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Sample and experimental setup

The sample used in this work is a high quality factor (Q>100000) GaAs/AlGaAs planar microcavity containing 12
GaAs quantum wells of 7 nm width, grouped in 3 blocks placed at the antinode positions of the electric �eld inside
the cavity, with a collective Rabi splitting of ~Ω = 16 meV. The front (back) mirror consists of 34 (40) pairs of
AlAs/Al0.2Ga0.8As layers, with a polariton lifetime of about 100 ps [1]. The cavity detuning δ = ~(ωc−ωx) is slightly
negative (δ = −1 meV), with the exciton energy ~ωx=1611 meV. Photoluminescence measurements are performed in
re�ection con�guration with the sample placed in the vacuum-chamber of a cryostat and kept at a temperature of about
10 K. Polaritons are non-resonantly excited by a single-mode Ti:sapphire laser in continuous wave (CW) operation
with stabilized output wavelength and power (M2Squared SolsTis). To e�ciently injects carriers in the structure, the
energy of the pump is chosen to coincide with the �rst minimum of the re�ection stop band (1686.80 meV). To avoid
a possible thermal heating of the sample, the pump laser is chopped at a frequency of 4 kHz with a duty cycle of
8%. To obtain energy- and spatially-resolved information, an imaging spectrometer is coupled to the CCD detector
as shown in Fig. S1.
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Figure S1: Scheme of the experimental setup with the Michelson interferometer in the detection line.

Interferometric measurements of �rst-order coherence

Moving a mirror in one arm of the interferometer by an automatised piezoelectric stage with a step size that is small
compared to the wavelength, the sinusoidal envelope of the intensity versus the delay can be measured with high
precision at each point of the interferogram as shown in Fig. S2. The �rst order correlation function is obtained as:

|g(1)(r,−r)| = V Iideal, (S1)

where Iideal = (I1 + I2)(2
√
I1I2)−1 takes into account small asymmetries between the two interferometer arms, with

I1 and I2 the intensities in the two interferometer arms, while V is the visibility of the interference fringes. The
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Figure S2: Sinusoidal envelope of the intensity on a single CCD pixel as a function of the piezo-controlled delay
between the two arms of the interferometer.

visibility V is obtained by �tting the data, as shown in Fig. S2, with:

I(x) = I0 +A sin(ωx+ φ0) (S2)

where V = A
I0

and φ0 is the initial phase. Alternatively, the 2D spatial coherence can be retrieved from the interfero-
grams with standard Fast Fourier Transform algorithms, as in Fig. 2 of the main paper [2]. In the text the raw data
are plotted without any normalization, and residual oscillations of the setup (cryostat, noise in the optical path, etc)
can globally reduce the maximum coherence observed with time-averaged detection. This is taken into account by the
space-independent amplitude parameter A in Eq. 1 and Eq. 2 of the main text. In Fig. 3 of the main text, integration
times of 1100 ms, 1100 ms and 476 ms are used in the measurements of space correlations in panel a), b) and c),
respectively. Temporal correlations of panels d), e) and f) have been recorded by averaging over 10 acquisitions of
300 ms, 300 ms and 100 ms, respectively.

Density of the polariton condensate

The contribution to the total density coming from di�erent polariton states is energy-resolved by coupling the CCD
detector to a spectrometer with a minimum step size of 10 µeV . This allows to measure the fraction of condensed
polaritons with respect to the whole polariton population, as shown in Fig. S3a. The threshold density dth, experi-
mentally determined from the substantial increase in the lowest-energy population and the wider spatial coherence,
corresponds to ≈ 20% of polaritons in the lowest-energy state. In Fig. S3b, the population in the lowest energy state
is calculated from numerical simulations as the ratio of polaritons with wave-vector |k| < 0.1 µm−1 with respect to
the whole polariton population, in analogy to Fig. S3a. Remarkably, the fraction on polaritons in the ground state
at dth is almost identical for experiments and simulations. Moreover, dth ≈ 1/3 dBKT and ∆E = gdBKT = 50 µeV ,
with g the interaction constant, for both numerical simulations and experiments.
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Figure S3: a, Ratio between the number of polaritons in the ground state and the whole polariton population as
extracted from energy-resolved measurements. b, Fraction of polaritons at the bottom of the dispersion

(|k| < 0.1 µm−1) as obtained from numerical simulations.
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The absolute polariton density d can be estimated using:

d =
Iτ

ES
(S3)

where I is the intensity of the light emitted by the sample, τ the polariton lifetime, E the polariton energy and S
the normalisation area. From Eq. S3 and Fig. S3a, the density at the BKT threshold can be estimated as dBKT ≈
0.8 pol/µm2. However, the physics is actually described by the coupled energy terms ∆E = gd, where d is the
polariton density in the lowest-energy state and g is the interaction strength. While the absolute density value can
be altered by additional losses in the mirrors or the substrate, the energy blueshift ∆E can be directly measured in a
region far enough from the excitation spot to avoid the presence of uncoupled excitons. Comparing the blueshift with
the density dBKT calculated from Eq. S3, g = 50 µeV/µm2 is obtained, which is larger than expected. However, to
avoid calibration issues and for sake of generality, only relative density values and the coupled product gd are used
in the present discussion. Finally, the external power is used in Fig. S3 to graphically represent the increase of the
condensed fraction, but polaritons are e�ectively pumped into the condensate through an expansion and relaxation
process, retaining only an indirect relation with the external pumping power.

Velocity of the expanding polariton reservoir

The expansion of polaritons, accelerated outwards from the injection spot, acts as an e�ective polariton reservoir for
the condensate at the bottom of the dispersion. The velocity of the expanding reservoir is almost constant in the
range of powers considered and close to the maximum velocity achievable at this detuning. Indeed, the blueshift under
the laser spot is above 3 meV for all the densities shown in Fig. 2 of the main text, corresponding to the blue points
of Fig. S4a. The corresponding group velocity is actually slightly decreasing with power due to the nonparabolic
curvature of the dispersion, as shown in Fig. S4b.
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Figure S4: a, Polariton dispersion including the central spot, the expanding polariton reservoir and the bottom
state. The blueshift corresponding to the excitation power used in Fig. 2(a-f) of the main text is indicated by blue

dots. b, Group velocities corresponding to blue dots in a and to Fig. 2(a-f) of the main text.

Density pro�le versus spatial coherence

The polariton density is asymmetrically decaying in the region shown in Fig. 1(b-c) because it is radially expanding
from the injection spot. In Fig. S5, the density pro�le, as obtained from photoluminescence measurements, is compared
to the decay of spatial coherence with distance. Below threshold, the coherence shows a fast decay with distance
(exponential or gaussian for blue and yellow curves, respectively), that becomes a stretched-exponential decay above
threshold (green curve) and a power-law decay at higher densities (red curve). While the slope of the spatial density
pro�le does not change signi�cantly with power, giving the same exponential decay of ∼50 µm for all the curves shown
in Fig. S5a, the di�erence in the coherence length is instead evident in Fig. S5b. Therefore, while the density is
decreasing with distance, the spatial correlations follow the expected power law decay in the range of density where
the BKT phase can be sustained. Even if the numerical model assumes a homogeneous system, the experimental
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evidence is that non-local properties such as spatial correlations can be correctly reproduced within a homogeneous
model with the same average healing length, even for sizable global density di�erences, at least for slow variations of
the particle density in space.
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Figure S5: Spatial decay of intensity (a) and spatial decay of coherence (b) for di�erent excitation powers
corresponding to d = (0.06, 0.15, 1.4, 2.75) dth.

Uniform phase

The phase of the polariton condensate can be extracted from the 2D interferogram obtained with a reference of
constant phase. In this case, the retrore�ector is not used and the reference is obtained by expanding a small region of
the condensate itself. In Fig. S6a, the density of the polariton condensate in the region of interest is shown as a color
map. The formation of a uniform phase, in the same spatial region shown Fig. S6a, is evident by comparing Fig. S6b
(below threshold) with Fig. S6c (above threshold). The phase pro�le has a negligible gradient in the region of interest
(Fig. S6e), corresponding to a mean global velocity v < 0.1µm/ps (Fig. S6f). This is compatible with k < 0.1µm−1,
as also independently obtained from the measured polariton dispersion in the same spatial region (Fig. S6d).
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Figure S6: a, Spatially resolved emission intensity of the polariton condensate (color scale). b, c, Phase in the
same spatial region as in a for d < dth (b) and d > dth (c). Color scale goes from −π (white) to +π (black). Above
threshold, a uniform phase is spontaneously formed within a wide spatial region. At larger distances, a rapidly

varying phase is visible. A phase singularity, in this case pinned to a small defect, is also visible on the left of the
�gure. d, Polariton dispersion in the region of interest. The polariton emission is peaked around the k = 0 state at
the bottom of the dispersion. e, Phase pro�le along the dashed-red line in c. f, Condensate velocity extracted from

the gradient of the phase in e.

Healing length

The healing length, de�ned as:

ξ =
√

~2/2mgd, (S4)



5

with m the polariton mass, g the interaction constant and d the polariton density in the condensate, is shown in
Fig. S7a as calculated from the experimental data. The polariton mass, obtained by �tting the polariton dispersion, is
m = 3.8× 10−5me, where me is the electron mass. The product gd is instead measured from the polariton blueshift.
In Fig. S7b, the healing length obtained by numerical simulations is shown for comparison. The experimental and
theoretical values are in good agreement, measuring an healing length ξ between 4 µm and 6 µm at the BKT point.
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Figure S7: The healing length, as obtained from experiments (a) and simulations (b).

Coherence Length and Time

In order to evaluate the coherence length and time as a function of density in the whole range across the transition,
both spatial g(1)(x,−x, t = 0) and temporal g(1)(t, t+ ∆t) are �tted with stretched-exponential functions as reported
in Eq. 2 of the main text. It is therefore possible to de�ne both in space and time the relaxation length (time) as:

〈l〉 =

∫ ∞
0

dxe−(x/le)
β

=
le
β

Γ

(
1

β

)
(S5)

with le the renormalization factor scale of the x-axis and Γ the gamma function, with x-axis both the spatial and
temporal one. The resulting coherence length and time are reported in Fig. S8.
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Figure S8: Coherence length (yellow) and time (green) for di�erent densities extracted from the stretched
exponential �tting.

Fitting Model and Residuals Analysis

The analysis of the �tting results allows to assess the applicability of the model used in the �tting procedure. In
Fig. S9 we show the residuals of �tting the temporal �rst order correlation function g(1)(t, t+∆t) in the quasi-ordered
regime (red square in Fig. 3h of the main paper). We report di�erent attempts to �t the data using an exponential
(blue, row (a)), a Gaussian (yellow, row (b)), a stretched exponential (green, row (c)) and a power law (red, row (d)).
The P-P (Probability Probability) plot is a standard tool to investigate the deviance of a data set from the normal
distribution.
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Figure S9: Fitting residuals analysis for the temporal algebraic regime (red square in Fig. 3h of the main text).
Each color corresponds to a di�erent model used to �t the temporal decay. Row a: P-P plot for the observed and
expected Gaussian with minimum standard deviation of residuals distribution for the exponential model. Row b:
Gaussian model. Row c: Stretched exponential model. Row d: Power law model. e: Kolmogorov-Smirnov value
quantifying the normality of the residuals distribution for each model. f: Total Absolute Value of �tting residuals,

normalised to the number of point used.
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Figure S10: Fitting residuals analysis for the spatial algebraic regime (red square in Fig. 3g of the main text).
Each color corresponds to a di�erent model used to �t the spatial decay. Row a: P-P plot for the observed and
expected Gaussian with minimum standard deviation of residuals distribution for the exponential model. Row b:

Stretched exponential model. Row c: Ppower law model. d: Kolmogorov-Smirnov value quantifying the normality of
the residuals distribution for each model. e: Total Absolute Value of �tting residuals, normalised to the number of

point used.

Indeed, �tting residuals with a normal distribution around the zero value represents a strong indication that the
power-law model used to �t the data is the best one. The Kolmogorov-Smirnov test permits to quantitatively check
the deviation from the normal distribution of a dataset. In order to assure that we have the minimum residual
spreading, we used normalised Gaussian distributions with variance σ chosen for each model in order to best �t the
data distribution. The value of this test, maximum for the power law model, combined with the fact (Fig. S9f) that
the sum of the absolute values of the residuals is minimum for the power law model, con�rms that the power law is
the best �tting for the temporal decay of the correlation above BKT transition. In Fig. S10 we show the same analysis
for the spatial decay of correlations (red square in Fig. 3g of the main paper). In this case the Gaussian �tting is not
shown because the values of the residuals is too large.
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Theoretical Description

In the classic equilibrium BKT scenario, for a system with linear dispersion in the ordered phase, we expect a slow
algebraic decay (as Eq. 1 of the main text) of the �rst order coherence with exactly the same power-law exponents
in both space (αs) and time (αt) [3, 4], given by αs,t = kBT/ns, where T indicates temperature and ns the super�uid
density. αs,t have an upper bound of 1/4 [5] at which density/temperature vortices proliferate, causing an exponential
decay of coherence, characteristic for the disordered phase. At the same time non-equilibrium dissipative driven
systems, with di�usive spectrum in the ordered phase [3, 6], have been shown to still exhibit an algebraic decay of
coherence but with temporal correlations decaying two times slower then the spatial ones αt = 1/2 αs [3, 4]. Moreover,
values of αs as large as four times the equilibrium upper bound, when approaching the BKT transition, were reported
both experimentally [7] and from theoretical analysis [8], using beyond-mean-�eld truncated Wigner methods able to
account for vortices, suggesting an �over-shaken� super�uid state [8]. Finally, it has recently been suggested that the
dissipation might in fact have an even more profound e�ect on the system with collective phase �uctuations destroying
the algebraic order at long distances, leading to a stretched exponential decay of �rst order coherence characteristic
of Kardar-Parisi-Zhang phase (KPZ)[9]. In that scenario the parameter β of the stretched exponential (see Eqn. (2)
of the main paper) are also di�erent for space (β ≈ 0.78) and time (β ≈ 0.48). Even if later estimates of the KPZ
length-scales appeared to be unrealistic for incoherently driven microcavities with long lifetimes as in our case, and
the presence of free topological defects strongly hampers the possibility of the KPZ phase [10], the true nature of the
2D exciton-polariton phase transition and the resulting order is still at the center of an intense debate. Additionally,
the type of the Renormalisation-Group (RG) analysis, which led to those conclusions [9, 10], rely on the expansion in
one over the mean-�eld density, and so are inadequate in describing the crossover region close to the phase transition.
Thus, here, to speci�cally address the region close to the phase transition we restore to exact numerical solutions of
the stochastic equations of motions, described in the next section.

Stochastic simulations

Our system consists of an ensemble of bosonic particles (the lower-polaritons) of mass m and lifetime 2κ, interacting
via contact interactions g, and driven incoherently with pump of strength γ. The pumping saturation due to other
processes is Γ. Note, that since our condensate forms in a reservoir-free region, we do not include any excitonic
reservoir in the theoretical description. Also, in this work, our main focus is the formation of phase coherence in the
lowest energy state at the bottom of the polariton dispersion, thus both in the experimental and in the theoretical
investigations, our starting point is to examine polariton �uid after it has already expanded from the pumping spot,
and the "condensate" has being fed from the incoherent polariton population after their expansion. We do not
describe this expansion here neither theoretically nor experimentally. The details of relaxation via phonon-assisted
scattering has been instead investigated in [1]. In our model the polariton decay rate is independent on their energy.
However, the redistribution towards low energy modes is enabled by polariton-polariton interactions, which would
lead to thermalisation in a closed system of bosons. Indeed, bosonic stimulation leads to an e�ective gain for k=0
and near-by modes. Combination of the facts that low energy modes get preferentially occupied while the decay is
the same for all modes leads to a kind of e�ective cooling mechanism in this open system.
Using Keldysh �eld theory one can show that by including the classical �uctuations to all orders, but quantum

�uctuations only to the second order (correct in the long-wavelength limit), and employing the Martin-Siggia-Rose
formalism, one can arrive at the stochastic equation for the �eld ψ(r, t) (for a review see [11]). Alternative derivation,
using the Fokker-Planck equation for the Wigner function, aimed at numerical implementation on a �nite spatial grid
dV , has been reviewed in [12]. The �nite grid version reads

idψ(r, t) =

[
−∇

2

2m
+ g|ψ(r, t)|2− + i(γ − κ− Γ|ψ(r, t)|2−)

]
ψ(r, t)dt+ dW (S6)

where dW is the Wiener noise with correlations

〈dW ∗(r′, t)dW (r, t)〉 =
γ + κ+ Γ|ψ(r, t)|2−

dV
δr,r′dt,

where by |ψ(r, t)|− we abbreviated the following expression for the density |ψ(r, t)|− = |ψ(r, t)| − 1
dV , which comes

from the Wigner function relating to the time symmetric and not time ordered operators. ψ(r, t) contains both
coherent (super�uid) and incoherent (normal) polaritons.
In Ref. [9], equations S6 are solved approximately analytically using RG analysis by eliminating the amplitude

�uctuations, and focusing solely on the non-topological phase-�uctuations. The procedure, however, relies on an
expansion in one over the mean-�eld density, which together with approximating the amplitude �uctuations and
discarding vortices, cannot capture the region close to the phase transition. Instead, here, we solve this equation
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exactly numerically on a �nite grid. In addition, we have checked our results with a more general model of a saturable
drive, applicable also to higher densities, in which γ − Γ|ψ(r, t)|2− in Eq. S6 is replaced by

γ

1 +
|ψ(r,t)|2−

ns

, (S7)

with the noise strength proportional to

γ

1 +
|ψ(r,t)|2−

ns

+ κ. (S8)

There is no appreciable di�erence between the results from the two models for our relatively low densities.
We evolve the dynamics of the stochastic equations (S6) with the XMDS2 software [13] using a �xed-step (to ensure

stochastic noise consistency) 4th order Runge-Kutta (RK) algorithm, which we have tested against �xed-step 9th
order RK, and a semi-implicit �xed-step algorithm with 3 and 5 iterations. We choose the system parameters to be
the same as for experiments: the mass of the microcavity lower polaritons is taken to be m = 3.8 × 10−5me, where
me is the electron mass, the polariton lifetime 2κ = 1/101.3 ps−1, and the polariton-polariton interaction strength
g = 0.004 meVµm2. The only parameter that is not possible to extract from the experiment is the saturation rate of
the driving process (or in other words the three-body type losses in the system). We perform analysis for a range of
Γ (or ns) values, and since the other parameters are �xed, we choose the value of Γ (or ns) that is able to reproduce
the overall length scale of g(1)(x).
In our method, the stochastic averages over the con�gurations of di�erent realisations of the �elds provide the

expectation value of the corresponding symmetrically ordered operators, and it is important to get the results to
converge in the number of realisations. The �rst order spatial correlation function g(1)(x) is de�ned according to

g(1)(r1, t1; r2, t2) =
〈ψ∗1ψ2〉√

〈ψ∗1ψ1〉〈ψ∗2ψ2〉
(S9)

with ψ∗i and ψi the creation and annihilation operators for the space-time point (ri, ti), with i = 1, 2, and it is
evaluated by averaging over 100 independent stochastic paths, and additionally over auxiliary position in space r0,
since in simulations our system is uniform. The temporal correlation function is evaluated from a single spatial point
(to avoid picking up any spatial correlations) after the steady-state is reached, and averaged over 10000 stochastic
paths. Since the Wigner average provides the expectation value of the corresponding symmetrically (and not time)-
ordered operators, we need to subtract the expectation value of the commutator. For single time correlation functions,
such as g(1)(x), the commutator is simply 1

2dV . For two-time correlation functions, such as g(1)(t), strictly speaking
the expectation value of the commutator is unknown. It is, however, changing from 1

2dV at t = 0 to 0 at t→∞. Using
the two limiting values allows us to estimate the error, which we expect to be small given the densities considered.
Indeed, for the densities used here the di�erence is practically indistinguishable. In order to test the robustness of

d/dth

0.005

0.025

0.000

0.010

0.015

0.020

R
es

id
ua

ls
 in

 
,

●●● ●
● ●

● ● ● ● ● ●

■■■ ■

■

■

■
■

■ ■ ■ ■
◆◆◆ ◆ ◆

◆ ◆
◆

◆ ◆ ◆ ◆

▲
▲
▲

▲

▲

▲

▲ ▲ ▲ ▲▲ ▲

0 1 2 3 4 5

● Spatial

▲ Spatial

◆ Temporal

■ Temporal

Figure S11: Residuals of the stretched exponential �t, β, for spatial (blue) and temporal (green) g(1), and the
power-law �t, α, for spatial (red) and temporal (orange) g(1) as a function of the polariton density normalised to the

BKT threshold.

our conclusions to the choice of the numerical parameters, we perform simulations on di�erent spatial grids varying
from 2 to 5 µm in the grid spacing, and di�erent system sizes from 256 to 1024 µm. Note, that to satisfy the condition
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necessary to derive the discrete version of equation (S6), g/[(κ + γ)dV ] � 1, whilst maintaining a su�cient spatial
resolution and, at the same time, a large enough momentum range, the window of available momentum grids is quite
narrow. We �nd the main conclusions of our work (such as the crossover in g(1)(x) and g(1)(t) from exponential
to power-law, spatial and temporal α being the same in the algebraic phase and smaller then 1/4, as well as the
behaviour of vortices) independent on the choice of those parameters. Here, we present a case with 2 µm grid spacing,
and system size of 256 µm, which is su�ciently larger from experimental to avoid any boundary e�ects in�uencing the
relevant region. Finally, in order to assess which functional form �ts the numerical data best we perform residuals
analysis similar to those applied to experimental data. The residuals for the data and �ttings presented in the main
text is shown in Fig S11.
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