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Abstract

The development of the pulmonary circulation is continuous from the fetal to the
mature lung, with nitric oxide (NO) having a role as a major pulmonary vasodilator.
Using a porcine model, the relationship of NO with pulmonary development was
studied in lungs from 1 week pre-term to adulthood, and in hypoxia induced pulmonary
hypertension, from birth and 3 days of age. The effects of breathing on the fetal and
newborn lung were also investigated.

o Arterial and venous vasoactivity was studied using organ baths, with particular
attention being paid to the NO pathway in the arteries. In addition, NO synthase (NOS)
activity and protein expression were studied in lung homogenates using the citrulline
assay and Western blotting.

At all perinatal ages, vascular reactivity in the veins was greater than the
arteries, with a minimal vasoactivity in the fetal arteries. Low contractility was created
by the fetal arteries existing in an “un-dilated” state. Despite the basal release of NO,
arterial relaxation to ACh was attenuated in the fetus in association with a low NOS
activity. This did not correspond with a low NOS protein or the presence of endogenous
inhibitors. At birth, arterial contractility improved, related to parturition and the onset of
breathing. This was accompanied by an increased NOS activity and basal NO release.
However, relaxation to ACh remained absent until 1 day of age.

From 3-14 days of age, changes in arterial contractility were associated with
structural development. ACh relaxation improved, not associated with a further increase
in NOS activity, but perhaps an increasing contribution of other endothelium dependent
relaxing factors.

The enhanced vascular contractility following hypoxia induced pulmonary
hypertension from birth corresponded with a change in smooth muscle cell structure.
ACh induced relaxation was abolished in association with the alteration of the activities
of the NOS isoforms and the production of NO from the smooth muscle.

Thus lung development in the fetus/newborn, postnatal and pulmonary

hypertensive pig exists as distinct phases, in which NO has a role.
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Chapter 1. Introduction.

1.1 Pulmonary vasculature.

The development of the lung in humans is a process that starts in early fetal life
and continues after birth. The developmental changes that occur encompass both the
structural and functional aspects of the pulmonary vasculature, including both arteries
and veins, and show marked differences to the structure and function of the mature adult
pulmonary vasculature.

In the mature lung, to enable efficient gas exchange, both lung ventilation and
perfusion need to be adequately matched. Perfusion of blood in the lungs is controlled
by the pulmonary blood vessels, which have thinner walls and greater internal diameters
than corresponding branches of the systemic arterial tree. This is because they contain
less vascular smooth muscle in their walls and do not become highly muscularised.

Pulmonary arteries subdivide profusely into terminal branches accompanying
the airways. The intrapulmonary arterial structure has the same basic structure as the
main pulmonary artery, with a media of elastic and muscle fibres and adventitia and
intima. As external diameter decreases, the elastic laminae decrease in number, and the
muscular wall gets thinner. In contrast, in the veins the wall is made up of irregular
muscle bundles containing both collagen and elastic fibres (Wagenvoort et al., 1964).
Veins contain an internal but not an external elastic lamina with the thick adventitia
containing numerous elastic fibres.

The distribution of the pulmonary veins returning blood to the heart is different
to that from the arteries. The veins lie within the interlobular and interlobar connective
tissue septae facilitating the reception of blood from many terminal respiratory units.
Thin walls indicative of low levels of muscularisation, are a result of the low pressure
under which these vessels operate. Between the arteries and the veins lie the capillaries.
These form an extensive interdigitating network within the alveolar walls facilitating
gas exchange. The pulmonary arteries are partially dilated whilst most systemic arteries
are constricted, aiding the distribution of pulmonary resistance, which at rest is evenly
distributed between the arteries, capillaries and veins. This contributes to the low
resistance to flow in the pulmonary circulation that is 1/10 that of the systemic system.
This low resistance permits a total cardiac output of SL/min to flow through the lung in

the adult.
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1.2 Fetal pulmonary structure

In contrast to the adult, fetal pulmonary blood flow is low constituting
approximately 8-10% of the total cardiac output (Rudolph et al., 1973). This low flow is
maintained by blood being diverted away from the lungs via the ductus arteriosus from
where 45% of the cardiac output reaches the placenta for gas exchange. Over the last
half of gestation pulmonary vascular resistance (PVR) falls progressively (Rudolph,
1979) due to the increased cross sectional area of the lung created by new vessel growth
(Levin et al., 1976).

Ultrastructural studies in the fetal pig lung have shown that the thick walled
arteries are composed of thick endothelial and smooth muscle cells, both having a low
surface area: volume ratio (Hall et al., 1987; Hall et al., 1986). The endothelial cells
have deep interdigitating contacts and the smooth muscle cells overlap each other and
contain a relatively small proportion of contractile filaments (Hall et al., 1986). Thus the
high fetal PVR can be attributed partly to the shape and organisation of cells within the
vessel wall. Human fetal arteries are more muscular than the veins and lack elastic
tissue (Hislop et al., 1973). The prenatal development of the pulmonary veins parallels
that of the arteries, developing at the same time and appearing to grow in a similar
pattern, size and number to the arteries. However in the fetal pulmonary circulation the
vein wall is thin compared to the arteries and the muscle development lags behind that
of the arteries (Hislop et al., 1973). The low muscularity of the vein wall may be a
structural adaptation to the low pressures that are present in the vein, permitted by the

high resistance in the fetal arteries. This is a relationship that is maintained after birth.

1.3 Postnatal pulmonary structure
By 24 hr after birth, the rapid decrease in total PVR diminishes to 50-60 % of

systemic vascular resistance, to reach the adult values within 2-6 weeks of age (Haworth
et al.,, 1981). This decrease in pulmonary pressure is created by structural changes that
occur which are observed within the first minutes following birth. Although the amount
of smooth muscle present in the vessel wall does not decrease, there is a rapid increase
in the surface area: volume ratio of the wall as the cells increase in length. This creates
an increase in vessel diameter and lowers pulmonary resistance (Haworth et al., 1987).
This increase in length corresponds to the increased stretching which occurs as the lung

is expanded. These vessels contain little fixed connective tissue, collagen or amorphous
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elastin, which may restrict changes in cell shape and position. Pulmonary artery
thickness decreases rapidly during the first days of life, and reaches a mature adult level
during the first 3 months of life (Haworth et al., 1981; Hislop et al., 1973). In the elastic
and large muscular arteries of the lung, remodelling is characterised by the deposition of
connective tissue and the maturation of smooth muscle cells (Hall et al., 1987). These
structural changes are associated with the changes in the mechanical properties of the
vessel wall. Myofilament density decreases between birth and 14 days of age, reaching
a minimum at 3 days of age (Hall et al., 1987), and with maturation the vessel wall
becomes stiffer (Greenwald et al., 1982). The progressive growth and remodelling of
the vascular bed ensures that as the cardiac output increases with growth, the PVR does

not rise.

1.4 Persistent Pulmonary Hypertension of the Newborn (PPHN).

Under certain conditions the adaptation of the pulmonary circulation to postnatal
life is prevented by the persistence of hypertension in the lung. PPHN can be secondary
to several neonatal disorders including; perinatal hypoxia, sepsis, meconium aspiration
syndrome, diaphragmatic hernia, congenital heart disease, severe respiratory distress
syndrome or polycythaemia (Greenough et al., 1992). These disorders are grouped as a
syndrome because they share several pathological and physiological features. PPHN is
typically characterised by a high pulmonary artery pressure, low pulmonary blood flow,
and massive right-to-left shunting at the foramen and ductal levels, which can cause
profound hypoxaemia. Increased muscularity and luminal narrowing potentiate the
pulmonary vascular obstruction and thus contribute further to the hypertension in a

vicious cycle.

1.4.1 Structural changes with PPHN

The alterations in vascular structure that typify PPHN can be mimicked
following exposure of a healthy newborn mammal to chronic hypoxia (Haworth &
Hislop., 1982; Allen et al., 1986). Chronic hypoxia in the adult is associated with right
ventricular hypertrophy, an increased thickness of the media in normally muscularised
arteries and muscularisation of the pulmonary arterioles which normally do not contain
any smooth muscle (Aries-Stella et al., 1963). Most studies in humans confirming the

effects of chronic hypoxia have been either from individuals living at high altitudes of
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approximately 2100m, which creates a fall in alveolar oxygen tension below 75 mmHg,
(Anand et al., 1994) or in a variety of clinical conditions such as chronic bronchitis and
cystic fibrosis (Hasleton et al., 1968; Shelton et al., 1977; Ryland et al., 1975). A variety
of animal models have been used to study PPHN including the calf. It has been
demonstrated that exposure to hypoxia in newborn calves induces all the characteristic
changes associated with persistent pulmonary hypertension in humans. Pulmonary
arteries from hypertensive calves demonstrate a change in smooth muscle cell
phenotype resulting in a marked increase in elastin and collagen synthesis and content
(Mecham et al., 1987; Crouch et al., 1989). In the smooth muscle cells taken from the
media of pulmonary hypertensive newborn calves and rats, cell proliferation and DNA
synthesis is greater than normal (Orton et al., 1992; Meyrick et al., 1982). In addition,
hypertensive newborn calves exhibit a marked thickening of the arterial adventitia and
demonstrate cellular proliferation and extreme extracellular matrix deposition

(Stenmark et al., 1987).

1.5 The porcine model of PPHN

The effects of altitude can be mimicked in the porcine lung by the hypoxic
hypobaric oxygen chamber. Using a vacuum pump, the partial pressure of oxygen is
halved (10.5kPa), and the atmospheric pressure is reduced to half an atmosphere
(50.4kPa). This use of chronic hypobaric hypoxia enables the study of
pathophysiological functional and structural changes, which are in keeping with human
PPHN. The pigs are cyanosed and shunt right to left through persistent fetal channels.
At autopsy right ventricular hypertrophy is indicated by an increase in the right
ventricular to left ventricular weight ratio (Haworth et al., 1982). Histological
examination of the lungs shows an increase in pulmonary artery wall thickness, with
muscularisation of small distal pre-alveolar arteries. Electron microscopy shows an
increase in smooth muscle cell myofilaments (Allen et al., 1986). Studies in several
species have shown consistent changes in the histological appearance of the
endothelium and smooth muscle cells with pulmonary hypertension. In neonatal pigs
exposed to chronic hypoxia from birth, the smooth muscle cells fail to spread,
remaining thick and brick shaped, whilst the smooth muscle cell contractile
myofilament density increases more rapidly than normally, preventing complete

relaxation in pulmonary arteries (Allen et al., 1986). By 3 days of age the vessels are
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fixed in an incompletely dilated state created by an increased myofilament formation
and elastin and collagen deposition. Piglets are used to investigate the pathophysiology
of PPHN because both their size and arterial structure are similar to human babies. A
further advantage of using the pig model for the study of PPHN, is the size of the litter,
which is between 8-16 piglets. However the disadvantage to using the pig is the small
number of animals produced at a high cost, when compared to the cost of small
mammals such as mice and rats. In practise however, the pig is a useful model in which

to study human adaptation to the extrauterine environment.

1.6 Regulation of PVR.
At all the stages of the developing lung, the pulmonary vessels respond to a wide

variety of physiological stimuli and humoral and exogenously administered vasoactive
substances. Functionally the pulmonary circulation is regulated passively and actively.
In the mature lung however, passive regulation of blood flow, which includes the
redistribution of blood caused by gravity and the recruitment and distension of blood
vessels, changes PVR independently of changes in vascular tone.

Active regulation can become important in certain physiological conditions such
as in the maintenance of the high pulmonary resistance in the fetus and the transition of
the pulmonary circulation at birth. The pulmonary circulation of the fetus requires
mechanisms to maintain the high resistance that is required for the large proportion of
blood to bypass the lungs. The release of vasoactive substances alters at birth in
association with the decrease in PVR that occurs. PVR continues to alter postnatally in
addition to acute changes in pulmonary vascular structure.

In the mature lung there are many factors that alter vascular tone. These may be
inactivated, altered or removed from the blood or synthesised or released from cells in
the lungs. Mediators of vascular tone originate from; plasma (endocrine autocrine
factors), platelets (thromboxane A, (TXA;), histamine, 5-hydroxytryptamine (5-HT),
adenosine di-phosphate (ADP), adenosine tri- phosphate (ATP)), smooth muscle
(Prostaglandin, ATP, ADP), nerves and the endothelium (ATP, NO, Prostaglandins,
TXA,, 5-HT, endothelin, vasopressin, substance P, angiotensin II)(Loesch et al., 1991;
Goll et al., 1986; Pearson et al., 1979), (Table 1.1). However, the endothelium produces
substances that mediate a large proportion of the intrinsic pulmonary vasoreactivity (Liu
et al., 1999).
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1.7 Endothelium mediated control of PVR

It has been estimated that endothelial cells constitute 40% of the total adult lung
parenchyma playing an important role in the production or metabolism of circulating
vasoactive substances. The activity of the endothelium is mediated by transport
mechanisms and enzymes that either degrade or take up circulating substances (Gillis
1987, Jaffe et al 1973). On the basis of studies in other vascular beds the endothelium
has been shown to have the ability to modulate cell growth as well as tonic responses
within the vessel wall (DiCorleto et al.,, 1984; Campbell et al., 1986; Clowes et al.,
1977). Other functions include the regulation of platelet activated blood coagulation and
fibrinolyis, mediator production, expression of numerous receptors, and the production
of constricting and relaxing factors.

The endothelium, in association with the smooth muscle, regulates the reactivity of
the pulmonary circulation. The release of vasoactive agents from the pulmonary
endothelium may depend on the maturational state of the lung, the location of the
receptor, or the contractile state of the vessel. Experiments in vitro have shown that an
increase in transmural pressure and flow results in a combination of vasosoconstrictor
and dilator factors generated by both smooth muscle cells and endothelial cells. These
include the production of endothelin, oxide radicals, NO, arachidonic acid metabolites
and bradykinin (Masatsugu et al., 1998; Busse et al., 1998; Dimmeler et al., 1998;
Okahara et al 1998; Ryan et al., 1995; Hornig et al., 1997, Katusic et al., 1989).
Endothelial regulation of vascular tone may also occur through mechanical deformation
of the vessel wall. This imposes stresses of shear and stretch on vascular endothelial
cells. In fact endothelial shear has been shown to stimulate calcium activated potassium
channels on the endothelium in the systemic circulation (Cooke et al. 1991) as well as in
the pulmonary circulation (Storme et al., 1999). This subsequently leads to an increased
concentration of Ca within the cell leading to the stimulation of endothelium derived
relaxing factors.

The pulmonary endothelium is also known to secrete ET-1 (Yanagisawa et al.,
1988), a potent 21 amino acid polypeptide produced by the action of endothelin
converting enzyme (ECE) on big endothelin. There is a family of endothelins (ET-1,
ET-2 and ET-3), of which ET-1 produces the most potent pulmonary vasoconstriction

via the activation of ET4 receptors predominantly found on smooth muscle (Hay et al.,
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1993). Binding sites for ET-1 have been described in pulmonary blood vessels in the
mature lung in the human, guinea pig, rat and pig (Power et al., 1989; McKay et al.,
1991; Davenport et al., 1989; Ihara et al.,, 1991). ET-1 may also induce pulmonary
vasodilation via the activation of ETg receptors on the endothelium (Hay et al., 1993),
although functionally distinct ETp receptors mediating both vasodilator and
vasoconstrictor effects have been located in cultured porcine aortic endothelial cells
(Shetty et al., 1993). In addition, the effects of ET-1 on the pulmonary circulation vary
with age (Hislop et al., 1994).

The pulmonary vascular bed may also be constricted by the potent arachidonic acid
metabolite TXA, and other prostanoids (Seily et al., 1986; McMahon et al., 1991).
However, in the pulmonary circulation, arachidonic acid and its metabolites play a large
role in the maintenance of a low resistance vascular tone (Said et al., 1982; De Mey et
al.,, 1982). Endothelial cells contain prostaglandin H synthase or cyclo-oxygenase-1
(COX-1) (Mitchell et al., 1993) which metabolises arachidonic acid at a basal rate and
following endothelial stimulation with flow, induces the production of the vasodilator
PGI; as has been shown in human cultured endothelial cells (Frangos et al., 1985). The
production of PGI, may be additionally stimulated via humoral factors which include;
angiotensin II, platelet activating factor (PAF) (Gao et al, 1995), bradykinin
(Gryglewski 1980, Leffler et al., 1984) histamine, (Truog et al., 1990), ET-1 (Zellers et
al., 1994) and ACh (Zellers et al., 1991).

Circulating growth factors and hormones are also known to induce the production
of PGI,. Growth factors that occur in the lung, such as vascular endothelial growth
factor (VEGF), upregulate the constitutive form of COX-1 in human vascular
endothelial cells (HUVECS)(Bryant et al., 1998). In addition prolonged exposure to the
hormone oestrogen enhances PGI, synthesis in piglet endothelial cells and rat aortic
smooth muscle cells (Seillan et al., 1983; Chang et al., 1980).

Another endothelium dependent relaxant factor also induced in pulmonary
arteries is EDHF, or endothelium dependent hyperpolarising factor. EDHF is released
from the endothelium in both the systemic and pulmonary system when stimulated by
either histamine or ACh (Chen et al, 1989). This causes the subsequent
hyperpolarisation of smooth muscle cells and a decrease in vascular tone.

Nervous stimulation of the pulmonary vascular bed also contributes to the
maintenance of pulmonary vascular tone. Innervation with parasympathetic/ cholinergic

nerves from the vagal nuclei, via the action of acetylcholine on endothelial muscarinic
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receptors (Nandiwada et al., 1983) results in vasodilation, as does stimulation of the
non-adrenergic non-cholinergic or NANC nerves (Kubota et al., 1988; Maggi et al.,
1990). In addition, the vascular endothelium reduces pulmonary vascular tone by
diminishing adrenergic contraction in the pulmonary circulation. This is achieved
following the uptake and degradation of the neurotransmitters noradrenaline, serotonin
(5-HT) and ATP by the endothelium (Said 1982; Alabaster et al., 1970; Dieterle et al.,
1978).

In the fetal circulation, humorally stimulated vasoconstriction contributes to the
high PVR found in the lungs at this period. This includes the effects of endothelin
(Chatfield et al., 1991; Toga et al., 1992), TXA, (Reyes, 1993) and leukotrienes which
are derived from arachidonic acid via the lipoxygenase pathway (LeBidois et al., 1987).
Fetal pulmonary vasodilators are regarded as putative agents that will mediate the
transition of the fetal to the newborn pulmonary circulation. PGI, is the predominant
prostaglandin produced by the fetal and neonatal vascular cells (Remuzzi et al., 1979;
Skidgel et al 1984). The importance of PGI; at this developmental age has been shown
in lambs where the ductus arteriosus prematurely closes following the inhibition of
COX-1 (Coceani et al., 1976). During late gestation, towards birth, the synthesis of
PGI; increases due to the enhanced expression of COX-1 (Brannon et al., 1994). This
increase in COX-1 is reflected in the augmented amount of PGI, stimulated by
bradykinin, the calcium ionophore A23187 or arachidonic acid (Jun et al., 1998). In
fetal ovine pulmonary artery endothelial cells (PAEC), an increase in COX-1 protein
and mRNA expression is associated with an increase in oestrogen receptors (Jun et al.,
1998). Thus the increase in circulating oestrogen in fetal plasma due to rising
production by the placenta prior to birth (Carnegie et al., 1978; Gelly et al., 1981;
Robertson et al., 1985), is the most likely candidate causing this.

Postnatally, as the lung grows the pulmonary vascular metabolic capacity increases
due to an increase in endothelial surface area: volume ratio. Associated with this, in the
sheep and pig, vasoactive agents such as prostaglandin E, (PGE;) and PGI; in
association with other agents such as ADP and ET-1 are increasingly metabolised at
birth (Redding et al., 1984; Brannon et al., 1994; Abman et al., 1991;Perreault et al.,
1993). In porcine pulmonary arteries, corresponding to the changes in vascular structure
postnatally, the contractile responses to PGF,, and KCl alter (Levy et al., 1995) in
combination with the sensitivity to ET-1 (Toga et al., 1992; Hislop et al., 1994;
Perreault et al., 1993).
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Mediation
Agent Vasoactive effect of Other
relaxation
Vasoconstriction via Hlreceptors on Production stimulated
Histamine smooth muscle cells NO, PGI,, by oxygenation
Vasodilation via H2 receptors in EDHF Released from mast
smooth muscle cells, or Hlreceptors cells
on endothelial cells
M1, M2, M3 muscarinic receptors
Acetylcholine Contraction induced on smooth NO, PGI,, Released from nerves
(ACh) muscle, Relaxation induced on EDHF
endothelial cells
Vasoconstriction 5-HT,/ 5-HT, Released from,;
S5-HT vasodilation 5-HT¢ NO Blood platelets
(Serotonin) Nerves
Vasoconstriction. 