
 

 

Introduction 1 

Vaccines are one of the greatest advances in medicine and an important public health tool, as they not only 2 

prevent infection, morbidity and mortality individually, but also reduce and eliminate disease prevalence 3 

locally, ultimately leading to eradication of disease globally [1] . Since the development of the smallpox vaccine 4 

in 1798 [2] and rabies vaccine in 1885 [3], vaccine technology progressed from the use of inactivated and 5 

attenuated pathogens, to the use of subunits that only contain those pathogen components that can trigger an 6 

immunologic response (Figure 1). Key milestones include the development of virus-like particle vaccines, 7 

recombinant viral-vectored vaccines, and toxoids, polysaccharides or protein-based vaccines, which can be 8 

conjugated with different protein carriers to improve immune response.  9 

Vaccines save 6 million lives every year and are one of the major responsible for the increase of human 10 

longevity [6]. Their impact on the economic viability of the healthcare system is also very large, since vaccines 11 

lower the treatment costs of diseases [7], and reduce the impact and risk of outbreaks [8]. Additionally, by 12 

preventing bacterial infection and, subsequently, reducing the need for antibiotic treatment, vaccines can have 13 

an impact on antimicrobial resistance [9]. The use of vaccines goes beyond prevention of infectious diseases. 14 

Technology advances coupled with progress in target selection and understanding of the immunosuppressive 15 

mechanisms have led to the development of therapeutic cancer vaccines [10]. 16 

Despite the proven effectiveness of current vaccines, there is still room for improvement in the vaccine 17 

technology field. Traditional attenuated and inactivated vaccines are still widely used today (e.g., Bacillus 18 

Calmette–Guérin vaccine, BCG and Inactivated Polio vaccine, IPV) owing to their robustness and stability. 19 

However, they present safety concerns due to the use of whole pathogens and in many cases, they don´t have 20 

a defined composition. In the case of toxoid and subunit vaccines, and despite their safety and stability profile, 21 

the use of adjuvants is required for a strong immune response and the protection lifetime is limited (Table 1).  22 

The manufacturing of new vaccines is typically a lengthy (6 to 36 months), challenging and expensive process, 23 

as no standard process is available [11,12]. To deliver effective, precise, and consistent vaccines it is imperative 24 
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to use good manufacturing practice (GMP) compliant equipment, facilities, and procedures. However, this is 25 

costly and difficult to implement at a large scale. Vaccines developed on the basis of traditional technology 26 

have failed to respond effectively to several diseases, such as malaria, tuberculosis, AIDS or flu. Furthermore, 27 

SARS and Ebola epidemic outbreaks and, more recently, the CODVID-19 pandemic, show that many of the 28 

current platforms are not well suited for a very fast, efficient, and cost-effective response. 29 

New vaccine technology approaches are thus necessary to improve our response to outbreaks and enable 30 

vaccination worldwide. Ideally, a new vaccine should be safe, effective, stable, available to all populations and 31 

not susceptible to antigenic variance [13]. The manufacturing must be reliable, efficient, low-cost, and flexible 32 

to allow on-demand production. Viral vectors and DNA technology are two cutting-edge platforms that have 33 

the flexibility and characteristics to support faster vaccine development and manufacturing [14]. However, the 34 

costly and complex manufacturing of viral vectored vaccines and the poor immunogenicity presented by DNA 35 

vaccines (Table 1) can make them unattractive for some clinical applications. 36 

The rise of mRNA technology 37 

mRNA vaccines have reached the spotlight during the Covid-19 pandemic, as the forefront technology used for 38 

the development of vaccines by many companies. In fact, a mRNA vaccine candidate was the first to reach 39 

phase I clinical trials [15]. The potential of mRNA vaccines was first hinted at in 1990, when the in vivo 40 

expression of a protein was observed after injecting the coding mRNA into mouse skeletal muscle [16]. These 41 

early experiments proved that in vitro transcribed mRNA (IVT) can induce the production of proteins in live 42 

tissues. During the following 10 years, several studies demonstrated that mRNA could induce an immunologic 43 

response to the expressed protein in many mammalian cell types both in vitro and in vivo [17–19] 44 

mRNA technology presents several advantages that makes it an attractive alternative over traditional vaccines 45 

or even DNA vaccines. Unlike attenuated or inactivated vaccines, mRNA is precise as it will only express a 46 

specific antigen and induce a directed immune response. Additionally, it promotes both humoral and cellular 47 

immune response and induces the innate immune system [20]. Compared with DNA-based vaccines, mRNA is 48 
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more effective, since expression does not require nuclear entry, and safer, since the probability of random 49 

genome integration is virtually zero [21,22]. Additionally, expression of the coded antigens is transient since 50 

mRNA is quickly degraded by cellular processes, with no traces found after 2-3 days [23]. The flexible nature of 51 

the mRNA vaccine platform is also advantageous for manufacturing since a change in the encoded antigen 52 

does not affect the mRNA backbone physical-chemical characteristics [24], and hence allow production to be 53 

standardized. Additionally, since production is based on an in vitro cell-free transcription reaction, safety 54 

concerns regarding the presence of cell-derived impurities and viral contaminants commonly found in other 55 

platforms are minimised.  56 

mRNA Vaccine Structure 57 

Construction of mRNA vaccines requires the insertion of the encoded antigen in a DNA template from where 58 

the mRNA is transcribed in vitro. Unlike DNA, mRNA only needs to reach the cytosol, where it will be 59 

transcribed into the antigen in vivo, using the cell machinery. This way, any desired sequence can be designed, 60 

produced in vitro, and delivered to any type of cell [21]. Inside the cells, RNA is recognised by endosomal or 61 

cytosolic receptors, which can lead to the activation of the type I interferon (IFN-I) pathway, and to the 62 

promotion of the production of chemokines and proinflammatory cytokines. These signal molecules lead to 63 

antigen-presenting cell (APC) activation and, subsequently, to a strong adaptive response [25].  64 

The structure of mRNA vaccines is similar to eukaryotic mRNA - a single-stranded molecule with a cap at the 5' 65 

end, a poly(A) tail at the 3’ end and an open reading frame (ORF) flanked by untranslated regions (UTR) [20]. 66 

The 5’ cap is an important component as it enables the translation initiation by binding to a eukaryotic 67 

translation initiation factor (eIF4E) [26]. Different structures are possible for the 5’ cap. The Cap 0 structure, 68 

which features a methyl-7 guanine nucleotide linked to the 5’ position through a 5’ triphosphate, is the 69 

simplest. The Cap 1 structure is achieved by the methylation of the mRNA first nucleotide at the ribose 2’-O 70 

position. Both caps can be added during in vitro mRNA transcription using a synthetic cap analogue [27] or the 71 

proprietary Cap dinucleotide CleanCap® [28]. Another capping approach uses a post-transcription enzymatic 72 
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reaction based on the vaccinia capping system [29]. This modification brings with it a number of advantages as 73 

it improves the translation initiation by recruiting translation initiation factors, protects the synthetic mRNA 74 

against exonuclease degradation [30], and avoids an innate immunity overactivation response [25]. The 75 

addition of a 3’ poly(A) tail also improves mRNA stability and translational activities, as it protects mRNA from 76 

nuclease degradation by the poly(A)-binding protein (PABP) [31]. This tail can be added to the transcript by 77 

inserting a poly(A) sequence in the DNA template or by an enzymatic reaction [27]. Tail size optimization is an 78 

important factor for the stabilization and expression of mRNA. Longer poly-A tails can improve mRNA stability 79 

and translation. However, this effect is not linear, and the best tail size is dependent on cell type [31]. The 80 

untranslated regions (UTRs) are responsible for the transcription regulation and mRNA stability. These regions 81 

strongly affect translation efficiency as the sequences used are involved in the translation machinery 82 

recognition, recruitment, and mRNA trafficking. Strategies to modulate the innate immune response, such as 83 

the introduction of unnatural nucleosides (NTPs), and to improve translation efficiency, by using codon 84 

optimisation, are also commonly used in mRNA production [27, 28].  85 

Two forms of mRNA structure are being extensively studied for vaccine applications: conventional or non-86 

replicating mRNA and self-amplifying mRNA. In the conventional mRNA form, the antigen of choice is only 87 

flanked by UTR regions, a 3’ poly(A) tail and a 5’ cap. This form presents several advantages - molecules are 88 

simple and small, and the possibility of unwanted immune response is lowered since no other proteins are 89 

encoded [32]. However, this mRNA expression is limited to its transient nature, and higher mRNA doses may 90 

be necessary to achieve high expression [33]. Efforts have been made to overcome this bottleneck by using 91 

sequence optimization and formulation [34]. Self-amplifying mRNA (saRNA) is based on the addition of a viral 92 

replicase gene to enable the mRNA to self-replicate. Usually, sequences of single-stranded RNA viruses, such as 93 

alphaviruses, flaviviruses, and picornaviruses, are used [35]. Upon cytoplasm delivery, this type of mRNA 94 

produces high levels of the antigen of interest. Despite the use of viral genes, no viral infectious particles or 95 

virus-like-particles are observed during expression, reducing the safety concerns [21]. Evaluation of an saRNA 96 

vaccine for protection of mouse models against H1N1/PR8 infection showed that a 64-fold lower dose was 97 
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required to induce an immunologic response when compared with the conventional mRNA vaccine 98 

counterpart [36].  99 

Trans-amplifying mRNA (taRNA) is a new structural modality of mRNA vaccines. The taRNA results from the 100 

splitting of the self-amplifying mRNA in a system with two templates, one containing the gene of interest and a 101 

second containing the replicase system. The amplification is performed in trans by the replicase in the 102 

cytoplasm. This system presents some advantages over saRNA since it is safer, more versatile and cost-103 

effective to manufacture, as the production of shorter RNAs with high yield and high quality is less challenging. 104 

taRNA has already been used to protect mice against influenza with results showing induction of antibodies 105 

and protection[37]. 106 

mRNA Delivery 107 

mRNA must cross the cell membrane to reach the cytosol. This is challenging due to the negative charge of the 108 

molecule, its relatively large size (300-5000 kDa) and degradability, which can hamper its passive pass through 109 

the cell membrane [38]. To overcome this, mRNA can be delivered using different strategies including: i) direct 110 

injection of naked mRNA; ii) conjugation with lipid-based carriers, polymers, or peptides; iii) via transfection of 111 

dendritic cells (DC) [39].  112 

The induction of an immune response by injection of naked mRNA in conventional and self-amplifying forms 113 

has been widely reported [40–44]. However, mRNA delivery can be limited by the presence of extracellular 114 

exonucleases in the target tissues, inefficient cell uptake or unsuccessful endosomal release [27]. Liposomes or 115 

lipid nanoparticles (LNPs) are one of the most promising mRNA delivery tools [45]. For example, LNP-mediated 116 

delivery of mRNA vaccines against Zika and influenza has shown encouraging results [46–49]. Although less 117 

explored, polymer-based delivery systems can also be used. Polyethylenimine (PEI) systems were successfully 118 

implemented as a strategy to deliver mRNA to cells [50], and intranasally [51]. Additionally, PEI-based systems 119 

improved the response to sa-mRNA vaccines in skin explants [52] and in mice [36]. Peptide-based delivery is a 120 

less explored system, as only protamine has been evaluated in clinical trials [53]. New delivery approaches 121 
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include the use of cationic cell-penetrating peptides (CPPs) and anionic peptides. CPPs systems have proved to 122 

improve T-Cell immunity response in vivo [54], modulate innate immune response and enhance protein 123 

expression in both DC and human cancer cells in vitro [55,56]. mRNA polyplexes conjugated with an anion 124 

peptide, exhibited an increase in cellular uptake without inducing cytotoxicity in DC cells [57]. 125 

Despite the efforts to improve mRNA delivery, there are still challenges that must be considered, such as the 126 

delivery efficiency, cell targeting, materials safety, route of administration and vaccine thermostability. This 127 

topic is extensively revised elsewhere [39]. 128 

Applications  129 

Since Wolf et al. [16] showed that proteins can be produced from in vitro transcribed mRNA in live tissues, 130 

mRNA vaccines have been demonstrating efficacy in a number of applications [58]. The first record of a clinical 131 

trial using mRNA technology based on RNA-pulsed DC cancer vaccine dates back to 2003 [59]. Today, more 132 

than 140 clinical trials can be found that use mRNA to address different conditions such as cancer or infectious 133 

disease (Figure 2).   134 

From the first applications, mRNA has emerged as a potential therapy for cancer. Boczkowski et al [60] 135 

produced one of the first breakthroughs by using mRNA to generate vaccines based on RNA-pulsed dendritic 136 

cells (DC) against tumour cells. Using this system, the antigen-presenting immune response was induced, and 137 

tumour regression was observed. Since then, mRNA-based DC vaccines have shown their potential in cancer 138 

applications in over 70 completed clinical trials. Recently, a phase I study where RNA transduced DCs were 139 

evaluated as a post-remission therapy in acute myeloid leukaemia (AML) was published [61]. This treatment 140 

induced an immune response with a positive relation between higher survival rate of patients with ≤ 65 years. 141 

The use of mRNA has also been explored to engineer T- or Natural Killer (NK) cells to express chimeric antigen 142 

receptor (CAR) that are used as a cancer cell therapy [62,63].  In fact, this this system was successfully 143 

implemented in a phase I clinical trial designed to evaluate its potential in the treatment of colorectal cancers 144 

[64]. 145 
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The direct injection of mRNA is a more cost-effective delivery alternative to DC vaccines. In vivo delivery of the 146 

naked, complexed, or encapsulated mRNA can be successfully performed by a number of administration 147 

routes such as intradermal, intramuscular, intranasal, intratumoral, intranodal or even intravenous [45]. Using 148 

this method, a dose consisting of only a few tenths or hundreds of micrograms of mRNA (10-250 μg) is 149 

administered to each patient to trigger an immune response [65]. The first clinical trial evaluating direct 150 

injection used naked mRNA in patients with melanoma [66]. This approach was feasible and safe but no clinical 151 

effectiveness was observed. Self-adjuvanted RNActive® vaccines is a technology developed by CureVac that 152 

uses a mixture of protamine-complexed and naked mRNA to improve the immunostimulatory effect of the 153 

vaccine [67]. This technology was successfully applied in phase I and I/II clinical trials targeting liver [68], 154 

prostate [69], lungs [70] and melanoma [71] cancers. New delivery approaches using lipoplexes and LNPs have 155 

been extensively used in clinical trials studies in the last couple of years. Recent results show that both 156 

technologies can be successfully applied to treat melanoma [72], lymphoma [73,74], and solid tumours 157 

[75,76]. 158 

Cancer is currently the target of choice for mRNA technology. Over 50% of the clinical trials focus on the 159 

treatment of melanomas, prostate and brain cancer (Figure 3), with most of the trials still in the early phases (I 160 

and II). The lack of benchmarks for cancer treatment hampers the evaluation of the vaccine’s effectiveness 161 

beyond the safety profile and the immunological response [21]. However, this is not the case for infectious 162 

diseases since many conventional vaccines are available to serve as benchmarks to validate the new mRNA 163 

vaccines. mRNA have also shown potential, not only for the treatment of cancer, but also as a therapeutic for 164 

protein expression in the treatment a number of other diseases, such a cardiovascular disease [87,88] and type 165 

II diabetes [88]. 166 

Owing to its versatility and flexible manufacture, mRNA is an excellent platform for the development of 167 

prophylactic or therapeutic vaccines against infectious diseases (Figure 3). The first studies using mRNA 168 

technology for infectious diseases therapeutics targeted HIV. Using DC-based and naked delivery systems, 169 
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phase I and II clinical trials presented mixed results despite the vaccine’s safe profile [77], as a lack of an 170 

efficient immunologic response against HIV was observed [78,79].  171 

Prophylactic vaccines using mRNA technology were also directed to rabies, with the first clinical trial using a 172 

self-adjuvanted delivery system [80]. Interestingly, this trial showed that the vaccine effectiveness depended 173 

on the route of administration, as only those patients that received the vaccine via needle-free devices 174 

produced antibodies above the WHO predefined titre (≥0.5 IU mL-1). A new formulated mRNA vaccine based 175 

on LNPs delivery system is currently being evaluated in a phase I clinical trial [25]. 176 

mRNA technology is a perfect fit to overcome the bottlenecks faced by the conventional influenza vaccine. 177 

Indeed, studies on influenza immunisation provided the first demonstration of the efficacy of mRNA vaccines 178 

against infectious diseases in animals models (mice, ferrets and pigs) [81]. An LNP-based vaccine encoding 179 

H10N8 and H7N9 is currently being evaluated in phase I clinical trials. The first published results demonstrated 180 

that the H10N8 encoding vaccine was safe and triggered a robust prophylactic immunity [48].  181 

mRNA vaccines have also shown promising results against other infectious diseases. For example, experiments 182 

with an LNP-based system against Zika have been performed in cells, mice and primates [46,47]. Currently, 183 

phase I clinical trials against Zika virus, Chikungunya virus, and a phase II trial against Human Cytomegalovirus 184 

using LNPs-bases systems are on-going. 185 

During the current Covid-2019 pandemic, mRNA vaccines took the spotlight as the first vaccines to be 186 

approved for the prophylactic treatment. Furthermore, at least nine clinical trials can be found using mRNA 187 

technology, two of which are in phase III. Three recently published studies describe encouraging results 188 

obtained in phase I clinical trials using LNP-based systems [82–86].  All studies reported a safe profile with mild 189 

to moderate reactions, despite the greater reactogenicity observed following the administration of the second 190 

dose. Furthermore, an immunologic response was also observed in all studies, thus supporting the advance of 191 

this technology to late-stage clinical evaluation. A recent phase III study reported an efficacy of 95% [86]. 192 

 193 
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mRNA Manufacturing: from upstream to downstream 194 

One of the most important advantages of mRNA over conventional vaccines is its relatively simple 195 

manufacturing. To produce the mRNA product with specific quality attributes, a series of manufacturing steps 196 

must be carried out. Currently, a well-established manufacturing platform is still lacking and a number of 197 

combinations of steps is possible. These can be grouped into the upstream processing, which comprises the 198 

enzymatic generation of mRNA, and the downstream processing, which includes the unit operations required 199 

to purify the mRNA product (Figure 4). These are complemented with LNP formulation and Fill-to-Finish steps 200 

[92].  Nonetheless, the choice of the unit operations is still dependent on the purpose. For example, a lab scale 201 

production usually consists of a one-step synthesis reaction followed by a nuclease digestion and a 202 

precipitation [58]. The exact unit operations used can have an impact on the manufacturing price [92] and on 203 

the cost per dose. Ultimately, the cost will be greatly influenced by the quantity of RNA per dose, production 204 

titres and production scale used. The purchase price of 5′ cap analogue and modified UTP seem to have an 205 

impact on the cost [92]. 206 

mRNA is produced in a cell-free system and uses no animal derived raw materials. Cell-derived impurities or 207 

adventitious contaminations are thus absent, which makes the manufacturing of these molecules safer [58, 208 

65]. The in vitro transcription (IVT) enzymatic reaction used to generate mRNA relies on T7, SP6 or T3 RNA 209 

polymerases to catalyse the synthesis of the target mRNA from the corresponding DNA template (Figure 4). 210 

This template must be produced in advance, usually by linearisation of a purified plasmid or by amplification of 211 

the region of interest using PCR. Apart from the linear DNA template, the IVT components must then include 212 

an RNA polymerase, nucleotide triphosphates (NTPs) substrates, the polymerase cofactor MgCl2, a pH buffer 213 

containing polyamine and antioxidants [33,89]. The reaction only takes a few hours in contrast with the time-214 

consuming processes used to manufacture conventional vaccines. Furthermore, this reduced time lowers the 215 

probability for contamination to occur [65]. In general, milligrams of mRNA per millilitre of reaction can be 216 

obtained [90]. Additionally, the production process can be standardized as it is not dependent on the antigen 217 

encoded in the template.  218 
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As for mRNA capping, it can be performed during the IVT reaction by substituting a part of the guanosine 219 

triphosphate (GTP) substrate for a cap analog [91]. Alternatively, mRNA can be capped in a second enzymatic 220 

reaction using the vaccinia capping enzyme (VCC) and a methyl donor as a substrate (Figure 4). Although the 221 

capping efficiency of this method is higher (100% compared to 60-80% obtained with the use of a cap analog), 222 

the process with cap analogs is faster as it does not require the set-up of a second enzymatic reaction [25]. 223 

However, due to their price, cap analogues can have an impact on production costs [92], especially if large 224 

scale manufacturing is considered. Nevertheless, a cost analysis should be performed to compare the costs of 225 

the one-step and two-step production options [93]. Alternatively, co-transcriptional capping can be performed 226 

using CleanCap® Reagent AG [28]. Although this method does not compete with GTP and delivers a Cap 1 227 

construct, it requires the use of templates with a modified T7 promoter.  228 

Although several commercial kits are available to produce mRNA for preclinical studies at laboratory scale, 229 

their costs are high [94]. The generation of mRNA by IVT at large scale and under current good manufacturing 230 

practice (cGMP) conditions is also challenging. For example, the specialised components of the IVT reaction 231 

must be acquired from certified suppliers that guarantee that all the material is animal component-free and 232 

GMP-grade. Furthermore, the availability of large amounts of these materials is limited and purchasing costs 233 

are high [58]. This is true, for example, in the case of the enzymes used for translation and capping. 234 

Nevertheless, the expedite and simple nature of the production process is expected to lower production and 235 

operational costs when compared with the cell-based manufacturing of other biologicals such as proteins, 236 

antibodies, plasmid DNA and virus-like particles [94].  237 

Once the mRNA is generated by IVT, it must be isolated and purified from the reaction mixture using multiple 238 

purification steps to achieve clinical purity standards (Figure 4). The reaction mixture contains not only the 239 

desired product, but also a number of impurities, which includes enzymes, residual NTPs and DNA template, 240 

and aberrant mRNAs formed during the IVT. Traditional lab scale purification methods are based on DNA 241 

removal by DNAse digestion followed by lithium chloride (LiCl) precipitation [31,58]. However, these methods 242 

do not allow the removal of aberrant mRNA species such as dsRNA and truncated RNA fragments. The removal 243 
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of these product-related impurities is crucial for mRNA performance, as they lower translation efficiency and 244 

modify the immunostimulatory profile. For example, a 10-1000-fold increase in protein production was 245 

observed when nucleoside-modified mRNA was purified by reverse phase HPLC prior to delivery to primary DC 246 

[95]. 247 

Chromatography is a mainstream purification process widely accepted in the pharmaceutical industry. Its high 248 

popularity is derived from several attributes such as selectively, versatility, scalability and cost-effectiveness 249 

[96]. The first published protocol for large scale purification of synthetically produced RNA oligonucleotides 250 

used size exclusion chromatography (SEC) in a gravity-flow mode to separate molecules according to size. [97]. 251 

Further studies applying SEC with fast performance liquid chromatography were performed [98,99]. These 252 

techniques allowed a preparative scale purification process, achieving high purity and high yields. However, 253 

SEC presents limitations, as it is not able to remove similar size impurities, such as dsDNA.  254 

The use of ion pair reverse-phase chromatography (IPC) proved to be an excellent method for mRNA 255 

purification [44,95,100,101]. In IPC, the negatively charged sugar-phosphate backbone of the oligonucleotides 256 

will pair with quaternary ammonium compounds present in the mobile phase (in this case triethylammonium 257 

acetate) to become lipophilic and then interact with the stationary phase of a reverse-phase chromatography 258 

column [90]. Elution is then performed with a gradient of an adequate solvent, e.g., acetonitrile. Using this 259 

approach, dsRNA impurities are effectively removed while maintaining the process's high yield. However, IPC is 260 

challenging and costly to scale, and the use of toxic reagents such as acetonitrile, is not desirable. A new 261 

cellulose-based chromatography process for the removal of dsRNA has been described that leverages the 262 

ability of dsRNA to bind to cellulose in presence of ethanol [102]. This method reported a mRNA yield of >65% 263 

with a dsRNA removal of over 90%. Still, the removal of other impurities was not addressed, and thus the 264 

introduction of pre-purification steps is likely to be required. 265 

Ion exchange chromatography (IEC) can also be used to purify mRNA at large scale. This technique explores the 266 

charge difference between the target mRNA species and the different impurities. For example, weak anion 267 

exchange chromatography has been successfully implemented to separate mRNA from IVT impurities [103].  268 
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IEC presents several advantages: it is scalable and cost-effective; it allows the separation of longer RNA 269 

transcripts; and it presents higher binding capacities (when compared with IPC) [104]. Nevertheless, this 270 

chromatography must be performed under denaturing conditions. This makes the process more complex as it 271 

requires a mobile phase heater and a tight control of the temperature during chromatography. 272 

Affinity based separation is another mRNA purification approach. A single-stranded sequence of 273 

deoxythymidine (dT) - Oligo dT - is routinely used for the capture of mRNA in laboratory applications. This 274 

sequence binds to the poly-A tails present in the mRNA. Chromatographic beads with immobilized oligo dT 275 

could thus be used for the process scale purification using affinity chromatography: the poly-A tails of the 276 

single stranded mRNA produced during IVT would bind to the stationary phase while impurities are washed 277 

out. This way, IVT unconsumed reagents, the DNA template and dsRNA could be efficiently removed [105]. 278 

While high purity products can be obtained using affinity chromatography, several drawbacks are present such 279 

as low binding capacities and a less cost-effective process. 280 

The removal of small size impurities can also be achieved while concentrating or diafiltrating solutions by 281 

tangential flow filtration (TFF) [106,107]. Core bead chromatography can also be used for this purpose [108]. In 282 

this case, small impurities are trapped inside the beads, and the product will be in the flowthrough. However, 283 

both techniques rely on DNase digestion or denaturing agents to remove high size molecules such as the DNA 284 

template or the polymerase. DNA removal can also be achieved using hydroxyapatite chromatography without 285 

the use of a DNase [108]. As a polishing step, hydrophobic interaction chromatography (HIC) can be applied 286 

using connective interaction media monolith (CIM) containing OH or SO3 ligands [109].  287 

Large scale adaptations of the traditional laboratory scale mRNA purification methods are also being explored. 288 

For example, mRNA precipitation can be combined with TFF technique [106]. During TFF, the membrane 289 

captures the precipitated mRNA product while other impurities are removed by diafiltration. The product is 290 

then eluted by re-solubilizing the mRNA. Furthermore, DNA template removal can be achieved by performing 291 

the digestion with immobilised DNase [110]. Another approach is to use tagged DNA template that can then be 292 

removed after IVT using affinity chromatography [110]. Despite being scalable, these methods present a 293 
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limited effectiveness since they only focus on the removal of some specific impurities and hence must be 294 

coupled with other purification steps. 295 

 296 

 New perspectives 297 

The current IVT mRNA production methods must be improved to move mRNA technology to 298 

commercialisation and to support market demand. As process yields and production scale have an impact on 299 

the manufacturing costs and consequentially on the cost per dose [92], we speculate that continuous 300 

processing would have a particular advantage to lower costs. Continuous processing is already used in the 301 

chemical and pharmaceutical industry to run flexible and cost-effective processes and will ultimately offer on 302 

demand production.  Additionally, the process integration made possible by continuous manufacturing may 303 

also reduce operation time and facilitate automation and process analytical technologies (PAT), which can 304 

result in a higher productivity and higher product quality [111,112]. The relative simplicity of mRNA 305 

manufacturing makes the process well suited for continuous processing, and in particular at a microfluidic 306 

scale (Figure 5). At this scale, reaction rates can be accelerated under specific conditions, the use of expensive 307 

reagents can be minimised, and cascade reactions can be compartmentalised easily [113]. Further, in situ 308 

product removal (ISPR) and substrate feed and product recovery (SFPR) strategies can be implemented in flow 309 

to facilitate process control, recirculation, and re-use of compounds [113]. These strategies will allow the 310 

separation of molecules, such as enzymes (if free enzymes are used), co-factors or NTPs, that can be 311 

recirculated in the process. Different unit operations, such as TFF, aqueous two-phase systems (ATPS) or 312 

precipitation, could be used for this purpose. These potentially will lower the burden on the downstream 313 

processing as well as the overall processing costs. furthermore, the proposed system could be coupled with a 314 

microfluidic formulation step, in which the mRNA is encapsulated into lipid nanoparticles (LNPs) [115]. This 315 

would allow the establishment of continuous mRNA processing until the fill-to-finish steps.  316 

 317 
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Downstream processing, together with fill-to-finish, is still the major bottleneck in the mRNA vaccine 318 

production due to the lack of well-established and cost-effective processes. Despite the effort to develop 319 

methods that achieve high purity products, most of them are coupled with the traditional precipitation or 320 

nuclease digestion techniques [102,108]. Moreover, most methods are not cost-effective which can make the 321 

process infeasible for the market needs. Alternative cost-effective techniques, such a single-pass tangential 322 

flow filtration (SPTFF) or aqueous two-phase systems (ATPS), that can be applied in a continuous mode, could 323 

potentially improve the process time and manufacturing flexibility while reducing cost and maintaining the 324 

quality [113]. Additionally, new chromatographic operation modes can overcome the need for having multiple 325 

mRNA purification steps (Figure 5). For example, the use of multimodal chromatography is highly promising as 326 

the combination of interactions between the molecule and the matrix could result in an integrated and 327 

intensified purification process without the need for multiple chromatographic steps [114].  328 

 329 

mRNA Safety and Quality 330 

mRNA manufacturing is advantageous when compared to the production of most biologicals since it does not 331 

require the use of cell cultures. Owing to its fast reaction time, the risk of contamination is lower than what is 332 

observed with other complex vaccine manufacturing processes. Additionally, the non-integrative nature and 333 

the transient expression inside the cells favours the mRNA safety profile [58,116].  334 

Regulation guidelines for the evaluation of quality, safety and efficacy of RNA-based prophylactic vaccines for 335 

infection diseases are now being considered [117]. The emphasis is now on the establishment of 336 

manufacturing processes that can deliver a high quality and consistent product. Specifications for a number of 337 

critical process steps and acceptance criteria, intermediates, drug substances (DS) and drug product (DP) must 338 

therefore be defined, e.g., in terms of product yields, and analytical technologies that allows for rigorous 339 

product quantification and characterisation (product identity, purity and quality). mRNA quality can be 340 

assessed using several analytical techniques, such as gel electrophoresis and high-performance liquid 341 
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chromatography (HPLC) [116], while the identity can be assured using sequencing techniques, such as reverse 342 

transcription polymerase chain reaction (RT-PCR) or next-generation sequencing [117]. The presence of 343 

residual amounts of DNA, enzymes and solvents [118], as well as dsRNA and truncated RNA fragments, must 344 

be determined. Additionally, as a general quality control, aspects like the presence of endotoxins, overall 345 

sterility and mRNA stability, must also be evaluated [117]. 346 

Concluding Remarks 347 

mRNA is a rising star in the field of biopharmaceuticals. The interest in this new type of vaccine derives from 348 

the flexibility, safety, and precision that these vaccines present when compared to conventional approaches. 349 

The growing number of clinical trials for cancer therapies and infectious diseases demonstrates an increased 350 

interest from the industry to release these types of vaccines to the market. mRNA vaccines are precise, safe 351 

and flexible, which can be easily manufactured on a large scale for clinical grade applications. These vaccines 352 

can be an answer to quickly respond to epidemic outbreaks in terms of manufacturing.  353 

However, to achieve this status, the development of sustainable and cost-effective manufacturing processes 354 

must be addressed. Although the IVT reaction of mRNA is safer and quicker than most of the established 355 

vaccines production, it relies on the use of expensive and limited materials. Downstream processing of the 356 

vaccine is still poorly established, and it is dependent on methods that lack scalability and cost-effectiveness. 357 

Moving the process to continuous manufacturing can overcome these bottlenecks. We propose a microfluidics 358 

approach with the compartmentalisation of enzymatic reactions coupled with in situ product removal (ISPR) 359 

and substrate feed and product recovery (SDPR) modules and the use of multimodal chromatography to 360 

replace the use of multiple chromatographic steps (Figure 5). The use of new production methods that allow 361 

the reuse and recirculation of compounds integrated with high-throughput purification and well-defined 362 

analytical methods in a continuous manufacturing process can be the answer for a sustainable, flexible and 363 

cost-effective vaccine manufacture that can allow an on-demand response.  364 
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