Silent cold-sensing neurons contribute to cold allodynia in neuropathic pain

Donald Iain MacDonald, Ana P. Luiz, Federico Iseppon, Queensta Millet, Edward C. Emery and John N. Wood

Abstract

Neuropathic pain patients often experience innocuous cooling as excruciating pain. The cell and molecular basis of this cold allodynia is little understood. We used in vivo calcium imaging of sensory ganglia to investigate how the activity of peripheral cold-sensing neurons was altered in three mouse models of neuropathic pain: oxaliplatin-induced neuropathy, partial sciatic nerve ligation and ciguatera poisoning. In control mice, cold-sensing neurons were few in number and small in size. In neuropathic animals with cold allodynia, a set of normally silent large-diameter neurons became sensitive to cooling. Many of these silent cold-sensing neurons responded to noxious mechanical stimuli and expressed the nociceptor markers Na_v 1.8 and CGRPα. Ablating neurons expressing Na_v 1.8 resulted in diminished cold allodynia. The silent cold-sensing neurons could also be activated by cooling in control mice through blockade of K_V1 voltage-gated potassium channels. Thus silent cold-sensing neurons are unmasked in diverse neuropathic pain states and cold allodynia results from peripheral sensitization caused by altered nociceptor excitability.

Author affiliation:

Molecular Nociception Group, Wolfson Institute for Biomedical Research, University College London, Gower Street, WC1E 6BT, London, UK

Correspondence to: John N. Wood

© The Author(s) (2020). Published by Oxford University Press on behalf of the Guarantors of Brain. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
Molecular Nociception Group, Wolfson Institute for Biomedical Research, University College London, Gower Street, WC1E 6BT, London, UK

E-mail: j.wood@ucl.ac.uk

Running title: Silent cold neurons drive cold allodynia

Keywords: pain; cold allodynia; neuropathic pain; potassium channels; sodium channels

Introduction

Chronic pain patients suffering from cold allodynia experience normally innocuous cooling as excruciating pain (Jensen and Finnerup, 2014). Cold allodynia is a common symptom of neuropathic pain caused by chemotherapy, nerve injury or ciguatera poisoning, with a prevalence of up to 90% (Yin et al., 2015; MacDonald et al., 2020). How do neuropathic pain conditions with different etiologies give rise to the same sensory disturbance of cold-evoked pain? Despite advances in our understanding of cold sensation, the pathophysiological mechanisms underlying cold allodynia remain elusive.

In the healthy state, peripheral sensory neurons show modality-specific responses to cold, with ‘labelled lines’ for both mild and extreme cooling (Knowlton et al., 2013; Pogorzala et al., 2013; Emery et al., 2016; Yarmolinsky et al., 2016; Wang et al., 2018; Viana and Voets, 2019). Cold detection involves cooling-gated ion channels like Trpm8, as well as sodium and potassium channels that control excitability at low temperatures (Bautista et al., 2007; Colburn et al., 2007; Dhaka et al., 2007; Zimmermann et al., 2007; Madrid et al., 2009; Morenilla-Palao et al., 2014; Lolignier et al., 2015; Luiz et al., 2019). Mouse knockout studies suggest cold allodynia requires TRP channels and potassium channels expressed by unmyelinated C fibres (Alloui et al., 2006; Colburn et al., 2007; Noël et al., 2009; Descoeur et al., 2011; Nassini et al., 2011; Vetter et al., 2012; Knowlton et al., 2013; Pereira et al., 2014; González et al., 2017). A role for sodium channels enriched in A fibres is also evident, however (Sittl et al., 2012; Vetter et al., 2012; Deuis et al., 2013; Inserra et al., 2017). Mechanistic investigation of the cells and molecules driving cold allodynia has proved difficult because of the challenge in recording large numbers of cold-responsive afferents, as well as the limitations of cold pain behaviour tests (McKemy, 2010).
To investigate directly if cold allodynia results from plasticity in peripheral sensory neurons, we used in vivo calcium imaging to explore how the activity of cold-sensing neurons is altered in neuropathic pain. Here we identify a previously undescribed set of large-diameter silent cold-sensing neurons that contribute to cold allodynia in diverse neuropathic pain states and provide evidence for a potential role of Kv1 potassium channels in unmasking their latent cold sensitivity.

Materials and Methods

Animals

All animal procedures were approved by UCL ethical review committees and were discussed with Home Office inspectors to conform to UK Home Office regulations under Project licence P413329A2. Mouse lines used in this study are summarized in Supplementary Table 1.

All mouse lines were maintained on a C57/BL6 background and breeding strategies are as previously reported (Akopian et al., 1999; Abrahamsen et al., 2008; Minett et al., 2012; Emery et al., 2016; Luiz et al., 2019). Cre-dependent tdTomato reporter mice expressing GCaMP3 were generated by crossing subset-specific Cre mice with animals homozygous for Rosa-flox-stop tdTomato and homozygous for Pirt-GCaMP3. Na\textsubscript{V}1.8-Cre-dependent tdTomato and diphtheria toxin mice expressing GCaMP3 were generated by crossing Na\textsubscript{V}1.8 Cre mice with animals heterozygous for Rosa-flox-stop tdTomato, heterozygous Rosa-flox-stop DTA and homozygous for Pirt-GCaMP3.

Both male and female (>6 weeks) mice were used for all experiments, and the number of mice of each sex used to generate each dataset is reported in Supplementary Table 2. The investigator was blinded to treatment and/or genotype. For genotyping, genomic DNA was isolated from ear biopsy for PCR. Genotyping primers are listed in Supplementary Table 3.

Tamoxifen treatment

CGRPα-CreERT2 mice were given three 200 µl doses of a 1% tamoxifen solution on consecutive days between 6-8 weeks of age. TrkB-CreERT2 mice were given five 200 µl doses of a 1% tamoxifen solution on consecutive days between 8-10 weeks of age. Tamoxifen was made-up in a 15% ethanol/85% sunflower oil.
Neuropathic pain models

Standard behavioural tests were used to assess neuropathic pain and are described in detail in the Supplementary Methods. Animals were acclimatized to handling to minimize stress during the testing. All behavioural experiments were performed at a room temperature of 18 to 21°C.

Oxaliplatin:

Chemotherapy-induced neuropathy was induced in mice by intraplantar injection of oxaliplatin into the left hindpaw (Deuis et al., 2013). Oxaliplatin was made up to a dose of 80 µg in 40 µl of 5% glucose solution, due to its instability in chloride-containing saline solution. Behavioural testing or imaging was assessed at least 3 hours after injection.

Partial Sciatic Nerve Injury:

Peripheral nerve injury was studied in mice using a modified version of the Seltzer model (Seltzer et al., 1990). Surgical procedures were performed under isoflurane anaesthesia (2–3%). After the left thigh area was shaved and the skin sterilized with 70% ethanol, a longitudinal skin incision was made at the level of the femur. With the help of forceps, the muscle fibres were separated to allow visualization of the sciatic nerve. The partial nerve injury was induced by tying a tight ligature with 6-0 silk suture around approximately 1/3 of the diameter of the sciatic nerve. The skin was then closed with 6-0 Vicril suture and animals kept in a warm enclosure until complete recovery. Behavioural testing was performed at 2 and 4 weeks post-surgery, and imaging experiments were carried out between 4 and 5 weeks after surgery.

Ciguatoxin-2:

Ciguatoxin-2 (P-CTX-2) was a gift from Richard Lewis (University of Queensland). Because P-CTX-2 is highly lipophilic and sticks to plastic surfaces, it was made up to 10 µM in 50% methanol solution, stored in a glass vial at -20°C and aliquoted using a metal/glass Hamilton syringe. The stock solution was diluted in saline containing 1% BSA to produce a final concentration of 100nM. Mice undergoing imaging or behavioural testing were injected intraplantar with 20 µl of 100nM P-CTX-2, and the effect of the drug measured after 20-30 minutes (Vetter et al., 2012).
In Vivo Calcium Imaging

Acquisition:

Mice expressing GCaMP3 were anesthetized using ketamine (100 mg/kg), xylazine (15 mg/kg) and acepromazine (2.5 mg/kg). Depth of anaesthesia was confirmed by pedal reflex and breathing rate. Animals were maintained at a constant body temperature of 37°C using a heated mat (VetTech). Lateral laminectomy was performed at spinal level L3-5. In brief, the skin was incised longitudinally, and the paravertebral muscles were cut to expose the vertebral column. Transverse and superior articular processes of the vertebra were removed using microdissection scissors and OmniDrill 35 (WPI). To obtain a clear image of the sensory neuron cell bodies in the ipsilateral dorsal root ganglion (DRG), the dura mater and the arachnoid membranes were carefully opened using microdissection forceps. The animal was mounted onto a custom-made clamp attached to the vertebral column (L1), rostral to the laminectomy. The trunk of the animal was slightly elevated to minimize interference caused by respiration. Artificial cerebrospinal fluid [containing 120 mM NaCl, 3 mM KCl, 1.1 mM CaCl₂, 10 mM glucose, 0.6 mM NaH₂PO₄, 0.8 mM MgSO₄, 1.8 mM NaHCO₃ (pH 7.4) with NaOH] was perfused over the exposed DRG during the procedure to maintain tissue integrity, or the DRG was isolated by coating with silicone elastomer.

Images were acquired using a Leica SP8 confocal microscope. A 10x dry, 0.4-N.A. objective with 2.2 mm working distance was used, with image magnification of 0.75-3x optical zoom. GCaMP3 was excited using a 488 nm laser line (1-15% laser power). tdTomato was excited using a 552 nm laser line (1-15% laser power). Filtering and collection of the emission light was optimized to maximize yield and minimize cross-talk (Leica Dye 164 Finer, LasX software, Leica). GCaMP was detected using a hybrid detector (100% gain) and tdTomato using a photomultiplier tube (500-600V gain). 512 x 512 pixel images were captured at a frame rate of 1.55 Hz, bidirectional scan speed of 800 Hz, and pixel dwell time of 2.44 μs.

Noxious and innocuous stimuli were applied to the left hindpaw, ipsilateral to the exposed DRG. Thermal stimuli were applied by a Peltier-controlled thermode, or by immersion of the paw in ice-water (nominally 0°C), acetone (100%) or 55°C water using a Pasteur pipette. Mechanical stimuli were noxious pinch with serrated forceps, and innocuous brushing with a small paint-brush (ProArte-2) or cotton-swab. An interval of at least 30 s separated each stimulus application. Pharmacological agents were delivered by intraplantar injection and are summarized in the Supplementary Table 4.
Image analysis:

Image stacks were registered to a reference frame using the FIJI plugin TurboReg (accurate rigid body transformation) to correct for XY drift. Stacks with excessive Z movement were excluded from analysis. Regions of interest (ROI) were manually drawn around responding cells using the free hand tool in FIJI. The time series of mean pixel intensity for each ROI was extracted and smoothed by a four time point moving average to remove high-frequency noise. Next, we calculated the derivative of the mean pixel intensity. Neurons were classed as responders if, within 30 s of stimulus application, the maximum derivative was greater than the baseline (10 s preceding stimulus application) derivative plus five standard deviations – that is, a Z-score of at least 5. We then calculated the $\Delta F/F_0$ value for each response to obtain a normalized measure of change in fluorescence. Neurons which showed a $\Delta F/F_0$ less than 0.25 were then discarded. Each trace was then manually screened as a further precaution against false positives. The remaining neurons that made up the responding population were then used for statistical analysis. Cross-sectional area for each ROI in μm^2 was also measured.

The red channel of the reference image was used to determine whether a cell was positive for tdTomato. Five regions of interest were drawn in background areas of the image negative for tdTomato and average pixel intensity measured to calculate the mean and standard deviation of the background red fluorescence. Red fluorescence in responding cells was Z-scored versus the background value, and cells were counted as tdTomato positive if the Z-score was greater than 5.

Quantification and Statistical Analysis

For *in vivo* imaging experiments, n refers to the number of cells responding to any stimulus. For electrophysiology experiments, n refers to the number of recorded cells. For all imaging and physiology data, the number of animals used is indicated in the legend. For behavioural experiments, n refers to the number of animals.

Datasets are presented using appropriate summary statistics as indicated in the legend. For behavioural data, error bars denote mean ± 95% confidence interval, unless otherwise indicated. For *in vivo* imaging experiments, cells from all animals were pooled for analysis. These non-parametric data are summarized using medians with quartiles, or cumulative probability plots.
For categorical data, 95% confidence intervals around proportions were estimated using the Wilson-Brown method.

Tests of statistical comparison for each dataset are described in figure legends. All test statistics are summarized in detail in Supplementary Table 5 for the main figures and in Supplementary Table 6 for the supplementary figures. When comparing two groups, unpaired t test or Mann-Whitney test was used. When comparing the distribution of cell cross-sectional areas for two groups, the Kolmogorov-Smirnov test was used. For more than two groups, One-Way ANOVA or Kruskall-Wallis test was used with post-hoc tests corrected for multiple comparisons. When comparing the effect of two factors on multiple groups, a repeated-measures Two-Way ANOVA was used, with post-hoc tests corrected for multiple comparisons. For categorical data, proportions were compared using χ^2 test. Curve fitting was performed using linear regression or non-linear regression functions.

Statistical tests were all performed using GraphPad Prism 7. Differences were considered significant where $p<0.05$.

Data availability

Data is available at https://doi.org/10.6084/m9.figshare.13293050

Results

Silent cold-sensing neurons are unmasked during chemotherapy-induced neuropathy

To investigate the mechanisms of cold alldynia, we used *in vivo* calcium imaging to explore how sensory neuron responses to cooling are altered during chemotherapy-induced neuropathy. Pirt-GCaMP3 mice expressing GCaMP3 in all sensory neurons were treated with oxaliplatin (80 µg/40 µl by hindpaw intraplantar injection). Three hours after injection, both male and female mice displayed extreme cold hypersensitivity, as measured by the number of nociceptive and nocifensive behaviours when the animal was placed on a 5 °C Cold Plate (Fig. 1A &
Supplementary Fig. 1A. Oxaliplatin-treated mice also developed mechanical hypersensitivity, but not heat hyperalgesia. The short-latency cold hypersensitivity observed after a single clinical dose of oxaliplatin (~3mg/kg) in this model mimics the rapid onset of cold allodynia in patients (Deuis et al., 2013).

Using laser-scanning confocal microscopy, we imaged cold-evoked calcium signals in sensory neuron somata of L4 dorsal root ganglia from oxaliplatin- and vehicle-treated animals. There was a dramatic change in the peripheral representation of cold following oxaliplatin treatment (Fig. 1B). In vehicle-treated mice, neurons responding to either ice-water or acetone were sparse and had small cross-sectional areas, with a mean value of 214.9 µm² (Fig. 1Ci). In oxaliplatin-treated animals, small cells still responded to cold, however a novel, usually cold-insensitive population of large neurons also became activated by cooling. We consequently divided cold-sensing neurons from the oxaliplatin-treated group into a basal population (within three standard deviations of the vehicle mean cross-sectional area), and an unmasked population (greater than three standard deviations away from this mean, >446.77 µm2) (Fig. 1Ci & Supplementary Fig. 1B). Because large neurons normally never respond to cooling, but gain a de novo sensitivity to cold following oxaliplatin, we named them ‘silent cold-sensing neurons.’ The percentage of cells classified as silent cold-sensing neurons rose from 1% (4/383) in vehicle- to 19% (102/542) in oxaliplatin-treated animals (Fig. 1Cii).

Interestingly, the response of many silent cold-sensing neurons to acetone continued for tens of seconds beyond the initial delivery of the stimulus (Fig. 1B). Consistent with this, oxaliplatin-treated animals show prolonged nocifensive behaviour localized to the ipsilateral paw following acetone application (Supplementary Fig. 1C).

Cold allodynia could result from neurons signalling extreme cold becoming active at higher temperatures (González et al., 2017). However, oxaliplatin did not affect thermal activation thresholds of basal cold-sensing neurons, when the hindpaw was stimulated with temperature drops delivered by a Peltier-controlled thermode (Fig. 1D). When we quantified peak fluorescence intensity in response to cold as a surrogate for excitability, cold-evoked fluorescence intensity in both the basal and silent populations in the oxaliplatin group was no different to vehicle (Supplementary Fig. 1D). These data indicate oxaliplatin does not markedly affect the activation thresholds or excitability of the basally-active cold-sensing neurons.
What effect did oxaliplatin have on neurons responding to other sensory modalities? Cross-sectional area of mechanically-sensitive neurons was unchanged, but heat-activated cells showed a minor shift towards larger cells (Supplementary Fig. 1B). There was no increase in the proportion of heat- or mechanically-sensitive cells (Supplementary Fig. 1E). Mechanical response magnitude was not altered, although the response to heat was reduced (Supplementary Fig. 1F). Thus oxaliplatin treatment results in a modality-specific expansion in the peripheral representation of cold through the recruitment of silent cold-sensing neurons.

We previously showed that nociceptor polymodality is enhanced by inflammatory mediators (Emery et al., 2016). Interestingly, oxaliplatin increased the proportion of mechano-heat neurons from 19% (26/136) to 32% (61/193) (Supplementary Fig. 1G). However, few cold-sensing neurons responded to heat (Fig. 1Ei). By contrast, the fraction of cold-sensing neurons responding to noxious pinching was markedly increased (Fig. 1Eii). For ice-water, this rose from 16% (8/51) to 33% (27/81) and for acetone from 12% (7/58) to 37% (53/145). This is likely an under-estimate because pinching targets a smaller receptive field than ice-water or acetone. These mechano-cold neurons were mainly large-diameter silent cold-sensing neurons (Fig. 1Eiii & Supplementary Fig. 1H).

Importantly, silent cold-sensing neurons rarely responded to intermediate or low-threshold mechanical stimuli. Only 8% (15/199) of silent cold-sensing neurons responded to repeated stimulation with a 2g Von Frey hair (Supplementary Fig. 2A&B). From 48 silent cold-sensing neurons tested, not one responded to stroking the glabrous or hairy skin using a paint-brush or cotton swab (Supplementary Fig. 2C&D). The mechanically-sensitive subpopulation of silent cold-sensing neurons therefore primarily respond to high-threshold mechanical stimuli, consistent with a functional identity as nociceptors.

Silent cold-sensing neurons are unmasked during peripheral nerve injury

Are silent cold-sensing neurons unmasked in other neuropathies? To mimic nerve injury-induced neuropathic pain, we performed partial sciatic nerve ligation (PNL) on Pirt-GCaMP3 mice. Two weeks after surgery, nerve injured animals developed mechanical, but not cold, hypersensitivity. At four weeks, we observed a modest cold hypersensitivity using both the acetone and Unilateral Cold Plate test, but no difference in heat nociception. (Fig. 2A &
Supplementary Fig. 3A). Qualitatively similar results were obtained in both males and females for all assays (Supplementary Fig. 3B).

We therefore imaged both nerve-injured and sham-operated mice between 4 and 5 weeks post-surgery (Fig. 2B). In sham-operated mice, cold-sensing neurons were small in size with a mean area of 222.7 µm² (Fig. 2Ci). After nerve injury, normally cold-insensitive, large-diameter neurons responded to both ice-water and acetone stimuli (Fig. 2Ci & Supplementary Fig. 3C). Neurons with cross-sectional areas greater than three standard deviations away from the sham mean (>405.4 µm²) were classified as silent cold-sensing neurons. The silent cold-sensing neuron population expanded from 2% (7/373) to 15% (45/291) (Fig. 2Cii). Fewer silent cold-sensing neurons were recruited by nerve injury than oxaliplatin, consistent with a less profound behavioural cold hypersensitivity.

Nerve injury did not alter the thermal activation thresholds of basal cold-sensing neurons (Fig. 2D), but the effect on excitability was complex. Acetone-evoked activity was enhanced in the basal population, while silent cells showed reduced responses to ice-water (Supplementary Fig. 3D). The number of heat-cold polymodal neurons was unchanged (Fig. 2Ei), however the proportion of mechano-cold cells was significantly increased (Fig. 2Eii). For ice-water, this rose from 5% (3/64) to 20% (14/71) and for acetone from 0% (0/95) to 10% (7/73). Mechano-cold cells comprised both basal and silent cold-sensing neurons, based on cross-sectional area (Fig. 2Eiii & Supplementary Fig. 3E). In addition, when the glabrous skin was lightly stroked with a paint-brush, just 2% (1/41) of silent cold-sensing neurons unmasked by nerve injury responded to this low-threshold mechanical stimulus (Error! Reference source not found.E). Nerve injury and oxaliplatin thus have broadly similar effects on the peripheral representation of cold, unmasking silent cold-sensing neurons that also sometimes respond to noxious mechanical stimuli.

Neurons responding to other modalities were variably affected by nerve injury. There was no change in cell area for mechanical stimuli, but heat-activated neurons were larger (Supplementary Fig. 3C). Significantly more neurons responded to pinch (38% vs. 28%), and there was a trend towards fewer responses to heat (40% vs. 47%) (Supplementary Fig. 3F). We saw no difference in the intensity of the response to noxious heat, but pinch-evoked peak activity was decreased (Supplementary Fig. 3G). Unlike oxaliplatin, there was no enhancement of mechano-heat polymodality (Supplementary Fig. 3H).
Silent cold-sensing neurons are unmasked during ciguatera poisoning

Both oxaliplatin and nerve injury show a delayed onset of cold hypersensitivity. As our imaging preparation is terminal, we could not follow mice in real-time to determine if silent cold-sensing neurons are truly silent in the naive state. To induce cold allodynia within the same imaging session, we turned to a mouse model of ciguatera poisoning, a marine toxin-induced neuropathy characterized by cold pain in the extremities that results from consuming contaminated seafood (Vetter et al., 2012). Hindpaw intraplantar injection of ciguatoxin-2 (P-CTX-2, 100 nM) evoked cold pain by 30 minutes in both male and female mice, as judged by the acetone and 10°C unilateral cold plate test (Fig. 3A & Supplementary Fig. 4A).

We therefore imaged sensory neuron cold sensitivity over the same time course (Fig. 3B). After 30 minutes, P-CTX-2 induced robust responses to cooling in numerous initially cold-insensitive cells (Fig. 3Ci). Some neurons actually lost their response to cold, however this was counterbalanced by the large number of cells that gained de novo cold sensitivity, resulting in a net expansion of cold population, especially to ice-water. The number of neurons responsive to any cold stimulus rose from 91 to 206 and for ice water went from 69 to 174. P-CTX-2 did not affect how many cells responded to other modalities (Fig. 3Cii). Silent cold-sensing neurons unmasked by P-CTX-2 were also large, with a mean cross-sectional area of 820.1 µm² (Fig. 3D). The size of heat-sensing cells was not markedly altered, although more small neurons responded to noxious pinch (Supplementary Fig. 4B).

How did P-CTX-2 treatment affect basally-active cold cells? We quantified the change in threshold of these cells after either P-CTX-2 or vehicle, and saw no difference (Fig. 3Ei). Interestingly, P-CTX-2 reduced the peak cold response of these neurons compared to vehicle (Supplementary Fig. 4C). Silent cold-sensing neurons showed similar thermal activation thresholds to the basal population (Fig. 3Eii), and their activity was not greater (Supplementary Fig. 4D). P-CTX-2 did not affect the peak response to other modalities (Supplementary Fig. 4E), however there was an increase in the fraction of polymodal mechano-heat neurons from 12% to 25% (Supplementary Fig. 4F).

P-CTX-2 increased mechano-cold polymodal neurons responding to ice-water from 4% to 13% (Fig. 3Fi). Heat/cold polymodality was also enhanced, albeit not significantly (Fig. 3Fii). Interestingly, the proportion of identified silent cold-sensing neurons that responded to noxious mechanical stimuli was at 16% the same in the naïve state and after P-CTX-2. This indicates...
that at least some silent cold-sensing are responsive to noxious mechanical stimuli before the induction of neuropathy. Few heat/cold cells showed a basal response to heat, indicating heat sensitivity is conferred by P-CTX-2 (Fig. 3Fiii). Results were broadly similar when we looked only at the cold-sensing neurons defined by their response to acetone (Supplementary Fig. 4G). Finally, cold-sensing neurons unmasked by P-CTX-2 almost never responded to light touch stimuli, either before or after treatment (Supplementary Fig. 2F).

These findings demonstrate cold allodynia induced by P-CTX-2 involves unmasking of silent cold-sensing neurons, some of which are pinch-activated mechano-nociceptors. Etiologically-distinct neuropathic pain states therefore give rise to cold pain by a similar mechanism of recruiting cold-insensitive sensory neurons to become cold-responsive.

Molecular characterization of silent cold-sensing neurons that drive cold allodynia in neuropathic pain

What is the molecular identity of silent cold-sensing neurons? We crossed subset-specific Cre or CreERT2 mice with animals harbouring a Cre-dependent tdTomato reporter, on a Pirt-GCaMP3 background. This generated progeny expressing GCaMP3 in all sensory neurons but with tdTomato expression restricted to the cellular subset of interest (Fig. 4A). Consequently, we were able to ask if functionally-identified silent cold-sensing neurons express molecular markers labelling major subpopulations of sensory neurons (Usoskin et al., 2014; Zeisel et al., 2018). We focused on oxaliplatin neuropathy because of its ease, reproducibility and clinical relevance. The percentage of neurons responding to any cold stimulus in vehicle and oxaliplatin-treated mice expressing each molecular marker is summarized in Fig. 4A, split as before into basal and silent populations.

Ntrk2 (TrkB-CreERT2) is a molecular marker for Aδ-fibre low-threshold mechanoreceptors and was expressed by just 4% of silent cold-sensing neurons (Fig. 4A). Silent cold-sensing neurons also showed minimal expression of the Aβ-fibre low-threshold mechanoreceptor marker *Calb1* (Calb1-Cre) with only 22% overlap (Fig. 4A). The molecular profile therefore concurs with the functional data that silent cold-sensing neurons are unlikely to be low-threshold mechanoreceptors, despite their large size. However, silent cold-sensing neurons showed only 30% overlap with *Trpv1* lineage neurons, which encompass a broad mixture of nociceptors and thermosensors (Fig. 4A).
Given that some silent cold cells respond to noxious mechanical stimuli, we hypothesized they express Scn10a, a marker of mechano-nociceptors (Abrahamsen et al., 2008; von Buchholtz et al., 2020). We previously showed that under physiological conditions the bulk of neurons sensing cold down to 0°C are negative for Scn10a, which encodes sodium channel Na\textsubscript{v}1.8 (Luiz et al., 2019). In agreement with this, very few small-sized cold-sensing neurons were marked by Na\textsubscript{v}1.8-Cre in animals treated with either vehicle (14%) or oxaliplatin (19%). In contrast, we found 68% of the large-diameter silent cold-sensing neurons unmasked by oxaliplatin expressed Na\textsubscript{v}1.8 (Fig. 4A&B). When we examined animals with cold allodynia evoked by PNL, 52% of silent cold-sensing neurons were marked by Na\textsubscript{v}1.8, although 41% of smaller cells also expressed Na\textsubscript{v}1.8 in this model (Fig. 4C). Similarly, 55% of the silent cold-sensing neurons unmasked by P-CTX-2 were positive for Na\textsubscript{v}1.8, with only 11% overlap among the cold cells active in the naïve state (Fig. 4D). Thus, in all three neuropathic pain models tested here, most silent cold-sensing neurons express Na\textsubscript{v}1.8, forming a unique subpopulation of large-diameter Scn10a-expressing nociceptors.

To determine which nociceptor subset silent cold-sensing neurons belonged to, we used a Tmem45b-Cre mouse line to identify Tmem45b-expressing non-peptidergic nociceptors (Usoskin et al., 2014). Just 5% of silent cold cells in oxaliplatin neuropathy expressed Tmem45b (Fig. 4A). On the other hand, 62% of silent cold-sensing neurons in oxaliplatin neuropathy overlapped with Calca-expressing peptidergic nociceptors labelled with CGRP\textalpha-CreERT2 (Fig. 4A&E). The silent cold-sensing neurons also showed substantial overlap with Calca-expressing cells in mice with cold allodynia evoked by PNL (57%) or P-CTX-2 (54%), identifying silent cold cells as a set of peptidergic nociceptors commonly involved in cold allodynia (Fig. 4F&G). Hence, expression of Scn10a or Calca can be used to differentiate the silent and basal cold-sensing neurons.

Next, we restricted our analysis only to those silent cold-sensing neurons that were also sensitive to noxious mechanical stimuli, and obtained a similar pattern of marker expression. In the oxaliplatin model, silent cold cells responsive to pinch were strongly positive for Scn10a (53%) and Calca (68%), but mainly negative for Trpv1 (27%), with none expressing Tmem45b, Calb1 or Ntrk2 (Supplementary Fig. 5A). In P-CTX-2-treated mice, we also saw that the silent mechanocold neurons largely expressed both Scn10a (54%) and Calca (83%) (Supplementary Fig. 5B). Thus the mechanosensory subpopulation of silent cold-sensing neurons are also likely peptidergic nociceptors.
Finally, we used diphtheria toxin to conditionally ablate silent cold-sensing neurons marked by Na\textsubscript{v}1.8-Cre to test their causal role in cold allodynia (Fig. 5A). This ablation encompasses all cells expressing Na\textsubscript{v}1.8 and is not restricted to silent cold-sensing neurons. Imaging of mice where Scn10a-positive nociceptors are ablated shows very few of the large-diameter silent cold-sensing neurons are unmasked by oxaliplatin compared to Na\textsubscript{v}1.8-Cre mice lacking DTA (Fig. 5B). The small basal cold-sensing neurons are retained after killing of Scn10a-positive neurons. Although nocifensive behaviour was not fully abolished, we observed a ~50% decrease in oxaliplatin-evoked cold hypersensitivity in Na\textsubscript{v}1.8-Cre DTA animals (Fig. 5C). The molecular identification and subsequent manipulation of silent cold-sensing neurons thus corroborates their causal contribution to cold alldynia in neuropathic pain.

Molecular basis of cold detection by silent cold-sensing neurons

Which sodium channel isoform is required for silent cold-sensing neuron excitability? For mechanistic investigation, we focused on silent cold-sensing neurons responding to ice-water stimuli in the oxaliplatin model. Because Cre is knocked in directly at the Na\textsubscript{v}1.8 locus, homozygous Na\textsubscript{v}1.8-Cre mice lack both wild-type Scn10a alleles and are thus Na\textsubscript{v}1.8 nulls without Na\textsubscript{v}1.8-dependent TTX-resistant voltage-gated sodium currents (Supplementary Fig. 6B). When we treated homozygous Na\textsubscript{v}1.8-Cre mice expressing Cre-dependent tdTomato on a Pirt-GCaMP3 background with oxaliplatin, silent cold-sensing neurons were unmasked (Fig. 6Ai). There was no difference between oxaliplatin-treated mice heterozygous or homozygous for Na\textsubscript{v}1.8-Cre in the cross-sectional areas of cold-responsive cells (Fig. 6Aii) or in tdTomato-expression in silent cold-sensing neurons (Fig. 6Aiii). Oxaliplatin also evoked cold allodynia in conventional Na\textsubscript{v}1.8 KO mice (Supplementary Fig. 6B). Additionally, imaging of Advillin-Cre conditional Na\textsubscript{v}1.7 KO mice expressing GCaMP3 revealed recruitment of silent cold-sensing neurons by oxaliplatin (Fig. 6B). Thus, pain-related sodium channels Na\textsubscript{v}1.8 and Na\textsubscript{v}1.7 are dispensable for silent cold-sensing neuron activity. Treatment of oxaliplatin-injected animals with TTX blocked activity in essentially all basal and silent cold-sensing neurons, however (Fig. 6C). 4,9-anhydrousTTX, reported to preferentially inhibit Na\textsubscript{v}1.6, reduced the number of silent cold-sensing neurons by 57%. The effect of Na\textsubscript{v}1.6 blockade on basal cold-sensing neurons was comparable to saline (Fig. 6AC). Hence, Na\textsubscript{v}1.6 is likely the predominant sodium channel isoform in silent cold-sensing neurons. When we directly activated sodium channels with the pharmacological potentiator veratridine in naïve mice, we observed no
unmasking of large-sized cells; indeed, the activity of cold-sensing neurons was paradoxically reduced (Fig. 6D). Activation of sodium channels is therefore not sufficient to induce de novo cold sensitivity.

We have previously shown that basally cold-insensitive NaV1.8-positive neurons are enriched with Kcnal and Kcna2, which encode the voltage-gated potassium channels Kv1.1 and Kv1.2 (Luiz et al., 2019). These channels are thought to pass a voltage-dependent hyperpolarizing brake current that opposes depolarization evoked by cooling (Pertusa and Madrid, 2017). We hypothesized that pharmacological block of the Kv1 current in vivo would therefore unmask silent cold-sensing neurons. We imaged sensory neuron responses to cooling in Pirt-GCaMP3 mice at baseline and 30 minutes after intraplantar injection of the non-specific voltage-gated potassium channel blocker 4-aminopyridine (4-AP, 10 mM in 20 µl) (Fig. 7A). 4-AP treatment triggered de novo sensitivity to cooling in previously cold-insensitive large diameter neurons (Fig. 7A-D). Intriguingly, the effect of 4-AP was reduced by pre-treatment with oxaliplatin (Fig. 7B-D).

Treatment with the selective Kv1 antagonist α-dendrotoxin (100 µM) mimicked the effect of 4-AP (Fig. 7B-D), indicating block of Kv1 channels alone is sufficient to induce de novo cold sensitivity in silent cold-sensing neurons. k-dendrotoxin at 100 µM, a specific blocker of Kv1.1, largely recapitulated the effect of α-dendrotoxin on silent cold-sensing neurons (Fig. 7B-D). The Kv1.2 blocker Conotoxin kM-RIIIJ (100 µM) had only minor effects (Fig. 7B-D). 4-AP and α-dendrotoxin, but not k-dendrotoxin, increased the number of mechano-cold polymodal neurons (Fig. 7E). Interestingly, no potassium channel blocker modified the activity of the basally-active population of cold neurons (Fig. 7F). Overall, these data suggest that a functional reduction in Kv1 channels, primarily mediated through Kv1.1, could act as a molecular switch to trigger de novo cold sensitivity in silent cold-sensing neurons and therefore may also contribute to their unmasking during neuropathic pain (Fig. 8).

Discussion

Silent cold-sensing neurons become active during neuropathic pain

Here we have found using in vivo imaging that activation of normally silent, large-diameter silent cold-sensing neurons is a common mechanism of cold allodynia in three models of clinically important neuropathic pain states. The silent cold-sensing neurons identified here typically had functional and molecular characteristics consistent with peptidergic A-fibre
nociceptors (Lawson et al., 2019). Crucially we observed no changes in cold thresholds in the basally-active population of cold-sensing neurons. Thus, our findings suggest cold allodynia is a form of peripheral sensitization where a subpopulation of nociceptors gains an inappropriate sensitivity to the cold. This contrasts with tactile allodynia, which depends on peripheral drive from low-threshold mechanoreceptors expressing Piezo2 (Eijkelkamp et al., 2013; Murthy et al., 2018; Szczot et al., 2018).

Electrophysiological recording of both rodent and human nerves exposed to oxaliplatin reveals myelinated A fibres fire more in the cold (Kagiava et al., 2008; Sittl et al., 2010, 2012). Blockade of large fibres abolishes cold allodynia in humans with non-freezing cold injury and oxaliplatin neuropathy (Forstenpointner et al., 2018; Jørum and Opstad, 2019). Nerve injury and ciguatoxin likewise increase the fraction of cold-sensitive cutaneous sensory neurons in vitro (Vetter et al., 2012; González et al., 2017). There is a gradation – fewer silent cold-sensing neurons are recruited by nerve injury compared to oxaliplatin or ciguatoxin-2, and cold allodynia is correspondingly less prevalent in these patients (Yin et al., 2015; MacDonald et al., 2020). Nonetheless, because silent cold-sensing neurons are unmasked in all three neuropathic pain states tested here, our results do support a common underlying pathophysiology.

In the healthy state, a sparse and modality-specific subpopulation of small-diameter sensory neurons signals cooling (Emery et al., 2016; Yarmolinsky et al., 2016; Wang et al., 2018). During neuropathy we find this ‘labelled line’ breaks down, with large neurons responding to both cold and noxious mechanical pinch, but rarely to heat, touch and punctate mechanical stimuli. The percentage of silent cold-sensing neurons sensitive to pinch is likely an underestimate due to the differing receptive field areas of these two stimuli. Interestingly, inflammatory mediators also increase the number of polymodal neurons (Emery et al., 2016). Enhanced polymodality is thus a general feature of sensitized pain states (Emery and Wood, 2019).

Molecular identity of silent cold-sensing neurons

Despite their large size, silent cold-sensing neurons did not express molecular markers for Aβ (Calb1) and Aδ (Ntrk2) low-threshold mechanoreceptors. This was surprising given that oxaliplatin preferentially modulates A fibre activity (Kagiava et al., 2008; Sittl et al., 2010, 2012; Forstenpointner et al., 2018). However, our findings are consistent with the essential role
of Ntrk2-positive neurons in tactile but not cold allodynia, indicating distinct modalities of allodynia are mechanistically different (Cobos et al., 2018; Dhandapani et al., 2018).

The majority of silent cold-sensing neurons expressed the nociceptor marker Na\(_V\)1.8 (Abrahamsen et al., 2008). Although Na\(_V\)1.8 is not a selective marker of silent cold-sensing neurons, very few of the small diameter, basal cold-sensing cells express this sodium channel (Luiz et al., 2019). Thus DTA-mediated ablation of Na\(_V\)1.8-positive neurons in healthy mice had no effect on the moderate cold assays used here to examine allodynia. But after oxaliplatin treatment, deletion of Na\(_V\)1.8-positive neurons including the newly unmasked cold sensors did result in diminished cold allodynia, mechanistically linking silent cold-sensing neurons with cold allodynia. Consistent with this, Na\(_V\)1.8-DTA mice were previously shown to have deficient cold allodynia elicited by ciguatoxin-1, while deletion of HCN2 channels specifically in Na\(_V\)1.8-positive neurons impairs cold allodynia in chronic constriction injury (Emery et al., 2011; Vetter et al., 2012).

We found that most silent cold-sensing neurons express CGRP\(\alpha\), but not Tmem45b, and are therefore likely peptidergic nociceptors. Large-diameter, NF200-expressing neurons that are CGRP\(\alpha\)-positive, but Trpv1-negative, have been implicated in mechanical nociception, in tune with our finding that a subset of silent cold-sensing neurons responded to pinch (Scherrer et al., 2009). Indeed, in vivo imaging of the trigeminal ganglion has shown that CGRP\(\alpha\)-positive neurons are a mixture of small-diameter polymodal nociceptors and large-diameter mechanonociceptors that respond to noxious mechanical stimulation (Ghitani et al., 2017). Another trigeminal imaging study revealed that, following burn injury of the oral cavity, previously ‘silent’ CGRP\(\alpha\)-positive neurons became newly sensitive to cooling (Yarmolinsky et al., 2016). Tellingly, optogenetic inhibition of CGRP\(\alpha\)-positive neurons transiently and reversibly relieves cold allodynia after spared nerve injury (Cowie et al., 2018).

Taken together, these results identify silent cold-sensing neurons as mainly peptidergic nociceptors that express Scn10a and Calca molecular markers. Extending our previous observations that Na\(_V\)1.8-positive sensory neurons signal prolonged and extreme cold, a further potential role for these nociceptors in mediating pathological responses to normal cooling is now apparent (Luiz et al., 2019).
Ionic mechanisms of de novo cold sensitivity

We previously found that voltage-gated potassium channels $K_{V}1.1$ and $K_{V}1.2$ were enriched in basally cold-insensitive, $Na_{V}1.8$-positive neurons (Luiz et al., 2019). Silent cold-sensing neurons therefore have high baseline expression of K_{V}1 channels which pass a voltage-dependent excitability brake current opposing cold-induced depolarization (Madrid et al., 2009; González et al., 2017). Blocking K_{V}1 voltage-gated potassium channels with 4-aminopyridine or α-dendrotoxin consequently induced de novo cold sensitivity in silent cold-sensing neurons, and this effect was partially recapitulated by inhibiting $K_{V}1.1$, but not $K_{V}1.2$. Although oxaliplatin and P-CTX-2 directly activate voltage-gated sodium channels, potentiating sodium channels does not drive de novo cold-sensitivity, indicating that ectopic cold activation is not a consequence of a general increase in excitability, but specifically linked to inhibiting K_{V}1 channels (Sittl et al., 2012; Inserra et al., 2017). Indeed, K_{V}1 channels are known to potently control action potential firing in response to sensory stimuli in both cold- and mechanically-sensitive nerve terminals (Madrid et al., 2009; Hao et al., 2013).

Does neuropathic pain lead to functional downregulation of K_{V}1 channels? 4-AP induces de novo cold sensitivity in sensory neurons from control, but not nerve injured, mice (González et al., 2017). 4-AP evoked behavioural cold hypersensitivity is also suppressed in injured animals, indicating that nerve injury-induced cold allodynia operates via the same pathway as 4-AP to drive de novo cold sensitivity (González et al., 2017). Corroborating this, we found that 4-AP unmasked fewer silent cold-sensing neurons in mice pre-treated with oxaliplatin. The mechanism of K_{V}1 channel of downregulation is unclear and is likely to be specific to each disease state. Quantitative PCR of samples from oxaliplatin-treated mice reveal that there is a decrease in $K_{V}1.1$ RNA, supporting transcriptional changes (Descoeur et al., 2011). Numerous reports have also found a decrease in both $K_{V}1.1$ and $K_{V}1.2$ expression following nerve injury (Ishikawa et al., 1999; Rasband et al., 2001; Kim et al., 2002; Park et al., 2003; Yang et al., 2004; Zhao et al., 2013; Calvo et al., 2016). On the other hand, in vitro studies support a direct antagonist effect of both oxaliplatin and ciguatoxin on voltage-gated potassium channels (Birinyi-Strachan et al., 2005; Sittl et al., 2010). However, it is important to note that a causal link between peripheral neuropathy and K_{V}1 channel activity was not investigated or explicitly demonstrated in our study.

Conclusions

Overall, we show that cold allodynia results from a set of normally silent cold-sensing neurons gaining de novo cold sensitivity in neuropathic pain. Cold allodynia is therefore a form of peripheral sensitization. Silent cold-sensing neurons were identified as putative A-fibre peptidergic nociceptors based on their large diameter, response to noxious mechanical stimulation, and expression of molecular markers Na\(_V\)1.8 and CGRP\(\alpha\). Block of K\(_V\)1 channels is sufficient to induce de novo cold sensitivity, pointing to downregulation of these channels during disease as a possible trigger of cold allodynia. By defining cells and molecules involved in cold alldodynia, our findings will inform the development of better targeted therapeutics for neuropathic pain. The in vivo imaging data collected here provides a unique insight into the mechanisms underpinning cold allodynia, for the first time identifying silent cold-sensing neurons as critical drivers of cold-evoked neuropathic pain.

Acknowledgements

We thank Xinzhong Dong for Pirt-GCaMP3 mice, David Ginty and members of the Molecular Nociception Group for Cre-lines, Richard Lewis for the gift of ciguatoxin-2, and Aida Marcotti for help with cold pain behaviour tests. We thank James Cox and other members of the Molecular Nociception Group for help and advice.

Funding

This research was supported by the Wellcome Trust (200183/Z/15/Z), MRC, Wolfson Foundation and Versus Arthritis (2020).

Competing interests

The authors declare no conflict of interest.
Fig. 1. Silent cold-sensing neurons are activated by oxaliplatin.

(A) Behavioural testing of the effect of intraplantar oxaliplatin injection on different sensory modalities (cold, mechanical and heat). n=8 (5♂ & 3♀) for vehicle and n=9 for oxaliplatin (5♂ & 4♀). Mean values before and after treatment were compared using repeated measures 2-way ANOVA followed by post-hoc Sidak’s test. Error bars denote 95% confidence interval.

(B) Example images (i.) and traces (ii.) of cold-responding neurons in vehicle- and oxaliplatin-treated animals expressing GCaMP3. Cell #1 is a small-diameter cold-sensing neuron in the vehicle condition, Cell #2 is a small-diameter basal cold-sensing neuron after oxaliplatin and Cell #3 is a large-diameter silent cold-sensing neuron unmasked by oxaliplatin that also responds to noxious mechanical stimuli.

(C) (i.) Histograms of cross-sectional area of all neurons responding to any cold stimulus in vehicle (top, blue, n=82) and oxaliplatin (bottom, red, n=179) groups. The distribution of areas for vehicle was fit by non-linear regression (least squares Gaussian; Bin width is 80 µm²; Mean=214.9 µm², Std. Dev (σ)=77.29 µm²). This model is plotted over the oxaliplatin data to aid comparison with the dashed line denoting three standard deviations from the mean. The different in the distribution of areas between groups was assessed by Kolmogorov-Smirnov test (p<0.001). (ii.) Bar plot of the percentage of responding neurons classed as silent cold-sensing neurons in vehicle and oxaliplatin groups. Proportions were compared using a χ² test, and error bars denote 95% confidence intervals.

(D) Relationship between the number of basal cold-sensing neurons and the drop in temperature can be fit by linear regression for both groups. For sham, y = -3.603 * x + 105.2, r²=0.9809, n=87. For basal cold-sensing neurons after oxaliplatin, y = -3.443 * x + 105, r²=0.9802, n=39. The slopes are not significantly different (p=0.12).

(E) Quantification of the proportion of cold-responding neurons responding to either heat (i.) or mechanical (ii.) stimuli in vehicle and oxaliplatin groups. The proportion of polymodal neurons was compared using a χ² test, and error bars denote confidence intervals. Ice water: nveh=51, noxa=81. Acetone: nveh=58, noxa=145. (iii.) Cumulative probability plots showing mechano-cold neurons tend to have larger cross-sectional areas in the oxaliplatin group, compared using the Kolmogorov-Smirnov test. nveh=14, noxa=62.

For this experiment, 383 neurons responding to any stimulus were recorded in 8 vehicle-treated mice (5♂ & 3♀) and 542 cells were recorded from 9 oxaliplatin-treated animals (5♂ & 4♀).

Fig. 2. Silent cold sensing neurons are activated after partial sciatic nerve ligation.

(A) Behavioural testing of the effect of partial sciatic nerve ligation (PNL) on different sensory modalities. n=3 (1♂ & 2♀) for sham and n=6 (3♂ & 3♀) for PNL. For Von Frey and Acetone test, means over time were compared using repeated measures 2-way ANOVA followed by post-hoc Sidak’s test. Hot Plate latencies at 4 weeks were compared using repeated measures 2-way ANOVA followed by post-hoc Sidak’s test. Error bars denote standard error of the mean.

(B) Example images (i.) and traces (ii.) of cold-responding neurons in sham- and PNL-operated animals expressing GCaMP3. Cell #1 is a small-diameter cold-sensing neuron in the sham condition, Cell #2 is a small-diameter basal cold-sensing neuron after PNL and Cell #3 is a large-diameter silent cold-sensing neuron unmasked by PNL.

(C) (i.) Histograms of cross-sectional area of all neurons responding to any cold stimulus in sham (top, blue, n=113) and PNL (bottom, red, n=109) groups. The distribution of areas for sham was fit by non-linear regression (least squares Gaussian; Bin width is 80 µm²; Mean=222.7 µm², Std. Dev. 60.9 µm²). This model is plotted over the PNL data to aid comparison with the dashed line denoting three standard deviations from the mean. The different in the distribution of areas between groups was assessed by Kolmogorov-Smirnov test (p<0.001). (ii.) Bar plot of the percentage of responding neurons classed as silent cold-sensing neurons in vehicle and PNL groups. Proportions were compared using a χ² test, and error bars denote confidence intervals.

(D) Relationship between the number of basal cold-sensing neurons and the drop in temperature can be fit by linear regression for both groups. For sham, y = -3.875 * x + 107.8, r²=0.9598, n=40. For PNL, y = -3.636 * x + 101.6, r²=0.9979, n=51. For PNL, y = -3.443 * x + 105, r²=0.9802, n=39. The slopes are not significantly different (p=0.66).
(E) Quantification of the proportion of cold-sensing neurons responding to either heat (i.) or mechanical (ii.) stimuli in sham and PNL groups. The proportion of polymodal neurons was compared using χ^2 test, and error bars denote confidence intervals. Ice-water: $n_{\text{sham}}=64$, $n_{\text{PNL}}=71$. Acetone: $n_{\text{sham}}=95$, $n_{\text{PNL}}=73$. (iii.) Scatter plots showing mechano-cold neurons have both small and large cross-sectional areas in the PNL group. $n_{\text{sham}}=3$, $n_{\text{PNL}}=19$.

For this experiment, 373 neurons responding to any stimulus were recorded in 3 sham-operated mice ($1♀ & 2♂$) and 297 cells were recorded from 6 PNL-operated animals ($3♀ & 3♂$).

Fig. 3. Silent cold-sensing neurons are activated by ciguatoxin-2.

(A) Behavioural testing of the effect of intraplantar injection of 100 nM ciguatoxin-2 (P-CTX-2) on cold sensitivity $n=6$ for sham vehicle ($3♀ & 3♂$) and $n=6$ for P-CTX-2 ($3♀ & 3♂$). Means were compared by repeated measures 2-way ANOVA followed by post-hoc Sidak’s test. Error bars denote 95% confidence interval.

(B) Example images and traces of a large-diameter neuron (Cell #1) that is basally cold-insensitive but begins to respond to cooling after treatment with P-CTX-2.

(C) (i.) Heatmap showing the effect of P-CTX-2 on the number of neurons responding to a cold ice-water stimulus. $n=48$ for vehicle, and $n=196$ for P-CTX-2. The bar corresponds to 15 s. (ii.) Summary of the change in the number of sensory neurons responding to each modality after treatment with P-CTX-2. Medians were compared by Mann-Whitney test.

(D) Histograms of cross-sectional area of all neurons responding to any cold stimulus in the naïve state (left, blue, $n=91$) and after P-CTX-2 (right). For P-CTX-2, blue denotes basally-responsive neurons that maintained their response to cold ($n=70$) and red denotes the silent cold-sensing neurons that were unmasked after treatment ($n=136$). The distribution of areas in the naïve state was fit by non-linear regression (least squares Gaussian; Bin width is 80 µm2; Mean=212.4 µm2, Std. Dev. 73.33 µm2). This model is plotted over the P-CTX-2 data to aid comparison with the dashed line denoting three standard deviations from the mean. The different in the distribution of areas between groups was assessed by Kolmogorov-Smirnov test ($p<0.001$).

(E) (i.) Box plot of the change in activation threshold of basally cold-sensitive neurons before and after treatment with vehicle ($n=35$) or P-CTX-2 ($n=8$). (ii.) Box plot of the thermal activation threshold of all silent cold-sensing neurons unmasked by P-CTX-2 ($n=43$) compared to all cold-sensing neurons recorded from naïve mice ($n=62$). Medians were compared by Mann-Whitney test.

(F) Quantification of the proportion of neurons responding ice-water that were also sensitive to either mechanical (i.) or heat (ii.) before and after treatment. Vehicle: $n_{\text{pre}-36}$, $n_{\text{post}-43}$. P-CTX-2: $n_{\text{pre}}=69$, $n_{\text{post}}=174$. (iii.) Comparison of the proportion of silent cold-sensing neurons that were responsive to other modalities before and after the induction of cold-sensitivity by P-CTX-2. $n=127$. The proportion of polymodal neurons was compared using χ^2 test, and error bars denote 95% confidence intervals.

For this experiment, 615 neurons responding to any stimulus either before or after treatment were recorded in 10 P-CTX-2-injected mice ($4♀ & 6♂$) and 193 cells were recorded from 3 vehicle-injected animals ($2♀ & 1♂$).

Fig. 4. Silent cold-sensing neurons express peptidergic nociceptor molecular markers Na$_1.8$ and CGRPu.

(A) Cartoon (left) of breeding strategy used to generate GCaMP3 reporter mice for each subset of interest. Bar plot (right) showing overlap of reporter expression for each marker with functionally-defined cold-sensing neurons. TrkB-CreERT2 ($Ntrk2$): $n_{\text{sham}}=14$ from 2 mice ($1♀ & 1♂$), $n_{\text{PNL}}=112$ from 3 mice ($2♀ & 1♂$). Calb1-Cre ($Calb1$): $n_{\text{sham}}=7$ from 1 mouse ($1♀$), $n_{\text{PNL}}=15$ from 2 mice ($2♀$). Trpv1-Cre ($Trpv1$): $n_{\text{sham}}=4$ from 1 mouse ($1♀$), $n_{\text{PNL}}=87$ from 2 mice ($1♀ & 1♂$). Na$_1.8$-Cre ($Scn10a$): $n_{\text{sham}}=14$ from 4 mice ($2♀ & 2♂$), $n_{\text{PNL}}=108$ from 6 mice ($4♀ & 2♂$). Tmem45b-Cre ($Tmem45b$): $n_{\text{sham}}=40$ from 1 mouse ($1♀$), $n_{\text{PNL}}=36$ from 3 mice ($2♀ & 1♂$). CGRPu-CreERT2 ($Calca$): $n_{\text{sham}}=45$ from 3 mice ($1♀ & 2♂$), $n_{\text{PNL}}=122$ from 2 mice ($1♀ & 1♂$).

(B) Example images (left) and histograms (right) showing overlap of Na$_1.8$-Cre-dependent tdTomato expression with cold-sensing neurons of different sizes in vehicle- and oxaliplatin-treated mice. Same data as in (A).
Fig. 5. Diphtheria toxin-mediated ablation of Na\textsubscript{v}1.8-positive nociceptors decreases oxaliplatin-induced cold allodynia.

(A) Cartoon of diphtheria toxin-mediated ablation of Na\textsubscript{v}1.8-positive neurons.

(B) (i.) Histogram of cross-sectional areas of all cold-sensing neurons imaged in Na\textsubscript{v}1.8-Cre DTA mice treated with oxaliplatin. (ii.) Cumulative probability plot of cell areas in oxaliplatin-treated Na\textsubscript{v}1.8-Cre (blue) and Na\textsubscript{v}1.8-Cre DTA (red) mice, compared by Kolmogorov-Smirnov test. The distribution of cell areas in vehicle-treated Na\textsubscript{v}1.8-Cre mice is shown for comparison. n=108 cells from 6 oxaliplatin-treated Na\textsubscript{v}1.8-Cre mice (4\& 2♀), n=46 cells from 2 oxaliplatin-treated Na\textsubscript{v}1.8-Cre DTA mice (1\& 1♀), and n=14 cells from 4 vehicle-treated Na\textsubscript{v}1.8-Cre mice (2\& 2♀).

(C) Quantification of the number of nociceptive behaviours in 5 minutes on the 5°C Cold Plate in 10 control and 8 Na\textsubscript{v}1.8-Cre DTA mice treated with oxaliplatin.

Fig. 6. Voltage-gated sodium channel Na\textsubscript{v}1.6 is required for excitability, but is not sufficient for cold sensitivity, of silent cold-sensing neurons.

(A) (i.) Histogram of cross-sectional areas of all cold-sensing neurons imaged in homozygous Na\textsubscript{v}1.8-Cre tdTomato mice with oxaliplatin. (ii.) Cumulative probability plot of cell areas in oxaliplatin-treated heterozygous and homozygous Na\textsubscript{v}1.8-Cre mice, compared by Kolmogorov-Smirnov test. (iii.) Bar plot showing the proportion of silent cold-sensing neurons expressing tdTomato in heterozygous and homozygous Na\textsubscript{v}1.8-Cre mice, compared using \chi2 test. n=66 cells from 6 heterozygous (2\& 1♀) and n=42 cells from 3 homozygous (1\& 2♀) Na\textsubscript{v}1.8-Cre mice.

(B) Cumulative probability plot of cell areas in oxaliplatin-treated WT and Na\textsubscript{v}1.7 KO mice, compared by Kolmogorov-Smirnov test. n=51 cells from 5 WT (1\& 4♀) and n=18 cells from 2 Na\textsubscript{v}1.7 KO mice (2♀).

(C) Heat maps (i.) and quantification (ii.) showing the effect of intraplantar injection of different sodium channel blockers on the number of basal and silent cold-sensing neurons in mice pre-treated with oxaliplatin. (iii.) Line plot showing the effect of blockers on median peak response, compared using Kruskall-Wallis test followed by Dunn’s multiple comparisons test. n=35 cells from 3 mice for saline (1\& 2♀), n=58 cells from 4 mice for TTX (3♀ & 1♀), n=36 cells from 2 mice for 4,9-anhydrous-TTX (2♀).

(D) (i.) Heat map showing the effect of sodium channel activation by intraplantar veratridine injection on the activity of cold-sensing neurons. (ii.) Box plot showing the size of cold-sensing cells is unaffected by veratridine, compared by Mann-Whitney test. (iii.) Bar plot showing veratridine reduces the number of cold-sensing neurons from 39 to 31. (iv.) Line plot showing veratridine reduces the response magnitude of cold-sensing cells, compared by Wilcoxon matched-pairs signed rank test. n=53 cells from 3 mice (3♀).
Fig. 7. BlockingKV1.1 voltage-gated potassium channels is sufficient to induce de novo cold sensitivity in silent cold-sensing neurons.

(A) Examples images and traces showing that peripheral blockade of voltage-gated potassium channels induces novel cold-sensitivity in normally cold-insensitive sensory neurons (Cell #1).

(B) Heat maps showing the effect of intraplantar injection of different potassium channel blockers on the peripheral representation of cold. The bar denotes 15 s.

(C) Quantification showing the change in the number of cold-sensing neurons after treatment with different potassium channel blockers.

(D) Violin plots showing the cross-sectional area of basal cold-sensing neurons in the naïve state (blue) and of silent cold-sensing neurons unmasked by potassium channel block (red). Medians were compared using Kruskall-Wallis test followed by Dunn’s multiple comparison test.

(E) Bar plot of the percentage of polymodal cold-sensing neurons that also respond to noxious mechanical stimuli before (blue) and after (red) treatment with potassium channel blockers. Proportions were compared using a χ² test. Error bars denote 95% confidence intervals.

(F) No change in the median response magnitude of neurons that responded to cold both before (blue) and after (red) treatment with potassium channel blockers, as determined by Kruskall-Wallis test followed by Dunn’s multiple comparison test.

n=42 from 3 saline-treated mice (1♂ & 2♀), n=57 from 6 4-AP-treated mice (5♂ & 1♀), n=95 from 3 4-AP-treated mice pre-injected with oxaliplatin (2♂ & 1♀), n=101 from 4 α-dendrotoxin-treated mice (2♂ & 2♀), n=48 from 3 k-dendrotoxin-treated mice (1♂ & 2♀), and n=14 from 3 RIIIJ-treated mice (3♀).

Fig. 8. Proposed model of silent cold-sensing neuron activation during neuropathy to cause cold alldynia

In healthy mice, only small neurons respond to cold. The large-diameter silent cold-sensing neurons have high KV1 activity, thus cold-induced terminal depolarization does not trigger action potential firing and there is no subsequent GCaMP signal at the level of the dorsal root ganglion.

In neuropathic animals, we hypothesize that a functional reduction in KV1 activity means that silent cold-sensing neurons are now sensitive to cold, increasing nociceptive input to the brain in response to cooling. Thus both small and large neurons now show GCaMP signals to cold stimuli.
List of references

Pertusa M, Madrid R. The I_{KD} current in cold detection and pathological cold pain. Temperature

A
Chemotherapy-induced neuropathic pain

B i. In vivo calcium imaging of cold-sensing neurons

ii. Example traces

C i. Silent cold-sensing neurons

ii. Population

D
Cold thresholds

E i. Polymodality

ii. mech/cold

iii. mech/cold

iv. mech/cold
A. i. Homozygous Na$_{v}$1.8-Cre
 ii.
 iii.

B. Na$_{v}$1.7 KO

C. i. Sodium channel block
 Oxaliplatin
 Saline
 TTX (20 μM)
 anhyTTX (20 μM)

D. i. Sodium channel activation
 Naive
 Veratridine (100 μM)

ΔF/F₀

Area (μm2)

Cold-sensing neurons (entries)
A Silent cold-sensing neurons are activated by K_v channel block

B K_v channel block is sufficient to activate silent cold-sensing neurons

C Population change

D Neuron sizes of unmasked population

E Polymodality

F Response magnitude
In vivo calcium imaging

DrG

Δf/f0

Control

Na\textsubscript{v}1.8-positive CGRP\textsubscript{α}-positive

Cold-insensitive large-diameter neuron

Brrr...

Cold sensation

Neuropathy

Neuropathic

CGRP\textsubscript{α}-positive

Silent cold-sensing neurons gain cold sensitivity during neuropathic pain