of number of genes per annotation. We give the statistics of annotations

in Table 5.3

GO subtype GO–BP GO–MF GO–CC
Number of annotations 2,322 538 366

Percentage of genes annotated 50% 43% 45%

Table 5.3: GO annotations statistics for all GO subtypes.

5.3.2 Non-negative Matrix Factorizations

Matrix factorizations approaches aim to approximate a matrix X by the product of

n smaller matrices Fi, i ∈ {1..n}, called factors, i.e. X ≈ ∏i Fi. Mathematically,

this amounts to finding factors Fi, under user-defined dimensional constraints, that

minimize the equation ‖X −∏i Fi‖2
F , where ‖ · ‖F represents the Frobenius norm

of a matrix. Non-negative matrix factorizations techniques add a non-negativity

constraint on the factors, i.e. ∀i,Fi ≥ 0.

The objective is to obtain lower dimensional representation that captures the

essence of the data and can be used to identify missing entries through the matrix

completion property. In this work, we use three variants of non-negative matrix

factorisations approaches.

NMF decomposes a rectangular matrix X ∈ Rm×n in the product of two factors

F ∈Rm×k
+ and G ∈Rn×k

+ , with k≤min(m,n), such that ‖X−FGT‖2
F is minimized.

With NMF, the embeddings, given by F and G, of the two groups of entities whose

relational data is given by X , are in the same latent space.

NMTF decomposes a rectangular matrix X ∈ Rm×n in the product of three fac-

tors F ∈ Rm×k1
+ , S ∈ Rk1×k2

+ and G ∈ Rn×k2
+ , with k1,k2 ≤ min(m,n), such that

‖X−FSGT‖2
F is minimized.
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SNMTF decomposes a symmetric matrix X ∈ Rn×n in the product of two factors

G ∈ Rn×k
+ and S ∈ Rk×k

+ , with k ≤ n, such that ‖X−GSGT‖2
F is minimized.

5.3.3 Our framework for context-aware embeddings

The core of the framework is gene information (see Figure 5.1.a.). We integrate

three types of data about genes. We obtain RNA sequencing (RNA-seq) data and

single nucleotide variants (SNV) data for 7,998 patients from ICGC across 21 can-

cers. Henceforth, we refer to each cancer by its abbreviation given in Table 5.1. We

obtain data on gene interactions including protein-protein interaction (PPI) network

from BioGRID, protein complexes (PC) from Reactome and CORUM, and biolog-

ical pathways (BP) from Reactome. These data capture physical and functional

relationships between genes and are used to anchor our framework within the con-

text of molecular interactions. The last type of gene data corresponds to drug–target

interactions from DrugBank, connecting drugs to proteins that they target. We fur-

ther add drug chemical similarity information to push similar drugs closer in the

latent space. We also add patient diagnosis information through which we embed

cancer types and patients in a joint latent space to both push patients closer if they

have the same cancer and push molecularly similar cancer types closer. This could

help tailor treatments to patients by placing them within a cancer “space” since can-

cer is a heterogeneous disease and a given cancer type might manifest differently in

different people. This may aid characterising cancer of each patient as accurately

as possible to personalise treatment options.
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Figure 5.1: a. Input to our matrix factorisation embedding model: relational data between
entities. Each edge corresponds to a type of link and a sub-objective of our
joint factorisation model (see Methods Data Processing Table 5.2 for notation).
The squares group entities that are embedded in the same joint latent space.
b. Illustration of the NMTF factorisation sub-objectives corresponding to the
edges in the grey box in panel a. Each group of entities is associated, in the
decomposition, with a factor that is shared across all sub-objectives involving
that group of entities. Through the joint decomposition of all relational data,
we derive embeddings for each entity in three latent spaces with dimensions
k1, k2, and k3. c. We predict associations relevant to cancer types with boosted
decision tree classifiers taking as input, for instance, the concatenation of the
embeddings of a cancer type and a gene.

Because of the heterogeneity of our input data, our integration framework is

based on joint optimisation of different variants of non-negative matrix factori-

sation: classical Non-negative Matrix Factorisation (NMF), Non-negative Matrix

Tri-Factorisation (NMTF), and Symmetric Non-negative Matrix Tri-Factorization

(SNMTF). Each variant is best fitted for the decomposition of a different type of

relational data. In particular, we use SNMTF to factorise the PPI network and the

drug similarities matrix, NMTF to factorise patient molecular data and drug–target
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data, and NMF for the remaining data. Each edge in Figure 5.1.a corresponds to

a sub-objective of our embedding framework, i.e. a specific NMF decomposition.

In the joint decomposition, each group of entities is associated with a factor that

is shared across all sub-objectives involving that group of entities. For instance,

the patient factor is shared by all sub-objectives that involves patient-specific data

(diagnoses, gene expressions, and somatic mutations). An entity’s embedding is

obtained from the factor of the associated group of entities. In practice, we mini-

mize the following general objective function L over the factors Gp ∈ Rnpatients×k1 ,

Gg ∈ Rngenes×k2 , Gpc ∈ Rnpc×k2 , Gbp ∈ Rnbp×k2 , Gd ∈ Rndrugs×k3 , Sexp, Ssnv ∈ Rk1×k2 ,

Sppi ∈ Rk2×k2 , and Sdt ∈ Rk3×k2 factors:

L = ∑
x∈{exp,snv}

‖Xx−GpSxGT
g ‖2

F + ∑
x∈{pc,bp}

‖Xx−GxGT
g ‖2

F (5.1)

+‖Xppi−GgSppiGT
g ‖2

F +‖Xpct−GctGT
p‖2

F

+‖Xts−GdStsGT
d ‖2

F +‖Xdt−GdSdtGT
g ‖2

F ,

where, henceforth, each XD represents the matrix associated to data type D, see

nomenclature in Table 5.2, each GE factor gives the embeddings of the entities of

type E, with subscripts g, p, ct, d, bp, and pc corresponding, respectively, to genes,

patients, cancer types, drugs, pathways, and complexes.

The integration of the various data sources is achieved by sharing factors across

the NMF sub-objectives that constitute our global objective function L . For in-

stance, the factor Gg, corresponding to the genes embeddings, is shared by all de-

compositions that involve genes which corresponds to the factorisation of PPI data

(Xppi), the factorisations of patients molecular data (Xexp and Xsnv), the factorisation

of drug–target data (Xdt), and the factorisations of higher-order biological entities

(Xpc and Xbp). Through this factor sharing and joint optimisation, the framework

can harness the relevant information contained across the data sources to derive

meaningful embeddings.

Through our integrative framework, we derive embeddings for all entities (can-
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cer types, patients, genes, pathways, complexes, and drugs) that best fit the full

context of the framework, i.e. the input relational data. Each entity’s embedding,

in one of the three latent spaces learnt by our framework, encapsulates the infor-

mation from the input data that is relevant to that entity; thus we say that this rep-

resentation is context-aware. Our framework has three hyperparameters, denoted

by k1, k2 and k3, which correspond to the dimensionalities of the latent spaces.

To find suitable values for these hyperparameters, we perform a grid search with

k1 ∈ {2,5,10,15,21}, k2 ∈ {70,80,90,100,110}, and k3 ∈ {40,50,60,70,80}. The

former is a coarse grid over the range of possible values. For the latter two, due

to the large range of possible values, the intervals are restricted around the value√
n/2, where n is either the number of genes, or the number of drugs.

√
n/2 cor-

responds to a heuristic commonly used to set the number of clusters [288]. As the

selection criterion, we measure if each patient tends to be embedded in the latent

space closer to their diagnosis than to other cancer types. We quantify this with the

macro-F1 score of the classifier that associates to each patient the closest cancer

type in the latent space in terms of cosine distance. We found that the following

hyperparameters values maximize this metric: k1 = 21, k2 = 70, and k3 = 40. Ap-

pendix Figure C.1 shows the sensitivity of different metrics to the choice of the

hyperparameters, which we discuss in the rest of the article.

5.3.4 Optimization

The minimisation of the objective function given in Equation 5.1 is achieved

through an iterative optimisation process. We use in our framework multiplica-

tive update rules [289] designed to maintain non-negativity of all the factors in the

decomposition.

We use an initialization strategy based on the truncated singular value decom-

position (SVD) for all factors that has shown better performances than random

initialization [290, 156] and has the advantage of giving deterministic solutions.

Specifically, consider a factor G ∈ Rn×k involved in the decomposition of l data

matrices Xi, i ∈ {1..l}. Without loss of generality, we assume that G is the right

hand side factor in the decompositions, i.e. ∀i,Xi ≈ GFi. We denote by Ui the right
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hand side term in the SVD decomposition of Xi ( Xi = UiSiV T
i ). We introduce

U+
i = max(Ui,0) and U−i = max(−Ui,0). We then denote by Ũi ∈ Rn×k the matrix

where each column is defined by

Ũi( j) =


√

si( j)U+
i ( j), if ‖U+

i ( j)‖ ≥ ‖U−i ( j)‖√
si( j)U−i ( j), otherwise

,

where M( j) denotes the jth column of the matrix M and si( j) is the jth largest

singular value of Xi. Factor G is then initialised as 1
l ∑

l
i=1Ũi + ε . We initialize

the central matrix in NMTF decompositions to I + ε , where I denotes the identity

matrix. Under the multiplicative update rules, any entries initialized to zero would

stay null. Hence, we add a small ε everywhere to allow all entries to vary.

The iterative optimisation is ran either for 200 epochs or until the relative vari-

ation of the objective function between two consecutive epochs is lower than 10−4,

i.e. when |Lt+1−Lt |
Lt

≤ 10−4 where Lt corresponds to the value of the objective

function at iteration t.

5.3.5 Boosted decision tree

We use boosted decision trees to predict cancer type associations with entities that

are part of our framework from the embeddings derived from the Joint NMF op-

timisation step (Figure 5.1.c). The ground truths used to train our classifications

models are detailed in the relevant sections of the Results & Discussion section. A

decision tree partitions the input data iteratively based on features. Boosting signi-

fies deriving a strong classifier from the serial associations of weak classifiers. In

our case, the base classifiers are decision trees. The boosted algorithm iteratively

adds decision trees to the classifier with the aim of reducing the error of the previous

classifier [291].

We discuss here the implementation details that we used. First, we use boosted

decision trees from the xgboost package [283]. Boosted decision trees have dif-

ferent hyperparameters that control various aspect of the algorithm: η controls the

learning rate, γ corresponds to a threshold under which a leaf node of the deci-
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sion tree is not split anymore, the maximal depth of a decision tree, and λ controls

the L2-regularization (for more details see [283]). We perform a 10-fold cross-

validation to fix those hyperparameters with η ∈ {0.25,0.5,0.75}, γ ∈ {0,10}, max

depth∈ {6,12}, and λ ∈ {1,10,100}. The best set of parameters is chosen as the

one that leads to the classifier with the highest AUROC score in the associated

task. Note that we also use early-stopping during training with an 80%/10%/10%

train/validation/test split of our data. We use all 10 classifiers trained during the

cross-validation process to derive an association score for each possible pair. To

ensure that the scoring of the 10 classifiers is comparable, we rescale the output

scores to have 0 mean and unit variance. The average of all classifier scores then

gives the final association score of an entity pair.

5.4 Results & Discussion

5.4.1 Patient and cancer embeddings are medically relevant

To evaluate the biomedical relevance of our joint patient and cancer embeddings, we

observe that the macro-F1 score is close to 0.8 for our optimal set of hyperparame-

ters (see Figure 5.2.a.) indicating that the majority of patients are embedded closer

to their diagnoses than to other cancer types. In addition, we evaluate if patients

group in the latent space with respect to either cancer type, or a sampled tissue. To

this end, we use hierarchical clustering with cosine distance to group patients in

k groups (where k is either the number of cancers, or the number of tissues) and

compute the Adjusted Rand Index (ARI) to measure the link between the clustering

and the ground truth labelling (either cancer types, or sampled tissues; see Figure

5.2.b.). We observe that patients do not cluster well with respect to sampled tissues,

having ARI below 0.2. However, we observe ARI 0.7 with respect to cancer type,

indicating that our clusterings resemble diagnostic labelling with some discrepan-

cies. These results are expected, as the inclusion of patient diagnosis data in the

framework implies a constraint that aims to embed each patient close to their diag-

nosis and subsequently, to other patients having the same disease. Note, however,

that some patients do not fit well with the rest of their cohorts. This is an impor-
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a. b.

c.

d.

Figure 5.2: a. Macro-F1 score quantifying the relation between a patient and its cancer
type (green) and adjusted random index (ARI) measuring the link between pa-
tient clustering for each model and cancer type labelling (orange) and tissue
sampled labelling (blue). b. t-SNE plot representing the embedding of patients
and cancer types in the latent space. The larger circled markers correspond
to the embeddings of cancer types, and the smaller ones represent the embed-
dings of patients. Colours and shapes indicate cancer types (see Methods Ta-
ble 5.1 for abbreviations meanings). c. Percentages of gene clusters enriched
in GO-BP, GO-CC, GO-MF, and driver annotations. d. Average cosine dis-
tance between genes and associated pathways and complexes (intra-pathway
and intra-complex) and non-associated pathways and complexes (exo-pathway
and exo-complex).

tant observation, as it suggests that those patients might need different care options

from the majority of their cohort and further motivates personalising treatments to

individual patients.

As an illustration, we visualise our latent space embeddings using T-distributed

Stochastic Neighbor Embedding (t-SNE). t-SNE is a machine learning algorithm

for nonlinear dimensionality reduction, well-suited for visualisation in a two-

dimensional space of high-dimensional data [292]. We observe as expected that

patients tend to cluster according to cancer type, with the cancer type itself being

also embedded nearby (see Figure 5.2.c.). Additionally, we observe that some can-
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cers are grouped in a meaningful way. For instance, both brain cancers, GBM and

LGG, form one group. The cluster in the centre contains mostly squamous cell

carcinomas, HNSC, CESC, and LUSC. Both cancers that affect kidneys, KIRP and

KIRC, are also grouped. Moreover, READ, COAD, and STAD - which are cancers

affecting rectum, colon, and stomach, respectively - form another cluster. We also

observe that some patients having a specific type of cancer do not group with the

majority of the cohort.

We further investigate if our framework learns a meaningful latent space that

translates into actionable representations for new unseen patients. We perform a 10-

fold cross-validation in which 90% of patients of each cancer type are used to derive

the embeddings of all entities in the framework. We then project the remaining

10% of patients in the derived cancer/patient latent space (see Appendix C.1.1).

First, we test if these patients are placed close in space to their diagnosis (quantified

as above, see Appendix Table C.1). This gives a macro-F1 score of 0.77± 0.03,

which is close to the score obtained with all patients included in the framework

(∼ 0.8). This shows that new patients are placed in the latent space according to

their diagnoses with accuracy similar to that for patients included in the framework.

We also test if the unseen patients tend to be embedded closer to patients having the

same diagnoses. For this, we use a k-nearest neighbours classifier with k = 10 (see

Methods) and measure its macro-F1 score (see Appendix Table C.1). We observe

a score of 0.88± 0.02, which shows that the large majority of new patients are

embedded in the latent space closer to patients diagnosed with the same type of

cancer. Both results show that our latent space is robust in the sense that we can

derive an embedding for new patients that is consistent with that of known patients

and cancer types. We also observe that the k-nearest neighbour algorithm gives a

more robust diagnosis classifier than finding the closest cancer in the latent space.

This means that the local neighbourhood of a patient in the latent space is a better

diagnosis indicator than a global predictor derived from cancer types’ embedding.

This suggests the presence of patient subgroups within a cancer type that display

substantially different molecular behaviour.
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Overall, our analysis shows that the patients/cancers latent space is consistent

with known biology. Furthermore, our framework has the advantage of relaxing the

hard clustering derived from patients diagnoses through patient’s molecular similar-

ity, highlighting that a patient’s molecular profile can be more similar to the profiles

of patients with different cancers than to the profiles of patients with the same di-

agnosis. This observation motivates further the need for pan-cancer perspectives in

precision medicine.

5.4.2 Our gene latent space is biologically relevant

To evaluate the biological relevance of our genes embeddings, we cluster them in

k2 group using hierarchical clustering with cosine distance as well, and measure

the enrichments of the clusters in terms of Gene Ontology (GO) annotations and

in terms of cancer driver genes (see Methods). We consider all three subtypes of

GO annotations: Biological Processes (GO-BP), Cellular Component (GO-CC),

and Molecular Function (GO-MF) separately. The significance of the enrichments

is computed with a hypergeometric test with Benjamini-Hochberg correction for

multiple hypothesis testing and a significance threshold of 0.05. We observe that,

regardless of the GO subtype, above 80% of clusters are significantly enriched in at

least one annotation (see Figure 5.2.c.). These results show that genes with similar

function are embedded closer in the latent space and thus that our genes’ embed-

dings capture known biology. Interestingly, we also observe that around 10% of the

clusters are enriched in cancer driver genes, indicating that cancer drivers are em-

bedded closely, i.e. clustered, in the latent space. This highlights the link between

the gene latent space and the cancer context that we made a part of our framework.

Furthermore, it underlines the relevance of our embeddings for the identification of

putative cancer-related genes, discussed in the following section.

Additionally, we perform an ablation study on the gene interaction data input

to investigate the effect that each dataset has on enrichment scores (see Appendix

Figure C.2). For each model, all hyperparameters are selected following the same

procedure outlined above. First, we observe that adding any gene data is better than

not adding them from the point of biological annotation enrichment. For instance,
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the model without any PPI, complex, or pathway data has 40% of gene clusters

enriched in GO-BP annotations, while every model with at least one data source

has above 80% of gene clusters enriched for the same annotations. However, there

is no clear best model among the ones with diverse combinations of the data, each

scoring similar enrichment values with different models performing slightly better

for different annotations. Thus, different combinations of data do not seem to lead

to significantly different performances but keeping all data in the model enables

analysis of each class of entities.

Finally, as pathways and complexes are embedded in the same latent space,

we investigate their positioning with respect to genes. In particular, we evaluate

whether a gene is embedded closer to its associated higher-order entities, i.e. path-

ways and complexes, than to those to which it has not been associated yet. To this

end, we compute the cosine distances in the latent space between a gene and its

associated pathways and complexes, termed “intra–pathway” and “intra-complex”

distances, as well as the distances between the gene and all non-associated pathways

and complexes, termed “exo–pathway” and “exo-complex” distances. We observe

that genes are embedded closer, on average, to their associated higher-order enti-

ties than they are to those that they are not associated to (see Figure 5.2.d.), with

average distance below 0.5 between a gene and associated entities and above 0.9

between a gene and non-associated entities. These results are significant accord-

ing to a Mann–Whitney U statistical test (p-value ∼ 0 in both cases) and underline

the relevance of the joint embedding of genes with related higher-order molecular

structures in the same latent space. This also suggests that our framework could be

used for identifying new genes that are involved in or interact with pathways and

protein complexes, which we leave for future work.

5.4.3 Predicting cancer type associations

To extract new knowledge for each cancer type, we use our context-aware embed-

dings to suggest cancer–drug and cancer–gene associations. We cast the problem as

a link prediction task for which we train boosted decision trees to predict known as-

sociations from our entities’ embeddings. After our training step, we use the trained
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classifiers to predict new associations (see Methods). As pre-processing, we nor-

malise all embeddings to have a unit norm. The normalisation step is crucial for the

transfer of a link predictor from one type of entity to another that we discuss in the

next section. For each possible cancer–drug pair (or cancer–gene pair), we define

the pair’s representation by the concatenation of the embeddings of its components,

i.e. the concatenation of the cancer’s embedding vector with the drug’s embedding

vector defines the feature vector of the pair. Finally, we use boosted decision trees

for link prediction, taking as input a pair’s representation and output the associa-

tion’s scores of its component (see Figure 5.1.c.). We choose boosted decision trees

due to their simplicity and high performances in several competitions [283].

In the first validation step, we systematically evaluate the performance of

our approach with a 10-fold cross-validation using both the Area Under the Re-

ceiver Operating Curve (AUROC) and the Area Under the Precision recall Curve

(AUPRC) and compare our results to state-of-the-art methods for links prediction.

The splits used for the 10-fold cross-validation are performed on the set of known

links and considering all non-reported links as part of the negative set of links. Fur-

thermore, we perform an ablation study on the patient–gene data (see Appendix

Figure C.5), i.e., we compare the results obtained with those obtained with the

framework using less patient data to demonstrate the interest of considering both

expression and mutation data jointly. In the second step, we investigate the top

10 drugs and genes associated with cancer types by our methodology. Each pair

is scored based on the average of the standardised scores given by 10 classifiers

trained for the cross-validation (see Methods). In this step, we only consider drugs

and genes that were thus far not associated with any cancer type in the ground-truth

data (introduced in each subsection) to avoid trivial cases of information transfer

from one cancer to another, which typically happens when one drug or one gene is

associated with a majority of cancers. We perform a manual literature curation to

validate the top results.
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a. c.

b.

Figure 5.3: Performances of our cancer–drug association predictor (left column) and
cancer–gene associations predictor (right column). The bar charts give the per-
formances of our classifiers measured with 10-fold cross-validation in terms of
Area Under the Receiver Operating Characteristic (AUROC) and Area Under
the Precision-Recall Curve (AUPRC). The tables give the top ten associations
between cancers and drugs (panel b.) and genes (panel d.) that are not asso-
ciated with any cancers in our data. Drugs or genes highlighted in bold font
have been associated with cancer. The support column in the bottom right table
indicates which database lists a link between the gene and cancer.

5.4.3.1 Our model predicts relevant treatment

To predict cancer–drug associations, we train boosted decision trees to identify

known associations that we collect from DrugCentral [293] (last updated October

2018). DrugCentral contains 93 associations in total between our sets of cancer

types and drugs. We define our positive set with DrugCentral treatment options and

consider all non-reported associations for our negative set. Our classifier takes as

input the concatenation of the normalised embeddings of a drug and a cancer type

and outputs their association score. We compare our results to four baseline meth-

ods: Non-negative Matrix Factorization Reconstruction (NMFR), Measure-based

Bi-directional Random Walks (MBiRW) [171], Drug Repositioning Recommenda-

tion System (DRRS) [294], and Bounded Nuclear Norm Regularization (BNNR)

[35] (see Appendix C.1.2 for implementation details).

We observe that our approach significantly outperforms the competing meth-
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ods (see Figure 5.3.a.). BNNR achieves slightly better AUROC scores (∼ 0.99

compared to our ∼ 0.97), but it scores significantly lower than our framework in

terms of AUPRC (∼ 0.25 compared to our∼ 0.5). These results show the relevance

of our method when compared to the state-of-the-art drug re-purposing approaches.

We analyse further the results of our approach through literature curation for the

top-scoring drugs that are not associated with any cancer types in DrugCentral.

Among the top 10 drugs that are the most associated to cancer types by our

classifiers (see Figure 5.3.b.), a majority is recorded in DrugBank as investigational

or approved for the treatment of some cancers. The approved predicted drugs either

are not present in DrugCentral, as their approval postdates the DrugCentral release,

or target a cancer type not considered in this study. We discuss below supporting

information for our top 3 predicted drugs. We provide validations of all of our

predictions in Appendix C.2.1.

DB05916 (CT-011) targets gene PDCD1, which has immunomodulating and

antitumor activities. CT-011 is currently being investigated for the treatment of tu-

mours and unspecified cancers [285]. DB14707 (Cemiplimab) is an FDA approved

drug for the treatment of advanced cutaneous squamous cell carcinoma [285]. Our

classifier suggests that it could be used to treat lung cancer and notably lung squa-

mous cell carcinoma (LUSC). DB05101 (Matuzumab) is an investigational drug

that targets the EGFR gene, which is often associated with cancers, including lung

cancers [295].

The manual literature curation highlights that our predicted drugs are often

investigated, or approved for the treatment of forms of cancer and that their targets,

or mechanisms of actions, can be linked to the specific cancer types we predict.

Overall, the analysis strongly supports our methodology.

5.4.3.2 Our framework identifies genes relevant to cancer types

Based on known cancer genes from IntOGen [43], we train classifiers to identify

associations between genes and cancer types. In total, IntOGen reports 1,129 as-

sociations between our sets of cancer types and genes. Our positive set is a subset

of these cancer–driver associations All non-reported associations are considered as
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part of our negative set. As above, a classification model takes as input the con-

catenation of the normalised embeddings of a gene and a cancer type and outputs

their association score. We compare the performance of our method with the fol-

lowing state-of-the-art methods: Non-negative Matrix Factorisation Reconstruction

(NMFR), Network-Based Integration (NBI) [296], LOTUS [11], and Subdyquency

[12]. The methods were developed to predict cancer-related genes in slightly differ-

ent contexts and are adapted to our problem here (see Appendix C.1.2).

We observe that our approach outperforms the competing methods (see Figure

5.3.c.) in terms of AUROC, which is over 0.9 for our method compared to below

0.8 for the other approaches, and in terms of AUPRC which are around 0.4 for our

approach compared to below 0.25 for the other methods. We further evaluate if

our approach accurately captures known cancer-related genes that are reported in

CCGD but not in IntOGen. We perform this analysis both globally and on a per

cancer basis (note that 14 cancer types have data for this test). We observe that

our method ranks associations between genes and cancer types in CCGD highly,

notably giving AUROC scores above 0.59 (p-values < 10−7) for all cases (see Ap-

pendix Figure C.3). Below we look at the top 10 genes that are identified by our

method (see Figure 5.3.d.). We use the Cancer Gene Census (CGS) [297] and Can-

didate Cancer Gene Database (CCGD) [298] to find known associations, as well as

literature curation (both databases were accessed in August 2019).

We observe that our top 10 scoring genes are listed in either the Candidate

Cancer Gene Database (CCGD), or the Cancer Gene Census (CGC) as linked to at

least one form of cancer. Furthermore, the pairs MDM2–LIHC, HERC1–COAD,

HERC1–READ, SMC3–LAML, NCOA3–BRCA, and CHD6–BRCA are associ-

ated in CCGD. Additionally, KAT2B (PCAF) activity has been linked to cancers,

and in particular, to breast cancers, in the literature [299, 300, 301]. MDM2 has also

been associated with breast cancer [302]. SP1 expression has been linked to breast

cancer in multiple prior studies [303, 304, 305]. For each of these three genes, we

stratify our BRCA cohort into two groups: patients having higher than average ex-

pression of the gene and patients having lower than average expression of the gene.
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We compute a logrank statistical test (with 0.05 cut-off) and observe that for each

of the three genes, the patient groups have significantly different survival rates with

p-values 0.002 for KAT2B, 0.026 for MDM2, and 0.039 for SP1 (see Appendix

Figure C.4 for Kaplan-Meir plots). For each of the three genes, higher expressions

are associated with lower survival rates. We provide validations for the remaining

predictions in Appendix C.2.2.

The literature curation highlights that each gene identified through our ap-

proach is relevant to the associated cancer type, with support through existing re-

search and databases, as well as statistical evidence for a connection between gene

expression level and patient prognosis. Thus, this supports our methodology.

5.4.4 Re-purposing classifiers

Links between types of entities are not always known or available (e.g., associations

between cancer type and protein complexes or associations between patients and

drugs), which prevents us from using the same methodology to derive new knowl-

edge. However, our framework allows for extrapolating those links from known

associations between other types of entities. Our approach relies on the previously

observed fact that, by design, some entities are embedded in the same latent spaces

(e.g., genes, pathways, and complexes or cancer types and diseases). We have fur-

ther shown in the first section, that the relative location in the latent space of related

entities was biologically consistent, i.e. related entities are closer to each other

than non-related entities. Based on these observations, we postulate that a classi-

fier trained from the embeddings of a given type of entities can be re-purposed to

predict from the embeddings of another type of entities. For instance, boosted deci-

sion trees that learnt to associate genes to cancer types can be used to predict which

biological pathways or protein complexes could be associated with which cancer

types. This could effectively provide insights into the impact of cancers onto cells

by identifying affected higher-order cellular structures and functions. We focus be-

low on the analysis of top associations between higher-order cellular structures and

cancer types.
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5.4.4.1 Our re-purposed classifiers identify cancer-related protein

complexes

To obtain the association score between a cancer type and a protein complex, we

simply feed the concatenation of the normalised embeddings of both entities to the

10 boosted decision trees trained to predict cancer–gene associations. The average

of the standardised scores across all boosted decision trees gives the final association

score.

To the best of our knowledge, there are no comprehensive database reporting

associations between cancers and protein complexes. Thus, we are unable to pro-

vide global validation scores for our predictions. We proceed by validating the top 3

scoring protein complexes manually (see Table 5.4) below. We provide validations

of all of our predictions in Appendix C.2.3.

Protein Complex Predicted for
IL6:sIL6R:IL6RB:JAKs all cancers
p-7Y-RUNX1:PTPN11 BRCA;BLCA;PAAD;LUSC;GBM

R-HSA-1112759 BRCA;LAML;BLCA
Integrin alpha2bbeta3:SRC BRCA;BLCA

R-HSA-1112753 BRCA;LAML;BLCA;LGG;GBM
R-HSA-1112563 BRCA

SAM68:p120GAP BRCA
JAKs:OSMR BRCA
IL6ST:JAKs BRCA

R-HSA-9632399 BRCA

Table 5.4: Top 10 protein complexes associated to cancer types.

IL6:sIL6R:IL6RB:JAKs complex plays a role in interleukin 6 signalling, which

is linked to cancer [306]. The complex is associated with JAK family of kinases;

themselves tied to cancer [307]. p-7Y-RUNX1:PTPN11 complex is involved in the

regulation of RUNX1 expression and activity. RUNX1 has been linked to various

cancer, sometimes with opposite effects [298]. However, regardless of its precise

role in a given cancer, the regulation of RUNX1 appear to be of critical impor-

tance as over- or under-expression can have an important impact on the develop-

ment of cancer [308]. Tyrosine phosphorylated IL6 receptor hexamer:Activated

JAKs:Tyrosine/serine phosphorylated STAT1/3 complex (R-HSA-1112759) is in-
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volved with interleukin 6 signalling and more specifically serine phosphorylation

of STAT family of transcription factors. We have seen previously that interleukin 6

signalling has been linked to cancer. Furthermore, STAT has been linked to various

cancers, including breast cancer (BRCA) that our results associate to the protein

complex [309].

The literature curation highlights that the existing literature supports our pre-

dicted associations between protein complexes and cancer types. Thus, the analysis

demonstrates the validity of our boosted decision trees re-purposing approach, as

well as the ability of our framework to extract cancer mechanisms at the level of

protein complexes.

5.4.4.2 Our re-purposed classifiers identify cancer-related biologi-

cal pathways

Similarly, we can predict associations between cancer types and biological path-

ways. The association score between a cancer type and a biological pathway is ob-

tained by simply feeding the concatenation of the normalised embeddings of both

entities to the 10 boosted decision trees trained to predict cancer–gene associations.

The average of the standardised scores across all boosted decision trees gives the

final association score.

CTD database [250] gives associations between diseases and pathways based

on shared associated genes and can be used for global validation. We achieve an

AUROC score of 0.65± 0.01 and an AUPRC score of 0.66± 0.01, which indi-

cates predictions significantly better than random (p-value ∼ 0) for our re-purposed

classifiers. However, note that 52% of all possible associations between our set of

cancer types and our set of pathways are reported in the database. This indicates that

the condition for association used by CTD might not be sufficiently stringent. This

motivates the following manual literature curation to validate our top 10 scoring

biological pathways. We discuss the first 3 predicted pathways below and provide

validations of all remaining predictions in Appendix C.2.4.

MAPK1 (ERK2) activation pathway (R-HSA-112411) and MAPK3 (ERK1)

activation pathway (R-HSA-110056) have been linked to numerous cancers, such
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Pathway Predicted for
R-HSA-112411 all cancers
R-HSA-2262752 BRCA
R-HSA-5654688 BRCA;GBM;BLCA;LGG;PAAD;LAML;

LUSC;STAD;SKCM;LUAD;UCEC
R-HSA-5654699 BRCA
R-HSA-8953897 BRCA
R-HSA-110056 BRCA
R-HSA-389357 BRCA
R-HSA-5654719 BRCA
R-HSA-9603381 BRCA
R-HSA-8866910 BRCA

Table 5.5: Top 10 biological pathways associated to cancer types.

as breast cancer, as discussed in the previous section, and colorectal cancer [310].

The ERK MAPK pathway is critical for cell proliferation and thus is naturally often

connected to cancers. Cellular responses to stress pathway (R-HSA-2262752) is a

subpathway of the cellular responses to external stimuli pathway (R-HSA-8953897)

[240]. Anticancer treatments are often successful when able to induce apoptosis

through external stimuli that induce cellular stress [311]. For instance, tumour sup-

pressor gene P53 can be stimulated via cellular stress [312]. Thus, perturbation to

those pathways might lead to cancer onset and resilience to treatment.

The literature review highlights the ability of our classifier re-purposing ap-

proach to identify associations between biological pathways and cancer types that

are supported by the existing literature. Thus, this analysis underlines the ability of

our framework to extract cancer mechanisms at the level of biological pathways.

5.4.4.3 Predicting patients’ responses to cancer drugs

We collect data on patient responses to cancer drugs from TCGA [271]. We only

consider patients and drugs that are present in our dataset. The task corresponds to

a binary classification where we predict if a patient’s response to a drug is positive

or negative. A response is considered positive if TCGA reports a complete response

of the patient, and negative otherwise. We further discard entries corresponding to

combinations of drugs as our model is not suitable for the analysis of these data.

From the remaining data, we only consider drugs that have both positive and neg-
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ative response. After processing, we have 2,589 patient–drug pairs. We split this

data in train, validation, and test sets with a 70%/10%/20% partition, repeating the

experiment 10 times and measuring AUROC and AUPRC scores.

We train a boosted decision tree model to predict patients’ responses to drugs.

As above, the input to the model is the concatenation of the normalised embedding

of a patient and a drug. The output can be interpreted as the success probability

of the treatment. Our approach performs well, achieving AUROC score of 0.869±

0.013 and AUPRC of 0.855±0.014. This result suggests that our model can capture

some common biological mechanisms that govern response to cancer drugs.

To analyse this claim further, we investigate which features the models use

most to predict response. First, we compute the gain, i.e. the relative importance,

associated with each feature in each one of the 10 models trained. For each feature,

we take the average gain across models as a final feature importance score. Note

that we have both patient and drug features; thus, we have two vectors of feature

importance scores, ipatients and idrugs. In a second step, we use the central matri-

ces from the NMTF decompositions in our objective to link each feature to both

genes and pathways. Specifically, we compute the projection of entity x in either

drug or patient space with Gp
x = GxSt , where St is either Sdt , for the drug space,

or Sexp + Smut , for the patient space. We can then rank the importance of genes,

or pathways, by taking the product of the projected embeddings with the feature

importance vectors. Interestingly, the two rankings of genes that we obtained re-

trieve driver genes in IntOGen. We consider all driver genes regardless of cancer

type and compute the AUROC and AUPRC scores of the two rankings. We obtain

AUROC 0.72 and 0.63 (p-values < 10−20) and AUPRC 0.08 and 0.04 in drug and

patient space, respectively, which indicate significant correlations between the set

of driver genes and the rankings. We take a closer look at the highest-ranked genes

and pathways (see Table 5.6).

Interestingly, 8 of the genes identified in Table 5.6 have been linked to can-

cer response to general, or specific treatments (HSP90AA1 [313], PIK3CA [314],

EGFR [315], PTEN [316], PRKACA [317], KRT19 [318], CLDN4 [319] , AGR2
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Drug space Patient space
Genes HSP90AA1 KRT19

PIK3CA KRT8
EGFR KRT18
PTEN CLDN4
PRKACA AGR2

Pathways Signal Transduction Extracellular matrix organisa-
tion

Signaling by GPCR Transport of small molecules
GPCR downstream signalling Degradation of the extracellular

matrix
Metabolism Signal Transduction
G alpha (i) signalling events Response to elevated platelet cy-

tosolic Ca2+

Table 5.6: Top 5 genes and biological pathways associated to drug response prediction
based feature importance in both drug and patient spaces.

[320]) and the remaining two have been associated to cancer prognosis (KRT8

[321], KRT18 [322]). Put together, the results indicate that our model assigns

meaningful importance to features. This is further corroborated when investigat-

ing the predicted pathways. We observe that most pathways are linked to external

signalling, notably G protein-coupled receptors (GCPRs) signalling. Signal trans-

duction is naturally critical to drug response, as it is the route through which drugs

interact with a cell [323, 324]. The state of the extracellular matrix also plays an

important role, as it can prevent the penetration of small molecules into the cell,

thus impairing pharmacologic treatments [325]. Thus, our model learns to weigh

meaningful features that relate to biological processes involved in drug mechanisms

of actions.

5.5 Conclusions

We introduce a two-step framework to perform data integration, feature reduction,

and classification to uncover cancer-related knowledge. First, we develop an inte-

grative non-negative matrix factorisation model to jointly embed entities in multi-

ple connected latent spaces based on heterogeneous, diverse relational data between

those entities. Note, that due to the wide range of data incorporated in our frame-
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work and the different levels of noise present in each, it might be worthwhile to

investigate balancing strategies of the diverse objective functions to improve the re-

sults further. Our model can easily be modified to accommodate such approaches.

We show that relative positions of entities in our latent spaces are consistent with

what we know about them. For instance, we show that genes group in functional

domains and are close to associated higher-order molecular structures (pathways

and complexes) embedded in the same latent space. Patients tend to be closer to

other patients having the same diagnosis and to the diagnosis itself. By taking

a pan-cancer approach, we can identify groups of patients with similar molecular

manifestations spanning various cancers, confirming that cancer classification may

need to be rethought on a global scale and the need for initiatives such as PCAWG

[274]. Based on known drug indications for the treatment of each cancer type and

known cancer type driver genes, we train boosted decision trees through which we

can predict relevant new associations for each cancer type. Due to the joint em-

bedding of different entities in the same latent space, we hypothesised that boosted

decision trees trained to identify associations with one type of entities could be re-

purposed to derive associations with other, less-studied, entities. In this way, we

can uncover biological mechanisms affected by each cancer type.

Interestingly, our work opens the door for actionable precision medicine.

Through the joint embedding of cancers and patients, boosted decision trees trained

on high-level knowledge about cancer types can be re-purposed to help identify

patient-specific information, such as potential drug treatment. Furthermore, our

model can capture the underlying information relevant to the characterisation of pa-

tients’ response to drug treatment. However, as the biological validation of such

predictions is difficult, requiring cell-line experiments or clinical trials, we leave it

for future work.

Our framework is general and flexible and can accommodate additional and

different data. While we focus on cancer here, our work paves the way for general

cross-diseases analysis that could be useful to identify treatment re-purposing based

on molecular similarities among medical conditions.



Chapter 6

Conclusions

6.1 Thesis summary

The increasing amount of multi-modal biomedical data has enabled researchers to

gain insights into biological systems and helped understand and treat pathological

states. Integrative approaches (introduced in Section 2.3) harnessing the diverse,

wide-ranging data sources, have been instrumental in this process. Notably, the in-

clusion of biological networks, modelling molecular dependencies as graphs (see

Section 2.2), has given rise to integrated system-level representations that are es-

sential to further our comprehension of biological states. Recently, the covid-19

pandemic has highlighted both how far we have progressed in our understanding of

pathologies and how much there is still to discover. To answer the global health

challenge, the community has been able to leverage and combine the available

data to generate relevant hypothesis to understand and identify putative treatments

[326, 327, 328]. Hence, among other crucial points, the crisis has highlighted the

need for efficient algorithms able to jointly mine multi-source datasets to produce

actionable knowledge for the practice of medicine.

This Thesis is part of the ongoing efforts to develop models and algorithms to

improve patient care through the joint analysis of diverse biomedical data. We fo-

cus on the multi-scale protein interactome and its integration into machine learning

models as a way to include the hierarchical structure of biological systems. Impor-

tantly, this enables the identification and investigations of pathological perturbation
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at the different scales of biological systems. Thus, it leads to a better comprehension

of the mechanisms of a disease which ultimately enables more efficient diagnosis,

prognosis, and the identification of best-suited treatments.

In Chapter 3, we propose the use of hypergraphs to represent protein com-

plexes and biological pathways that constitute higher-order protein interactions in

cells. We introduce hypergraphlets as connected, non-isomorphic, induced sub-

hypergraph to characterise wiring patterns around nodes of a hypergraph. Using

hypergraphlets statistics, we demonstrate that each level in the multi-scale protein

interactome captures complementary biological information. This result motivates

the importance of considering the multi-scale protein interactome to develop model

capturing biological information. Based on this observation, we propose a joint

hypergraph model of the multi-scale protein interactome. Using hypergraphlets,

we highlight that proteins wired similarly in the hypergraph have similar biologi-

cal functions. Furthermore, these proteins tend to be at a short distance from each

other in the hypergraph in terms of shortest path distance. This result highlights

that neighbourhoods in the multi-scale protein interactome are characteristic of bi-

ological functions. Based on this result, we propose to predict a protein’s biological

function based on the functions of proteins with similar wiring patterns. We show

that this simple procedure can uncover the biological functions of uncharacterised

proteins.

In Chapter 4, we introduce a visible machine learning neural network model

based on the multi-scale organisation of proteins into biological pathways in cells.

We use our model to predict patient’s diagnosis based on differential gene expres-

sion. We show that the sparse model diagnosis performances are on par with com-

petitive approaches. More importantly, we can identify links between diseases,

pathways, and proteins by investigating the weights of the trained model. Identi-

fying disease co-morbidities is a crucial task that can ultimately help to evaluate

a patient’s risk of developing a disease based on their medical history. This is es-

pecially useful for prevention and preemptive care. The identification of proteins

and pathways associated to disease is essential for many applications in precision
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medicine (discussed in the introduction), such as finding biomarkers to help diag-

nosis and prognosis or uncovering putative drug targets paving the way for new

treatment discovery. We show that our approach outperforms competing methods

and heuristics and that our top-scoring associations have strong support in the liter-

ature despite not being reported in existing databases.

In Chapter 5, we develop a framework resting on the collective embedding of a

wide array of biomedical entities based on their inter-relational links in a pan-cancer

context. Specifically, we integrate diagnosis, gene expression and somatic mutation

information of patients in multiple cohorts with the multi-scale protein interactome,

drug–target and drug similarities data. By using jointly multiple datasets about each

type of entities, our framework learns context-rich embeddings that can be used as

input to machine learning models for downstream analysis and link predictions. No-

tably, by integrating the multi-scale protein interactome in the framework, we learn

genes’ embeddings that take into consideration the multi-scale cellular organisation.

This enables us to identify biological function perturbed by cancer types and poten-

tial prognosis biomarker genes. Furthermore, by including data about drugs, we

predict that existing drugs could be repurposed for the treatment of specific cancer

types. We show that our approach outperforms the competing approaches and that

the existing scientific literature strongly supports our results.

6.2 Future work
Extensions of our approaches to various biological applications are discussed in

each chapter’s conclusion. Hence, we focus here on future methodological direc-

tions that are relevant to the work presented in this Thesis.

6.2.1 Scaling up topological analysis of the multi-scale protein

interactome

One issue with hypergraph (or simplicial complex) representations, and particu-

larly with the associated topological descriptors (hypergraphlets and simplets) is

that they do not scale well. Counting the substructures can be prohibitively time-

consuming in the presence of large hyperedges. For instance, counting all hyper-
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graphlets for each node in the hypergraph derived from the complete pathways set

of Reactome, containing approximately 10,000 nodes (proteins) and 1,700 hyper-

edges (pathways), requires more than a week of computations.

An approach to address this issue could be to choose a different representation

than hypergraph. For instance, an option is to use instead a multi-layer graph rep-

resentation. Multi-layer graphs are used to represent systems with heterogeneous

entities, or heterogeneous types of interactions [118, 119]. A multi-layer graph is a

collection of networks, called layers, with the potential addition of inter-layer edges,

i.e. edges connecting a node from a layer to a node from another layer. A multi-

layer graph M is defined by a pair M = (G ,C ), where G denotes the set of layers

of M and C corresponds to its set of inter-layer edges. If M has n layers, we denote

them by G = {G1, . . . ,Gn}, where Gi corresponds to layer i of M and Gi = (Vi,Ei)

(recall that a layer is a graph). An inter-layer edge can connect any pair of nodes in

any two layers (i.e. C ⊆ ∪i, j∈[1,n]:i 6= jVi×Vj). Note that the node sets of the layers

are not necessarily disjoint, thus, to avoid confusion, a superscript denoting the in-

dex of the layer is used, such that Vi = {vi
1,v

i
2, . . . ,v

i
pi
}, where pi = |Vi|. For instance

in Figure 6.1, the multi-layer graph has four layers, G1, G2, G3, and G4.

b
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Figure 6.1: Examples illustrating a multi-layer graph. The multilayer graph has four lay-
ers, G1, G2, G3, and G4. Each layer correspond to a graph: G1 = (V1 =
{a1,b1,d1},E1 = {a1b1,a1d1}), G2 = (V2 = {b2,c2},E2 = /0), G3 = (V3 =
{b3,d3},E3 = {b3d3}), and G4 = (V4 = {a4,c4},E4 = {a4c4}). Finally, the
set of inter-layer edges corresponds to {b1b3,d1c2,b2d3,c2a4}, where the su-
perscripts denote the layers. The figure is taken from Gaudelet and Przulj [116].

To represent the multi-scale protein interactome as a multi-layer graph, one

can think of different modelling approaches, such as assigning a layer for each type

of links (PPI, protein complex, and pathways) or assigning a layer to each higher-
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order entity (protein complexes and pathways) defining links based on PPIs. Both

approaches have the merit of explicitly conserving the hierarchical structure of the

multi-scale interactome. Multi-layer graph isomorphism problems can be cast as a

graph isomorphism problems [329]. As such, graphlets can be easily extended to

multi-layer graphs. For instance, Dimitrova et al. [330] recently extended graphlets

to a subtype of multi-layer graphs: multiplex networks, which are networks with

multi types of edges. However, while simple in theory, there are a few pitfalls. First,

as the number of layers increases, so does the combinatorial possibilities and the

number of potential substructures. Second, with few layers, nodes in the graph can

have a very high degree which drastically increases the time needed for substructure

counting. One question in this research direction will be whether a balance between

those two extremes can be found to enable a scalable analysis of the multi-scale

interactome.

A different research axis would be to develop machine learning models that can

either directly approximate substructure counting or implicitly consider the topol-

ogy in an end-to-end fashion, which we discuss in Section 6.2.3. Approximating

graphlet counts has been the focus of multiple studies to scale up the use of graphlets

to massive graphs with billions of edges [331, 332, 333]. These methods can serve

as a basis to develop accurate estimators of subgraph counts for hypergraphs (or

multi-layer graphs).

6.2.2 Visible machine learning

Visible Machine Learning (VML; discussed in Chapters 2 and 4) is a promising

approach to develop powerful, interpretable, compact models by designing them

based on prior biological knowledge.

An exciting research axis is how to handle the inherent noise and incomplete-

ness of biological data in VML models. In the framework proposed in Chapter 4,

for instance, we have noise coming from micro-array measurements and data pro-

cessing, as well as noise and incompleteness from the gene–pathway associations.

While we only partially addressed these issues in Chapter 4 with regularisation

(eventually discarded), a more comprehensive model should account for them in a
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more principled way. For instance, the addition of bias terms and dropout on layers

input can help handle noise and missing entries in the input data. Furthermore, to

handle gene–pathway associations noise and incompleteness, a strategy could be

weight dropout and, conversely, weight drop-in. Weight dropout has been intro-

duced as an extension of standard dropout regularisation by Wan et al. [334]. In

our case, weight dropout will ensure that the model does not rely on each specific

gene–pathway links too heavily, thus accounting for noisy connections. In contrast,

drop-in can be defined as the addition of some gene–pathway link with some low

probabilities to model missing associations. The adverse effect of drop-in in its gen-

eral form is that it would transform the layer in a fully connected layer, effectively

removing sparsity from the model. One can limit this to an extent by only consider-

ing plausible gene–pathway links for drop-in, for instance, predicted gene–pathway

associations with no experimental support. By this device, we would maintain spar-

sity while modelling missing associations.

Additionally, another direction is to leverage more data in similar models. For

instance, Reactome gives information on the roles of proteins within pathways (in-

put/output or catalyst). This information can be leveraged to define Pathway Cap-

sule Neural Networks where each pathway is associated with a small neural network

based on the proteins within the pathways and following their relative roles. The

pathway hierarchy could also be used here in a similar fashion than Ma et al. [191]

used the Gene Ontology directed acyclic graph. This model could be adapted for

diverse tasks, in particular, to study time series data. Notably, it would be interest-

ing to investigate if the model can capture the biological mechanisms governing the

evolution of gene expression in time, particularly the cell cycle.

6.2.3 Knowledge graph embedding

Our framework in Chapter 5 can be seen as a knowledge-graph embedding approach

for link predictions. Tensor and matrix factorisation constitute the state-of-the-art

approaches for link predictions [335]. However, such methods cannot handle the

addition of features describing entities, for instance, drugs’ SMILES signatures or

genes’ DNA sequences. This issue is often resolved by computing a kernel between
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entities based on their signature and using those to constrain the embedding objec-

tive. In Chapter 5, we used such an approach to encourage the close embedding of

chemically similar drugs according to the Tanimoto similarity measure. Although

often efficient in practice, this approach implies the choice of a similarity mea-

sure that can lead to some loss of information. Furthermore, most recent machine

learning practice advocate for end-to-end learning for which input data should be

minimally processed, letting algorithms learn to extract features from the raw data.

Graph Neural Networks (GNN) are an elegant alternative to analyse networked data

that naturally take into consideration node features. GNNs have been first proposed

at the beginning of the new millennium; however, they have only gained popularity

and attention over the past couple of years owing to their successes in applications

such as node classification and link prediction [336].

Various types of GNN layers have been introduced [337, 338, 339, 340, 341],

most rest on the same principles. As an illustration, consider a graph G = (V,E)

with n nodes, V = {1..n}, and feature matrix X ∈ R such that the ith row, denoted

Xi, gives the features associated to the ith node. A typical, vanilla GNN layer corre-

sponds to the composition of three functions. 1) A message-passing function MSG

defined on the edges of the graph. The MSG function can take multiple forms such

as the simple transfer of features from a source node to target node [338] or a more

complex attention mechanism [339]. 2) A function AGG that aggregates for each

node the messages from all incident edges. The AGG function is often simply the

sum, the average, or concatenation of its inputs. 3) A function UPDATE that applies

a transformation on the last node features. The UPDATE function is generally a

multi-layer perceptron layer. Mathematically, this gives the following equation

Hn+1
i = UPDATE

(
Hn

i ,AGG
({

MSG
(
Hn

i ,H
n
j
)
, j ∈Ni

}))
,

where Hn
i corresponds to the features of node i after n layers, and Ni denotes the

neighbourhood of node i. Thus, from a high-level perspective, a GNN layer updates

a node’s features based on the features of its direct neighbours in the graph. By

stacking two GNN layers, one effectively ensures that a node’s final features will
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depend as well on its second neighbours. With three layers, third neighbours will

also have an influence, and so on. The deeper the model, the more extended the

perceptive field. Conceptually, GNNs are related to graph diffusion and can be seen

as learning weighted diffusion processes on a graph [342]. Importantly, Ying et

al. [343] introduced GNNExplainer, an approach that enables the investigation of

trained GNNs. GNNExplainer sheds light on how the model extract information,

identifying important features and edges in the underlying graph. Thus, GNNEx-

plainer enables the interpretation of GNN models which is essential in biological

applications.

Three main tasks can be addressed with GNNs: node classification, link pre-

diction, and graph classification. Node classification corresponds to the prediction

of a node characteristics based on its features and the features of neighbouring nodes

in the graph. For instance, protein biological function prediction based on PPI net-

work [339]. Link prediction aims to uncover missing links in a graph. For instance,

Zitnik et al. [344] introduced DECAGON to model polypharmacy side effects.

Specifically, they construct a multi-layer network capturing PPI, drug–target, and

polypharmacy side effects as (drug,side effect,drug) triplets. The authors proposed

DECAGON, a GNN model that takes into consideration all types of edges jointly

and is trained to predict polypharmacy side effects. The underlying class of problem

is knowledge graph embedding that has been addressed with GNN [345] with re-

ported improvements on existing matrix factorisation models. The final task, graph

classification, aims to classify entire graphs based on their topology and node fea-

tures [346]. This task is tied to the graph isomorphism problem. It requires the def-

inition of a pooling function that extracts graph-level features from its nodes [347].

Examples of applications include molecule classification based on their graph rep-

resentation [348].

Several recent studies have focused on the theoretical analysis of GNN in terms

of representation power and generalisation. Vanilla GNNs have been shown to be

at most as expressive as the Weisfeiler-Lehman algorithm that was introduced to

test if two graphs are isomorphic [341]. Multiple recent publications have put into
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question the expressiveness of vanilla GNN and notably if GNNs can implicitly,

or explicitly, capture wiring patterns. Recently, Chen et al. [349] highlighted that

vanilla GNNs cannot count substructures in graphs. Furthermore, Dehmamy et

al. [350] established minimal depth conditions on GCN [337], a type of GNN, to

capture graph moments. However, several issues arise as GNNs go deeper such as

the bottleneck [351] and over-smoothing [352]. As GNN models improve, it would

be of interest to test if the new models can be used to approximate substructure

counting effectively and thus if they implicitly take graph topologies into account.

Current thinking in the graph machine learning community to overcome

these limitations is directed towards the development of GNN models that go be-

yond vanilla GNNs, incorporating global and relative information between nodes

[353, 354]. Constructing better, task-oriented message passing strategies is also a

critical axis of research [355]. These would benefit biomedical applications as it

would help identify the most relevant, task-specific information contained within

general biological networks. A simple illustration of this idea in biology comes

from Kovacs et al. [356] whose work highlighted that similar proteins rather than

being direct neighbours in a PPI network, instead tend to be two hops neighbours.

This idea was recently used by Huang et al. [357] when proposing SkipGNN, a

GNN that use two hops neighbourhood graph derived from the PPI network to aug-

ment its computational graph. The authors demonstrate higher performances on

protein function predictions tasks when compared to a model using PPI networks

out-of-the-box. This result raises the critical point that the most suited computa-

tional graph for a downstream task does not necessarily correspond to the input

graph. This observation motivates developing methods able to identify, or infer,

the best-suited graph for a specific task. Following this direction, researchers at

Google have recently introduced Grale [358], a general-purpose framework that de-

sign computational graphs from multi-modal data in order to best address machine

learning tasks.

Following this train of thoughts, it would be interesting to evaluate the use of

the multi-scale interactome to design GNN models. A first approach would be using
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higher-order interactions to define meaningful long-range message passing between

molecular entities. Vanilla GNNs have been extended to hypergraphs by Bai et al.

[359]; however, the model suffers from the limitations of vanilla GNNs. Notably,

with the multi-scale protein interactome, the high number of connections between

proteins would naturally lead to over-smoothing and bottleneck issues. The problem

likely requires novel approaches. One idea would be to use the information of pro-

tein roles in pathways, as given in Reactome, to define biological paths on a graph

of proteins along which message-passing could be advantageously used. A different

research direction would be to use the hierarchical molecular organisation to define

biologically inspired pooling operations. Graph neural networks have been often

presented as an extension of Convolutional Neural Network (CNN) operators used

for image processing to irregular structures represented as graphs. However, a clear

counterpart to the pooling layers used in image processing is yet to be defined for

GNN models. Pooling layers have been instrumental in improving the performances

of machine learning models processing images, with the state-of-the-art models us-

ing CNN and pooling layers in alternation. A few approaches have been proposed

for graphs relying on features, structure, or both [347, 360, 361, 362, 363], how-

ever, all have important limitations, and none has been established as gold-standard.

While defining a general-purpose graph pooling layer is a difficult problem, in the

context of biology, we can take advantage of higher-order interaction between enti-

ties to define biologically meaningful pooling. For instance, a specific task could be

to predict a patient’s survival from its graph representation. Using patients’ omics

data, one can define a graph representation for each patient, for instance, using

generic molecular graphs as a common basis (e.g. [156]). These graphs can be

then used as inputs to GNN models in a graph classification setting to predict pa-

tients’ characteristics such as survival or diagnosis. As graph classification tasks

require pooling operations to extract a graph embedding from the nodes’ embed-

dings, one could leverage the hierarchical biological organisation to define these

operations. For instance, one could use biological knowledge to pool the subset of

proteins involved in task-associated molecular processes, reducing noise associated
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with global pooling operations. Furthermore, the interpretability of GNN models

with tools such as GNNExplainer could further help identify putative biomarkers.



Appendix A

Higher order molecular organisation

as a source of biological function

A.1 Simplicial complex
In essence, a simplicial complex is a set of simplices. A simplex is a geometrical

figure defined by its number of dimensions (or nodes). A 0-dimensional simplex

corresponds to a single node, a 1-dimensional simplex corresponds to a line (2 nodes

linked by an edge), a 2-dimensional simplex is a triangle, a 3-dimensional simplex

corresponds to a tetrahedron, and so on. Any subset of size n of the n+1 nodes of

a n-dimensional simplex forms a (n−1)-dimensional simplex called a face. Thus,

a n-dimensional simplex has n faces (e.g. a triangle has 3 faces corresponding to its

edges). A simplicial complex K satisfies the following two conditions:

1. Every face of a simplex in K is also a simplex in K .

2. The intersection of any pair of simplices of K is either empty or a face of

both simplices.

A facet of a simplicial complex, is a simplex that is not the face of any higher-

dimensional simplex. Its set of facets can thus summarise a simplicial complex.

A.2 K-means
The k-means method aims to find a partition, or clustering, P of n observations

v1, . . . ,vn (in our case, rescaled degree vectors of the proteins), into k disjoints sets,
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or clusters, i.e. P = {c1, . . . ,ck} (k is a hyperparameter chosen by the user). Each

cluster ci is defined by a vector called its centroid, µci , which corresponds to the av-

erage of the rescaled degree vectors of the proteins it contains, i.e. µci =
1
ni

∑v∈ci v

where ni corresponds to the number of proteins in cluster i. A k-means algorithm

starts from random centroids and searches for the clustering that minimises the ob-

jective function

argminP ∑
c∈P

∑
v∈c
‖v−µc‖2. (A.1)

Algorithmic details can be found in [207].

A.3 Supplementary Figures
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Figure A.1: Adjusted Mutual Information scores between pairs of clusterings obtained
with the different topological representations for GO–BP.
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topological representations for GO–BP.
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Figure A.3: The most significant CCA variate between HDVs of the proteins of yeast-
pathways and their GO–BP annotations. The correlation score between the
linear combination of annotations and the linear combination of hypergraphlet
orbits is 1. The annotations (orbits) illustrated above correspond to the 10
that have the highest Pearson’s correlation scores with respect to the linear
combinations of annotations (orbits). Each GO term in blue font is annotating
at least one protein conjointly with at least one other annotation that is also
denoted in blue font, according to QuickGO ontology search engine [212].



Appendix B

Unveiling new disease, pathway, and

gene associations via multi-scale

neural networks

B.1 Supplementary methods

B.1.1 Metrics to evaluate classifier

The cross-entropy loss (CEL) of a classifier is defined as

CEL =
1
m

m

∑
i=1

n

∑
j=1
−yi j log(ŷi j),

where m represents the number of samples (patients), n the number of classes (dis-

eases), yi j indicates if patient i is diagnosed with disease j (1 if true 0 otherwise),

and ŷi j is the jth output value of the classifier for patient i. A relatively small CEL

means that the output probability distribution of a classifier is closer to the determin-

istic one-hot encoding of the true labelling, i.e. the classifier gives a high probability

to the true class and very small probabilities to the other classes.

The micro-averaged precision (Preµ ) of a classifier gives a measure of the over-

all precision of the classifier. It is defined as

Preµ =
t p
m
,
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where t p corresponds to the number of accurately classified patients and m repre-

sents the number of patients.

The macro-averaged precision (PreM) of a classifier gives an average of the

precision across the different classes (diseases) and is defined as

PreM =
1
n

n

∑
i=1

t pi

mi
,

where t pi corresponds to the number of accurately classified patients for disease i

and mi represents the number of patients diagnosed with the same disease. PreM can

be more informative than Preµ when considering the problem with class imbalance.

B.1.2 Baselines

The Frequency of Differential Expression (FDE) score of a disease–gene associa-

tion corresponds to how frequently that gene is consistently differentially expressed

in patients having the disease, i.e., for disease d and gene g, the association score,

sdg, is given by

sdg =

∣∣∣∣∣ 1
|Pd| ∑

p∈Pd

Xgp

∣∣∣∣∣ , (B.1)

where we amalgamate entities (disease, gene, and patient) with their indices, Pd

denotes the set of patients having disease d, and X corresponds to the data matrix

introduced in Methods.

The Katz method uses disease-specific Protein–Protein Interaction (PPI) net-

work, where each node of a standard PPI network is associated to a score (here the

FDE of each gene for the disease considered). The authors then use Katz-centrality

on each disease PPI network to extract a final score for each disease–gene associa-

tion (here we use the absolute value). The higher the score, the higher the associa-

tion is expected to be true. We download the PPI data from BioGRID [364] and IID

[365] and create our PPI network from the union of both databases restricted to our

set of genes. Finally, we perform a grid-search to identify the best parameters for

the model by trying to maximise the area under the precision-recall curve metric.
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B.2 Supplementary figures

Disease Name Patients

Count

Disease Name Patients

Count

non-small cell lung carci-

noma

490 amyotrophic lateral sclerosis 36

oral cavity cancer 248 juvenile myelomonocytic

leukemia

34

psoriasis 223 nasopharynx carcinoma 31

myelodysplastic syndrome 187 sarcoidosis 30

bacterial sepsis 181 dermatomyositis 29

colorectal cancer 154 myositis 29

asthma 138 cervical cancer 28

mature T-cell and NK-cell

lymphoma

131 multiple sclerosis 27

alzheimers disease 128 turner syndrome 26

kidney cancer 121 interstitial lung disease 25

schizophrenia 114 multiple myeloma 22

chronic obstructive pul-

monary disease

89 type 2 diabetes mellitus 20

pilocytic astrocytoma 79 essential thrombocythemia 19

thyroid cancer 79 sjogrens syndrome 19

bladder carcinoma 79 jobs syndrome 18

cerebrovascular disease 78 sotos syndrome 18

adrenocortical carcinoma 77 oral mucosa leukoplakia 17

uremia 75 rhabdoid cancer 17

endometriosis 74 dengue disease 17

major depressive disorder 67 esophagus squamous cell car-

cinoma

17

irritable bowel syndrome 65 ulcerative colitis 17

stomach cancer 65 anogenital venereal wart 16
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oligodendroglioma 64 alcoholic hepatitis 15

systemic lupus erythematosus 61 campylobacteriosis 14

hepatocellular carcinoma 59 spondylosis 14

myocardial infarction 57 vitiligo 14

breast cancer 57 mitochondrial metabolism

disease

14

malignant pleural mesothe-

lioma

55 osteosarcoma 14

glioblastoma multiforme 53 cornelia de lange syndrome 14

acute myeloid leukemia 52 aphthous stomatitis 13

autistic disorder 51 sinusitis 13

hcv infection 49 sickle cell anemia 13

hepatoblastoma 49 atrial fibrillation 13

pancreatic ductal adenocarci-

noma

46 hepatitis b 12

prostate cancer 46 peripheral vascular disease 12

ovarian cancer 43 acne 12

monoclonal gammopathy of

undetermined significance

43 crohns disease 11

medulloblastoma 41 leishmaniasis 11

polycythemia vera 41 follicular lymphoma 10

atopic dermatitis 40 myelofibrosis 10

trachoma 39 leigh disease 10

rosacea 38

Table B.1: Cohort size for each disease in the dataset.



Appendix C

Integrative Data Analytic

Framework to Enhance Cancer

Precision Medicine

C.1 Supplementary Methods

C.1.1 Projecting new patients

Projecting new, unseen patients in our framework latent space can be achieved by

solving an objective function derived from the framework. Specifically, to find

embeddings in our latent space for patients that were not seen by the model during

the optimisation process, we minimise the objective function

L = min
G·,S·

∑
x∈{exp,snv}

‖Xx−GpS∗xG∗Tg ‖F +‖Xpct−G∗ctG
T
p‖F ,

where Xx,x ∈ {exp,snv} represent the molecular data of the patients, Xpct gives

the patient diagnosis. The star superscripts ·∗ denote factors that are fixed in the

original framework decomposition. Once this objective is minimised, Gp gives the

embeddings of the new patients in the latent space. We measure the quality of the

embeddings of the new patients by quantifying if the patient is embedded close to its

diagnosis and close to other patients having the same cancer in the original dataset.
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The first aspect is quantified with macro-F1 scores of a classifier that associate to

each patient the closest cancer in the latent space. The second aspect is quantified

with macro-F1 scores of a classifier that associates to each patient the diagnosis that

is most represented among the 10 nearest patients in the latent space.

C.1.2 Baselines

We contrast the performances of our trained boosted decision tree with those of the

state-of-the-art methods for the prediction of cancer type associations with genes

and drugs. We chose baselines based on the availability of source code (or detailed

implementation description), the quality of reported performances, and the concor-

dance of input data with ours. Our implementation of each method is available in

the Supplementary Files. When a method requires hyperparameters tuning, the cri-

terion used to identify the best set of hyperparameters is always the AUROC score

of the classifier in the associated task.

Non-negative Matrix Factorization Reconstruction (NMFR) is based on the re-

construction of the data after factorizations and is the simplest approach based on

our framework. The idea is based on the matrix completion property observed in

matrix factorizations methods[281]. Here, we propose a simple method that makes

use of the link between factors to extract entities’ association scores. For instance,

cancer–gene association scores, CG, are given by

CG = GctGT
p Gp

(Sexp +Ssnv)

2
GT

g ,

where entry (i, j) of matrix CG gives the association score between cancer type i

and gene j. Cancer–drug association scores, CD, are given by

CD = GctGT
p Gp

(Sexp +Ssnv)

2
GT

g GgSdtGT
d ,

where entry (i, j) of matrix CD gives the association score between cancer type i

and drug j.

Performances are measured by how well those association scores correlate to
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IntOGen cancer–driver data and DrugCentral cancer–drug data using AUROC and

AUPRC.

MBiRW [171] was proposed to identify potential new indications for the existing

drugs. The method is based on a bi-directional random walk using a drug similarity

network, a disease similarity network, and a bipartite network connecting diseases

to drugs. The authors report good performances against known ground-truth relative

to the competing methods and manually validate de novo predictions.

Here, the drug similarity network adjacency matrix is given by the drug Tani-

moto similarities matrix Xts. We define the cancer similarity network Xcc based on a

molecular similarity between cancers. We first associate to each cancer two molec-

ular signatures given by the average of patients gene expression data and SNV data.

From each type of data, we define a cancer similarity network that corresponds to

the cosine similarity of their molecular signatures. We denote by Xcc the final cancer

similarity network corresponding to the average of those two similarity networks.

Note that the authors use a different disease similarity matrix, the source of which

is currently offline. Finally, we use cancer–drug data from DrugCentral to define a

bipartite network in which an entry is set to 1 to indicate an association between the

corresponding drug and cancer, and 0 otherwise.

The authors propose an iterative method that follows the step given in Algo-

rithm 1.

We perform a 10-fold cross-validation to select hyperparameters α ∈

{0.1,0.3,0.5,0.7,0.9} and M ∈ {2,5,10,20} (note that the authors set M = 2,

and search for α). In each run, 10% of known cancer–drug associations are masked

in the input to the algorithm and we evaluate how well MBiRW is able to retrieve

those.

DRRS [294] was proposed to identify potential new indications for the existing

drugs as well. The method is based on the matrix completion property of Singu-

lar Value Thresholding Algorithm (SVT) using a drug similarity matrix, a disease

similarity matrix, and a disease–drug indication matrix. The authors report good

performances against known ground-truth relative to the competing methods and
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Data: cancer–cancer network Xcc, drug–drug network Xts, cancer–drug
network CD, parameter α , maximum number of iterations M

Result: cancer–drug associations scores O

DD = D
− 1

2
ts XtsD

− 1
2

ts ;where Dts is a diagonal matrix where entry
Dts(i, i) = ∑ j Xts(i, j)

CC = D
− 1

2
cc XccD

− 1
2

cc ;where Dcc is a diagonal matrix where entry
Dcc(i, i) = ∑ j Xcc(i, j)

R0 =
CD

∑CD ; where ∑CD gives the number of non-zero entries in CD
O = R0; niter = 0;
while niter ≤M do

L = α ·O ·DD+(1−α) ·R0;
R = α ·CC ·O+(1−α) ·R0;
O = L+R

2 ;
niter = niter +1;

end
Algorithm 1: MBiRW algorithm.

further use their methods to predict indications for new drugs, validating novel as-

sociations.

For our purposes, we use the Tanimoto drug similarity matrix Xts, the cancer–

cancer similarity matrix derived from ICGC molecular data Xcc, and cancer–drug

associations from DrugCentral Xcd . The authors define the block matrix A

A =

 Xts XT
cd

Xcd Xcc

 ,

and feed it to the SVT algorithm. The maximum number of epochs is set to the

minimum between the number of cancers and the number of drugs. The iteration

with the highest AUROC gives the final predictions. We perform a 10-fold cross-

validation to evaluate the performance of the algorithm. In each iteration, we mask

10% of known cancer–drug associations and evaluate how well the algorithm re-

trieves them.

BNNR [35] was developed for re-purposing of drugs. The method is also based on

the completion property of SVT. The algorithm follows the steps given in Algorithm

2. Compared to DRRS, BNNR incorporates a regularisation term to balance the ap-

proximation error and the rank properties and thus can handle the noisy drugdrug
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and diseasedisease similarities. It also adds a constraint that clips the association

scores to the interval [0,1]. The authors found that those additions benefited per-

formances compared to DRRS for retrieval of known associations. They further

manually validated the top-scoring associations through literature curation.

Data: block matrix A, hyperparameters α and β

Result: cancer–drug associations scores W
tol1 = 2 ·1e−3; tol2 = 1e−5;
M = 300; niter = 0;
s1 = 1; s2 = 1;
X = A; Y = X ; W = X ;
mask = T > 0;
while niter ≤M or tol1 < s1 or tol2 < s2 do

F = 1
b(Y +αT )+X ;

W = F− α

α+β
F�mask;

W [W < 0] = 0; W [W > 1] = 1;
Xt = svt(W − 1

β
Y, 1

β
);

Y = Y +β (Xt−W );
st = s1; s1 =

‖Xt−X‖F
‖X‖F

;

s2 =
|s1−st |

max(1,|st |) ;
X = Xt ; niter = niter +1;

end
Algorithm 2: BNNR algorithm.

We perform a 10-fold cross-validation to evaluate the performance of the algo-

rithm and fix the hyperparameters α ∈ {0.1,1,10,100} and β ∈ {0.1,1,10,100}.

Network Based Integration (NBI) [296] was developed to identify cancer-related

genes that are not necessarily mutated or differentially expressed. The method is

based on network heat diffusion process over a molecular network. The original

paper focuses on a single cancer for which they collect differential gene expression

data and SNV data. The authors assess performances by first measuring how ac-

curately their method retrieves known cancer driver genes and then validate novel

cancer–gene associations.

Network heat diffusion is defined by the iterative update of scores X0 associ-

ated to the network’s nodes following the equation

Xn+1 = αWXn +(1−α)X0,
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where W denote the network data and Xn corresponds to the updated scores after n

iterations. The iterative process terminates when ‖Xn+1−Xn‖2 < 10−6.

The authors set W to the PPI normalized adjacency W = ∆
− 1

2 Xppi∆
− 1

2 , where

∆
− 1

2 is a diagonal matrix where entry i corresponds to the degree of gene i in the

PPI network. The authors use the diffusion process both on patients differential

gene expression and SNVs, obtaining two diffused vector scores per patient. They

then handcraft 13 cancer-specific features for each gene based on the results. Those

features are then used as input to a logistic regression classifier trained to predict

known cancer drivers.

As differential gene expression is not available to us, we use the same gene

expression values that are input to our framework. Since our analysis is across can-

cers, we compute gene features for each cancer types, i.e. each cancer–gene pair

is associated with a 13-dimensional feature vector. The method has two hyperpa-

rameters: α for the heat diffusion process, and C that controls regularisation of the

logistic classifier. We perform a 10-fold cross-validation procedure to pick the best

pair of hyperparameters, with α ∈ {0.25,0.5,0.75} and C ∈ {0.01,1,100}, and to

evaluate the performance of a logistic regression classifier trained on those features

to predict cancer-specific driver genes.

LOTUS [11] is a method that achieved the state-of-the-art results for the more spe-

cific tasks of identifying oncogenes and tumour-suppressing genes. Each task is

tackled separately, and each with 3 different gene features that are not available to

us. However, the method can be adapted to the simpler task of retrieving cancer

driver genes. To this end, we use gene expression data, SNVs, and gene methyla-

tion data, that are available in ICGC, as gene features. A patient’s gene methylation

is defined as the average beta value of all associated CpG islands.

The authors of LOTUS propose both a cancer-specific framework and a pan-

cancer framework; we use the latter here. The method revolves around the Support

Vector Machine (SVM) algorithm. The authors first define for each sample–gene

pair 3 features that are then averaged across all samples to give the final gene fea-

tures. In their work, the final features correspond to the number of damaging mis-
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sense mutations, the total number of missense mutations, and the entropy of the

spatial distribution of the missense mutations on each gene, for the prediction of

oncogenes. For the prediction of tumour-suppressing genes, the features are the

number of frameshift mutations, the number of loss-of-function mutations, and the

number of splice site mutations. Note that when defining those features, the authors

do not differentiate across cancer types. In our case, the features correspond to the

mutation frequency, the average gene expression, and the average gene methylation

across all samples. To ensure that those features are comparable, we normalise the

distributions to have 0 mean and unit variance.

The authors then define both a gene kernel Kg and a cancer kernel Kc. The

gene kernel is defined as the average of a kernel corresponding to a gene similarity

matrix derived from 3-dimensional features defined above and a kernel derived from

the PPI network. We have

Kg =
1
2
(
ΦΦ

T + e−L) ,
where Φ∈R15,224×3 represents the gene features and L is the normalized Laplacian

of the PPI network, L = I−D−
1
2 XppiD−

1
2 , I represents the identity matrix and D the

diagonal matrix with entries corresponding to the degree of each node in the PPI

network. The cancer kernel is defined as the sum of three kernels

Kc =
1
3
(I + J+Xcc) ,

where I represents the identity matrix, J corresponds to the matrix filled with ones,

and Xcc is a cancer similarity matrix. As above, we use the cancer similarity matrix

defined based on cancers molecular similarities.

The final kernel K for (cancer,gene) pairs used for pan-cancer analysis is de-

fined by

K
(
(c,g),(c′,g′)

)
= Kc(c,c′)×Kg(g,g′),

where c and c′ represent cancers and g and g′ represent genes. The hyperparam-

eter of the model corresponds to the regularisation coefficient C of the SVM al-
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gorithm. Due to the large size of the full kernel K, we use the same strategy as

the authors of LOTUS and randomly sample negative (cancer,gene) pairs from all

(cancer,gene) pairs that are not reported in IntOGen. This effectively boils down to

using a submatrix of kernel K as input that contains as many positive (cancer–driver

associations) and negative pairs. As before, we perform cross-validation to pick

C ∈ {1,10,100,1000} and evaluate the performance of the method on our task.

Subdyquency [12] is a method based on random walks on a network to identify

cancer drivers. It achieves the state-of-the-art results for the retrieval of known

cancer drivers. The framework is defined for specific cancers, and we extend it

to pan-cancer. In their framework, the authors build a network between “outlier”

and mutated genes. The outlier genes are genes whose expression is significantly

different with respect to the cohort. They correspond to genes with absolute z-

score strictly greater than 2. The set of outlier (mutated) genes is defined as all

genes being at least outlier (mutated) for one patient. Here, we consider all cancers

together to define those sets. Directed interactions between genes are obtained from

the Functional Interactions (FI) network [366] derived from Reactome [240]. We

downloaded the 2019 version of the FI network. The authors define a bipartite graph

between the two sets of genes whose edges correspond to directed links in the FI

network. The edge weights are defined based on the localisation of proteins in a cell

as given by the COMPARTMENT database [367] (see the original paper for details).

As done by the authors, we downloaded all data relating to human regardless of

evidence type (obtained in April 2020). We denote the adjacency matrix of this

bipartite graph with W ∈Rnm×no , where nm and no represent the number of mutated

and outlier genes, respectively. Then, for each patient p, the authors define a feature

vector for the outlier gene set, denoted by Op, and another one for the mutated gene

set, denoted by Mp. Specifically, consider gene i in the mutated set. If gene i is

mutated for patient p, then Mp(i) is set to the mutation frequency of gene i in the

cohort of patients having the same cancer as p, and 0 otherwise. For gene j in the

outlier set, if j is not an outlier for patient p, then Op( j) is set to 0, if j is an outlier

and is also in the mutated set, then Op( j) is set to Mp( j), else it is set to the outlier
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frequency of j across the set of patients having the same cancer as patient p. The

authors then propose the three steps procedure simulating a random walk on the

bipartite graph using both feature vectors

Rm
p = αMp +(1−α)WOp,

Ro
p = αOp +(1−α)W T Rm

p ,

Rm
p = αMp +(1−α)WRo

p,

where α ∈ [0,1] is the sole hyperparameter of the model. The final cancer–gene

scores are derived by summing the Rm
p vectors across patients. Higher scores in-

dicate a stronger association between a cancer and a gene. We perform a cross-

validation to pick α ∈ [0,1] and evaluate the performance of the method on our

task.

C.2 Supplementary Results

C.2.1 Cancer–drug associations

Due to space limitations, we discuss here the supporting literature for the remaining

predicted drugs in Figure 3.b. of the main article.

DB12202 (Zalutumumab) targets EGFR gene and is investigated for the treat-

ment of Squamous Cell Cancer and Head and Neck Cancer.

DB05374 (Rindopepimut) is a drug investigated for the treatment of brain can-

cers. It targets the mutant protein EGFRv3, which has recently been identified as a

target in lung cancer therapy as well as [368].

DB01269 (Panitumumab) is approved for the treatment of EGFR-expressing

colorectal carcinoma. Since EGFR is often also involved in lung cancers, the pre-

dicted associations here are relevant.

DB05931 (Pegdinetanib) is an investigational drug for the treatment of unspec-

ified cancers. It binds to gene VEGFR-2 regulating primary tumour angiogenesis

pathways, thus blocking ligands from binding to VEGFR-2.

DB06186 (Ipilimumab) is an approved drug for the treatment of multiple can-
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cers, such as renal cell carcinoma, melanoma, and colorectal cancer. It binds

CTLA4 to block the T-cell inhibition signal pathway. Erfani et al. [369] suggested

that therapies targeting CTLA4 might be beneficial to lung cancer patients.

DB00011 and DB00018 (interferon alpha-n1 and interferon alpha-n3) are pro-

teins that both targets interferon alpha/beta receptors 1 and 2. A similar protein,

interferon alpha-2b, is among the approved treatments of SKCM. The mechanisms

of action of these protein-based treatments are identical according to Drugbank.

This supports the prediction of both DB00011 and DB00018 for the treatment of

SKCM.

C.2.2 Cancer–gene associations

Due to space limitations, we discuss here the supporting literature for the remaining

predicted genes in Figure 3.d. of the main article.

We predict that HERC1 is associated with BRCA, COAD, and READ. The

associations with COAD and READ are already reported in CCGD. Furthermore,

HERC1 has been linked to migration and invasion of breast cancer cells [370].

We further observe, with a logrank statistical test (0.05 cut-off), that higher than

the average expression of HERC1 in our BRCA cohort leads to significantly lower

survival rates (pvalue 0.0498; see Supplementary Figure 2.d). Inversely, lower than

the average expression of HERC1 in our READ cohort indicates significantly lower

survival rates (p-value 0.008; see Supplementary Figure 2.e).

Both NCOA3 and CHD6 are linked to BRCA in CCGD. We further observe

here, with a logrank statistical test, that higher than the average expression of those

genes indicates lower survival rates in our BRCA cohort with p-values 0.0014 and

0.0155, respectively (see Supplementary Figure 2.f/g).

We predict that SIN3A gene is linked to BRCA, which is supported by existing

literature [371, 372].

SRC is a proto-oncogene linked to colon cancer, according to NCBI. It has

notably been connected to breast cancer in the scientific literature [373].

PPARG has been identified as a potential target for cancer treatment and pre-

vention [374]. It has also been associated with the induction of apoptosis in breast
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cancer cells [375]. This is consistent with our logrank statistical analysis which

shows that higher than the average expression of PPARG in our BRCA cohort is as-

sociated with significantly higher survival rates (p-value 0.016; see Supplementary

Figure 2.g).

C.2.3 Cancer–complex associations

Due to space limitations, we discuss here the supporting literature for the remaining

predicted protein complexes in Table 1 of the main article.

Integrin alpha2bbeta3:SRC complex plays a role in integrin signalling, more

specifically in the phosphorylation of SRC kinase. Our prediction is supported

by the fact that integrin alpha2bbeta3 is part of the oncogenic MAPK signalling

pathways[240] which includes inactive SRC (phosphorylated Y530).

IL6:Tyrosine phosphorylated hexameric IL-6 receptor:Activated JAKs:p-

Y546,Y584-PTPN11 complex (R-HSA-1112753) is implicated in MAPK1/MAPK3

signalling. Both MAPK1 and MAPK3 are identified as driver genes in some

cancers[298] and phosphorylated PTPN11 (p-Y546,Y584-PTPN11) is linked to

PI3K/AKT signalling in cancer[240]. Furthermore, the MAPK pathway, through

interplay with PI3K, has been linked to breast cancer [376] and leukaemia [377].

Tyrosine phosphorylated IL6ST:Activated JAKs complex (R-HSA-1112563)

is linked to both interleukin 6 signalling, MAPK1/MAPK3 signalling, and phos-

phorylated PTPN11. Based on the discussion above, this complex is relevant to

breast cancer.

SAM68:p120GAP complex has been linked to the insulin receptor signalling

pathway. More specifically, Sánchez-Margalet et al. [378] reports that Sam68 is

associated with p120GAP after insulin stimulation and links GAP to the PI3K path-

way. We have already seen that PI3K pathway has been linked to breast cancer in

previous work. It is also the case that insulin receptor signalling plays a role in

breast cancer [379].

JAKs:OSMR complex is also involved in Interleukin-6 family signalling. Fur-

thermore, it has been suggested that OSMR and JAK/STAT3 signalling can promote

breast cancer progression [380].
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IL6ST:JAKs complex is a subunit of IL6:sIL6R:IL6RB:JAKs that is involved

in signalling by interleukins. The same supporting evidence links it to cancer.

Me260-ESR1:STRN:ESTG:MyrG-pY419 SRC:PI3K alpha complex (R-HSA-

9632399) is part of the extra-nuclear estrogen signalling pathway which has been

linked to tumour progression and metastasis [381]. Furthermore, protein MyrG-

p-Y419-SRC, bound to PI3K in the complex, is associated with various cancer

pathways[240], including PI3K/AKT signalling in cancer.

C.2.4 Cancer–pathway associations

Due to space limitations, we discuss here the supporting literature for the remaining

biological pathways in Table 2 of the main article.

SHC-mediated cascade:FGFR1 pathway (R-HSA-5654688), SHC-mediated

cascade:FGFR2 pathway (R-HSA-5654699), and SHC-mediated cascade:FGFR4

pathway (R-HSA-5654719) are all three sub-pathways of FGFR signalling pathway

which has been connected to cancer [382]. The role of SHC in this is unclear, but

observations suggest that it might contribute to the activation of the MAPK pathway

[240].

CD28 dependent PI3K/Akt signalling pathway (R-HSA-389357) is associated

with cell growth and survival, roles that are critical in the development of cancer.

The PI3K/Akt signalling pathway has been identified as a potential therapeutic tar-

get for cancers, including breast cancer [383]. Furthermore, mutation of CD28

receptors has recently been linked to increased risk in breast cancer [384].

Our results suggest that activated NTRK3 signals through PI3K pathway (R-

HSA-9603381) are associated with breast cancer. The activation of NTRK3 corre-

lates with activating phosphorylation of AKT, the principal mediator of PI3K sig-

nalling. Thus, this association is directly related to cancer, as shown in a previous

discussion.

TFAP2 (AP-2) family regulates transcription of growth factors, and their re-

ceptors pathway (R-HSA-8866910) is associated with breast cancer through ESR1

and ERRB2. The entry for the pathway in Reactome [240] details the link between

TFAP2 family and expression of ESR1 in breast cancer.
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C.3 Supplementary figures and tables
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Figure C.1: Framework sensitivity to hyperparameters with respect to different scores
relating to patients and genes embeddings. Sequence of hyperparameter
combinations is defined with set product (k1,k2,k3) ∈ {2,5,10,15,21} ×
{70,80,90,100,110}× {40,50,60,70,80}. Black dashed vertical line indi-
cates the best set of hyperparameters according to the macro-F1 score with
respect to patients’ diagnosis.

Figure C.2: Evolution of enrichment scores based on gene data ablation.
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Closest cancer macro-F1 Nearest neighbours macro-F1
0.773±0.028 0.882±0.015

Table C.1: F1 scores measuring how closely new patients are embedded into the latent
space to their cancer type and patients having the same cancer.

a. b.

c. d.

Figure C.3: Global validation against CCGD driver genes of our predicted associations
between genes and cancer types. Top row gives receiver operator curves for
a. all predictions and b. per cancer type predictions. The bottom row give
precision recall curves for c. all predictions together and d. per cancer type
predictions. Precision-recall curve are cut at recall 0.1 to show top ranked
precision of predictions in more detail. Each value in the legends corresponds
to either AUROC or AUPRC score of the non-restricted associated curve.
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a. b. c.

d. e. f.

g. h.

Figure C.4: Kaplan-Meir curves comparing patients survival within a given cohort based
on the relative expression of a gene. Each panel corresponds to a gene–cancer
pair: a. KAT2B–BRCA, b. MDM2–BRCA, c. SP1–BRCA, d. HERC1–
BRCA, e. HERC1–READ, f. NCOA3–BRCA, g. CHD6–BRCA, and h.
PPARG–BRCA. Numbers in parenthesis in legends correspond to the num-
bers of patients falling in the associated category.

a. b.

Figure C.5: Ablation of patient–gene data effect on performances for a. drug–cancer type
and b. gene–cancer type link prediction tasks.
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[116] T. Gaudelet and N. Pržulj. Introduction to graph and network theory. In
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