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Families of complete non-compact Spin(7) holonomy

manifolds

Fabian Lehmann

Abstract

We consider complete non-compact Spin(7)-manifolds which are either asymptotically

locally conical (ALC) or asymptotically conical (AC). The thesis consists of two parts.

In the first part we develop the deformation theory of AC Spin(7)-manifolds. We show

that the moduli space of torsion-free AC Spin(7)-structures on a given 8-manifold M

asymptotic to a fixed Spin(7)-cone is an orbifold for generic decay rates in the non-L2

regime. Furthermore, we derive a formula for the dimension of the moduli space, which

has contributions from the topology of M and from solutions of a first order PDE system

on the link of the asymptotic cone.

In the second part we prove existence results of cohomogeneity one Spin(7) holonomy

metrics for which a generic orbit is isomorphic to the Aloff–Wallach space N(1,−1) ∼=
SU(3)/U(1). The unique non-trivial rank 3 vector bundle over the 5-sphere and the uni-

versal quotient bundle of CP 2 each carry a 1-parameter family (up to scale) of such metrics.

We show that these families share a common behaviour: a generic member of these fami-

lies belongs to one of two open intervals, of which one consists of ALC Spin(7) holonomy

metrics and the other one of incomplete metrics. These two intervals are separated by

a distinguished parameter which gives rise to an AC Spin(7) holonomy metric. Another

interesting phenomenon occurs at the other endpoint of the open interval of ALC metrics,

where the family collapses to the Bryant–Salamon AC G2 holonomy metric on Λ2
−CP 2.

Notable is the existence of the two AC spaces. These are the first examples of smooth AC

Spin(7) holonomy manifolds known to exist since Bryant–Salamon’s original example on

S+(S4) in 1989. Furthermore, they provide a Spin(7) analogue of the well-known conifold

transition in the setting of Calabi–Yau 3-folds.
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Impact Statement

This thesis addresses the study of non-compact Riemannian manifolds with holonomy

group Spin(7), which is one of the exceptional holonomy groups on Berger’s list. The

geometric significance of Spin(7) holonomy metrics lies in the fact that they are Ricci flat.

We prove the existence of new examples and explain their deformations. These new non-

compact examples potentially can be used as building blocks in the construction of new

compact examples.
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Chapter 1

Introduction

The theme of this thesis are complete non-compact Spin(7)-manifolds. Spin(7) and G2 are

the two exceptional holonomy groups in Berger’s classification of holonomy groups of Rie-

mannian manifolds. Their significance lies in the fact that exceptional holonomy metrics are

Ricci-flat, but not Kähler. The first example of a metric with holonomy Spin(7) was given

by Bryant in 1987 [Bry87]. Two years later Bryant–Salamon found the first complete ex-

ample [BS89]. An important geometric aspect of complete non-compact Spin(7)-manifolds

is the asymptotic behaviour. In this thesis we encounter two asymptotic types: asymp-

totically conical (AC) manifolds and asymptotically locally conical (ALC) manifolds. The

complete example given by Bryant–Salamon, which lives on the bundle S+(S4) of positive

spinors on the 4-sphere, is an AC manifold: at infinity the geometry converges to a cone

with holonomy contained in Spin(7). In this sense it is a Spin(7)-analogue of the famous

Eguchi–Hanson hyperkähler metric on T ∗S2. ALC manifolds at infinity locally look like

the product of a cone and a circle of fixed size. These are analogues of asymptotically

locally flat (ALF) hyperkähler 4-manifolds such as the well-known Taub-NUT metric on

C2.

Deformation Theory of AC Spin(7)-manifolds

Thematically this thesis consists of two parts. In the first part we develop the deformation

theory of AC Spin(7)-manifolds. An important feature of the asymptotic geometry of AC

Spin(7)-manifolds is the rate of convergence to the asymptotic cone. In the setting of AC

manifolds, we are interested in polynomial decay, i.e. where the Spin(7)-structure and the

associated metric decay to the Spin(7)-cone like rν , ν < 0, where r is the radial function of

the cone. ν is called the rate. Tensors which decay with rate ν < −4 are square-integrable.

The main result of this part of the thesis is that the moduli space is an orbifold in the

non-L2 regime (−4 < ν < 0), and we derive a formula for its dimension.

7



Theorem A. Let (M,ψ) be an AC Spin(7)-manifold of rate ν. For generic ν ∈ (−4, 0)

the moduli space Mν of torsion-free AC Spin(7)-structures on M asymptotic to the same

Spin(7)-cone at the same rate modulo an appropriate notion of equivalence is an orbifold.

The dimension of Mν is determined by topological data of M , and solutions to systems of

differential equations on the link of the asymptotic cone.

For a more precise formulation see Theorem 3.2.27. The deformation theory of compact

Spin(7)-manifolds has been developed by Joyce [Joy00]. The moduli space is always smooth

and infinitesimal deformations can be expressed in terms of harmonic forms. Several stan-

dard techniques in the compact setting do not carry over to the non-compact setting. For

example, we frequently are in situations where integration by parts is not available. Fur-

thermore, the mapping properties of differential operators behave rather differently in the

non-compact setting as compared to the compact setting. Nordström [Nor08] developed the

deformation theory of exponentially asymptotically cylindrical (EAC) Spin(7)-manifolds

using analysis on non-compact manifolds. In contrast to the AC setting, in the EAC set-

ting all decay rates lie in the L2-regime because of the exponential decay, and the dimension

of the moduli space only depends on topological data. Our work is most closely related

to the deformation theory of G2-conifolds developed by Karigiannis–Lotay [KL20]. In our

set-up we consider the moduli space Mν of AC manifolds of a particular rate ν. To prove

smoothness of an orbifold chart, our strategy is to compute infinitesimal deformations and

then use the inverse function theorem adapted to appropriate Banach spaces. The compu-

tation of the infinitesimal deformations is carried out in several steps. Analogously to the

use of Hodge theory in the compact setting yet more intricate, deformations which lie in

L2 can be related to the topology of the manifold M . As we vary the rate and enter the

non-L2 regime, we use the analysis on weighted Sobolev and Hölder spaces developed by

Lockhart–McOwen [LM85]. Outside a discrete subset of so-called critical rates the relevant

differential operators are Fredholm and the space of deformations remains constant. As

we cross a critical rate the added deformations can be related to particular solutions of

differential equations on the asymptotic cone. In the range of rates considered by us we

can formulate these equations purely on the compact link of the cone. If ν < −4, the above

program cannot be carried out: the operator describing the infinitesimal deformations may

not be surjective and hence the inverse function theorem cannot be applied. Therefore,

deformations of AC Spin(7)-metrics with ν < −4 may be obstructed. This resembles the

G2-setting [KL20].

In our moduli problem we only consider torsion-free Spin(7)-structures which are asymp-

totic to a fixed Spin(7)-cone. Denoting the link of the cone by Σ, the space of torsion-free,

conical Spin(7)-structures on (0,∞) × Σ corresponds to the space of nearly parallel G2-

structures on Σ. We do not expect this space to have a “nice” structure in general, e.g.
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that of a manifold. Alexandrov–Semmelmann [AS12] showed that the homogeneous, nearly

parallel G2-structure on the Aloff–Wallach space N(1, 1) has an 8-dimensional space of in-

finitesimal deformations, but by a recent result of Dwivedi–Singhal [DS20] these are all ob-

structed. This picture is similar to the case of G2-cones, where Foscolo [Fos16] showed that

deformations of nearly Kähler manifolds in general are obstructed. This aspect is another

difference to the EAC case [Nor08]. The link of a G2-cylinder is a compact Calabi–Yau

manifold, and the link of a Spin(7)-cylinder is a compact G2-manifold. Deformations of

these are well understood, which allows a more inclusive set-up for the moduli space.

That the moduli space is in general an orbifold rather than a manifold is owed to the fact

that the stabiliser of a torsion-free AC Spin(7)-structure in the group of diffeomorphisms

decaying to the identity can be non-trivial. While we can exclude any continuous such

symmetries, the stabiliser can still be a non-trivial finite group. If this group does not

act trivially on a slice for the diffeomorphism action, we only obtain an orbifold rather

than a manifold chart. We present one criterion to check if the stabiliser acts trivially on

the orbifold chart. The tangent space of the orbifold chart at a torsion-free AC Spin(7)-

structure ψ of rate ν is related to closed 4-forms which are anti-self-dual with respect to

ψ and decay with rate ν. If the projection of these forms to the fourth cohomology group

of M is injective, we can conclude that each element in the orbifold chart represents a

different point in the moduli space, i.e. that the quotient by the stabiliser is trivial.

There are several similar articles concerned with the deformation theory of calibrated

submanifolds: Marshall [Mar02] and Pacini [Pac04] studied deformations of AC Special

Lagrangian submanifolds in Cm and Lotay studied deformations of AC coassociative and

associative submanifolds of G2-manifolds, cf. [Lot09] and [Lot11], respectively.

As an application of Theorem A we show that the Bryant–Salamon Spin(7) holonomy

metric on S+(S4) is locally rigid, modulo scaling, as a torsion-free AC Spin(7)-structure

on S+(S4) asymptotic to the same Spin(7)-cone. We solve the differential equations on

the link by following Alexandrov–Semmelmann [AS12], who compute infinitesimal Einstein

deformations of normal homogeneous nearly parallel G2-manifolds with standard invari-

ant metrics. Under these constraints the differential equations can be solved with purely

representation theoretic methods. This example strongly relies on the condition that the

homogeneous metric on the link is normal and standard. In the second part of the the-

sis we prove the existence of new AC Spin(7)-manifolds asymptotic to more sophisticated

Spin(7)-cones, which does not allow us to carry out similar computations.

An important subclass of Spin(7)-manifolds are Calabi–Yau 4-folds. For a given AC

Calabi–Yau 4-fold we can use Theorem A to obtain deformations as a Spin(7)-structure.

Given that a large number of AC Calabi–Yau 4-folds are known while only very few AC

Spin(7) holonomy metrics are known to exist, this leads to the interesting question: can an

AC Calabi–Yau metric on a manifold of real dimension 8 be deformed to an AC metric with
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holonomy Spin(7)? It is known that infinitesimal deformations of Calabi–Yau structures on

compact manifolds are unobstructed (see [Got04,Tia87,Tod89]). By adjusting for example

the approach in [Got04] to the analytic framework of AC manifolds, it is reasonable to

believe that infinitesimal deformations of AC Calabi–Yau structures are unobstructed in

an interesting range of decay rates. Therefore, if each infinitesimal Spin(7)-deformation is

induced by an infinitesimal SU(4)-deformation, this would be strong evidence to provide a

negative answer to the above question. A priori infinitesimal Spin(7)-deformations of AC

Calabi–Yau 4-folds are rather complicated. We consider the above question for a simpler

subclass: here we can solve the algebraic system characterising the leading order term of

an SU(4)-deformation which induces at leading order term a given infinitesimal Spin(7)-

deformation of rate ν ∈ (−4, 0). However, we have not been able to show that this algebraic

deformation also solves the differential equation characterising infinitesimal deformations

of torsion-free SU(4)-structures.

We do not consider the analogous question for AC hyperkähler manifolds of real di-

mension 8 because it is believed that apart from T ∗CP 2 there are no other resolutions of

8-dimensional hyperkähler cones [Fu06, Section 2.3]. Furthermore, Namikawa [Nam08] has

shown that a hyperkähler cone has a smoothing if and only if it has a resolution. Thus we

expect that T ∗CP 2 is the only 8-manifold supporting an AC hyperkähler metric. Dancer–

Swann [DS97] have shown that apart from the Calabi metric on T ∗CPn there are no other

cohomogeneity one hyperkähler metrics in real dimension greater than four.

Existence of cohomogeneity Spin(7)-manifolds

In the second part of the thesis we prove the existence of new examples of complete Spin(7)

holonomy manifolds with AC and ALC asymptotics. After Bryant–Salamon’s pioneering

work in the late 1980s, in the 1990s most work in the area concentrated on compact man-

ifolds [Joy00]. The search for metrics with exceptional holonomy has a different flavour

in the non-compact setting compared to the compact setting. A Bochner type argument

shows that every Killing field on a compact Ricci-flat manifold is parallel. Therefore,

compact irreducible manifolds with exceptional holonomy do not admit any continuous

symmetries. All known constructions in the compact setting rely on perturbative tech-

niques starting from some degenerate limit. In contrast, symmetry reduction methods are

a powerful approach in the non-compact setting. As all homogeneous Ricci-flat metrics are

flat, the strongest reduction are symmetries with cohomogeneity one, i.e. where generic

orbits have codimension one. The condition that a Spin(7)-structure is torsion-free reduces

from a non-linear PDE system to a non-linear ODE system. The examples of an incom-

plete and complete Spin(7) holonomy metric by Bryant and Bryant–Salamon, respectively,

both have a cohomogeneity one symmetry.
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The condition that the holonomy of a Riemannian cone is contained in Spin(7) is

equivalent to the condition that the metric on the link is induced by a nearly parallel

G2-structure. In the Bryant–Salamon example the link of the asymptotic cone is the

“squashed” 7-sphere. In the early 2000s the study of cohomogeneity one Spin(7)-manifolds

gained fresh impetus by the work of Cvetič–Gibbons–Lü–Pope. In [CGLP02b] they look

for further examples with generic orbit S7. On each of R8 and S+(S4) they find an explicit

ALC Spin(7) holonomy metric, which they call the A8 and B8 metric, respectively. These

were the first examples of ALC Spin(7) holonomy metrics. In [CGLP02a] they consider

a more general ansatz. Based on numerics, they suggest that the B8 metric is part of a

family of Spin(7) holonomy metrics in a neighbourhood of S4 ⊂ S+(S4), which depends

up to scale on one parameter q and exhibits a behaviour as sketched in diagram 1.1.

q0
complete ALC incomplete q

qac

collapsed limit AC limit

Figure 1.1: Typical behaviour of 1-parameter family of local cohomogeneity one torsion-free
Spin(7)-structures.

In the interior of an interval (q0, qac) the torsion-free Spin(7)-structures are complete and

ALC. At the explicit value qac the asymptotic geometry transitions from ALC to AC, the

so-called AC limit. This AC Spin(7)-manifold is the classical example by Bryant–Salamon.

At the other endpoint of the interval the asymptotic circle of the ALC manifolds shrinks

and disappears in the limit. The family converges in the Gromov–Hausdorff topology to

the Bryant–Salamon AC G2 holonomy metric on Λ2
−(S4). This is called the collapsed

limit. They predict a similar 1-parameter family on KCP 3 , which they call the C8 family.

Here the AC manifold, which appears at the AC limit, is asymptotic to the cone over

a finite quotient of S7 equipped with the round metric. It has first been discovered by

Calabi [Cal79] and its holonomy is SU(4) rather than Spin(7). The existence of the B8 and

C8 families has been established by Bazaikin (cf. [Baz07,Baz08]).

Cohomogeneity one cones with holonomy Spin(7), or equivalently homogeneous nearly

parallel G2-manifolds with one Killing spinor, have been classified in [FKMS97]. Apart

from the “squashed” S7 and the isotropy irreducible space SO(5)/SO(3), all other examples

live on the Aloff–Wallach spaces. If (k, l) is a pair of integers which are not both zero, U(1)

can be embedded via eiθ 7→ diag(eikθ, eilθ, e−i(k+l)θ) into the maximal torus of diagonal

matrices in SU(3). Denote this subgroup by U(1)k,l. The Aloff–Wallach space N(k, l)

is the quotient SU(3)/U(1)k,l. Each Aloff–Wallach space carries a homogeneous nearly

parallel G2-structure.

Bazaikin [Baz08] considered cohomogeneity one Spin(7)-structures with generic orbit
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N(1, 1) or one of the related Aloff–Wallach spaces N(1,−2) and N(−2, 1). He again finds

1-parameter families which behave as sketched in Figure 1.1. If the generic orbit is N(1, 1),

the resulting space is the orbifold T ∗CP 2/Z2. The AC limit is obtained by replacing S4 with

the non-spin manifold CP 2 in Bryant–Salamon’s construction of an AC Spin(7) holonomy

metric on the bundle of positive spinors on S4. If the generic orbit is N(1,−2), the

underlying space is the canonical bundle of the flag manifold F3 = SU(3)/U(1)2. Similarly

to the C8 family, the AC limit has been constructed earlier by Calabi and has holonomy

SU(4).

In this thesis we consider cohomogeneity one Spin(7) holonomy metrics with generic

orbit isomorphic to N(1,−1). Our motivation stems from the collapsed limit sketched

in Figure 1.1. In [BS89] Bryant–Salamon constructed an AC G2 holonomy metric on

Λ2
−CP 2 which is asymptotic to the cone over the homogeneous nearly Kähler structure

on the flag manifold F3 = SU(3)/U(1)2. Because N(1,−1) is a circle bundle over F3

and (0,∞) × N(1,−1) can topologically be completed by adding a S5, which is a circle

bundle over CP 2, it is plausible that there exist torsion-free ALC Spin(7)-structures which

collapse to the Bryant–Salamon metric on Λ2
−CP 2. Very close to the collapsed limit, this

has recently been proved independently by Foscolo [Fos19] with PDE methods.

We now turn to the formulation of our two main results of this part of the thesis.

Theorem B. Denote the adjoint bundle of the principal SU(2)-bundle

SU(3)→ SU(3)/SU(2) ∼= S5 by MS5. SU(3)×U(1) acts on MS5 with cohomogeneity one,

and the generic orbit is the Aloff–Wallach space N(1,−1).

There exists a 1-parameter family (up to scale) Ψµ, µ ∈ (0,∞), of SU(3) × U(1)-

invariant Spin(7) holonomy metrics in a neighbourhood of S5 in MS5 and a distinguished

parameter µac > 0 such that

• Ψµ is complete on MS5 and asymptotically locally conical (ALC) if µ ∈ (0, µac),

• Ψµ is complete on MS5 and asymptotically conical (AC) if µ = µac,

• Ψµ is incomplete if µ ∈ (µac,∞).

Ψµac is asymptotic to the Spin(7)-cone over the unique SU(3) × U(1)-invariant nearly

parallel G2-structure on N(1,−1).

Theorem C. Denote the universal quotient bundle of CP 2 by MCP 2: the fibre of MCP 2

at l ∈ CP 2, which corresponds to a 1-dimensional linear subspace of C3, is the quotient

C3/l. SU(3) × U(1) acts on MCP 2 with cohomogeneity one, and the generic orbit is the

Aloff–Wallach space N(1, 0), which is SU(3)-equivariantly diffeomorphic to N(1,−1).

There exists a 1-parameter family (up to scale) Υτ , τ ∈ R, of SU(3) × U(1)-invariant

Spin(7) holonomy metrics in a neighbourhood of CP 2 in MCP 2 and a distinguished param-

eter τac ∈ R such that
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• Υτ is complete on MCP 2 and asymptotically locally conical (ALC) if τ ∈ (−∞, τac),

• Υτ is complete on MCP 2 and asymptotically conical (AC) if τ = τac,

• Υτ is incomplete if τ ∈ (τac,∞).

Υτac is asymptotic to the Spin(7)-cone over the unique SU(3)×U(1)-invariant nearly par-

allel G2-structure on N(1,−1). For all τ the zero section CP 2 ⊂ MCP 2 is a Cayley

submanifold with respect to Υτ and the cohomology class of Υτ is non-trivial.

Again the 1-parameter families Ψµ and Υτ exhibit a behaviour as illustrated in Figure

1.1. Ψac and Υac are the first complete AC Spin(7) holonomy metrics proven to exist

since Bryant–Salamon’s original example on S+S
4. Theorems B and C were previously

conjectured by Cvetič–Gibbons–Lü–Pope [CGLP02a] and Gukov–Sparks–Tong [GST03].

The 1-parameter families Ψµ and Υτ have first been constructed by Reidegeld [Rei10] in

a neighbourhood of the exceptional orbits S5 and CP 2, respectively. Whether they give

rise to complete metrics was left open. Similar to the B8-family, for a specific parameter

τ∗ < τac the ALC Spin(7) holonomy metric Υτ∗ has previously been described explicitly

by Cvetič–Gibbons–Lü–Pope [CGLP02a], Gukov–Sparks [GS02] and Kanno–Yasui [KY02].

To the knowledge of the author, there is no explicit expression known of Ψµ for any µ.

There is a qualitative difference in the collapsed limit of the two families Ψµ and Υτ .

Because S5 is a circle bundle over CP 2, MS5 globally has the structure of a circle bundle

over Λ2
−CP 2. As µ → 0, the collapse occurs with bounded curvature similar to the well-

known collapse of Berger’s sphere. In contrast, the manifold MCP 2 has the structure of a

circle bundle only outside the zero section. The fixed locus of the circle action is precisely

the zero section. Therefore, the curvature blows up on CP 2 as τ → −∞. Because Foscolo’s

analytic method [Fos19] only applies for collapse with bounded curvature, the result about

the existence of a continuous family of complete ALC Spin(7) holonomy metrics on MCP 2

is new.

The AC Spin(7) holonomy manifolds (MS5 ,Ψµac) and (MCP 2 ,Υτac) resemble the well-

known conifold transition of Calabi–Yau 3-folds: the smoothing T ∗S3 of the conifold

{(z1, z2, z3, z4) ∈ C4| z2
1 +z2

2 +z2
3 +z2

4 = 0} and its small resolution O(−1)⊕O(−1)→ CP 1

are topologically different spaces which carry cohomogeneity one AC Calabi–Yau metrics

asymptotic to the same Calabi–Yau cone, the conifold. In analogy to the Calabi–Yau set-

ting, the Spin(7) conifold transition has been conjectured by Gukov–Sparks–Tong [GST03].

The collapsed limit also has a lower dimensional analogue. The D7 family of cohomogeneity

one G2 holonomy metrics on S(S3) = S3 × R4 collapses with bounded curvature to the

AC Calabi–Yau metric on the small resolution of the conifold, while the curvature blows

up on the zero section S3 as the B7 family of cohomogeneity one G2 holonomy metrics on

S(S3) = S3×R4 collapses to the AC Calabi–Yau metric on the smoothing of the conifold.
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Again Gukov–Sparks–Tong conjecture that the families Ψµ and Υτ provide an analogue of

this phenomenon.

Reidegeld [Rei08, Lemma 5.4.2] showed that a non-compact cohomogeneity one space

with principal orbit isomorphic to N(1,−1) can also be topologically completed by adding

as a singular orbit either the flag manifold F3 or SU(3)/SO(3), the space of linear special

Lagrangian subspaces of C3. However, there can be no torsion-free Spin(7)-structures on

the resulting spaces which are left invariant by all of SU(3) × U(1) [Rei08, pp. 177-178,

pp. 192-pp. 197].

The AC limits have another interpretation. In the 1-parameter families described above

a natural scaling of the Ricci-flat manifolds has been fixed. In geometric terms this scaling

can be understood as fixing the size of the singular orbit. Then as the parameter increases

the asymptotic circle length of the complete ALC solutions increases until it approaches

infinity at the AC limit. If, however, we rescale to keep the asymptotic circle length fixed,

the size of the singular orbit shrinks as the parameter increases and approaches zero at the

limit. This suggests that the limit should be a conically singular (CS) ALC space. Indeed,

we prove the existance of an SU(3)×U(1)-invariant CS ALC Spin(7)-metric with principal

orbit N(1,−1).

Theorem D. There exists a 1-parameter family Ψcs
λ , λ ∈ R, of SU(3) × U(1)-invariant

Spin(7) holonomy metrics on (0, ε(λ))t×N(1,−1), with ε(λ) > 0 for every λ ∈ R, which are

conically singular (CS) as t → 0 asymptotic to the Spin(7)-cone over the unique SU(3) ×
U(1)-invariant nearly parallel G2-structure on N(1,−1). The 1-parameter family has the

following properties:

• If λ < 0, then Ψcs
λ extends to (0,∞)t ×N(1,−1), is forward complete and asymptot-

ically locally conical (ALC) as t→∞.

• If λ = 0, then Ψcs
λ is the Spin(7)-cone over the unique SU(3)×U(1)-invariant nearly

parallel G2-structure on N(1,−1).

• If λ > 0, then Ψcs
λ does not extend to a forward complete metric.

For a fixed sign of λ the Spin(7)-structures Ψcs
λ are related by scaling.

The proof of Theorem D is significantly easier than the proof of Theorems B and C

because the phase transition between ALC metrics and incomplete metrics happens at the

Spin(7)-cone itself rather than at a new AC Spin(7)-manifold. Previously, other examples

of CS Spin(7) metrics were given by the A8 metric on R8 and variations of its construction

by replacing the S7 with an arbitrary 3-Sasakian 7-manifold.
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Chapter 2

Preliminaries

2.1 Spin(7)-geometry

We give a brief review of Spin(7)-geometry. For more details we refer to [Sal89], [Joy00]

and [Nor08]. We first discuss the linear algebraic picture. The spin representation of

Spin(7) has a real form which can be identified with R8. Under this action Spin(7) can be

characterised as the stabiliser in GL(8,R) of the 4-form

ψ0 =dx1234 + dx1256 + dx1278 + dx1357 − dx1368 − dx1458 − dx1467

− dx2358 − dx2367 − dx2457 + dx2468 + dx3456 + dx3478 + dx5678,

where (x1, . . . , x8) are coordinates on R8. The action of Spin(7) on R8 induces an action

on the exterior algebra. We get the following decomposition into irreducible components:

Λ2(R8)∗ = Λ2
7 ⊕ Λ2

21, Λ3(R8)∗ = Λ3
8 ⊕ Λ3

48, Λ4(R8)∗ = Λ4
1 ⊕ Λ4

7 ⊕ Λ4
27 ⊕ Λ4

35.

Here Λkq denotes a q-dimensional irreducible subspace. For higher degree forms we get an

analogous decomposition by applying the Hodge star operator. Under the identification

Λ2(R8)∗ = so(8,R) the component Λ2
21 corresponds to the Lie algebra of Spin(7). GL(8,R)

acts on Λ4(R8)∗ by pulling back ψ0. The derivative at the identity gives a map gl(8,R)→
Λ4(R8)∗. Under the decomposition

gl(8,R) = Λ2(R8)∗ ⊕ S2(R8)∗ = Λ2
7 ⊕ Λ2

21 ⊕ R Id⊕ S2
0(R8)∗,

where S2
0(R8)∗ denote the trace-less symmetric bilinear forms on R8, the kernel corresponds

to Lie(Spin(7)) = Λ2
21, and Λ4

1, Λ4
7 and Λ4

35 are the images of R, Λ2
7 and S2

0(R8)∗, respec-

tively. In particular, the orbit of ψ0 under the action of GL(8,R) has co-dimension 27 and
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its tangent space at ψ0 is given by

Tψ0(GL(8,R) · ψ0) = Λ4
1 ⊕ Λ4

7 ⊕ Λ4
35. (2.1.1)

Λ4
27 can be identified with the normal directions at ψ0.

We have the identity ∗2 = Id for the Hodge star operator acting on 4-forms. The

induced decomposition in spaces of self-dual and anti-self-dual 4-forms is given by

Λ4
+ = Λ4

1 ⊕ Λ4
7 ⊕ Λ4

27, Λ4
− = Λ4

35.

A further space which will be important to us is Λ3
8, which has the description

Λ3
8 = {Xyψ0 |X ∈ R8}. (2.1.2)

The above discussion implies that as Spin(7) representations we have

Λ3
8
∼= R8, Λ4

7
∼= Λ2

7.

Because Spin(7) is simply connected, the inclusion Spin(7) ⊂ SO(8) factors through

Spin(8). If we denote the real positive and negative spin representations of Spin(8) by σ+
8

and σ−8 , respectively, as representations of Spin(7) there are isomorphisms

σ+
8
∼= Λ4

1 ⊕ Λ4
7
∼= R⊕ Λ2

7, σ−8
∼= Λ3

8
∼= R8. (2.1.3)

Now we turn to the global differential geometric picture. Let M be an oriented 8-

manifold. We say that a 4-form ψ is admissible if at each point p ∈ M there is an

orientation-preserving isomorphism between TpM and R8 which identifies ψ|p with ψ0.

We refer to ψ as a Spin(7)-structure. ψ reduces the structure group of the frame bundle

of M to Spin(7) by considering the subbundle {u : R8 ∼−→ TpM | u∗ψp = ψ0}. Because

Spin(7) is a subgroup of SO(8), ψ induces in a purely algebraic way a Riemannian metric

g. The condition that the holonomy group of the induced metric is contained in Spin(7) is

equivalent to

dψ = 0. (2.1.4)

In this case we say that ψ is torsion-free and (M,ψ) a Spin(7)-manifold. A key point is

that g is Ricci-flat if ψ is torsion-free.

The above decomposition of the exterior algebra into irreducible components gives a

global decomposition of the corresponding vector bundles. By abuse of notation, we will

denote these subbundles by the same symbols as in the linear picture. This decomposition
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is preserved by the Hodge Laplacian if the Spin(7)-structure is torsion-free. We denote the

space of all smooth admissible 4-forms on M by A(M). Just as the orbit of ψ0 is a non-

linear subspace of Λ4(R8)∗, the space A(M) is a non-linear subspace of Ω4(M). Therefore,

the condition (2.1.4) is non-linear. (2.1.1) gives

TψA(M) = Γ(Λ4
1 ⊕ Λ4

7 ⊕ Λ4
35). (2.1.5)

An 8-manifold equipped with a Spin(7)-structure is spin because of the inclusion Spin(7) ⊂
Spin(8). If we denote the real positive and negative spin bundle by S+ and S−, respectively,

by (2.1.3) there are isomorphisms of vector bundles

S+
∼= Λ4

1 ⊕ Λ4
7, S− ∼= Λ3

8
∼= TM ∼= T ∗M. (2.1.6)

In particular, if the Spin(7)-structure is torsion-free, the Dirac Laplacian can be identified

with the Hodge Laplacian on the respective bundles. The identifications 2.1.6 can be

chosen such that the positive and negative Dirac operator correspond to

/D+ : Γ(Λ4
1⊕7)→ Γ(Λ3

8), γ 7→ π8(d∗γ), (2.1.7a)

/D− : Γ(Λ3
8)→ Γ(Λ4

1⊕7), γ 7→ π1⊕7(dγ). (2.1.7b)

To describe the moduli space of torsion-free Spin(7)-structures on a manifold, we need

to describe in a systematic way other admissible 4-forms close to a reference Spin(7)-

structure ψ. As this can be done fibre-wise, we first return to the local picture in R8. The

decomposition (2.1.1) in tangent and normal directions implies that the derivative of the

map

(GL(8,R) · ψ0)× Λ4
27 → Λ4, (ψ, ζ) 7→ ψ + ζ,

at (ψ0, 0) is an isomorphism. By the inverse function theorem every 4-form sufficiently

close to ψ0 can be written in a unique way as the sum of an element in (GL(8,R) ·ψ0) and

Λ4
27. In particular, if ε > 0 is chosen sufficiently small, we can apply this decomposition

to ψ + η, where η is an element of Bε(Λ
4
35; 0), the ball of radius ε centred at 0 in Λ4

35. We

can write this decomposition as

ψ0 + η = Π(η) + Θ(η), (2.1.8)

with unique smooth maps

Π : Bε(Λ
4
35; 0)→ (GL(8,R) · ψ0), Θ : Bε(Λ

4
35; 0)→ Λ4

27. (2.1.9)
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By the uniqueness we have Π(0) = ψ0 and Θ(0) = 0. Differentiating the path in (GL(8,R) ·
ψ0) given by Π(tη) gives

d

dt

∣∣∣∣
t=0

Π(tη) = η − d

dt

∣∣∣∣
t=0

Θ(tη)

Taking the type decomposition with respect to ψ0, with (2.1.1) we see that the derivatives

of Π and Θ at 0 are given by

DΠ|0 = Id, DΘ|0 = 0.

A ∈ Spin(7) preserves the size and type of η and thus we have

A∗Π(η) +A∗Θ(η) = ψ0 +A∗η = Π(A∗η) + Θ(A∗η).

By the uniqueness of the decomposition we see that the maps Π and Θ are Spin(7)-

equivariant.

To sum up, the maps (2.1.9) defined by the decomposition (2.1.8) have the properties:

(i) Π(0) = ψ0 and Θ(0) = 0,

(ii) DΠ|0 = Id and DΘ|0 = 0,

(iii) Π and θ are Spin(7)-equivariant.

Back to the global picture, on a Spin(7)-manifold (M,ψ) we can piece the fibre-wise

maps together to define such maps in a ε-neighbourhood of the zero section in Λ4
35. The

fibre-wise norms are taken with respect to the inner product induced by ψ.

Next we introduce other special geometric structures and discuss how Spin(7)-structures

relate to them.

Definition 2.1.10. An SU(n)-structure on a Riemannian manifold (M, g) of real dimen-

sion 2n with complex structure J and corresponding Kähler form ω(X,Y ) = g(JX, Y )

carries a complex volume form θ ∈ Γ(Λn,0M) such that the pair (ω, θ) satisfies the con-

straint equations (see [Got04, Definition 4.2.1])

ω ∧ θ = 0,
1

n!
ωn = cn θ ∧ θ̄, (2.1.11)

for some constant cn depending on n. The SU(n)-structure (ω, θ) is torsion-free if and only

if

dω = 0, dθ = 0. (2.1.12)

In this case the holonomy group reduces to SU(n) and (M,J, ω, θ) is called a Calabi–Yau

manifold.
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Definition 2.1.13. G2 is the subgroup of GL(7,R) which preserves the 3-form

ϕ0 = dx123 + dx145 + dx167 + dx246 − dx257 − dx347 − dx356.

Here (x1, . . . , x7) are coordinates on R7 and we denote dxi ∧ dxj · · · ∧ dxl by dxij...l. Now

let M be an oriented 7-manifold. We say that a 3-form ϕ is positive if at each point p ∈M
there exists an orientation-preserving linear isomorphism between TpM and R7 such that

ϕ|p is identified with ϕ0. We refer to ϕ as a G2-structure. ϕ reduces the structure group of

the frame bundle of M to G2 by considering the subbundle {u : R7 ∼−→ TpM | u∗ϕp = ϕ0}.
G2 is a subgroup of SO(7). In particular, ϕ induces in a purely algebraic way a Riemannian

metric g. The Hodge star operator induced by g gives the Hodge dual 4-form ∗ϕ. The

condition that the holonomy group of g is contained in G2 is equivalent to dϕ = 0 and

d ∗ ϕ = 0. We call such a G2-structure torsion-free. This is a non-linear condition as the

Hodge star operator depends in a non-linear way on ϕ.

Remark 2.1.14. The relation between the above geometric structures and Spin(7) is given

by the inclusions

SU(3) ⊂ G2 ⊂ Spin(7),

SU(4) ⊂ Spin(7).

The first set of inclusions can be seen as follows. If (M, θ, ω, h) is a 6-dimensional manifold

equipped with an SU(3)-structure, then we obtain a G2-structure on M × R by

ϕ = dt ∧ ω + Re θ, ∗ϕ =
1

2
ω2 − dt ∧ Im θ, g = dt2 + h. (2.1.15)

If (M,ϕ, ∗ϕ, h) is a 7-dimensional manifold equipped with a G2-structure, then we obtain

a Spin(7)-structure on M × R by

ψ = dt ∧ ϕ+ ∗ϕ, g = dt2 + h. (2.1.16)

An SU(4)-structure (ω, θ) on an 8-dimensional manifold M induces the Spin(7)-structure

ψ =
1

2
ω2 + Re θ. (2.1.17)
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2.2 Asymptotic types of non-compact Spin(7)-manifolds

Let Σ be a 7-manifold equipped with a complete Riemannian metric gΣ which is induced

by the G2-structure ϕΣ ∈ Ω3
+(Σ). Then the conical metric

gC = dr2 + r2gΣ

on C(Σ) = (0,∞)× Σ is induced by the Spin(7)-structure

ψC = r3dr ∧ ϕΣ + r4 ∗Σ ϕΣ.

(C(Σ), ψC) is said to be a Spin(7)-cone if ψC is torsion-free. The exterior derivative is given

by

dψC = −r3dr ∧ dϕΣ + 4r3dr ∧ ∗ΣϕΣ + r4d ∗Σ ϕΣ.

Hence, the condition dψC = 0 is equivalent to

dϕΣ = 4 ∗Σ ϕΣ. (2.2.1)

This means that the G2-structure on Σ is nearly parallel. Nearly parallel G2-manifolds are

Einstein manifolds with positive scalar curvature. In particular, Σ must be compact. If

the link is the 7-sphere with the round metric, then the cone is the euclidean R8 with the

standard Spin(7)-structure. Apart from its quotients, this is the only Spin(7)-cone with

trivial holonomy. All other Spin(7)-cones need to have holonomy group Sp(2), SU(4) or

Spin(7). If the holonomy equals Sp(2), the link is a 3-Sasakian manifold, and if it equals

SU(4), then the link must be a 7-dimensional Sasaki-Einstein manifold. If the cone has

full holonomy Spin(7), we say the nearly parallel G2-structure is proper.

We are interested in Spin(7)-manifolds which are asymptotic to a Spin(7)-cone with a

polynomial decay rate. By the Cheeger–Gromoll splitting theorem irreducible non-compact

Spin(7)-manifolds can have only one end. Therefore, we assume that Σ is connected.

Definition 2.2.2. Let C := (C(Σ), ψC , gC) be the Spin(7)-cone over the nearly parallel

G2-manifold (Σ, ϕΣ, gΣ). A Spin(7)-manifold (M,ψ, g) is an asymptotically conical (AC)

Spin(7)-manifold asymptotic to C with rate ν ∈ (−∞, 0) if there exist a compact subset

K ⊂M , R > 0 and a diffeomorphism

F : (R,∞)× Σ ⊂ C(Σ)→M −K
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such that we have the decay

|∇jC(F ∗ψ − ψC)|gC = O(rν−j) for all j ∈ N0.

In particular, this implies

|∇jC(F ∗g − gC)|gC = O(rν−j) for all j ∈ N0.

Definition 2.2.3. For a fixed F as above we fix a radial function ρ and a cut-off function

χ for the remainder of this paper.

• On the compact piece K set ρ ≡ 1, on F ((R + 1,∞) × Σ) set ρ ≡ r, and in the

intermediate region interpolate smoothly in an increasing fashion. In particular,

ρ ≥ 1 everywhere.

• χ : C(Σ) → [0, 1] is a cut-off function supported on (R,∞) × Σ and χ ≡ 1 on (R +

1,∞)× Σ.

This will allow us to introduce weighted function spaces. Furthermore, if γ is a differential

form on C(Σ) we can transplant it to M via (F−1)∗(χγ). By abuse of notation we will

suppress F in the rest of the paper and just write χγ for the corresponding form on M .

Remark 2.2.4. Suppose that the AC Spin(7)-manifold (M,ψ, g) is asymptotic to the Eu-

clidean Spin(7)-structure ψ0 on R8. Fix an arbitrary point p ∈ M . Denote the distance

from p by r = distg(·, p) and the volume of a ball of radius r in 8-dimensional Euclidean

space by v(r). The asymptotic behaviour of the metric implies that the function

r 7→ VolB(p, r)

v(r)

converges to 1 as r → ∞. However, by the Bishop–Gromov volume comparison theorem

this function is non-increasing and converges to 1 as r → 0. This shows that every ball

of radius r in M has the same volume as a corresponding ball in Euclidean space. This

implies that (M,ψ, g) is isometric to (R8, ψ0, g0). Therefore, we do not need to consider

AC Spin(7)-manifolds asymptotic to Euclidean space, and exclude this case from all of our

statements.

Definition 2.2.5. Let C := (C(Σ), ψC , gC) be the Spin(7)-cone over the nearly parallel

G2-manifold (Σ, ϕΣ, gΣ). A Spin(7)-manifold (M,ψ, g) has an isolated conical singular-

ity asymptotic to C with rate ν ∈ (0,∞) if there exists an open subset U ⊂ M and a

diffeomorphism

F : (0, ε)× Σ ⊂ C(Σ)→ U
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for some ε > 0 such that

|∇jC(F ∗ψ − ψC)|gC = O(rν−j) for all j ∈ N0 as r → 0.

In particular this implies

|∇jC(F ∗g − gC)|gC = O(rν−j) for all j ∈ N0 as r → 0.

We say that (M,ψ, g) is a conically singular (CS) Spin(7)-manifold.

Analogous to Spin(7)-cones in dimension 8, we have G2-cones in dimension 7. Cir-

cle bundles over G2-cones provide another asymptotic model for non-compact Spin(7)-

manifolds. To explain this in detail, suppose (Σ, h) is 6-dimensional Riemannian manifold

equipped with an SU(3)-structure (Ω, ω) which induces h. Then the cone over Σ carries

the G2-structure

ϕC = r2dr ∧ ω + r3Re Ω, ∗ϕC =
1

2
r4ω2 − r3dt ∧ Im Ω,

which induces the cone metric gC . (C(Σ), ϕC , gC) is said to be a G2-cone if the G2-structure

is torsion-free. The exterior derivatives are

dϕC = −r2dr ∧ dω + 3r2dr ∧ Re Ω + r3dRe Ω,

d ∗ ϕC = 2r3dr ∧ ω2 + r4dω ∧ ω + r3dr ∧ d Im Ω.

Hence the condition dϕC = d ∗ ϕC = 0 is equivalent to

dω = 3Re Ω, d Im Ω = −2ω2. (2.2.6)

This means precisely that the SU(3)-structure on Σ is nearly Kähler. Because nearly Kähler

manifolds are Einstein manifolds with positive scalar curvature, Σ has to be compact if it

is complete.

Definition 2.2.7. Let (C(Σ), ϕC , gC) be a G2-cone over the nearly Kähler manifold (Σ,Ω,

ω, h), ` a positive constant and p : P → C(Σ) a U(1)-principal bundle with a connection θ ∈
Ω1(P ) which gives rise to a Spin(7)-structure on P via ψP = `θ∧ϕC +∗ϕC with associated

metric gP = gC + `2θ2. A Spin(7)-manifold (M,ψ, g) is said to be an asymptotically

locally conical (ALC) Spin(7)-manifold asymptotic to (P,ψP , gP ) with rate ν ∈ (−∞, 0)

and asymptotic circle length ` if there exists a compact subset K ⊂M and (possibly for a

double cover of M −K) a diffeomorphism

F : p−1((R,∞)× Σ) ⊂ P →M −K
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for some R > 0 such that

|∇jP (F ∗ψ − ψP )|gP = O(rν−j) for all j ∈ N0 as r →∞.

This implies

|∇jP (F ∗g − gP )|gP = O(rν−j) for all j ∈ N0 as r →∞.

2.3 Analysis on AC Spin(7)-manifolds

Deformations of Spin(7)-structures have first been studied by Joyce on compact manifolds

(see [Joy00, Section 10.7]). It relies on analysis and Hodge theory on compact manifolds. To

study deformations of other geometries it is essential to have an analytic framework adapted

to the situation. E.g. Nordström studied deformations of G2- and Spin(7)-structures on

EAC (exponentially asymptotically cylindrical) manifolds [Nor08]. We will need analysis

on conifolds. In this section we collect the necessary analytical background. It is our aim to

make this as concise as possible. For references for the statements in this section and a more

detailed account of weighted analysis on conical and cylindrical spaces and its applications

to geometry we refer the reader to [KL20,Nor08,Mar02,Pac13] and [FHN17, Appendix B].

The underlying theory was outlined by Lockhart–McOwen [LM85].

In the following V and W will be a subbundle of Λ•T ∗M . Via the identification (2.1.6),

S±(M), the positive and negative spinor bundle on M , also fit into the discussion of this

section. The metric g on M and its Levi-Civita connection induce a metric and a metric

connection on V and W . By VC ,WC we denote the corresponding vector bundles on the

cone.

We set

C∞λ (V ) = {γ ∈ C∞(V ) | |∇jγ| = O(rλ−j) for all j ≥ 0}.

Next we define appropriate Banach spaces of sections of such bundles.

Definition 2.3.1. Let p ≥ 1, k ∈ N0 and λ ∈ R. For any γ ∈ C∞0 (V ) the quantity

‖γ‖Lpk,λ =

 k∑
j=0

∫
M
|ρ−λ+j∇jγ|pρ−8volg

 1
p

is well defined and a norm. Here ρ is the radial function from Definition 2.2.3. We define

the weighted Sobolev space Lpk,λ(V ) to be the completion of C∞0 (V ) with respect to this
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norm. L2
k,λ(V ) is a Hilbert space with the inner product

〈γ, ξ〉L2
k,λ

=
k∑
j=0

∫
M
〈ρ−λ+j∇jγ, ρ−λ+j∇jξ〉ρ−8volg.

Remark 2.3.2. (i) Note that L2
0,−4(V ) = L2(V ). We refer to rates ν < −4 as the L2-

setting and to rates ν > −4 as the non-L2 setting.

(ii) From the definition it follows that ρµL2
0,λ(V ) = L2

0,λ+µ(V ). In particular, we have

L2
0,λ(V ) = ρ−4−λL2.

(iii) Set Ωk
l,λ := L2

l,λ(Λk), Ωeven
l,λ := L2

l,λ(Λeven) and Ωodd
l,λ := L2

l,λ(Λodd).

Definition 2.3.3. Let p ≥ 1, k ∈ N0 and λ ∈ R. For any γ ∈ C∞0 (V ) the quantity

‖γ‖Ck,αλ =
k∑
j=0

‖ρ−λ+j∇jγ‖C0 + [ρ−λ+k∇kγ]α

is well defined and a norm. Here [ · ]α is the Hölder seminorm. We define the weighted

Hölder space Ck,αλ (V ) to be the closure of C∞0 (V ) with respect to this norm.

Theorem 2.3.4. [Mar02, Theorem 4.17]

(i) If l ≥ m+ α+ 4, then there is a continuous embedding L2
l,λ(V ) ↪→ Cm,αλ (V ).

(ii) If λ < λ′ and l > 0, there is a compact embedding L2
l,λ ↪→ L2

0,λ′.

In the following denote by ∗M the Hodge star operator on M induced by g, and by ∗C
the Hodge star operator on the asymptotic cone C(Σ) induced by the conical metric gC .

d∗M and d∗C denote the co-differential on M and C(Σ), respectively. In our calculations it

is useful to know that comparing the Hodge star operator on M and the asymptotic cone

gives an additional decay of ν, the AC rate.

Lemma 2.3.5. Suppose γ ∈ Ωk
l,λ. Then

• (∗M − ∗C)γ ∈ Ω8−k
l,λ+ν .

• (d+ d∗M)γ − (d+ d∗C)γ ∈ Ωk−1
l−1,λ+ν−1 ⊕ Ωk+1

l−1,λ+ν−1.

Suppose γ ∈ C∞λ (Λk). Then

• (∗M − ∗C)γ ∈ C∞λ+ν(Λ8−k).

• (d+ d∗M)γ − (d+ d∗C)γ ∈ C∞λ+ν−1(Λk−1 ⊕ Λk+1).

Proposition 2.3.6. Suppose η ∈ L2
0,λ(V ) and ω ∈ L2

0,µ(V ). If λ + µ ≤ −8, then the

L2-pairing

〈η, ω〉L2 =

∫
M
〈η, ω〉Vol
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is finite and satisfies the inequality

〈η, ω〉L2 ≤ ‖η‖L2
0,λ
‖ω‖L2

0,µ

Proof. Using the Cauchy-Schwarz inequality both for the pointwise inner product and the

L2-version, λ+ µ ≤ −8 and ρ ≥ 1, we get

〈η, ω〉L2 =

∫
M
〈η, ω〉Vol

≤
∫
M
|η||ω|Vol

=

∫
M

(|ρ−λη|ρ−4)(|ρ−µω|ρ−4)ρ8+λ+ηVol

≤
∫
M

(|ρ−λη|ρ−4)(|ρ−µω|ρ−4)Vol

≤
(∫

M
|ρ−λη|2ρ−8Vol

)1/2(∫
M
|ρ−µω|2ρ−8Vol

)1/2

= ‖η‖L2
0,λ
‖ω‖L2

0,µ
<∞.

Proposition 2.3.7. We have (L2
0,λ(V ))∗ ∼= L2

0,−8−λ(V ).

Proof. Proposition 2.3.6 gives a pairing

〈·, ·〉L2 : L2
0,λ(V )× L2

0,−8−λ(V )→ R.

This defines a continuous linear map

L2
0,−8−λ(V )→ (L2

0,λ(V ))∗, ω 7→ 〈·, ω〉L2 .

Under the Hilbert space isomorphism (L2
0,λ(V ))∗ ∼= L2

0,λ(V ) this corresponds to the map

L2
0,−8−λ(V )→ L2

0,λ(V ), ω 7→ ρ8+2λω.

This clearly is an isomorphism.

In the remainder of the section let

P : Γ(V )→ Γ(W )
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be one of the elliptic differential operators

d+ d∗ : Γ(Λ•)→ Γ(Λ•), (2.3.8)

∆ : Γ(Λk)→ Γ(Λk), (2.3.9)

/D+ : Γ(S+)→ Γ(S−), (2.3.10)

/D− : Γ(S−)→ Γ(S+), (2.3.11)

Denote by k the order of P and by PC the corresponding differential operator

PC : Γ(VC)→ Γ(WC)

on the cone. P is asymptotic to PC in an appropriate sense and thus is an example of an

asymptotically conical operator [Mar02, section 4.3.2]. In this case P extends to a bounded

linear map on all weighted Sobolev and Hölder spaces [Mar02, Proposition 4.20]. By Pl+k,λ

we denote the induced operator

Pl+k,λ : L2
l+k,λ(V )→ L2

l,λ−k(W ) (2.3.12)

on weighted Sobolev spaces.

Denote by P ∗ the formal adjoint of P . (2.3.8) and (2.3.9) are formally self-adjoint and

/D
∗
+ = /D−. The next Lemma shows that integration by parts is available for sections of

weighted Sobolev spaces if the decay rates are fast enough.

Lemma 2.3.13. Let η ∈ L2
k,λ(V ) and ω ∈ L2

k,µ(V ). If λ+µ ≤ −8 + k, then the quantities

〈Pη, ω〉L2 and 〈η, P ∗ω〉L2 are finite and equal, i.e.

〈Pη, ω〉L2 = 〈η, P ∗ω〉L2 .

Proof. We first show that the two quantities are finite. If λ+ µ ≤ −8 + k, by Proposition

2.3.6 and the continuity of Pk,λ we have

〈Pη, ω〉L2 ≤ ‖Pη‖L2
0,λ−k
‖ω‖L2

0,µ
≤ C‖η‖L2

k,λ
‖ω‖L2

k,µ
<∞.

Finiteness of 〈η, P ∗ω〉 follows analogously. Hence by the dominated convergence theorem

it is enough to prove the statement for compactly supported forms, for which it is true by

the definition of the formal adjoint.
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Remark 2.3.14. Lemma 2.3.13 says that if we consider the operators

Pk,λ : L2
k,λ(V ) −→ L2

0,λ−k(W ),

L2
0,−8−λ(V )←− L2

k,−8−λ+k(W ) : P ∗k,−8−λ+k,

then with respect to the pairings

L2
0,λ(V )× L2

0,−8−λ(V )→ R, L2
0,λ−k(W )× L2

0,−8−λ+k(W )→ R,

the operator P ∗k,−8−λ+k is the “adjoint” of Pk,λ. Using the Fourier transform, one can

define Sobolev spaces L2
s,µ for any s ∈ R. Then similarly to Proposition 2.3.7 we have

(L2
k,λ(V ))∗ = L2

−k,−8−λ(V ) and (L2
0,λ−k(W ))∗ = L2

0,−8−λ+k(W ). Therefore, P ∗k,−8−λ+k

is the restriction of the full adjoint (Pk,λ)∗ = P ∗0,−8−λ+k to the more regular subspace

L2
k,−8−λ+k(W ). In all cases in this paper sections in the kernel and cokernel are smooth

by elliptic regularity. Therefore, we do not have to use the full adjoint.

In the examples (2.3.8)-(2.3.11) that we consider, both P and the asymptotic model

PC are elliptic. Thus P is an example of an uniformly elliptic operator [Mar02, Section

4.3.2]. This control at infinity allows to develop a Fredholm and regularity theory similar

to the setting of compact manifolds.

Theorem 2.3.15. [Mar02, Theorem 4.21] Suppose γ ∈ L1
loc(V ) is a weak solution of

Pγ = ζ with ζ ∈ L1
loc(W ). If ζ lies in L2

l,λ−k(W ) (respectively Cl,αλ−k(W )), then γ lies in

L2
l+k,λ(V ) (respectively Cl+k,αλ (V )), and is a strong solution. Furthermore, there exists a

positive constant C > 0 such that γ satisfies the estimate

‖γ‖L2
l+k,λ

≤ C
(
‖Pγ‖L2

l,λ−k
+ ‖γ‖L2

0,λ

)
, (2.3.16)

respectively the estimate

‖γ‖Cl+k,αλ
≤ C

(
‖Pγ‖Cl,αλ−k + ‖γ‖C0,α

λ

)
. (2.3.17)

Remark 2.3.18. Using Theorems 2.3.15 and 2.3.4 it follows immediately that any closed

and coclosed form on (M,ψ) is smooth. Therefore we can denote the kernel of

Pl+k,λ : L2
l+k,λ(V )→ L2

l,λ−k(W )

by kerPλ.

We will also have to deal with less regular linear differential operators L : Γ(V )→ Γ(W )

for which the coefficients only lie in some Hölder space Cl,α, and the convergence to the

asymptotic model is with respect to the Cl,αλ -norm. The above elliptic regularity result
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generalises to this setting.

Theorem 2.3.19. [Nor08, Theorem 4.2.22] Let L : Γ(V ) → Γ(W ) be a linear elliptic

differential operator of rank k with Cl,α-regular coefficients which is Cl,αλ -asymptotic to the

conical, elliptic differential operator LC. If u ∈ Ck,αλ+k and Lu ∈ Cl,αλ , then u ∈ Ck+l,α
λ+k and

‖u‖Cl+k,αλ+k
≤ C

(
‖Lu‖Cl,αλ + ‖u‖C0,α

λ+k

)
.

The key in understanding the mapping properties of Pl+k,λ is to study PC acting on

homogeneous sections.

Definition 2.3.20. γ ∈ Ωk(C(Σ)) is homogeneous of rate λ if there exist α ∈ Ωk−1(C(Σ))

and β ∈ Ωk(C(Σ)) such that

γ = rλ(rk−1dr ∧ α+ rkβ).

γ ∈ Ω•(C(Σ)) is said to be homogeneous of rate λ if each degree component is homogeneous

of rate λ. In both cases this implies that |γ|gC is a homogeneous function in r of rate λ.

Definition 2.3.21. λ ∈ R is a critical rate for P if there exists a non-zero homogeneous

section γ of rate λ such that PCγ = 0. Denote by

D(P ) = {λ ∈ R | ∃γ ∈ C∞(VC) non-zero and homogeneous of rate λ such thatPCγ = 0}

the set of all critical rates. Set

KP (λ) = {γ =

m∑
j=0

(log r)jγj | each γj is homogeneous of order λ and PCγ = 0}.

KΛk(λ), Keven(λ), Kodd(λ) and KASD(λ) are defined by choosing P to be d+ d∗ acting on

k-forms, even degree forms, odd degree forms and anti-self dual 4-forms, respectively.

Remark 2.3.22. (i) In the general theory one also has to consider complex critical rates.

However, all operator considered by us are formally self-adjoint, or restrictions thereof.

In this case all critical rates need to be real.

(ii) An important property of the set D(P ) is that it is discrete.

(iii) Suppose γ =
∑m

j=0(log r)jγj , where each γj is homogeneous of order λ and γm 6= 0.

As a polynomial in log r, the leading order term of PCγ is PCγm. Hence KP (λ) = {0}
if λ is not a critical rate.

Contrary to the compact setting, the elliptic estimate (2.3.16) cannot be used to prove

that Pl+k,λ is a Fredholm operator because L2
l+k,λ does not embed compactly into L2

0,λ.

However, if λ is a non-critical rate, the estimate can be strengthened to
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Proposition 2.3.23. [FHN17, Proposition B.9] If λ′ > λ and the interval [λ, λ′] does not

contain a critical rate for P , then for any γ ∈ L2
l+r,λ(V ) we have

‖γ‖L2
l+k,λ

≤ C
(
‖Pγ‖L2

l,λ−k
+ ‖γ‖L2

0,λ′

)
. (2.3.24)

The same statement holds for Hölder spaces, but we mainly use Sobolev spaces. In

the improved estimate (2.3.24) the “error term” ‖γ‖L2
0,λ′

is the norm of a space into which

L2
l+k,λ embeds compactly by Theorem 2.3.4 (ii). This allows us to prove

Corollary 2.3.25. Assume that λ is a non-critical rate for P . Then there exists a positive

constant C such that for all γ ∈ L2
l+k,λ(V ) which are orthogonal in L2

l+k,λ(V ) to ker(Pl+k,λ)

we have

‖γ‖L2
l+k,λ

≤ C‖Pγ‖L2
l,λ−k

.

From Theorem 2.3.4 (ii), Proposition 2.3.23 and Corollary 2.3.25 we finally can clarify

the mapping properties of Pl+k,λ.

Theorem 2.3.26. [KL20, Theorems 4.11 and 4.13] The operator

Pl+k,λ : L2
l+k,λ(V )→ L2

l,λ−k(W )

is Fredholm if and only if λ is not a critical rate. In this case we have:

(i) We can identify a complement of Pl+k,λ(L2
l+k,λ(V )) in L2

l,λ−k(W ) with kerP ∗−8−λ+k,

i.e. there exists a finite dimensional subspace U of L2
l,λ−k(W ) such that

L2
l,λ−k(W ) = Pl+k,λ(L2

l+k,λ(V ))⊕ U

and U ∼= kerP ∗−8−λ+k.

(ii) If λ ≥ −4 + k, then U is a subspace of L2
l,λ−k(W ) and we can set U = kerP ∗−8−λ+k.

For us it will be important to understand how kerPλ changes as λ varies. The key to

understanding how the kernel changes at a critical rate is the following

Theorem 2.3.27. [KL20, Proposition 4.21] Let λ2 < λ1 be two non-critical rates of P and

λ0 the only critical rate in the interval (λ2, λ1). If γ ∈ L2
l,λ1

(V ) and Pγ ∈ L2
l−k,λ2−k(W )

(i.e. “Pγ decays faster than expected”), then there exist η ∈ K(λ0)PC and γ̃ ∈ L2
l,λ0+ν(V )

which depend both linearly on γ, such that outside of a compact subset

γ − η − γ̃ ∈ L2
l,λ2

(V ).

A consequence of Theorem 2.3.27 we obtain the following two theorems.
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Theorem 2.3.28. [KL20, Theorem 4.20] For non-critical rates λ2 < λ1 of P the index

change is given by

indPλ1 − indPλ2 =
∑

λ∈(λ2,λ1)∩D(P )

dimKP (λ).

Theorem 2.3.29. If the interval [λ1, λ2] does not contain any critical rate, then kerPλ1 =

kerPλ2.

2.4 Differential forms on AC Spin(7)-manifolds

2.4.1 Computations on the asymptotic Spin(7)-cone

In this paper it is important to have a good understanding of the Laplace-operator and

d + d∗ acting on forms in weighted Sobolev spaces. In light of Theorem 2.3.26 we need

to understand the critical rates of the corresponding operators acting on homogeneous

sections on the cone. We first collect some explicit formulas. Let γ = rλ(rk−1dr∧α+ rkβ)

be a homogeneous k-form on C(Σ), where α ∈ Ωk−1(Σ) and β ∈ Ωk(Σ). The Hodge-star

operator on the cone is given by

∗C(dr ∧ α) = r9−2k ∗Σ α,

∗Cβ = (−1)kr7−2kdr ∧ ∗Σβ.

Using this we get

dγ = rλ−1
(
rkdr ∧ ((λ+ k)β − dΣα) + rk+1dΣβ

)
, (2.4.1a)

∗Cγ = rλ+8−k ∗Σ α+ (−1)krλ+7−kdr ∧ ∗Σβ, (2.4.1b)

d∗Cγ = rλ+k−2(−(λ+ 8− k)α+ d∗Σβ) + rλ+k−3dr ∧ (−d∗Σα), (2.4.1c)

∆Cγ = rλ+k−3dr ∧
(

∆Σα− (λ+ k − 2)(λ− k + 8)α− 2d∗Σβ
)

(2.4.1d)

+ rλ+k−2
(

∆Σβ − (λ+ k)(λ− k + 6)β − 2dΣα
)

All of these formulas purely depend on the dimension of the cone. We make no use of

the fact that our cone is a Spin(7)-cone.

Remark 2.4.2. For later use we give a brief characterisation of closed, homogeneous anti-
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self-dual 4-forms on the cone. Suppose

γ = rλ+3dr ∧ α+ rλ+4β

is a homogeneous 4-form of rate λ for α ∈ Ω3(Σ) and β ∈ Ω4(Σ). Then γ is anti-self-dual

if and only if β = − ∗Σ α, i.e.

γ = rλ+3dr ∧ α+ rλ+4(− ∗Σ α).

If λ 6= −4, γ is closed if and only if dΣα = −(λ+ 4) ∗Σ α. Then we have in particular

γ = d

(
1

λ+ 4
rλ+4α

)
.

If λ = −4, then γ is closed if and only if α is harmonic on Σ.

Later on we need to know Keven(−4) and Kodd(−3). The calculation is analogous

to [Kar09, Proposition 2.21] in the G2-setting.

Lemma 2.4.3. Let η =
∑4

k=0 η2k be a closed and coclosed even degree form on C(Σ)

homogeneous of rate −4, i.e.

η2k = r2k−5dr ∧ α2k−1 + r2k−4β2k,

where α2k−1 ∈ Ω2k−1(Σ) and β2k ∈ Ω2k(Σ). Then all components except α3 and β4 vanish,

i.e.

η = r−1dr ∧ α3 + β4,

and α3 and β4 are both harmonic on Σ. In particular, η is of pure degree 4.

Proof. We have

d∗η2k = r2k−7dr ∧ (−d∗α2k−1) + r2k−6(−(4− 2k)α2k−1 + d∗β2k)

and

dη2k−2 = r2k−7dr ∧ (−dα2k−3 + (2k − 6)β2k−2) + r2k−6dβ2k−2.

Because of d∗η2k + dη2k−2 = 0 we get

−dα2k−3 + (2k − 6)β2k−2 − d∗α2k−1 = 0,

dβ2k−2 − (4− 2k)α2k−1 + d∗β2k = 0.
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This gives

(k − 4)βk = dαk−1 + d∗αk+1, k = 0, 2, 4, 6, 8, (2.4.4)

(3− k)αk = dβk−1 + d∗βk+1, k = 1, 3, 5, 7. (2.4.5)

Applying d, d∗ to (2.4.4) and (2.4.5) gives

∆αk = (k − 5)dβk−1 + (k − 3)d∗βk+1, k = 1, 3, 5, 7, (2.4.6)

∆βk = (4− k)dαk−1 + (2− k)d∗αk+1, k = 0, 2, 4, 6, 8. (2.4.7)

Combining (2.4.4), (2.4.5), (2.4.6) and (2.4.7) gives

∆αk = −(k − 3)2αk − 2dβk−1, k = 1, 3, 5, 7, (2.4.8)

∆βk = (2− k)(k − 4)βk + 2dαk−1, k = 0, 2, 4, 6, 8. (2.4.9)

Now equations (2.4.8), (2.4.9) give successively: ∆β0 = −8β0 and hence β0 = 0. ∆α1 =

−4α1 and therefore α1 = 0. Then β2, α3, β4 are harmonic. For k = 5 we get ∆α5 = −4α5

and α5 vanishes. Then β6 = 0 because ∆β6 = −8β6. ∆α7 = −16α7 gives α7 = 0 and

finally ∆β8 = −24β8 gives β8 = 0. It is left to prove that β2 vanishes. This immediately

follows from (2.4.4).

Lemma 2.4.10. Let η =
∑3

k=0 η2k+1 be a closed and coclosed odd degree form on C(Σ)

homogeneous of rate −3, i.e.

η2k+1 = r2k−3dr ∧ α2k + r2k−2β2k+1,

where α2k ∈ Ω2k(Σ) and β2k+1 ∈ Ω2k+1(Σ). Then all components except α4 and β3 vanish,

i.e.

η = η3 + η5 = β3 + rdr ∧ α4,

and α4 and β3 are both harmonic on Σ. In particular, η3 and η5 are individually closed

and co-closed.

Proof. We have

d∗η2k+1 = r2k−5dr ∧ (−d∗α2k) + r2k−4(−(5− (2k + 1))α2k + d∗β2k+1)

and

dη2k−1 = r2k−5dr ∧ (−dα2k−2 + (2k − 4)β2k−1) + r2k−4dβ2k−1.
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Because of d∗η2k+1 + dη2k−1 = 0 we get

−dα2k−2 + (2k − 4)β2k−1 − d∗α2k = 0,

−(5− (2k + 1))α2k + d∗β2k+1 + dβ2k−1 = 0.

This gives

(k − 3)βk = dαk−1 + d∗αk+1, k = 1, 3, 5, 7, (2.4.11)

(4− k)αk = dβk−1 + d∗βk+1, k = 0, 2, 4, 6. (2.4.12)

Applying d and d∗ to (2.4.11) and (2.4.12) gives

∆αk = (k − 4)dβk−1 + (k − 2)d∗βk+1, k = 0, 2, 4, 6, (2.4.13)

∆βk = (5− k)dαk−1 + (3− k)d∗αk+1, k = 1, 3, 5, 7. (2.4.14)

Combining (2.4.11), (2.4.12), (2.4.13) and (2.4.14) gives

∆αk = −(k − 2)(k − 4)αk − 2dβk−1, k = 0, 2, 4, 6, (2.4.15)

∆βk = −(k − 3)2βk + 2dαk−1, k = 1, 3, 5, 7. (2.4.16)

For k = 0 we get ∆α0 = −8α0 and therefore α0 = 0. For k = 1 we get ∆β1 = −4β1

and consequentially β1 vanishes. By (2.4.15) we first see that α2 is harmonic. This in

turn by (2.4.16) means that β3 is harmonic. Again by (2.4.15) α4 is harmonic. k = 5

gives ∆β5 = −4β5 and hence β5 = 0. Then ∆α6 = −8α6 which gives α6 = 0. Finally β7

vanishes because ∆β7 = −16β7. We still have to show that α2 = 0. This now follows from

(2.4.12).

Lemma 2.4.17. [FHN17, Proposition A.7] Let γ =
∑m

j=0(log r)jγ, where all γj are

differential forms on C homogeneous of order λ. If (d+ d∗)γ = 0, then m = 0.

As a consequence of Lemmas 2.4.3, 2.4.10 and 2.4.17 we get

Corollary 2.4.18. We have

Keven(−4) = r−1dr ∧H3(Σ,R) +H4(Σ,R),

Kodd(−3) = H3(Σ,R) + rdr ∧H4(Σ,R),

KΛ4(−4) = r−1dr ∧H3(Σ,R) +H4(Σ,R),

KΛ3(−3) = H3(Σ,R),

KΛ5(−3) = rdr ∧H4(Σ,R).
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Lemma 2.4.19. Let γ be a harmonic 1-form on the Spin(7)-cone C(Σ) homogeneous of

rate λ ∈ (−6, 1). We have:

• If λ ∈ (−6, 0], then γ must vanish.

• If λ ∈ (0, 1), then γ = d( 1
λ+1r

λ+1α) = d∗(− 1
λ+7r

λ+2β), where α ∈ Ω0(Σ) and

β ∈ Ω1(Σ) are eigenforms of ∆Σ with eigenvalue (λ + 1)(λ + 7). In particular, γ is

closed and co-closed, and therefore an element of KΛ1(λ).

Proof. Following earlier work by Cheeger [Che78], Foscolo–Haskins–Nordström [FHN17,

Theorem A.2] have classified harmonic homogeneous forms of arbitrary pure degree on

arbitrary cones. They find four types (i), (ii), (iii) and (iv). The proof of this Lemma is

an application of their classification and the Lichnerowicz–Obata Theorem [Oba62], which

says that the smallest positive eigenvalue of the scalar Laplace-operator is at least Scal
6 = 7

if we scale the metric on the link such that the scalar curvature equals 42.

Let α ∈ Ω0(Σ), β ∈ Ω1(Σ), and γ = rλ(dr ∧ α + rβ) be a harmonic, homogeneous

1-form of rate λ. If γ is non-zero and of type (i), (ii) or (iii), then α must be a non-zero

eigenfunction of the Laplace-operator with eigenvalue (λ − 1)(λ + 7), (λ + 1)(λ + 7) and

(λ − 1)(λ + 5), respectively. The first expression is always negative if λ < 1, the second

expression is at most 7 if λ ∈ (−6, 0], and the third expression is less than 7 if λ ∈ (−6, 1).

By the Lichnerowicz–Obata Theorem γ must be of type (ii) and λ ∈ (0, 1). In the latter

case dα = (λ+ 1)β, d∗β = (λ+ 7)α, and γ is of the desired form.

If γ is non-zero of type (iv), then α = 0 and β is a co-closed, non-zero solution of

∆Σβ = (λ + 1)(λ + 5)β. By an application of the Bochner formula it follows that the

smallest eigenvalue of the Laplacian on Σ on co-closed 1-forms is 12, see [CT94, Lemma

2.27] and [HS17, Lemma B.2]. But (λ + 1)(λ + 5) < 12 if λ < 1. Therefore, γ must

vanish.

Lemma 2.4.20. If λ ∈ [0, 1), then K /D−
(λ) ∼= KΛ1(λ).

Proof. Under the identifications 2.1.6 up to constants we can write the negative Dirac

operator as

/D− : Γ(Λ1)→ Γ(Λ0 ⊕ Λ2
7), γ → (d∗γ, π7(dγ)).

The inclusion KΛ1(λ) ⊂ K /D−
(λ) follows from the above formula for /D− and the reverse

inclusion follows from ∆ = /D
2

and Lemma 2.4.19.

Lemma 2.4.21. [KL20, Proposition 3.3] Suppose that

Z = rλ+1f∂r + rλX
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is a Killing vector field on the Spin(7)-cone (C(Σ), ψC), where f is a function on Σ and

X is a vector field on Σ. If λ < 0, then Z must vanish.

2.4.2 Harmonic spinors and closed and co-closed forms

By

Hkλ = {γ ∈ Ωk
λ| dγ = 0 and d∗γ = 0}

we denote the space of all closed and co-closed k-forms on M decaying with rate λ. Heven
λ

and Hodd
λ are defined analogously. Furthermore, we set

(Hkq )λ = {γ ∈ C∞λ (Λkq )| dγ = 0 and d∗γ = 0}

if Λkq ⊂ Λk is a q-dimensional irreducible subrepresentation of Λk.

On compact manifolds any harmonic form is closed and co-closed. In general, this is

not true in the non-compact setting because integration by parts is not always available.

However, by Lemma 2.3.13 we can use integration by parts if the rate of decay is fast

enough.

Lemma 2.4.22. Suppose λ ≤ −3.

(i) If ω ∈ L2
2,λ(Λk) is harmonic, then ω is closed and co-closed.

(ii) ker( /D+)λ ∼= (H4
1)λ ⊕ (H4

7)λ and ker( /D−)λ ∼= (H3
8)λ ∼= H1

λ.

Proof. (i): If λ ≤ −3 Lemma 2.3.13 allows the following integration by parts:

0 = 〈∆ω, ω〉L2 = 〈dd∗ω, ω〉L2 + 〈ω, d∗dω〉L2 = ‖d∗ω‖2L2 + ‖dω‖2L2 .

(ii): By applying Lemma 2.3.13 with /D as in the proof of (i) we get ker( /D
2
)λ = ker( /D)λ.

Formula (2.1.6) and (i) give

ker( /D+)λ = ker( /D− /D+)λ ∼= ker(∆|Λ4
1
)λ ⊕ ker(∆|Λ4

7
)λ = (H4

1)λ ⊕ (H4
7)λ,

ker( /D−)λ = ker( /D+ /D−)λ ∼= ker(∆|Λ3
8
)λ = (H3

8)λ ∼= H1
λ.

Lemma 2.4.23. Let ω ∈ L2
2,λ(Λ•) be closed and coclosed. If λ ≤ −3, then the individual

degree components of ω are closed and coclosed.

Proof. Denote by ωk the degree k component of ω. The fact that (d + d∗)ω = 0 gives
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dωk = −d∗ωk+2. The condition λ ≤ −3 allows the following integration by parts:

‖dωk‖2L2 = 〈dωk, dωk〉L2 = −〈dωk, d∗ωk+2〉L2 = −〈ω, d∗d∗ωk+2〉L2 = 0.

Lemma 2.4.24. If λ ≤ −3, then ker( /D)λ = {0}.

Proof. We use the Lichnerowicz formula

/D
2

= ∇∗∇+
1

4
scal(g).

Because g is Ricci-flat, the scalar curvature vanishes and the Dirac Laplacian coincides

with the rough Laplacian. If s ∈ L2
k,λ(S) for λ ≤ −3, we can apply Lemma 2.3.13 to obtain

〈 /D2
s, s〉L2 = 〈∇∗∇s, s〉L2 = ‖∇s‖L2 .

Therefore, s is parallel if s ∈ ker( /D)λ. In particular, its point-wise norm is constant on M .

Because the L2
k,λ-norm of s is finite, s must vanish.

The spin bundle identification (2.1.6), Lemma 2.4.22 (ii) and Lemma 2.4.24 imply

Corollary 2.4.25. (H4
1)λ, (H4

7)λ, (H3
8)λ and H1

λ are zero if λ ≤ −3.

For 1-forms this statement can be improved:

Lemma 2.4.26. A harmonic 1-form γ ∈ C∞λ (T ∗M) vanishes if λ ≤ 0.

Proof. The statement is true for λ ≤ −3 by Corollary 2.4.25. By Theorem 2.3.29 the kernel

of the Laplace operator acting on 1-forms can only change at critical rates. However, by

Lemma 2.4.19 there are no critical rates in the interval [−6, 0].

Lemma 2.4.27. The negative Dirac operator

( /D−)l+1,λ+1 : L2
l+1,λ+1(Λ3

8)→ L2
l,λ(Λ4

1 ⊕ Λ4
7).

is injective if λ ≤ −1 and surjective if λ ≥ −5.

Proof. Under the identification (2.1.6) the statement about injectivity follows from Lemma

2.4.26. The adjoint of ( /D−)l+1,λ+1 is the positive Dirac operator

( /D+)m+1,−8−λ : L2
m+1,−8−λ(Λ4

1 ⊕ Λ4
7)→ L2

m,−9−λ(Λ3
8).

Then Coker( /D−)λ+1 = ker( /D+)−8−λ and with Lemma 2.4.24 the cokernel is zero if λ ≥
−5.
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We will need the following analogues of the Hodge decomposition theorem on compact

manifolds:

Proposition 2.4.28. [KL20, Proposition 4.33] Suppose λ + 1 is a non-critical rate for

d+ d∗. Let 0 ≤ k ≤ 8. If λ > −4, we have

Ωk
l,λ = d(Ωk−1

l+1,λ+1) + d∗(Ωk+1
l+1,λ+1)⊕Hk−8−λ.

Proposition 2.4.29. [KL20, Proposition 4.31, Corollary 4.32] Suppose λ + 1 is a non-

critical rate for d+d∗. Let 0 ≤ k ≤ 8. If λ < −4, we have an L2-orthogonal decomposition

Ωk
l,λ = d(Ωk−1

l+1,λ+1)⊕ d∗(Ωk+1
l+1,λ+1)⊕Hkλ ⊕W k

l,λ,

where W k
l,λ is isomorphic to Hk−8−λ/Hkλ.

In the next definition we define the main differential operator involved in studying the

moduli space of AC Spin(7)-manifolds.

Definition 2.4.30. We denote the exterior derivative restricted to sections of Λ4
35 = Λ4

ASD

by

dASD : Ω4
35(M)→ dΩ4(M), γ 7→ dγ.

By (dASD)l,ν we denote its continuous extension

(dASD)l,ν : L2
l,ν(Λ4

35)→ d(Ω4
l,ν).

Lemma 2.4.31. Suppose that ν+1 is a non-critical rate of d+d∗. If ν > −4, the operator

(dASD)l,ν is surjective.

Proof. We can prove this by using the Hodge decomposition from Proposition 2.4.28. Let

α ∈ d(Ω4
l,ν) be exact. Then we can write α = dη for some co-exact η ∈ d∗(Ω5

l+1,ν+1). But

then α = d(η − ∗η) is the exterior derivative of an anti-self-dual form and hence (dASD)l,ν

is surjective.

Remark 2.4.32. The main reason why we have to restrict to rates ν > −4 in Theorem A

is that in the L2-setting we cannot even expect that

d : L2
l,ν(Λ4

1 ⊕ Λ4
7 ⊕ Λ4

35)→ d(Ω4
l,ν)

is surjective. The reason is that in the Hodge decomposition from Proposition 2.4.29 forms

in the space W 4
l,ν are not necessarily closed. If we denote by (Wc)

4
l,ν the subspace of closed
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forms in W 4
l,ν and by (W⊥)4

l,ν its L2-orthogonal complement in W 4
l,ν , then every form in

d(Ω4
l,ν) can be written as

d(η + ω)

for unique η ∈ d∗(Ω5
l+1,ν+1) and ω ∈ (W⊥)4

l,ν . If ω 6= 0, then we cannot use the same trick

as in the proof of Lemma 2.4.31.

Lemma 2.4.33. Suppose ν is a non-critical rate of the operator d + d∗. Then dΩ4
l,ν(M)

is a closed subspace of Ω5
l−1,ν−1, and therefore a Banach space.

Proof. If ν ≤ −4, this is true because all components in the L2-orthogonal decomposition

from Proposition 2.4.29 are closed.

Next we consider the case ν > −4. Let {dγj}j∈N be a Cauchy sequence in dΩ4
l,ν(M).

By Lemma 2.4.31 we can assume that γj ∈ L2
l,ν(Λ4

35) for all j ∈ N. Because γj is anti-self

dual we have d∗γj = ∗dγj and, therefore, {(d+d∗)γj}j∈N is a Cauchy sequence in Ω•l−1,ν−1.

By Proposition 2.3.25 there exists γ ∈ Ω4
l,ν such that (d+ d∗)γ = limj→∞(d+ d∗)γj . This

finishes the proof.

2.5 Cohomology of AC Spin(7)-manifolds

Suppose (M,ψ) is an AC Spin(7)-manifold. The compactly supported cohomology groups

Hk
cs(M,R) of M are the cohomology groups associated to the chain complex of compactly

supported forms on M . Any representative of a class in Hk
cs(M,R) is a closed k-form and

therefore induces a class in Hk(M,R). This is well-defined at the cohomology level and

induces a map

Ik : Hk
cs(M,R)→ Hk(M,R).

It follows straight from Definition 2.2.2 that if r > R, there is an embedding ιr : Σ → M

given by ιr = F (r, ·). This induces a restriction map ι∗r : Hk(M,R)→ Hk(Σ,R). Because

the embeddings are homotopic for different values of r, the map ι∗r does not depend on r.

Henceforth we will denote it by

Υk : Hk(M,R)→ Hk(Σ,R). (2.5.1)

The maps Ik and Υk are part of a long exact sequence given by

· · · → Hk
cs(M,R)

Ik−→ Hk(M,R)
Υk−−→ Hk(Σ,R)

∂k−→ Hk+1
cs (M,R)→ · · · (2.5.2)
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The boundary map ∂k can be described as follows. If [α] ∈ Hk(Σ,R) set ∂k[α] := [d(χα)],

where χ is the cut-off function from Definition 2.2.3. This is well-defined. Note that even

though the form d(χα) is exact, the map ∂k is non-trivial because d(χα) in general cannot

be written as the exterior derivative of a compactly supported form.

For us it is important to have a good description of preimages of cohomology classes

in imΥk. We say that a k-form γ on M is translation invariant if there exists R′ ≥ R such

that for all r ≥ R′ we have

ι∗r(γ) = ι∗R′(γ),

ι∗r(∂ryγ) = ι∗R′(∂ryγ).

Equivalently there exist R′ ≥ R, α ∈ Ωk−1(Σ) and β ∈ Ωk(Σ) such that on F ((R′,∞)×Σ)

we have γ = dr ∧ α+ β. If in addition α = 0, we say that γ is a lift.

Lemma 2.5.3. [Mar02, Corollary 5.9] Let [β] ∈ imΥk where β is any representative.

Then a preimage of [β] under Υk can be represented by a lift, i.e. there exists ζ ∈ Ωk
cs(M)

such that ξ = χβ + ζ is closed and Υk[ξ] = [β].

Lemma 2.5.4. imΥ3 and imΥ4 annihilate each other under the Poincaré pairing, i.e. with

respect to harmonic representatives we have

∗imΥ4 ⊥L2 imΥ3 and ∗ imΥ3 ⊥L2 imΥ4.

Proof. Let α be a harmonic representative of a class [α] ∈ imΥ3 and β a harmonic rep-

resentative of a class [β] ∈ imΥ4. Then by Lemma 2.5.3 there exist a closed 3-form γ, a

closed 4-form η and compactly supported forms γ− and η− such that γ = χα + γ− and

η = χβ + η−. Stokes’ theorem gives

0 =

∫
M
d(γ ∧ η) = lim

r→∞

∫
{r}×Σ

(γ|{r}×Σ) ∧ (η|{r}×Σ) = lim
r→∞

r7

∫
Σ
α ∧ β

+ lim
r→∞

∫
{r}×Σ

(
α ∧ (η−|{r}×Σ) + (γ−|{r}×Σ) ∧ β + (γ−|{r}×Σ) ∧ (η−|{r}×Σ)

)
Because the integrand in the second limit is compactly supported this limit is zero. There-

fore, we get

〈∗α, β〉L2 = 〈α, ∗β〉L2 =

∫
Σ
α ∧ β = 0.

The reason that topology is relevant for us is that we need to understand closed and

co-closed forms decaying with the L2-rate −4. The following Proposition relates them to
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the cohomology groups of M . The result is due to Lockhart [Loc87]. We will use a version

adapted to the AC setting [Lot05, Theorem 6.5.2].

Proposition 2.5.5. We have

HkL2 = Hk−4
∼=


Hk(M,R) k > 4,

I4(H4
cs(M,R)) k = 4,

Hk
cs(M,R) k < 4.

Because we study deformations of Spin(7)-structures our main interest are 4-forms.

By Proposition 2.5.5 harmonic 4-forms which lie in L2 can be understood to be purely

topological. More specifically we have

H4
L2
∼= I4(H4

cs(M,R)) ⊂ H4(M,R).

Splitting up into self dual and anti-self-dual 4-forms induces the decomposition

I4(H4
cs(M,R)) = (H4

+)L2 ⊕ (H4
−)L2 . (2.5.6)

This splitting can also be understood in a topological way. Let [ξ], [η] ∈ I4(H4
cs(M,R)),

where ξ and η are compactly supported representatives of the corresponding cohomology

classes. Then ∫
M
ξ ∧ η

is finite and defines a symmetric bilinear form on I4(H4
cs(M,R)). To see that this is well-

defined suppose that ξ′ is another compactly supported representative of the cohomology

class of ξ. Writing [ξ]cs, [ξ
′]cs for the corresponding classes in H4

cs(M,R), we get

I4([ξ]cs − [ξ′]cs) = 0.

By the exactness of (2.5.2) and the description of the boundary map ∂3, there exist [α] ∈
H3(Σ) and γ ∈ Ω3

cs(M) such that

ξ′ = ξ + d(χα+ γ).

Setting η′ = η + dφ, we have∫
M
d(χα+ γ) ∧ η′ =

∫
M
d((χα+ γ) ∧ (η + dφ)) = lim

r→∞

∫
M
α ∧ d(φ|{r}×Σ) = 0.
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This bilinear form is non-degenerate because the pairing of H4
cs(M,R) and H4(M,R) is

non-degenerate. (H4
+)L2 is a positive definite subspace of I4(H4

cs(M,R)) with respect to

this bilinear form and (H4
−)L2 is a negative definite subspace.

The last topological ingredient we need is that sufficiently fast decaying forms are exact

on the end.

Lemma 2.5.7. [Kar09, Lemma 2.12] Let γ be a smooth k-form on the cone C(Σ). If

|∇jCγ|gC = O(rλ−j) as r →∞ for all j ∈ N, for some λ < −k,

then there exists a smooth k − 1 form ξ on (R,∞)× Σ such that dξ = γ.
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Chapter 3

Deformation theory of

asymptotically conical

Spin(7)-manifolds

3.1 The Moduli Space is an orbifold

In this section we consider the moduli space of torsion-free AC Spin(7)-structures of rate

ν on the manifold M . As explained in the introduction we do not want to consider

deformations of the Spin(7)-cone or, equivalently, of the link Σ because deformations of

nearly parallel G2-manifolds are not very well understood. Therefore, we fix an asymptotic

Spin(7)-cone C := (C(Σ), ϕC). The diffeomorphism group of M acts on the set of AC

Spin(7)-structures asymptotic to C at a fixed rate. Indeed, if Φ is a diffeomorphism of M

and ψ is asymptotic to ψC at rate ν with respect to some identification F of the cone and

M outside a compact subset as in Definition 2.2.2, then Φ∗ψ is an AC Spin(7)-structure on

M asymptotic to C at rate ν with respect to F ′ := Φ−1◦F . Because Φ∗ψ does not decay to

ψC at rate ν with respect to F unless Φ decays sufficiently fast to an automorphism of C,

we can break the diffeomorphism invariance by fixing F and taking the quotient by suitably

decaying diffeomorphisms. For the sake of simplicity, in this thesis we only quotient by

diffeomorphisms which decay to the identity. Those decaying to some automorphism of C

can in principle be divided out later. The above procedure also normalises a scale. For

λ > 0 the rescaled Spin(7)-structure λ4ψ decays to ψC only after composing F with the

diffeomorphism (r, x) 7→ (λr, x) of the cone. Our results do not depend on the choice of F .

For the description of the moduli space it is convenient to choose a reference point. Let

(M,ψ, g) be an AC Spin(7)-manifold at rate ν < 0 with respect to F . Let Aν be the space
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of admissible 4-forms on M which decay with the same rate as ψ in the chosen gauge, i.e.

Aν := {ψ̃ ∈ A(M)| ψ̃ − ψ ∈ C∞ν (Λ4T ∗M)} ⊂ ψ + C∞ν (Λ4T ∗M). (3.1.1)

The space of all (up to the choice of F ) torsion-free AC Spin(7)-structures on M asymptotic

to C at rate ν is denoted by

Xν := {ψ̃ ∈ Aν | dψ̃ = 0}.

Denote by Dλ the group of diffeomorphisms generated by vector fields in C∞λ (TM). The

group Dν+1 acts on Aν and Xν by pull-back. Then Mν := Xν/Dν+1 is the moduli space

of torsion-free AC Spin(7)-structures on M with decay rate ν asymptotic to C. We want

to use the implicit function theorem for smooth maps between Banach spaces to prove

that Mν is an orbifold for particular rates ν. Therefore, we equip Aν and Dν+1 with

the L2
l,ν(Λ4T ∗M) and L2

l+1,ν+1(TM) topologies rather than the Frechet space topology of

smooth forms and vector fields. We choose some l ≥ 6, so that by Theorem 2.3.4 (i) we

have an embedding L2
l,ν ↪→ C

1,α
ν . The action of Dν+1 on Aν is continuous, Xν carries the

subspace topology of Aν , andMν the quotient topology, with respect to which we want to

prove the smooth manifold structure. As auxiliary objects we introduce Al,ν and Dl+1,ν+1,

the completions of Aν and Dν+1, respectively.

3.1.1 The space of torsion-free Spin(7)-structures and the stabiliser

Before we treat the moduli space Mν , we first study the space of torsion-free Spin(7)-

structures Xl,ν , which are L2
l,ν-regular, and the stabiliser

Iψ := {Φ ∈ Dl+1,ν+1 |Φ∗ψ = ψ}

of ψ in Dl+1,ν+1. Because isometries of smooth Riemannian metrics are smooth by a result

of Myers–Steenrod [MS39], Iψ can alternatively be defined as the stabiliser of ψ in Dν+1.

Using the implicit function theorem, we show that Xl,ν is a smooth manifold under a

suitable assumption on the rate ν.

Proposition 3.1.2. Suppose ν > −4, and that ν and ν + 1 are non-critical rates of the

operator d+ d∗. Then Xl,ν is a smooth manifold and the tangent space TψXl,ν is given by

the kernel of the linear map

d : TψAl,ν = L2
l,ν(Λ4

1 ⊕ Λ4
7 ⊕ Λ4

35)→ dΩ4
l,ν . (3.1.3)
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Proof. Xl,ν is the zero level set of the exterior derivative

d : Al,ν → dΩ4
l,ν . (3.1.4)

By Lemma 2.4.33 this is a smooth map between Banach manifolds because ν is not a critical

rate for d+d∗. By (2.1.5) we know that TψAl,ν = L2
l,ν(Λ4

1⊕Λ4
7⊕Λ4

35). The linearisation of

(3.1.4) at ψ is the map (3.1.3). Under our assumptions this map is surjective by Lemma

2.4.31. The statement follows from the implicit function theorem for smooth maps between

Banach spaces.

Remark 3.1.5. By Remark 2.4.32 in the L2-setting the linearisation of (3.1.4) cannot be

expected to be surjective if (W⊥)4
l,ν is non-trivial. Therefore, the space Xl,ν is in general

not smooth for L2-rates ν < −4.

Next we show that Iψ is finite. To prove this, it is enough to show that ψ cannot have

any continuous symmetries in Dν+1, i.e. that Killing vector fields of rate ν+1 vanish. This

implies that the stabiliser Iψ is discrete, and thus finite because it is also compact.

Proposition 3.1.6. Suppose ν < 0. Let ξ ∈ L2
l,ν+1(TM) be a Killing vector field for g, i.e.

Lξg = 0. Then ξ vanishes. Furthermore, the exterior derivative is injective on L2
l,ν(Λ3

8).

Proof. Because (M,ψ, g) is Ricci-flat, any Killing vector field is harmonic. If ν ≤ −1, then

ξ[ is a harmonic 1-form of non-positive decay rate and hence has to vanish by Lemma

2.4.26. If ξyψ ∈ L2
l,ν(Λ3

8) is closed, then ξ is a Killing vector field. The statement for

ν < −1 follows.

It is left to consider the case ν ∈ (−1, 0). By Theorem 2.3.27 there exists a critical rate

λ+ 1 < ν + 1 for the Laplace operator such that

ξ = χZ +O(rλ+1−ε), (3.1.7)

where

Z = rλ+1f∂r + rλX.

Here f is a function on Σ and X a vector field on Σ, and Z is gC-dual to a harmonic 1-form

on C(Σ) homogeneous of order λ+ 1.

Our goal is to show that Z is a Killing vector field for gC . Then by Lemma 2.4.21 Z

must vanish. Repeating the argument for critical rates λ + 1 ∈ (0, 1) shows that ξ is a

Killing vector field for g with non-positive decay rate, and therefore vanishes as in the case
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ν < −1. For general vector fields X,Y, V on the cone we have

LV g(X,Y ) = g(∇XV, Y ) + g(X,∇Y V ),

LV gC(X,Y ) = gC(∇C
XV, Y ) + gC(X,∇C

Y V ),

and therefore

(LV g − LV gC)(X,Y ) = (g − gC)(∇XV, Y ) + (g − gC)(X,∇Y V )

+ gC((∇X −∇C
X)V, Y ) + gC(X, (∇Y −∇C

Y )V )

We have |g− gC | = O(rν), |∇−∇C | = O(rν−1) as g is AC with rate ν, and |ξ| = O(rλ+1),

|∇ξ| = O(rλ) by (3.1.7) and elliptic regularity. Therefore, we get

LξgC = LξgC − Lξg = O(rν+λ) = O(rλ−ε)

for some ε > 0. On the other hand we have

LξgC = LZgC +O(rλ−ε)

and LZgC is homogeneous of rate λ. Therefore, LZgC = 0.

3.1.2 Slice construction for moduli space

Now we are ready to study the moduli spaceMν = Xν/Dν+1. We want to break the action

ofDν+1 onAν and in each orbit close to ψ choose in a smooth fashion a representative which

is unique up the the action of the stabiliser Iψ. Ebin [Ebi70] showed how to find a slice for

the diffeomorphism action on the space of Riemannian metrics. Using Proposition 3.1.2

and simplifications of Ebin’s approach in our setting, which were explained by Nordström

[Nor08], we find that a good slice Sψ around ψ needs to satisfy three properties:

Theorem 3.1.8. [Nor08, Section 3.1.3] Let K be a closed subspace which is a complement

of Tψ(Dl+1,ν+1 · ψ) in TψAl,ν . Let Sψ be a smooth submanifold of Al,ν which contains ψ

and satisfies

(S.1) TψSψ = K,

(S.2) Sψ is Iψ-invariant,

(S.3) all ψ̃ ∈ Rψ := Sψ ∩ Xl,ν are smooth 4-forms on M .

Then we have:

(i) Rψ is a smooth manifold,
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(ii) the map

Rψ ⊂ Xν →Mν = Xν/Dν+1, ψ̃ 7→ ψ̃Dν+1

is open,

(iii) the induced map Rψ/Iψ →Mν is a homeomorphism onto its image,

(iv) the map

Dl+1,ν+1 ×Rψ → Xl,ν (3.1.9)

is a smooth submersion onto a neighbourhood of ψ.

Once we find Sψ, we can use Theorem 3.1.8 (i)-(iv) to conclude that under the assump-

tions on ν in Proposition 3.1.2Mν is an orbifold: around ψ we can use Rψ/Iψ as a chart,

and the transition to another such chart Rψ̃/ψ̃ centred at ψ̃ ∈ Xν can be described via a

section of the submersion (3.1.9). If Iψ is trivial or acts trivially on Rψ, we can strengthen

our conclusion and find thatMν is a smooth in a neighbourhood of ψ. One particular way

to check if the action of Iψ on Rψ is trivial is to look at the projection Rψ → H4(M,R)

to the cohomology group. This is well-defined because elements in Rψ are smooth, closed

4-forms. Because elements in Iψ are isotopic to the identity, the projection is Iψ-invariant.

If Rψ → H4(M,R) is an embedding, all forms in Rψ therefore represent different points

in the moduli space and we can use Rψ as a smooth chart.

To wrap up our discussion of the moduli space Mν , we are left to find a good slice

Sψ as in Theorem 3.1.8. To do so, we first determine a complement of Tψ(Dl+1,ν+1 · ψ)

in TψAl,ν = L2
l,ν(Λ4

1 ⊕ Λ4
7 ⊕ Λ4

35). To compute Tψ(Dl+1,ν+1 · ψ), let Ft be the 1-parameter

subgroup of diffeomorphisms generated by some X ∈ C∞ν+1(TM). Then

d

dt

∣∣∣∣
t=0

F ∗t ψ = LXψ = Xydψ + d(Xyψ) = d(Xyψ).

By (2.1.2) we get Tψ(Dν+1·ψ) = d(C∞ν+1(Λ3
8)). Analogously Tψ(Dl+1,ν+1·ψ) = d(L2

l+1,ν+1(Λ3
8)).

In particular, Tψ(Dl+1,ν+1 ·ψ) is closely related to the image of the negative Dirac operator

(2.1.7b), which we will exploit to determine a complement. In the following let Kl,ν be a

complement of d ker( /D−)ν+1 in L2
l,ν(Λ4

35). By Lemma 2.4.27 we have

Kl,ν
∼=

L2
l,ν(Λ4

35) if ν ∈ (−4,−1],

L2
l,ν(Λ4

35)/d ker( /D−)ν+1 if ν ∈ (−1, 0).
(3.1.10)
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Proposition 3.1.11. We have the decomposition

L2
l,ν(Λ4

1 ⊕ Λ4
7 ⊕ Λ4

35) = Tψ(Dl+1,ν+1 · ψ)⊕Kl,ν

Proof. Let α ∈ L2
l,ν(Λ4

1 ⊕ Λ4
7 ⊕ Λ4

35). If ν ∈ (−4, 0), the negative Dirac-operator

( /D−)l+1,ν+1 : L2
l+1,ν+1(Λ3

8)→ L2
l,ν(Λ4

1 ⊕ Λ4
7)

is surjective by Corollary 2.4.27. Therefore, we can write

π1+7α = /D−(Xyψ) = π1+7d(Xyψ)

for some Xyψ ∈ L2
l+1,ν+1(Λ3

8). Then

α− d(Xyψ) ∈ L2
l,ν(Λ4

35).

This proves

L2
l,ν(Λ4

1 ⊕ Λ4
7 ⊕ Λ4

35) = Tψ(Dl+1,ν+1 · ψ) + L2
l,ν(Λ4

35)

for ν ∈ (−4, 0). Assume that d(Xyψ) ∈ Tψ(Dl+1,ν+1 · ψ) ∩ L2
l,ν(Λ4

35) for some Xyψ ∈
L2
l+1,ν+1(Λ3

8). Then /D−(Xyψ) = π1+7d(Xyψ) = 0. This proves the statement.

By Proposition 3.1.11 we want to determine a slice Sψ around ψ which satisfies the

properties (S.1)-(S.3) from Theorem 3.1.8 and at ψ has the tangent space Kl,ν . A candidate

for such a slice is the graph of the map Θ, which we have defined in (2.1.9), over a

neighbourhood of ψ in the affine space ψ +Kl,ν . We set

Sψ := {Π(η) = ψ + η −Θ(η) | η ∈ U ⊂ Kl,ν},

where U is a sufficiently small neighbourhood of the origin in Kl,ν . Properties (S.1) and

(S.2) follow from the properties (i)-(iii) of the maps Π and Θ. Next we proof property

(S.3):

Proposition 3.1.12. All elements in a neighbourhood of ψ in Rψ are smooth.

Proof. By the definition of Sψ each ψ̂ ∈ Rψ sufficiently close to ψ can be written as

Π(ξ) = ψ + ξ −Θ(ξ)

for some ξ ∈ L2
l,ν(Λ4

35). Using the Hodge star operator with respect to ψ, the condition
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dΠ(ξ) = 0 leads to the equation

(d+ d∗)ξ − dΘ(ξ)− ∗dΘ(ξ) = 0,

which can be re-written as

(d+ d∗)ξ +Q(ξ,∇ξ) = R(ξ),

where Q(x, y) and R(x) are smooth maps which depend on ψ and its derivatives, and

Q(x, y) is linear in y and Q(0, y) = 0 for all y. Because the C0
ν -norm of ξ is controlled by its

L2
l,ν-norm via the Sobolev embedding L2

l,ν ↪→ C
1,α
ν , the linear operator L = d+d∗+Q(ξ,∇·)

is C0-close to d+d∗ if the slice Sψ is chosen sufficiently small and therefore elliptic. Again by

Sobolev embedding we can assume the induction hypothesis ξ ∈ Cq,αν for q ≥ 1. Theorem

2.3.19 implies ξ ∈ Cq+1,α
ν . By induction we see that ξ is smooth. We conclude that Π(ξ) is

smooth because Π and ξ are smooth.

We have now proved thatMν is an orbifold under suitable assumptions on the rate ν.

To compute its dimension, we determine the tangent space of the pre-moduli space Rψ at

ψ.

Lemma 3.1.13. The tangent space of the pre-moduli space Rψ at ψ is given by

TψRψ ∼=

(H4
35)ν if ν ∈ (−4,−1],

(H4
35)ν/d ker( /D−)ν+1 if ν ∈ (−1, 0).

Proof. By construction we have

TψRψ = TψXl,ν ∩ TψSψ.

Therefore, by Lemma 3.1.2 TψRψ is the kernel of the linear map

d : TψSl,ν → dΩ4
l,ν .

The statement follows with formula (3.1.10).

Remark 3.1.14. As explained in the beginning of this section the gauge fixing normalises

the scale of the AC Spin(7)-structures. However, scaling is still seen by the moduli space

Mν . In the following we explain that an AC Spin(7)-manifold with decay rate ν always

induces a canonical Spin(7)-deformation via scaling. Therefore, if there is a torsion-free

AC Spin(7)-structure on M which decays to the cone C precisely at rate ν ∈ (−4, 0), by
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Lemma 3.1.13 the dimension of the space (H4
35)λ must increase as λ crosses ν. This gives

a criterion to exclude the existence of torsion-free AC Spin(7)-structures at certain rates.

The vector field V = r∂r generates the flow

Φλ(r, x) = (eλr, x)

on the cone C(Σ). The action of Φλ scales the conical Spin(7)-structure:

Φ∗log λψC = λ4ψC .

We can transplant the vector field to M by setting V̂ = χV . Denote its flow by Φ̂λ. As

noted above the rescaled AC Spin(7)-structures λ4ψ are not in Aλ and therefore do not

contribute to Mν . However, up to asymptotic decay we can reverse scaling by λ4 by the

action of Φ̂1/ log λ. Set

ψλ := λ4Φ̂∗(1/ log λ)ψ.

To see that ψλ decays to ψ with rate ν write

ψ(r, x) = dr ∧ ϕ(r, x) + ∗ϕ(r, x).

Then we have

ψλ(r, x) = λ3dr ∧ ϕ(r/λ, x) + λ4 ∗ ϕ(r/λ, x).

With respect to the norm given by gC we have

|ψλ(r, x)− ψC(r, x)|2 = |ψλ(r, x)− λ4ψC(r/λ, x)|2

=λ3|ϕ(r/λ, x)− (r/λ)3ϕΣ(x)|2 + λ4| ∗ϕ ϕ(r/λ, x)− (r/λ)4 ∗Σ ϕΣ(x)|2

=O(rν)

because ψ decays to ψC with rate ν.

The family ψλ induces the infinitesimal deformation

d

dλ

∣∣∣∣
λ=0

ψλ = 4ψ − LV̂ ψ.

The results in this section prove

Proposition 3.1.15. Suppose ν ∈ (−4, 0) and that ν and ν + 1 are non-critical rates of

the operator d + d∗. Then the moduli space Mν is an orbifold and the orbifold chart Rψ
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at ψ has the tangent space

TψRψ ∼=

(H4
35)ν if ν ∈ (−4,−1],

(H4
35)ν/d ker( /D−)ν+1 if ν ∈ (−1, 0).

(3.1.16)

Furthermore, if the stabiliser Iψ of ψ is trivial or acts trivially on the orbifold chart Rψ,

the moduli space Mν is a smooth in a neighbourhood of ψ. In particular, this is true (after

possibly shrinking Rψ) if the projection TψRψ → H4(M,R) is injective.

3.2 Computation of infinitesimal deformations

The aim of this section is to give a more precise description of the infinitesimal deformations

(3.1.16). With the terminology introduced in Definition 2.3.21 and section 2.5 we will show

Proposition 3.2.1. Let (M,ψ, g) be an AC Spin(7)-manifold. If ν > −4, we have

(H4
35)ν ∼= (H4

−)L2 ⊕ imΥ4 ⊕
⊕

λ∈D(dASD)∩(−4,ν)

KASD(λ).

Proposition 3.2.1 will follow from Proposition 3.2.7 and Corollary 3.2.9. We need to

study how (H4
35)ν changes as ν passes a critical rate. Because (H4

35)ν = ker(dASD)l,ν and

(dASD)l,ν is surjective for generic rates ν > −4 by Lemma 2.4.31, this corresponds to the

change in ind (dASD)l,ν as ν crosses a critical rate. In the introduction we have explained

the index change at critical rates for uniformly elliptic operators. However, dASD is not

elliptic. Therefore, we need to adapt Theorem 2.3.28 to our non-elliptic setting. To simplify

the presentation we will first explain how it can be adjusted to the non-elliptic operator

d+ d∗|Ωk . The main ingredient in the proof of Theorem 2.3.28 is Theorem 2.3.27. We will

first adapt this to our situation. Compare with [KL20, Lemma 4.28].

Proposition 3.2.2. Let (M,ψ) be an AC Spin(7)-manifold of rate ν. Let λ0 be a critical

rate for d+d∗ and let β2 < β1 be two non-critical rates for d+d∗ such that λ0 is the unique

critical rate for the operator d+ d∗ in the interval [β2, β1] and λ0 + ν < β2.

If γ ∈ Ωk
l+1,β1

with (d + d∗M)γ ∈ Ω•l,β2−1, then there exist unique η ∈ KΛk(λ0) and

γ̃ ∈ Ωk
l+1,β2

with

γ = χη + γ̃. (3.2.3)

Moreover, η and γ̃ depend linearly on γ. Here χ is the cut-off function from Definition

2.2.3.

Proof. We cannot apply Theorem 2.3.27 to d+d∗M |Ωk , but we can embed Ωk ⊂ Ω• and then

apply Theorem 2.3.27 to d + d∗M : Ω• → Ω•. More specifically, there exist ω ∈ Kd+d∗(λ0)
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and γ̃ ∈ Ω•l+1,β2
such that

γ = ω + γ̃

on the end. The price we have to pay for using Theorem 2.3.27 is that a priori ω can be

a mixed degree form. Therefore, we need to show that all except the degree k part of ω

vanish. Because γ is a k-form, for l 6= k the l-form component of ω has to decay with rate

β2 to cancel with the degree l component of γ̃. However, each non-zero degree component

of ω is homogeneous of rate λ0 > β2. Therefore, ω is a pure degree k-form. Finally, it is

straightforward that γ̃ is purely of degree k as well.

Proposition 3.2.4. Let (M,ψ) be an AC Spin(7)-manifold of rate ν. Let λ0 be a critical

rate for dASD and let β2 < β1 be two non-critical rates for d+d∗ such that λ0 is the unique

critical rate for the operator d+ d∗ in the interval [β2, β1] and λ0 + ν < β2.

If γ ∈ L2
l+1,β1

(Λ4
35) with dγ ∈ Ω5

l,β2−1, then there exist unique ω ∈ KASD(λ0) and

γ̂ ∈ L2
l+1,β2

(Λ4) such that

γ = χω + γ̂.

This decomposition depends linearly on γ.

Proof. Because γ is anti-self-dual, we have d∗Mγ = − ∗M d ∗M γ = ∗Mdγ. Because the

Hodge-star is an isometry and dγ ∈ Ω5
l,β2−1, we know that d∗Mγ ∈ Ω3

l,β2−1. By embedding

Λ4
35 ⊂ Λ4 we can use Proposition 3.2.2 to get ω ∈ KΛ4(λ0) and γ̂ ∈ Ω4

l+1,β2
such that

γ = χω + γ̂.

Projecting on the self-dual part gives

0 = χ(ω + ∗Cω) + χ(∗M − ∗C)ω + γ̂ + ∗M γ̂. (3.2.5)

By Lemma 2.3.5 the middle term in (3.2.5) decays like λ0 + ν. Because λ0 + ν < β2, all

terms on the right-hand side of (3.2.5) except (ω + ∗Cω) decay with rate β2 < λ0 while

(ω + ∗Cω) decays with rate λ0. Therefore, (ω + ∗Cω) has to vanish, i.e. ω is of type 35

with respect to the Spin(7)-structure on the cone, and in particular ω ∈ KASD(λ0).

Proposition 3.2.6. Let λ0 be a critical rate for the operator d+ d∗M |Ωk , and choose ε > 0

small enough such that λ0 is the unique critical rate for the operator d + d∗M |Ωk in the
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interval (λ0 − ε, λ0 + ε) and λ0 + ν < λ0 − ε. Then there exists an injective linear map

T kλ0
: Hkλ0+ε/Hkλ0−ε → KΛk(λ0).

In the same setting for the operator dASD there exists an injective linear map

TASD
λ0

: (H4
35)λ0+ε/(H4

35)λ0−ε → KASD(λ0).

Proof. Let γ ∈ Hkλ0+ε. Because (d+d∗M)γ = 0, we are in the situation of Proposition 3.2.2.

Hence there is a unique η ∈ KΛk(λ0) such that

γ = χη +O(rλ0−ε).

We set T kλ0
(γ) = η. It is clear that η = 0 if γ ∈ Hkλ0−ε. Hence T kλ0

is well-defined. Because η

depends linearly on γ, the map is linear. If T kλ0
(γ) = 0, then γ = O(rλ0−ε). Therefore, T kλ0

is injective. The statement for dASD follows analogously by using Proposition 3.2.4.

Proposition 3.2.7. If λ0 > −4, the map TASD
λ0

is an isomorphism.

Proof. We need to prove the surjectivity of TASD
λ0

. Suppose η ∈ KASD(λ0). As λ0 6= −4, η

is exact on the cone by Remark 2.4.2, i.e. there exists a 3-form ξ on the cone such that

η = dξ. But then d(χη) = d(χη − d(χξ)) ∈ dΩ4
cs. (dASD)l,λ−ε is surjective by Lemma

2.4.31 as ε can be chosen small enough such that λ − ε > −4. Therefore, there exists

γ̂ ∈ L2
l,λ−ε(Λ

4
35) such that γ = χη + γ̂ is closed.

3.2.1 The exceptional rate −4

To finish the proof of Proposition 3.2.1 it remains to compute the index change for the

operator (dASD)l,λ at the exceptional critical rate λ = −4. We are going to prove a more

general statement by considering the operator d+ d∗M restricted to 4-forms at the critical

rate λ = −4. The main result of this section is

Proposition 3.2.8. The map T 4
−4 takes values in r−1dr ∧ (imΥ3)⊥ + imΥ4, and

T 4
−4 : H4

−4+ε/H4
−4−ε → r−1dr ∧ (imΥ3)⊥ + imΥ4

is an isomorphism.

The corresponding statement for the operator dASD is a simple consequence of Propo-

sition 3.2.8.
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Corollary 3.2.9. The map TASD
−4 takes values in the space

{r−1dr ∧ (− ∗Σ β) + β | β ∈ imΥ4} ∼= imΥ4,

and

TASD
−4 : (H4

35)−4+ε/(H4
35)−4−ε → imΥ4

is an isomorphism.

Proof. Because

(H4
35)−4+ε/(H4

35)−4−ε ⊂ H4
−4+ε/H4

−4−ε,

the map TASD
−4 is the map T 4

−4 restricted to anti-self-dual forms. The statement follows

from Theorem 3.2.8 and the description of KASD(−4) in Remark 2.4.2.

In the remainder of this subsection we will prove Proposition 3.2.8 in several steps.

Lemma 3.2.10. The map T 4
−4 takes values in r−1dr ∧ (imΥ3)⊥ + imΥ4, i.e. there is an

injective linear map

T 4
−4 : H4

−4+ε/H4
−4−ε → r−1dr ∧ (imΥ3)⊥ + imΥ4.

Proof. Let γ ∈ H4
−4+ε. Then by Proposition 3.2.6 and Corollary 2.4.18 there exist harmonic

forms α ∈ Ω3(Σ) and β ∈ Ω4(Σ) such that

γ = χ(r−1dr ∧ α+ β) +O(r−4−ε)

and T 4
−4(γ) = r−1dr ∧ α + β. By Lemma 2.5.7 the part of γ which decays like −4 − ε is

exact on the end. Therefore, Υ4([γ]) = [β] and [β] ∈ imΥ4. The same argument for ∗γ
gives [∗α] ∈ imΥ4 and hence [α] ∈ (imΥ3)⊥ by Lemma 2.5.4.

The main difficulty in proving Proposition 3.2.8 is to show surjectivity. The next

Lemma is a first step towards this goal. However, because of the structure of KΛ4(−4)

more work will be needed later on.

Lemma 3.2.11. (i) Let β ∈ imΥ4. Then there exist α ∈ (imΥ3)⊥ and γ ∈ H4
−4+ε such

that T 4
−4(γ) = r−1dr ∧ α+ β.

(ii) Let α ∈ (imΥ3)⊥. Then there exist β ∈ imΥ4 and γ ∈ H4
−4+ε such that T 4

−4(γ) =

r−1dr ∧ α+ β.
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Proof. (i) By Lemma 2.5.3 there exists ζ ∈ Ω4
cs(M) such that ξ = χβ + ζ is closed.

Because ξ ∈ Ω4
l,−4+ε we can apply the Hodge decomposition from Proposition 2.4.28 to

deduce that there is a γ ∈ H4
−4+ε cohomologous to ξ. In particular Υ4([γ]) = Υ4([ξ]) = β.

By Lemma 3.2.10 there is some α ∈ im(Υ3)⊥ with γ = χ(r−1dr ∧ α + β) +O(r−4−ε) and

T 4
−4(γ) = r−1dr ∧ α+ β.

(ii) By Lemma 2.5.4 ∗α ∈ imΥ4. The statement follows from (i).

Remark 3.2.12. Note that in Lemma 3.2.11 (i) we cannot choose α. It just says that there

exists some. This in particular means that we cannot yet prove that T 4
−4 : H4

−4+ε/H4
−4−ε →

r−1dr∧ (imΥ3)⊥+ imΥ4 is surjective, and therefore an isomorphism. The reason is that in

the proof of Lemma 3.2.11 we pass from a closed form ξ = χβ +O(r−4−ε) to a cohomolo-

gous closed and co-closed form γ = ξ+dζ for some ζ ∈ Ω3
l+1,−3+ε. Note that d(χ log rα) =

χ(r−1dr ∧ α) +O(r−4−ε) and χ log rα ∈ Ω3
l+1,−3+ε. Hence by transitioning from ξ to γ a

priori there could be introduced a 3-form α such that γ = χ(r−1dr∧α+β) +O(r−4−ε). It

will take significantly more effort to rule this out. This difficulty is unique to change in har-

monic middle dimensional degree forms at the L2-rate of even dimensional AC manifolds.

On odd dimensional cones such as in the G2-setting this difficulty does not appear.

Our idea to overcome this difficulty is to interpret H4
−4+ε/H4

−4−ε as the kernel change

of the elliptic operator

d+ d∗ : Ωeven
l,−4±ε → Ωodd

l−1,−5±ε.

This will allow us to instead compute the change in kernel at the critical rate λ = −3 of

the adjoint operator

d+ d∗ : Ωodd
l,−3∓ε → Ωeven

l−1,−4∓ε,

which is easier. In the following we make this idea precise.

Lemma 3.2.13. We have

H4
−4+ε/H4

−4−ε
∼= Heven

−4+ε/Heven
−4−ε.

Proof. By Lemma 2.4.23 every degree component of a form inHeven
−4+ε is closed and co-closed

and therefore

Heven
−4+ε/Heven

−4−ε
∼=

4⊕
k=0

H2k
−4+ε/H2k

−4−ε.

By Corollary 2.4.18 we have KΛk(−4) = 0 for k = 0, 2, 6, 8. Therefore by Proposition 3.2.6

Hk−4+ε/Hk−4−ε = 0 for k = 0, 2, 6, 8. The statement follows.
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If we consider forms of degrees 3 and 5 at rate λ = −3, we don’t have the problem

described in Remark 3.2.12.

Lemma 3.2.14. (i) The map T 3
−3 takes values in imΥ3 and

T 3
−3 : H3

−3+ε/H3
−3−ε → imΥ3

is an isomorphism.

(ii) The map T 5
−3 takes values in rdr ∧ (imΥ4)⊥ and

T 5
−3 : H5

−3+ε/H5
−3−ε → rdr ∧ (imΥ4)⊥

is an isomorphism.

Proof. (i) By Corollary 2.4.18 we have KΛ3(−3) = H3(Σ,R). The proof that the image of

T 3
−3 is contained in imΥ3 is analogous to the proof of Lemma 3.2.10. The proof that it is

surjective onto imΥ3 is analogous to the proof of Lemma 3.2.11.

(ii) The statement follows from (i) by applying the Hodge-∗ operator.

We have

H3
−3+ε/H3

−3−ε ⊕H5
−3+ε/H5

−3−ε ⊂ Hodd
−3+ε/Hodd

−3−ε.

To conclude equality we would need that for any element in Hodd
−3+ε all individual degree

components are closed and co-closed. In general this statement starts to fail at rate −3 (see

Lemma 2.4.23). However, because each individual degree component of the leading order

term in Kodd(−3) is closed and co-closed, we can improve Lemma 2.4.23 to rate −3 + ε for

odd degree forms.

Lemma 3.2.15. For all elements in Hodd
−3+ε each individual degree component is closed and

co-closed.

Proof. Let γ = γ1 + γ3 + γ5 + γ7 ∈ Hodd
−3+ε. By Theorem 2.3.27 there exist η ∈ Kodd(−3)

and γ̂ ∈ Ωodd
l,−3−ε such that

γ = χη + γ̂.

Because each degree component of η is closed and co-closed on the cone by Lemma 2.4.10,

by Lemma 2.3.5 dγk ∈ Ωk+1
l−1,4−ε and d∗Mγk ∈ Ωk−1

l−1,−4−ε for k = 1, 3, 5, 7. Therefore, we can

apply Proposition 2.3.13 to integrate by parts:

‖dγk‖2L2 + ‖d∗γk‖2L2 = 〈dγk, dγk〉L2 + 〈d∗Mγk, d∗Mγk〉L2 = 〈∆γk, γk〉L2 = 0.
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Corollary 3.2.16. We have

Hodd
−3+ε/Hodd

−3−ε = H3
−3+ε/H3

−3−ε ⊕H5
−3+ε/H5

−3−ε = imΥ3 + rdr ∧ (imΥ4)⊥.

Proof. This follows immediately from Lemmas 3.2.14 and 3.2.15.

Proof of Theorem 3.2.8. By Lemma 3.2.13 we can compute the change in kernel of the

operator (d + d∗M )even
λ at rate λ = −4 instead of the operator d + d∗M restricted to 4-

forms. The kernel change of (d+d∗)even
λ corresponds to the cokernel change of the operator

(d+d∗M )odd
λ at rate λ = −3. Using Theorem 2.3.28 and Corollary 3.2.16 we have a complete

understanding of that. In formulas:

dimH4
−4+ε − dimH4

−4−ε = dimHeven
−4+ε − dimHeven

−4−ε

= dim ker(d+ d∗M)even
−4+ε − dim ker(d+ d∗M)even

−4−ε

= dim Coker(d+ d∗M)odd
−3−ε − dim Coker(d+ d∗M)odd

−3+ε

= (ind(d+ d∗M)odd
−3+ε − ind(d+ d∗M)odd

−3−ε)− (dim ker(d+ d∗M)odd
−3+ε − dim ker(d+ d∗M)odd

−3−ε)

= (dimH3(Σ,R) + dimH4(Σ,R))− (dim imΥ3 + dim(Υ4)⊥)

= dim(imΥ3)⊥ + dim imΥ4.

Therefore the injection

T 4
−4 : H4

−4+ε/H4
−4−ε → r−1dr ∧ (imΥ3)⊥ + imΥ4.

from Lemma 3.2.10 is surjective.

In the following we describe an alternative proof of the surjectivity in Proposition 3.2.8.

Let β be the harmonic representative of any class in imΥ4. To prove Theorem 3.2.8 it is

enough to find ξ ∈ C∞−4−ε(Λ
4) such that

(d+ d∗)(χβ) = (d+ d∗)ξ. (3.2.17)

Then γ = χβ−ξ ∈ H4
−4+ε and Υ4[γ] = [β]. By using linearity and the Hodge-∗ operator we

then can solve equation (3.2.17) if we replace β by any element in r−1dr∧(imΥ3)⊥+imΥ4.

The main ingredient in the alternative proof is Lemma 2.5.4. It allows to show that

the obstructions to solve (3.2.17) vanish. Let m be an arbitrary integer at least 1. Even

though χβ lies just in Ω4
m,−4+ε, we get an improved decay rate for (d+ d∗)(χβ). Because

β is closed and co-closed on the cone by Lemma 2.3.5 we have (d + d∗)(χβ) ∈ Ωodd
m−1,−5−ε
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if we choose ε small enough such that 2ε < −ν. To sum up we consider the operator

d+ d∗ : Ωeven
m,−4−ε → Ωodd

m−1,−5−ε

and want to determine if (d+ d∗)(χβ) is in the image. The adjoint operator is given by

d+ d∗ : Ωodd
l,−3+ε → Ωeven

l−1,−4+ε.

By the Fredholm alternative we need to show

〈(d+ d∗)(χβ), σ〉L2 = 0

for any σ ∈ Hodd
−3+ε. By Proposition 3.2.6 and Corollary 2.4.18 we can write σ = σ+ + σ−,

where

σ+ = χ(ζ + rdr ∧ η)

with ζ ∈ imΥ3, η ∈ (imΥ4)⊥, and σ− ∈ Ωodd
l,−3−ε . Standard integration by parts from

Lemma 2.3.13 gives

〈(d+ d∗)(χβ), σ〉 = 〈(d+ d∗)(χβ), σ+〉+ 〈(d+ d∗)(χβ), σ−〉

= 〈(d+ d∗)(χβ), σ+〉+ 〈χβ, (d+ d∗)σ−〉

= 〈(d+ d∗)(χβ), σ+〉 − 〈χβ, (d+ d∗)σ+〉.

Therefore it is enough to prove the integration by parts

〈(d+ d∗)(χβ), σ+〉 = 〈χβ, (d+ d∗)σ+〉.

Note that this does not merely follow from Lemma 2.3.13 because the smallest possible λ

such that χβ ∈ L2
k,λ(Λeven) is strictly greater than −4 and the smallest possible µ such

that σ+ ∈ L2
k,µ(Λodd) is strictly greater than −3, and hence the sum is strictly greater

than −7. Therefore, we are in a situation in which Lemma 2.3.13 fails. The idea is to use

Lemma 2.5.4 to adapt the proof of integration by parts to this situation. First note that
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we can write ∗M(χrdr ∧ η) = χ ∗Σ η + ω with some ω ∈ C∞−3+ν(Λ3). We have

〈d(χβ), σ+〉 = 〈d(χβ), χrdr ∧ η〉 =

∫
M

(d(χβ)) ∧ ∗(χrdr ∧ η)

=

∫
M
d
(
(χβ) ∧ ∗(χrdr ∧ η)

)
−
∫
M

(χβ) ∧ d ∗ (χrdr ∧ η)

=

∫
M
d
(
(χβ) ∧ (χ ∗ η + ω)

)
+

∫
M

(χβ) ∧ ∗d∗(χrdr ∧ η)

= lim
r→∞

∫
{r}×Σ

β ∧ ∗η + lim
r→∞

∫
{r}×Σ

β ∧ ω|{r}×Σ + 〈χβ, d∗σ+〉

= lim
r→∞

r7〈β, η〉L2(Σ) + lim
r→∞

∫
{r}×Σ

β ∧ ω|{r}×Σ + 〈χβ, d∗σ+〉

=〈χβ, d∗σ+〉.

In the second to last line the first limit vanishes because β ⊥L2 η and the second limit

vanishes because the integrand decays with rate −4− 3 + ν < −7.

〈d∗(χβ), σ+〉 = 〈χβ, dσ+〉 follows similarly.

3.2.2 Summary

We now summarise our results and give a precise formulation of Theorem A. In Proposition

3.1.15 we have seen that for generic rates in the non-L2 regime the moduli space Mν is

an orbifold and that infinitesimal deformations of a torsion-free AC Spin(7)-structure ψ

are related to closed anti-self-dual 4-forms on (M,ψ). So far we have proven Proposition

3.2.1 in this section, showing that the jump of (H4
35)ν at a critical rate λ is given by

KASD(λ). Before we formulate our main theorem, we relate forms in KASD(λ) to solutions

of a differential equation purely on the link (Σ, ϕΣ) of the asymptotic cone.

Proposition 3.2.18. Define

E(Σ, ϕΣ, λ) := {ζ ∈ Ω3
27(Σ)| dζ = −(λ+ 4) ∗ ζ}.

Then we have

KASD(λ) ∼=

E(Σ, ϕΣ, λ) ifλ ∈ (−4,−1],

E(Σ, ϕΣ, λ)⊕KΛ1(λ+ 1) ifλ ∈ (−1, 0).

Proof. By Remark 2.4.2 and Lemma 2.4.17 any η ∈ KASD(λ) is of the form

η = rλ(r3dr ∧ α+ r4(− ∗ α))
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with

dα = −(λ+ 4) ∗ α. (3.2.19)

The G2-structure ϕΣ induces the decomposition Ω3(Σ) = Ω3
1(Σ) ⊕ Ω3

7(Σ) ⊕ Ω3
27(Σ) of

3-forms which we can use to write

α = α1 + α7 + α27 = fϕΣ +Xy ∗ ϕΣ + ζ, (3.2.20)

where f is a function and X a vector field on Σ, and ζ ∈ Ω3
27(Σ). Our goal is to show that

if λ ∈ (−4, 1) then f and X have to vanish. The main idea to prove this is to interpret the

condition dη = 0 on the cone as an equation involving the Laplace operator and use the

fact that the Laplace operator preserves the type decomposition on the cone with respect

to the Spin(7)-structure. More specifically, because λ 6= −4 we can write η = dβ, where

β = 1
λ+4r

λ+4α. The fact that η is a closed anti-self-dual 4-form on C(Σ) homogeneous of

rate λ implies that β is a harmonic 3-form on C(Σ) homogeneous of rate λ+ 1. Indeed by

(2.4.1) β is co-closed because α is co-closed, and hence

∆β = dd∗β + d∗dβ = d∗η = 0.

Next we relate the type decomposition (3.2.20) of α with respect to the G2-structure on

the link to the type decomposition of β = β8 + β48 with respect to the Spin(7)-structure

on the cone. Because the decomposition is linear in α, we compute the contributions of

α1, α7, α27 separately. We have

rλ+4

λ+ 4
α1 =

rλ+4

λ+ 4
fϕΣ =

rλ+1

λ+ 4
(f∂r)yψC , (3.2.21)

and α1 only contributes to β8.

Write π8(rλ+4α7) = Y yψ for some vector field on C(Σ) to be determined. By the

computation 3.2.21 Y does not contain a ∂r component. Therefore, we get

π8(rλ+4α7) = −r3dr ∧ (Y yϕΣ) + r4Y y ∗ ϕΣ,

π48(rλ+4α7) = rλ+4XyψC − π8(rλ+4α7) = dr ∧ (r3Y yϕΣ) + (rλ+4X − r4Y )y ∗ ϕΣ.

The characterising equation π48(rλ+4α7)∧ψ = 0 for forms of type 48 leads to the equation

dr ∧ ∗ϕΣ ∧ (r7Y yϕΣ) + dr ∧ ϕΣ ∧ ((rλ+7X − r7Y )y ∗ ϕΣ)

+ ∗ ϕΣ ∧ ((rλ+8X − r8Y )y ∗ ϕΣ) = 0,
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which is equivalent to the system

∗ϕΣ ∧ ((rλ+8X − r8Y )y ∗ ϕΣ) = 0,

∗ϕΣ ∧ (r7Y yϕΣ) + ϕΣ ∧ ((rλ+7X − r7Y )y ∗ ϕΣ) = 0.

By [Kar05, Lemma 2.2.3] the first equation is always true while the second equation is

equivalent to

3 ∗ Y [ − 4 ∗ (rλX − Y )[ = 0,

which gives Y = 4
7r
λX.

Because ζ ∧ ϕ = 0 and ζ ∧ ∗ϕ = 0, we immediately get ζ ∧ ψ = 0. Hence, α27 only

contributes to β48.

Adding the individual contributions gives β8 = Zyψ with

Z =
rλ

λ+ 4

(
rf∂r +

4

7
X

)
.

Because the Laplace operator preserves type decompositions, we get ∆β8 = 0 and that

Z[ = rλ+1

λ+4 (fdr + 4
7rX

[) is a homogeneous harmonic 1-form of rate λ+ 1. Here Z[ is dual

to Z on the cone and X[ is dual to X on Σ. If λ ≤ −1, then Z[ must vanish by Lemma

2.4.19, and the statement follows in this case.

We are left to finish the proof for λ ∈ (−1, 0). In this case Z[ is closed and co-closed by

Lemma 2.4.19. If α′ = fϕ+Xy∗ϕ+ζ ′ is another solution of (3.2.19), then ζ ′−ζ ∈ E(Σ, λ).

This proves

dim(KASD(λ)/E(Σ, ϕΣ, λ)) ≤ dimKΛ1(λ+ 1). (3.2.22)

By Lemma 2.4.20 β8 = Z[yψ is in the kernel of /D−. Therefore, dβ8 lies in KASD(λ). The

equation dβ8 = LZψC and Lemma 2.4.21 show that dβ8 is non-zero if Z is non-zero. This

proves the reverse inequality of (3.2.22).

It follows straight from the definition that all forms ζ ∈ E(Σ, ϕΣ, λ) are co-closed

eigenforms of the Hodge-Laplacian satisfying

∆ζ = (λ+ 4)2ζ. (3.2.23)

Similar to the Spin(7)-setting where trace-less symmetric 2-tensors can be identified with

4-forms of type 35, in the G2-setting trace-less symmetric 2-tensors can be identified with

3-forms of type 27. We will denote this isomorphism by i : S2
0(T ∗Σ) → Λ3

27. Even though

the Laplace-operator does not preserve the type decompositions on (Σ, ϕΣ) because ϕΣ is
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not torsion-free, we can still relate the eigenforms E(Σ, ϕΣ, λ) of the Hodge-Laplacian to

eigenforms of the Lichnerowicz-Laplacian with a shift of the eigenvalue.

Proposition 3.2.24. Suppose ζ ∈ E(Σ, ϕΣ, λ). Setting u := i−1(ζ) we have ∆Lu =

(λ2 + 6λ+ 12)u.

Proof. The statement follows from [AS12, Proposition 6.1]: Alexandrov–Semmelmann de-

rive the formula

i∆i−1(ζ) = ∆ζ − τ0

2
∗ (dζ)Λ4

7
+
τ0

2
∗ (dζ)Λ4

27
+
τ2

0

4
ζ,

where the constant τ0 is given by the defining equation dϕ = τ0 ∗ ϕ for the nearly parallel

G2-structure on Σ. Here one needs to take into account that in our chosen orientation both

∗ and τ0 differ from those in [AS12] by a sign. Therefore, the formula carries over to our

setting without changes. By (2.2.1) in our scale we have τ0 = 4. Because dζ = −(λ+ 4)∗ ζ
we have (dζ)Λ4

7
= 0 and (dζ)Λ4

27
= dζ. With (i) we get

i∆i−1(ζ) = (λ+ 4)2ζ − 2(λ+ 4)ζ + 4ζ = (λ2 + 6λ+ 12)ζ.

On the Einstein manifold (Σ, ϕΣ, gΣ) with scalar curvature 42 the Lichnerowicz Lapla-

cian on symmetric 2-tensors is given by

∆L = ∇∗∇− 2
◦
R+ 12 Id.

The curvature operator
◦
R acts on a symmetric 2-tensor h by

(
◦
Rh)(X,Y ) =

∑
i,j

R(ei, X, Y, ej)h(ei, ej), (3.2.25)

where {ei} is a local orthonormal frame. The operator

∆E := ∇∗∇− 2
◦
R

is called the Einstein Laplacian and (Σ, gΣ) is linearly stable as a Einstein manifold if ∆E

is a non-negative operator. This implies

Corollary 3.2.26. Suppose that the link (Σ, gΣ) of the Spin(7)-cone C := (C(Σ), ψC) is

linearly stable as an Einstein manifold. Then E(Σ, ϕΣ, λ) = {0} for every λ ∈ (−4, 0). In

particular, every AC Spin(7)-manifold asymptotic to C has rate at most −4.
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Proof. The assumptions imply that the smallest positive eigenvalue of ∆L is at least 12.

But λ2+6λ+12 takes values in (3, 12) for λ ∈ (−4, 0). The conclusion follows from Remark

3.1.14.

We can now summarise our results as

Theorem 3.2.27. Let C := (C(Σ), ψC) be a Spin(7)-cone, which is not isometric to

Euclidean space, and (M,ψ) an AC Spin(7)-manifold asymptotic to C with rate ν. Suppose

ν ∈ (−4, 0) and that ν + 1 and ν are non-critical rates for the Laplace-operator on C.

Then the moduli space Mν = Xν/Dν+1 of all torsion-free AC Spin(7)-structures on M

asymptotic to C with rate ν is an orbifold of dimension

dimMν = dim(H4
−)L2 + dim imΥ4 +

∑
λ∈D(d+d∗)∩(−4,ν)

dim E(Σ, ϕΣ, λ),

where

E(Σ, ϕΣ, λ) := {ζ ∈ Ω3
27(Σ)| dζ = −(λ+ 4) ∗ ζ},

and Υ4 is the restriction map (2.5.1).

Furthermore, if the stabiliser of ψ in Dν+1 is trivial or acts trivially in a neighbourhood

of ψ in Xν , the moduli space Mν is smooth in a neighbourhood of ψDν+1. In particular,

this is the case if the with respect to the type decomposition given by ψ the projection map

(H4
35)ν → H4(M,R)

is injective.

Proof. The statement for ν ∈ (−4,−1] follows from Propositions 3.1.15, 3.2.1 and 3.2.18.

It is left to extend the statement to rates ν ∈ (−1, 0) if (Σ, ϕΣ) is not the round 7-

sphere. By Proposition 3.1.6 the exterior derivative is injective on ker( /D−)ν+1. With

Lemma 2.4.27, Theorem 2.3.28 and Lemma 2.4.20 we get

dim d ker( /D−)ν+1 = dim ker( /D−)ν+1 =
∑

λ∈D( /D−)∩(0,ν+1)

ker( /D−)λ+ε − ker( /D−)λ−ε

=
∑

λ∈D( /D−)∩(0,ν+1)

ind( /D−)λ+ε − ind( /D−)λ−ε =
∑

λ∈D(d+d∗)∩(−1,ν)

dimKΛ1(λ+ 1).
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With Proposition 3.2.18 we get

dimMν = dim(H4
35)ν − dim d ker( /D−)ν+1

= dim(H4
−)L2 + dim imΥ4

+
∑

λ∈D(d+d∗)∩(−4,−1]

dimKASD(λ) +
∑

λ∈D(d+d∗)∩(−1,ν)

dimKASD(λ)− dimKΛ1(λ+ 1)

= dim(H4
−)L2 + dim imΥ4 +

∑
λ∈D(d+d∗)∩(−4,ν)

dim E(Σ, ϕΣ, λ).

In the compact case the projection of the moduli space to H4(M) is an immersion

[Joy00, Theorem 10.7.1]. In the AC case we can only prove this under the restriction that

there are no critical rates in the interval (−4, ν), and in particular all Spin(7)-structures

in Mν decay with rate −4.

Lemma 3.2.28. Let ν ∈ (−4,−0) and suppose there is no critical rate in the interval

(−4, ν]. Then Mν is a smooth manifold and the map

π : Mν → H4(M),

ψ̃Dν+1 7→ [ψ̃]

is an immersion.

Proof. By the assumption, equation (3.1.16) and Proposition 3.2.7 we have (H4
35)ν =

(H4
35)−4+ε for some arbitrarily small ε > 0. We need to show that the projection

(H4
35)−4+ε → H4(M).

is injective. Assume that γ ∈ (H4
35)−4+ε is exact. By Corollary 3.2.9 there exists β ∈ imΥ4

and γ− ∈ C∞−4−ε(Λ
4T ∗M) such that

γ = χ(r−1dr ∧ (− ∗Σ β) + β) + γ−,

and Υ4([γ]) = [β]. By assumption [γ] = 0 and thus β = 0 and γ = γ− ∈ H4
L2 . By

Proposition 2.5.5 [γ] = 0 implies γ = 0. Therefore, the linearisation is injective and π is

an immersion.
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3.3 Example: the Bryant–Salamon metric

The Bryant–Salamon metric on S+(S4) is a cohomogeneity one AC Spin(7) holonomy

metric asymptotic with rate−10/3 to the cone over the “squashed” 7-sphere. In this section

we will compute the contributions E(Σ, ϕΣ, λ) to the moduli space following Alexandrov–

Semmelmann [AS12] by using the fact that the squashed 7-sphere can be understood

as a standard homogeneous space. We will briefly describe their method. Let G/H be

a reductive 7-dimensional homogeneous space with reductive decomposition g = h ⊕ m,

where g and h denote the Lie algebras of G and H, respectively. Denote by ∇̄ the canonical

homogeneous connection on G/H. We say that G/H is a naturally reductive homogeneous

space if the torsion tensor T∇̄ of ∇̄ is an alternating tensor, i.e. a 3-form. We are interested

in the situation where G/H is equipped with a G-invariant nearly parallel G2-structure ϕΣ

such that ϕΣ = 2
3T∇̄ (see [AS12, Lemma 7.1]). This allows Alexandrov–Semmelmann to

relate the Laplacian

∆̄ = ∇̄∗∇̄+ q(R̄)

to the Laplacian with respect to the Levi-Civita connection. If ζ ∈ E(Σ, ϕΣ, λ), then simi-

larly as in Proposition 3.2.24 in the eigenproblem (3.2.23) we get a shift of the eigenvalue

with [AS12, Proposition 5.3]:

∆̄ζ = ∆ζ +
2

3
∗ dζ =

(
(λ+ 4)2 − 2

3
(λ+ 4)

)
︸ ︷︷ ︸

=:µ

ζ. (3.3.1)

To compute the action of ∆̄ we need to make another restriction: we require that the Ein-

stein metric induced by ϕΣ is standard. This means that it is induced by a negative multiple

−c2B of the Killing form B of g. The point of standard homogeneous spaces is that their

curvature tensor with respect to the canonical homogeneous connection satisfies the same

formula as the curvature tensor of symmetric spaces with respect to the Levi-Civita con-

nection. Therefore, eigenproblems for ∆̄ can be solved with methods from representation

theory. For a representation ρ : H → GL(E) of H denote the associated vector bundle by

Eρ = G ×ρ E. The left action of G on Eρ induces a G-action ` : G → GL(Γ(Eρ)) on the

space of sections of Eρ. Then by [MS10, Lemma 5.2] the action of ∆̄ is given by

∆̄ = − 1

c2
CasG` .
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The Casimir operator acts on a G-representation γ : G→ GL(V ) as

CasGγ =
∑
i

(γ∗Xi)
2,

where γ∗ denotes the induced action of the Lie algebra and Xi is an orthonormal basis of

g with respect to −B. The Peter–Weyl Theorem and the Frobenius reciprocity give an

isomorphism

L2(Eρ) =
⊕
γ

Vγ ⊗HomH(Vγ , E), (3.3.2)

where γ runs over all isomorphism classes of irreducible representations Vγ of G. A section

of Eρ is the same as an H-invariant map G → E. Under this identification an element

v ⊗A ∈ Vγ ⊗HomH(Vγ , E) gives rise to the section g 7→ A(γ(g−1)v). On each component

Vγ ⊗ HomH(Vγ , E) CasG` then acts as CasGVγ . Therefore, the eigenspace of ∆̄ for the

eigenvalue µ is isomorphic to the sum of the spaces Vγ ⊗HomH(Vγ , E) for which

CasGVγ = −c2µ. (3.3.3)

We can now compute E(Σ, ϕΣ, λ) in two steps. Set E = Λ3
27m and suppose that in the

orientation chosen by Alexandrov–Semmelmann E(Σ, ϕΣ, λ) is characterised by solutions

of the equation d̄ζ+ λ̄∗ ζ = 0, where d̄ = Alt◦ ∇̄ and λ̄ is a constant related to λ, and each

ζ ∈ E(Σ, ϕΣ, λ) satisfies ∆̄ζ = µζ. First, using (3.3.3) we determine all isomorphism classes

of irreducible representations Vγ of G such that CasGVγ = −c2µ. Secondly, having narrowed

down the list of possible Vγ ⊂ E(Σ, ϕΣ, λ), we need to solve the equation d̄ζ + λ̄ ∗ ζ = 0.

All ζ in a subspace isomorphic to Vγ solving this equation is equivalent to the existence of

A ∈ HomH(Vγ , E) such that (see [AS12, Equation (7.42)])

∑
1≤i1<···<i4≤7

4∑
j=1

(−1)jA(eij · v)(ei1 , . . . , êij , . . . , ei4)ei1...i4 + λ̄ ∗A(v) = 0 (3.3.4)

for all v ∈ Vγ , where e1, . . . , e7 is a basis of m. With respect to the identification (3.3.2)

Vγ is then embedded into E(Σ, ϕΣ, λ) via

Vγ → Vγ ⊗HomH(Vγ , E) ⊂ L2(Eρ), v 7→ v ⊗A.

Let us now apply this theory to compute the spaces E(Σ, ϕΣ, λ) for the Bryant–Salamon

metric. The “squashed” nearly parallel G2-structure on S7 is not naturally reductive if we

write S7 = Sp(2)/Sp(1). However, it is both naturally reductive and standard if we write
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S7 = Sp(2)×Sp(1)
Sp(1)u×Sp(1)d

[AS12, Example 8.2], where

Sp(1)u =

{([
a 0

0 1

]
, 1

)
: a ∈ Sp(1)

}
, Sp(1)d =

{([
1 0

0 a

]
, a

)
: a ∈ Sp(1)

}
.

This description leads to a nearly parallel G2-structure satisfying dϕ = τ0 ∗ ϕ with scalar

curvature 21
8 τ

2
0 , where τ0 = 12√

5
. This means that we have to rescaled our original choice

of ϕ by κ3 and our original metric gΣ by κ2, where κ is given by the equation τ0 = 4
κ . The

eigenproblem (3.3.1) is replaced by

∆̄ζ = κ−2µζ.

By [AS12, Lemma 7.1] c and τ0 are related by c2 = 6
5τ2

0
. In the light of equation (3.3.3) we

need to determine those irreducible representations Vγ of G = Sp(2)× Sp(1) for which

CasGγ = −c2κ−2µ = − 6

5τ2
0

τ2
0

16
µ = − 3

40
µ. (3.3.5)

Irreducible representations of Sp(2) are indexed by their highest weight γ = (k1, k2), k1 ≥
k2 ≥ 0, and irreducible representations of Sp(1) are indexed by their highest weight γ =

l, l ≥ 0. The Casimir operator is explicitly given by (see [AS12, p. 737])

Cas
Sp(2)×Sp(1)
V (k1,k2)⊗V (l) = − 1

12
(4k1 + k2

1 + 2k2 + k2
2)− 1

8
(2l + l2). (3.3.6)

The eigenvalue µ in equation (3.3.1) takes values in (−1
9 ,

40
3 ) for λ ∈ (−4, 0). Therefore,

by (3.3.5) we need to determine all V (k1, k2, l) := V (k1, k2)⊗ V (l) such that

Cas
Sp(2)×Sp(1)
V (k1,k2)⊗V (l) ∈ (−1, 0].

Using formula (3.3.6) we find that there are four possibilities: (k1, k2, l) = (1, 1, 0), (1, 0, 0),

(0, 0, 1), (0, 0, 0) with the Casimir operator equal to −2
3 ,−

5
12 ,−

3
8 , 0, respectively. This will

lead to the eigenvalues κ−2µ = 576
25 ,

72
5 ,

324
25 , 0, respectively.

Next we need to determine the corresponding Hom-spaces. If we denote the standard

representations of Sp(1)u and Sp(1)d by U and D, then all irreducible representations of

Sp(1)u×Sp(1)d can be written via the symmetric powers as SkUSlW (omitting the tensor
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product sign and complexification sign). Then

Λ3
27m

∗ ∼= S2US2D ⊕ US3D ⊕ UD ⊕ S4D ⊕ C,

V (1, 1, 0) ∼= Λ2
0(C4)∗ ∼= UD ⊕ C, V (1, 0, 0) ∼= C4 ∼= U ⊕D,

V (0, 0, 1) ∼= D, V (0, 0, 0) ∼= C.

V (1, 0, 0) and V (0, 0, 1) do not have common subrepresentations with Λ3
27m, and therefore

do not lead to any solutions.

V (0, 0, 0) and Λ3
27m

∗ have the trivial representation C as a common component. We

have µ = 0, λ = −10/3, and ζ ∈ E(Σ, ϕΣ, λ) satisfy dζ = −2
3 ∗ ζ. Then we have d̄ζ =

dζ+ 2
3 ∗ζ = 0 by [AS12, Lemma 5.2]. Therefore, we want to solve equation 3.3.4 with λ̄ = 0.

This is trivially satisfied for the trivial representation. We get E(Σ, ϕΣ,−10/3) ∼= R. The

Bryant–Salamon metric has decay rate −10/3 and this is exactly the deformation given by

rescaling as in Remark 3.1.14.

We are left to consider V (1, 1, 0). Then µ = 64
5 and λ = −−55+

√
2905

15 . Thus, at the scale

of scalar curvature 42 and in our chosen orientation we want to solve dζ = −5+
√

2905
15 ∗ ζ.

Again by [AS12, Lemma 5.2] this is equivalent to d̄ζ = dζ + 2
3 ∗ ζ = 5−

√
2905

15 ∗ ζ, and at the

scale with scalar curvature 21
8 τ

2
0 and in the orientation chosen in [AS12] we want to solve

(
d̄+

√
5−
√

581
5 ∗

)
ζ = 0. (3.3.7)

The common Sp(1)u× Sp(1)d-subrepresentation of Λ3
27m and V (1, 1, 0) are UD and C.

Alexandrov–Semmelmann show that HomH(UD,Λ3
27m) is 1-dimensional. Furthermore,

they show that UD can be identified with a submodule of sp(2) and that a generator A of

HomH(UD,Λ3
27m) satisfies with repsect to an orthonormal frame e1, . . . , e7 of m

A(e1 · e4) = − 2√
5

(
3e467 + e137 + e126 + e234

)
,

A(e2 · e4) = − 2√
5

(
− 3e457 + e237 − e125 − e134

)
,

A(e3 · e4) = − 2√
5

(
3e456 − e236 − e135 + e124

)
,

A(e4 · e4) = 0,

A(e4) = −3e567 − e235 + e136 − e127.

Therefore, if in (3.3.4) we set λ̄ =
√

5−
√

581
5 and v = e4, the coefficient of e1234 on the

left-hand side is 3 2√
5
− 3λ̄ = 3

√
5+
√

581
5 6= 0. Therefore, the common subrepresentation UD

does not lead to any solutions. For the trivial representation formula (3.3.4) simplifies to

λ̄ ∗A(v) = 0
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for all v ∈ C. This implies A = 0. Again we get no solution. Therefore, V (1, 1, 0) does not

lead to any infinitesimal Spin(7)-deformations.

The computations in this section allow us to determine the dimension of the moduli

space with Theorem 3.2.27.

Corollary 3.3.8. The Bryant–Salamon AC Spin(7) holonomy metric on S+(S4) is locally

rigid, modulo scaling, as a torsion-free AC Spin(7)-structure on S+(S4) asymptotic to the

cone over the “squashed” 7-sphere, up to any rate ν < 0.

Proof. So far we have shown that the spaces E(Σ, ϕΣ, λ), λ ∈ (−4, 0), vanish unless λ =

−10/3. E(Σ, ϕΣ,−10/3) is 1-dimensional and the corresponding deformation is the scaling

described in Remark 3.1.14. By Proposition 2.5.5 and the long exact sequence (2.5.2) we

have

H4
L2
∼= I4(H4

cs(S+(S4),R)) ∼= H4(S+(S4),R) ∼= H4(S4,R) ∼= R.

Cvetič–Lü–Pope [CLP01, Section 5.2] have constructed a square-integrable 4-form on

S+(S4), which is harmonic with respect to the Bryant–Salamon metric and has the same

duality as the Spin(7) 4-form (which is anti-self-dual in their convention and self-dual in

our convention). Therefore, (H4
−)L2 = {0}. Finally we have imΥ4 ⊂ H4(S7,R) = {0}. By

Theorem 3.2.27 the moduli space Mν is 1-dimensional for any ν ∈ (−10/3, 0).

3.4 AC Calabi–Yau 4-folds

In this section we apply our results to asymptotically conical Calabi–Yau manifolds of real

dimension 8. These carry a torsion-free SU(4)-structure, and by the inclusion 2.1.17 form

a subclass of AC Spin(7)-manifolds. Suppose that the Spin(7)-cone C := (C(Σ), ψC , gC)

is a Calabi–Yau cone, i.e. there are dilation invariant JC , ωC = gC(JC ·, ·), θC which satisfy

the algebraic constraint equations (2.1.11) and the condition for torsion-freeness (2.1.12),

and thus induce a torsion-free conical Spin(7)-structure ψC via the formula

ψC =
1

2
ω2
C + Re θC .

(M,ω, θ) is an AC Calabi–Yau 4-fold asymptotic to (C(Σ), ωC , θC) with decay rate ν < 0

if ω and θ are closed and satisfy decay conditions as in Definition 2.2.2. Then the Spin(7)-

structure ψ = 1
2ω

2 + Re θ is AC asymptotic to ψC with rate ν.

The conical SU(4)-structure induces the extra structure of a Sasaki–Einstein manifold

on the link of the cone, the nearly parallel G2-manifold (Σ, ϕΣ, gΣ). In the following we

briefly review Sasaki–Einstein manifolds. Good references for this section are [BG00] and
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[Spa11]. Because the cone is Kähler, Σ carries a Sasaki structure, the odd dimensional

cousin of Kähler structures, which is compatible with gΣ. The 1-form

η = JC(r−1dr)

induces a contact structure on Σ. The restriction of the vector field

ξ = JC(r∂r)

to {1} × Σ is a unit length Killing vector field for gΣ. Furthermore, ξ is metric-dual to η,

and thus a Reeb vector field for the contact structure. ξ spans a line bundle V ⊂ TΣ with

orthogonal complement H, i.e.

TΣ = V ⊕H, (3.4.1)

under which the metric splits as

gΣ = η ⊗ η + gH .

By definition JC preserves span{∂r, ξ}, and therefore induces an almost complex structure

Φ on H which is explicitly given by

Φ(X) = ∇Xξ.

Φ preserves gH and induces a Kähler form ωH on H. Finally, θC induces a complex volume

form θH on H. The triple (gΣ,Φ, θH) reduces the structure group of Σ to SU(3). The

SU(3)-structure on Σ is related to the G2-structure on Σ by

ϕΣ = η ∧ ωH + Re θH ,

∗ϕΣ =
1

2
ω2
H − η ∧ Im θH ,

and to the conical SU(4)-structure by

gC = dr2 + r2η2 + r2gH ,

ωC = rdr ∧ η + r2ωH ,

θC = r3(dr + irη) ∧ θH .
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Furthermore, we have

Re θC = r3(dr ∧ Re θH − rη ∧ Im θH),

Im θC = r3(dr ∧ Im θH + rη ∧ Re θH),

ψC =
1

2
ω2
C + Re θC

= r3dr ∧ η ∧ ωH + r3dr ∧ Re θH + r4(1
2ω

2
H − η ∧ Im θH).

Under the reduction of the structure group of Σ to SU(3), the decomposition of tensors

given by the G2-structure ϕΣ splits even further. We will discuss those relevant to us. The

bundle of trace-less symmetric 2-tensors splits as

S2
0(T ∗Σ) ∼= span{7

6η ⊗ η −
1
6gΣ} ⊕ (V ∗ ⊗H∗)⊕ S2

0(H∗). (3.4.2)

The bundle of 3-forms splits as

Λ3T ∗Σ = Λ3
1⊕1H ⊕ Λ3

6H ⊕ Λ3
12H ⊕ (V ∗ ⊗ Λ2

1H)⊕ (V ∗ ⊗ Λ2
6)⊕ (V ∗ ⊗ Λ2

8H)

in irreducible components with a similar decomposition for 4-forms given by the Hodge

star operator. Here

Λ3
1⊕1H = span{Re θH , Im θH},

Λ3
6H = ωH ∧ Λ1H∗,

Λ3
12H = {ρ ∈ Λ3H∗ | ρ is primitive of type (2, 1) + (1, 2)},

Λ2
1H = span{ωH},

Λ2
6H = {XyRe θH |X ∈ H},

Λ2
8H = {σ|σ is primitive of type (1, 1)}.

For more details on the decomposition of real differential forms with respect to an SU(3)-

structure we refer to [Fos16, Section 2.2] and [MNS08, Section 2].

This splitting allows us to give a refined description of the space E(Σ, ϕΣ, λ) on Sasaki–

Einstein 7-manifolds. Using the description of elements in E(Σ, ϕΣ, λ) as trace-less sym-

metric 2-tensors which solve the eigenvalue problem from Proposition 3.2.24 for the Lich-

nerowicz Laplacian, we can exclude certain tensors on which the Einstein Laplacian is

non-negative by an explicit computation of the curvature operator (3.2.25).
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Lemma 3.4.3. The curvature operator
◦
R acts on the bundle

SV := span{7
6η ⊗ η −

1
6gΣ} ⊕ (V ∗ ⊗H∗)

as minus the identity. In particular, under the identification of Λ3
27 and S2

0(T ∗Σ) from

Proposition 3.2.24 E(Σ, ϕΣ, λ) does not contain pure sections of SV if λ ∈ (−4, 0).

Proof. The main ingredient in the proof is the fact that the curvature tensor of Sasaki

manifolds simplifies, which is one of the common features of Kähler and Sasakian geometry.

For vector fields X,Y ∈ Γ(TΣ) we have (see [BG00, Proposition 2.1.2 (ii)])

R(ξ,X)Y = gΣ(X,Y )ξ − gΣ(ξ, Y )X. (3.4.4)

With this formula we can compute the action of
◦
R on the individual components separately.

Set e0 = ξ and choose a local orthonormal frame e1, . . . , e6 of H. Then e0, . . . , e6 is a local

orthonormal frame of gΣ, and we have

◦
R(η ⊗ η)(X,Y ) =

6∑
i,j=0

R(ei, X, Y, ej)(η ⊗ η)(ei, ej)

= gΣ(R(ξ,X)Y, ξ)

= gΣ(gΣ(X,Y )ξ − gΣ(ξ, Y )X, ξ)

= gΣ(X,Y )− gΣ(ξ,X)gΣ(ξ, Y )

= (gΣ − η ⊗ η)(X,Y ).

◦
RgΣ(X,Y ) =

6∑
i,j=0

R(ei, X, Y, ej)gΣ(ei, ej)

=

6∑
i=0

R(ei, X, Y, ei) = Ric(X,Y ) = 6gΣ(X,Y ).

Combining the above computations gives

◦
R
(

7
6η ⊗ η −

1
6gΣ

)
= 7

6(gΣ − η ⊗ η)− gΣ = −7
6η ⊗ η + 1

6gΣ.
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On V ∗ ⊗H∗ a similar computation gives

◦
Rh(X,Y ) =

6∑
i,j=0

R(ei, X, Y, ej)h(ei, ej)

=
6∑
i=1

R(ei, X, Y, ξ)h(ei, ξ) +R(ξ,X, Y, ei)h(ξ, ei)

=

6∑
i=1

(gΣ(R(ξ,X)Y, ei) + gΣ(R(ξ, Y )X, ei))h(ξ, ei)

=
6∑
i=1

gΣ(2gΣ(X,Y )ξ − gΣ(ξ,X)Y − gΣ(ξ, Y )X, ei)h(ξ, ei)

=

6∑
i=1

−(gΣ(ξ,X)gΣ(Y, ei) + gΣ(ξ, Y )gΣ(X, ei))h(ξ, ei).

Setting (X,Y ) = (ξ, ξ) or (ek, el) for k, l = 1, . . . , 6 gives zero. Setting (X,Y ) = (ξ, ek) for

k = 1, . . . , 6 gives

◦
Rh(ξ, ek) = −h(ξ, ek).

This proves the first statement, which implies that the Einstein-Laplacian ∆Σ is a non-

negative operator on sections of SV . The rest follows as in the proof of Corollary 3.2.26.

Because the nearly parallel G2-structure ϕΣ is not parallel, the Levi-Civita connection

does not preserve the decomposition

S2
0(T ∗Σ) ∼= SV ⊕ S2

0(H∗). (3.4.5)

Therefore, Proposition 3.4.3 only allows us to exclude pure sections of SV in E(Σ, ϕΣ, λ),

but not mixed ones. On each nearly parallel G2-manifold there exists a unique metric

connection ∇̄ with totally skew-symmetric torsion and holonomy contained in G2, and

Alexandrov–Semmelmann [AS12, Proposition 5.3] explain that an eigenvalue problem for

the Lichnerowicz Laplacian ∆L corresponds to an eigenvalue problem for the Lichnerowicz

Laplacian ∆̄L with respect to ∇̄ with a shifted eigenvalue. However, in the case of Sasaki–

Einstein manifolds the holonomy of ∇̄ does not reduce further to SU(3) [Fri07, Proposition

3.1]. Therefore, ∆̄L does not preserve the SU(3)-decomposition (3.4.5) either.

For simplicity in the following we restrict attention to elements in E(Σ, ϕΣ, λ) which

correspond to pure sections of S2
0(H∗). Under the isomorphism Λ3

27
∼= S2

0(T ∗Σ) we have

S2
0(H∗) ∼= (V ∗ ⊗ Λ2

8H)⊕ Λ3
12H.
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We will use the splitting d = df + dH of the exterior derivative on horizontal differential

forms, where

df = η ∧ Lξ : C∞(ΛkH)→ C∞(V ∗ ⊗ ΛkH)

is the exterior derivative on the fibres and

dH : C∞(ΛkH)→ C∞(Λk+1H)

is the horizontal exterior derivative.

Lemma 3.4.6. Let σ ∈ C∞(Λ2
8H), ρ ∈ C∞(Λ3

12H). Then

ζ = η ∧ σ + ρ (3.4.7)

is an element of E(Σ, ϕΣ, λ) if and only if (σ, ρ) solves the system

dHρ = (λ+ 2)ωH ∧ σ, (3.4.8a)

−dHσ + Lξρ = (λ+ 4) ∗H ρ. (3.4.8b)

ζ induces the infinitesimal Spin(7)-deformation

rλ+3dr ∧ (η ∧ σ + ρ) + rλ+4(ωH ∧ σ + η ∧ ∗Hρ) ∈ KASD(λ). (3.4.9)

Proof. To describe the characterising differential equation dζ = −(λ+4)∗ζ we first compute

the Hodge star of ζ. We have ∗Hσ = −ωH ∧ σ, see [MNS08, Equation (19)]. Hence we get

∗Σ(η ∧ σ + ρ) = ∗Hσ + ∗Hρ ∧ η = −ωH ∧ σ − η ∧ ∗Hρ.

Using 1
2dη = ωH (see [BG00, Proposition 2.1.3 (iv)]) we have

d(η ∧ σ + ρ) = 2ωH ∧ σ − η ∧ dσ + dρ.

Therefore, the equation d(η ∧ σ + ρ) = −(λ + 4) ∗Σ (η ∧ σ + ρ) splits into the system

(3.4.8).

In the following Proposition we pursue the question whether integrable infinitesimal

deformations in E(Σ, ϕΣ, λ), λ ∈ (−4, 0), of the form (3.4.7) of the AC Calabi–Yau 4-fold

as a Spin(7)-structure at the leading order term come from deformations of the underlying

SU(4)-structure.

Proposition 3.4.10. Suppose that ζ = η ∧ σ + ρ ∈ E(Σ, ϕΣ, λ) with σ ∈ C∞(Λ2
8H) and

73



ρ ∈ C∞(Λ3
12H) at leading order induces the infinitesimal Spin(7)-deformation ψ̇ of the AC

Calabi–Yau structure (ω, θ). Then at leading order the Spin(7)-deformation is induced by

an infinitesimal SU(4)-deformation (ω̇, θ̇) with

ω̇ = rλ+2σ +O(rλ−ε), Re θ̇ = rλ+3dr ∧ ρ+ rλ+4η ∧ ∗Hρ+O(rλ−ε).

At leading order (ω̇, θ̇) is an infinitesimal deformation of torsion-free SU(4)-structures if

and only if (σ, ρ) solves the following system:

dHρ = 0, (3.4.11a)

Lξρ = (λ+ 4) ∗H ρ, (3.4.11b)

(λ+ 2)σ = 0, (3.4.11c)

dΣσ = 0. (3.4.11d)

In particular, σ must vanish if λ 6= −2.

Proof. Taking the derivatives of equations (2.1.11) and (2.1.17) with respect to a 1-parameter

family of SU(4)-structures, we see that an infinitesimal deformation (ω̇, θ̇) of an AC SU(4)-

structure satisfies the constraint equations

ω̇ ∧ θ + ω ∧ θ̇ = 0, (3.4.12a)

1
3! ω̇ ∧ ω

3 = c4(θ̇ ∧ θ̄ + θ ∧ ¯̇
θ) (3.4.12b)

and induces the infinitesimal Spin(7)-deformation

ω̇ ∧ ω + Re θ̇. (3.4.13)

Writing ω̇ = ω′ + O(rλ−ε), θ̇ = θ′ + O(rλ−ε) and ψ̇ = ψ′ + O(rλ−ε), at leading order the

equations (3.4.12) and (3.4.13) are equivalent to

ω′ ∧ θC + ωC ∧ θ′ = 0, (3.4.14a)

1
3!ω
′ ∧ ω3

C = 2c4 Re(θ′ ∧ θ̄C) = 2c4(Re θ′ ∧ Re θC + Im θ′ ∧ Im θC), (3.4.14b)

ω′ ∧ ωC + Re θ′ = ψ′. (3.4.14c)
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Writing

ω′ = rλ+1dr ∧ (αωη + βω) + rλ+2(η ∧ γω + φω),

Re θ′ = rλ+3dr ∧ (η ∧ α+ + β+) + rλ+4(η ∧ γ+ + φ+),

Im θ′ = rλ+3dr ∧ (η ∧ α− + β−) + rλ+4(η ∧ γ− + φ−),

ψ′ = rλ+3dr ∧ (η ∧ α+ β) + rλ+4(η ∧ γ + φ)

where αω ∈ Ω0(H), βω, γω ∈ Ω1(H), φω, α±, α ∈ Ω2(H), β±, γ±, β, γ ∈ Ω3(H) and φ±, φ ∈
Ω4(H), we can reduce the system (3.4.14) to a system for horizontal differential forms.

We list some intermediate steps in the calculation: We have

ω′ ∧ Re θC = rλ+5dr ∧ (η ∧ (βω ∧ Im θH + γω ∧ Re θH) + φω ∧ Re θH)

+ rλ+6η ∧ (−φω ∧ Im θH),

ωC ∧ Re θ′ = rλ+5dr ∧ (η ∧ (ωH ∧ α+ + φ+) + ωH ∧ β+)

+ rλ+6(η ∧ (ωH ∧ γ+) + ωH ∧ φ+,

ω′ ∧ Im θC = rλ+5dr ∧ (η ∧ (−βω ∧ Re θH + γω ∧ Im θH) + φω ∧ imθH)

+ rλ+6η ∧ (φω ∧ Re θH),

ωC ∧ Im θ′ = rλ+5dr ∧ (η ∧ (φ− + ωH ∧ α−) + ωH ∧ β−)

+ rλ+6(η ∧ ωH ∧ γ− + ωH ∧ φ−)

ω′ ∧ ωC = rλ+3dr ∧ (η ∧ (αω ωH + φω) + ωH ∧ βω)

+ rλ+4(η ∧ ωH ∧ γω + ωH ∧ φω),

ω′ ∧ ω3
C = rλ+7dr ∧ η ∧ (αω ω

3
H + 3ω2

H ∧ φω),

Re θ′ ∧ Re θC =rλ+7dr ∧ η ∧ (β+ ∧ Im θH + γ+ ∧ Re θH),

Im θ′ ∧ Im θC = rλ+7dr ∧ η ∧ (−β− ∧ Re θH + γ− ∧ Im θH).
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The real part of (3.4.14a) and equation (3.4.14c) are equivalent to the system

βω ∧ Im θH + γω ∧ Re θH + φ+ + ωH ∧ α+ = 0,

φω ∧ Re θH + ωH ∧ β+ = 0,

−φω ∧ Im θH + ωH ∧ γ+ = 0,

ωH ∧ φ+ = 0,

αωωH + φω + α+ = α,

ωH ∧ βω + β+ = β,

ωH ∧ γω + γ+ = γ,

ωH ∧ φω + φ+ = φ,

which determines ω′ and Re θ′. To solve for ψ′ from (3.4.9) we need to specialise to α = σ,

β = ρ, γ = ∗Hρ and φ = σ ∧ ωH . We find that the general solution is

αω = 0, βω = Z, γω = JZ, φω = ZyRe θH + σ,

α+ = −ZyRe θH , β+ = −Z ∧ ωH + ρ, γ+ = −JZ ∧ ωH + ∗Hρ, φ+ = JZ ∧ Re θH ,

where Z is a horizontal vector field. We will restrict our attention to Z = 0, i.e.

ω′ = rλ+2σ, Re θ′ = rλ+3dr ∧ ρ+ rλ+4η ∧ ∗Hρ.

We will use that for σ ∈ Γ(Λ2
8H) and ρ ∈ Γ(Λ3

12) we have σ ∧ ω2
H = 0, σ ∧ θH = 0,

ρ ∧ ωH = 0 and ρ ∧ θH = 0. Furthermore, we also have ∗Hρ ∈ Γ(Λ3
12H).

The imaginary part of (3.4.14a) now simplifies to

φ− + ωH ∧ α− = 0, ωH ∧ β− = 0, ωH ∧ γ− = 0, ωH ∧ φ− = 0.

Unlike in the setting of SU(3)-structures, for SU(4)-structures Re θ does not determine

Im θ. For our purposes it is enough to note that some solution Im θ′ exists, which is

clearly the case, e.g. if we choose all forms to be primitive. Equation (3.4.14c) is solved

automatically, reducing to 0 on both sides. The derivation of the differential equations

follows as in the proof of Lemma 3.4.6.

While we were able to solve the algebraic equations for an infinitesimal SU(4)-deforma-

tion at leading order term, we cannot say if this comes from a deformation of torsion-free

SU(4)-structures, i.e. that the systems (3.4.8) and (3.4.11) are equivalent. They are clearly

equivalent if σ = 0, but in general we cannot exclude solutions of (3.4.8) with σ 6= 0.
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Chapter 4

Existence of cohomogeneity one

Spin(7) holonomy metrics

4.1 Introduction

In this part of the thesis our aim is to prove Theorems B and C, which state the existence

of complete cohomogeneity one AC and ALC Spin(7) holonomy metrics with principal

orbit the Aloff–Wallach space N(1,−1), and Theorem D, which states the existence of

conically singular ALC Spin(7) holonomy metrics. In the introduction to this chapter

we first review the theory of cohomogeneity one Spin(7)-manifolds, then we give a brief

description of the difficulties in the proof of Theorems B and C, and outline our strategy

to overcome them. The proof of Theorem D follows along similar lines but is easier. We

conclude this introductory section with a plan for the remainder of the thesis.

4.1.1 Cohomogeneity one Spin(7)-manifolds

References for our brief introduction to cohomogeinity one manifolds are [Mos57, Rei08,

Rei10]. Let G be a compact Lie group acting continuously on the connected manifold M .

We say this action is of cohomogeneity one if there exists an orbit with codimension 1. In

this case the quotient M/G has to be diffeomorphic to either S1, [0, 1], R or [0,∞). In the

first two cases M is compact. However, by a Bochner-type argument compact irreducible

Ricci-flat manifolds cannot have any continuous symmetries. In the third case M has two

ends. However, by the Cheeger–Gromoll splitting theorem complete irreducible Ricci-flat

manifolds can have only one end. Therefore, in the context of complete cohomogeneity

one manifolds with holonomy Spin(7) only the last case is interesting and from now on

we only consider M/G = [0,∞). Denote by q : M → M/G the quotient map. Isotropy

groups of orbits which q does not map to the end point of the half-open interval [0,∞) are
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conjugate to one another and there exists H ⊂ G such that q−1(0,∞) is G-equivariantly

diffeomorphic to (0,∞)×G/H. These orbits are called principal orbits. The orbit q−1(0)

is called the singular orbit. Denote its isotropy group by K, i.e. q−1(0) = G/K. This

allows us to write

M = (G/K) ∪ (0,∞)× (G/H). (4.1.1)

We can say more about the structure of M . Note that G→ G/K is a principal K-bundle.

We can choose H ⊂ K such that K/H is diffeomorphic to a sphere. In fact there exists a

representation V of K such that M has the structure of the total space of the associated

vector bundle G×K V → G/K over the singular orbit, the principal orbits {t}×G/H are

sphere bundles over G/K which foliate the vector bundle outside the zero section and the

spherical fibres of the fibrations {t} ×G/H → G/K are isomorphic to K/H.

We say that a Spin(7)-manifold (M,ψ) is a cohomogeneity one Spin(7)-manifold if

there exists a cohomogeneity one action by some compact Lie group G on M such that ψ

is G-invariant. Then G also preserves the induced metric. The Spin(7)-structure ψ induces

on each principal orbit {t} × G/H a G-invariant G2-structure (ϕt, ht) and on q−1(0,∞)

the Spin(7)-structure can be recovered as

ψ = dt ∧ ϕt + ∗ϕt, (4.1.2)

g = dt2 + ht. (4.1.3)

Here the Hodge star depends on ϕt. The condition dψ = 0 for ψ to be torsion-free then is

equivalent to the system

dG/H∗ϕt = 0, (4.1.4a)

∂

∂t
∗ϕt = dG/Hϕt. (4.1.4b)

Here dG/H denotes the exterior derivative on G/H. The first equation is a static condition,

i.e. it does not involve a derivative with respect to the parameter t. Therefore, we can

interpret a torsion-free Spin(7)-structure on the dense subset M − q−1(0) as a solution of

the evolution equation

∂

∂t
∗ϕt = dG/Hϕt (4.1.5)

in the space of co-closed, G-invariant G2-structures on the homogeneous space G/H. Note

that that this space is finite dimensional.

How can we approach the problem of constructing a complete G-invariant torsion-free
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Spin(7)-structure on M? Fixing a co-closed G-invariant G2-structure ϕ̂ on a principal orbit

{t0} ×G/H leads to a well-defined initial value problem. By the Picard–Lindelöf theorem

there exists a torsion-free Spin(7)-structure on (t0−ε, t0+ε)×G/H of the form (4.1.2) with

ϕ0 = ϕ̂ for some ε > 0. To investigate whether this Spin(7)-structure can be extended to

a complete torsion-free Spin(7)-structure, two questions have to be addressed. First, does

it extend backward and close smoothly on the singular orbit? Secondly, does it extend

forward over the non-compact end? In general neither question is easy to answer. In the

context of non-compact cohomogeneity one Einstein metrics Eschenburg–Wang [EW00]

take a different approach. They instead consider a singular initial value problem on the

singular orbit. Smooth solutions give rise to smooth Einstein metrics in a neighbour-

hood of the singular orbit. To investigate completeness it remains to check whether the

solution extends over the non-compact end. This has become the standard approach in

the construction of cohomogeneity one structures, e.g. [FHN18]. Also see the more re-

cent treatment by Verdiani–Ziller [VZ18] on the problem of extending cohomogeneity one

metrics smoothly over the singular orbit. In the realm of special holonomy a simplifying

assumption made by Eschenburg–Wang is often not satisfied and their approach has to be

adjusted accordingly. In particular, Reidegeld [Rei08, Rei10] studied this singular initial

value problem in the context of Spin(7)-structures.

4.1.2 Strategy to prove Theorems B and C

The main difficulty in proving Theorems B and C is to establish the existence of the

AC spaces. The behaviour of the remaining family members, which lead to ALC and

incomplete metrics, can be deduced by a comparison argument. Compared to previous

work, we face additional difficulties. In Bazaikin’s work on the B8 family, the C8 family, and

on cohomogeneity one Spin(7)-manifolds with generic orbit isomorphic to N(1, 1), the AC

limit was known beforehand. Moreover, in these examples the AC spaces enjoy additional

symmetry as compared to other family members and are given by an explicit expression.

Foscolo–Haskins–Nordström [FHN18] consider problems in the context of cohomogeneity

one G2-manifolds in which the AC limits are not known beforehand. They solve this

problem by “shooting from infinity”: an AC end, i.e. a torsion-free AC G2-structure

defined outside a compact subset, corresponds in their case to a trajectory in a plane.

Backwards degeneration of AC ends occurs if a trajectory hits one of two particular curves

in the plane. The corresponding solution is a complete AC space—and, in particular,

closes smoothly on the singular orbit—if and only if the trajectory degenerates at the

intersection point of those two curves. There is a 1-parameter family of AC ends, and they

show that degeneration must occur at either curve. By continuity there exists a complete

AC solution. However, in our setting the space of AC ends is more complicated. Therefore,
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this strategy does not seem helpful in our situation.

We overcome this problem by following a reverse strategy: we first show the existence

of ALC solutions and incomplete metrics and then deduce the existence of the AC metric.

More specifically, we show that the corresponding sets of parameters which give rise to

complete ALC solutions and incomplete metrics each are open and non-empty. In addition,

we manage to show that the complement of these two sets are precisely the parameters

which give rise to complete AC solutions. In particular, because the set of all parameters is

connected, we deduce the existence of an AC solution. This idea, that the set of parameters

giving rise to ALC solutions is open, results from geometric intuition: as we vary the

parameter of an ALC solution slightly, we expect qualitatively the same asymptotic ALC

geometry, but with an corresponding variation of the asymptotic circle length.

In the following we give a brief overview of how we carry out the program outlined

above. Our main emphasis is the choice of “good coordinates” on the state space of the

dynamical system. Outside the singular orbit a torsion-free G-invariant Spin(7)-structure

can be interpreted as a trajectory in the space S of co-closed G-invariant G2-structures on

the principal orbit G/H given as a solution of the evolution equation (4.1.5). In our case

S is 4-dimensional and we choose coordinates (a, b, c, f) which allow us to conveniently

read off the asymptotic behaviour of complete solutions. Furthermore, the right-hand side

of the ODE system is a homogeneous expression with respect to this set of coordinates.

This allows us to consider the ODE system in projective space, thereby eliminating one

dimension. After this projectivization, singular orbits and asymptotic models are given by

fixed points of the dynamical system. Complete torsion-free Spin(7)-structures correspond

to trajectories connecting these fixed points. In particular, we obtain a complete list of

possible asymptotic geometries. This approach is inspired by Atiyah–Hitchin’s work [AH88]

on gravitational instantons. However, a further coordinate change on projective space is

needed to gain control over all three remaining functions. In this new set of coordinates

(X,Y, Z) the right-hand side of the ODE system is given by a purely polynomial expression.

There are no intrinsic singularities and a solution can become singular only by shooting off

to infinity in finite time. Initially the solution is contained in a compact cube, which it can

exit only at the hypersurface Y = 0. It turns out that (in)completeness and asymptotic

behaviour can be read off from the single function Y . This has a geometric interpretation.

Any SU(3)×U(1)-invariant metric on CP 2 is determined by specifying two numbers b and

c. The function Y = b2/c2 measures the ratio of these two numbers. N(1,−1) fibres over

CP 2 and it is enough to follow the evolution of the induced metric on the base.
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4.1.3 Structure of this chapter

In Section 4.2 we describe the action of SU(3)×U(1) on MS5 and MCP 2 and derive the ODE

system characterising SU(3)×U(1)-invariant torsion-free Spin(7)-structures with principal

orbit N(1,−1). In particular, we find a set of coordinates on the projectivization of the

space of homogeneous G2-structures on N(1,−1) which greatly simplifies the analysis of

the ODE system.

In Section 4.3 we review Reidegeld’s work [Rei10] on the existence of cohomogeneity

one Spin(7)-metrics in a neighbourhood of a singular orbit. We state the existence of a

1-parameter family Ψµ, µ ∈ (0,∞), of solutions in a neighbourhood of S5 ⊂ MS5 and a

1-parameter family Υτ , τ ∈ R, of solutions in a neighbourhood of CP 2 ⊂MCP 2 .

In Section 4.4 we construct a 1-parameter family Ψcs
λ , λ ∈ R, of local cohomogeneity

one torsion-free Spin(7)-structures with an isolated conical singularity and a 2-parameter

family Ψac
α,β, α, β ∈ R, of AC ends. In both cases the link of the asymptotic cone is

N(1,−1) equipped with the unique SU(3) × U(1)-invariant nearly parallel G2-structure.

As in [FHN18] we use an existence result for singular initial value problems due to Picard

[Pic28].

Section 4.5 is the heart of this chapter. Here we carry out the qualitative analysis of the

ODE system that we have outlined above. The main result of this section is that the sets

of parameters giving rise to complete ALC solutions and incomplete solutions are open.

To finish the proof of the existence of complete AC solutions, we need to prove the

existence of parameters which give rise to complete ALC solutions and incomplete metrics.

In section 4.6 we prove the existence of ALC solutions closing smoothly on S5. For the

singular orbit CP 2 we recall an explicit solution which was earlier derived by physicists.

The existence of incomplete solutions for large values of µ and τ is established in Section

4.7 by a rescaling argument.

In Section 4.8 we put together the results from the previous sections and prove Theo-

rems B, C and D.

4.2 Spin(7)-metrics with Principal Orbit N(1,−1)

4.2.1 The Aloff–Wallach space N(1,−1)

For every pair (k, l) of integers which are not both zero, U(1) can be embedded in the

maximal torus of diagonal matrices in SU(3) as

eiθ 7→

e
ikθ 0 0

0 eilθ 0

0 0 e−i(k+l)θ

 . (4.2.1)
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We also denote this subgroup of SU(3) by U(1)k,l. The Aloff–Wallach space N(k, l) is the

homogeneous space SU(3)/U(1)k,l. We work with the following basis of su(3):

E1 =

 0 1 0

−1 0 0

0 0 0

 , E2 =

0 i 0

i 0 0

0 0 0

 ,

E3 =

 0 0 1

0 0 0

−1 0 0

 , E4 =

0 0 i

0 0 0

i 0 0

 ,

E5 =

0 0 0

0 0 1

0 −1 0

 , E6 =

0 0 0

0 0 i

0 i 0

 ,

E7 =

−i/2 0 0

0 −i/2 0

0 0 i

 , E8 =

 i 0 0

0 −i 0

0 0 0

 .

We denote the dual basis of E1, . . . , E8 by e1, . . . , e8. The structure constants are

[·, ·] E1 E2 E3 E4 E5 E6 E7 E8

E1 0 2E8 −E5 −E6 E3 E4 0 −2E2

E2 −2E8 0 E6 −E5 E4 −E3 0 2E1

E3 E5 −E6 0 E8 − 2E7 −E1 E2
3
2E4 −E4

E4 E6 E5 −E8 + 2E7 0 −E2 −E1 −3
2E3 E3

E5 −E3 −E4 E1 E2 0 −2E7 − E8
3
2E6 E6

E6 −E4 E3 −E2 E1 2E7 + E8 0 −3
2E5 −E5

E7 0 0 −3
2E4

3
2E3 −3

2E6
3
2E5 0 0

E8 2E2 −2E1 E4 −E3 −E6 E5 0 0
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Remark 4.2.2. We now discuss various relations between the Aloff–Wallach spaces N(k, l)

for different pairs of integers. First, the subgroups U(1)k,l and U(1)ak,al coincide and

hence we can assume without loss of generality that the pair (k, l) is coprime. Secondly,

complex conjugation on SU(3) generates a group of outer automorphisms isomorphic to

Z2 and maps N(k, l) to N(−k,−l). Finally, homogeneous spaces G/H1 and G/H2 are G-

equivariantly diffeomorphic if the isotropy groups H1 and H2 are conjugate in G. The Weyl

group of SU(3) is isomorphic to the symmetric group S3 and conjugation by its elements

permutes the triple (k, l,−k − l) in formula (4.2.1) accordingly. Therefore, it interchanges

the subgroups U(1)k,l,U(1)l,−k−l,U(1)k,−k−l, etc., and partitions the set of Aloff–Wallach

spaces into equivalence classes.

We have u(1)1,−1 = span{E8} and the adjoint action of U(1)1,−1 maps the complement

m = span{E1, . . . , E7} into itself. Hence T[Id]N(1,−1) can be identified with m and an

SU(3)-invariant tensor field on N(1,−1) corresponds to a tensor on m which is left invariant

by the adjoint action of U(1)1,−1. With respect to the basis E1, . . . , E7 the infinitesimal

generator of the adjoint action is given by

ad(E8) =



0 −2

2 0

0 −1

1 0

0 1

−1 0

0


.

Hence m splits into the four irreducible U(1)-modules

U1 = span{E1, E2}, U2 = span{E3, E4}, U3 = span{E5, E6}, U4 = span{E7}.

If we denote the irreducible representation of U(1) of weight m by Cm we get

m = U1 ⊕ U2 ⊕ U3 ⊕ U4 = C2 ⊕ C1 ⊕ C−1 ⊕ R, (4.2.3)

Hence m has two isotypical components. The equivalence classes of N(1,−1) and N(1, 1)

are the only equivalence classes with this property and therefore are called the exceptional

Aloff–Wallach spaces. The other Aloff–Wallach spaces are called generic.

We fix the SU(3)-invariant metric q on N(1,−1) for which E1, . . . , E8 is an orthonormal

basis as a background metric which allows us to consider any other SU(3)-invariant metric g
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onN(1,−1) as an SU(3)-invariant symmetric section of the endomorphism bundle. Because

the submodules U2 and U3 are isomorphic, not every U(1)1,−1-invariant endomorphism of m

is diagonal. We can identify U2 and U3 with C by identifying xE3+yE4 and xE5+yE6 with

x+ iy, respectively. Over the real numbers the space of U(1)-equivariant endomorphisms

C1 → C−1 is generated by z 7→ z̄ and z 7→ iz̄. With the above identifications this

corresponds to e3 ⊗E5 − e4 ⊗E6 and e3 ⊗E6 + e4 ⊗E5, respectively. Hence any invariant

symmetric endomorphism on m with respect to the basis E1, . . . , E7 is of the form

a2 IdU1 + b2 IdU2 + c2 IdU3 + f2 IdU4

+v(e3 ⊗ E5 − e4 ⊗ E6) + w(e3 ⊗ E6 + e4 ⊗ E5) (4.2.4)

+v(e5 ⊗ E3 − e6 ⊗ E4) + w(e5 ⊗ E4 + e6 ⊗ E3).

In particular, the space of SU(3)-invariant metrics on N(1,−1) is 6-dimensional.

Remark 4.2.5. In addition to the left multiplication of G on G/H, there is another action

given by conjugation with elements of the normaliser NG(H) = {g ∈ G| gHg−1 = H}. In

our case NSU(3)(U(1)1,−1) is the maximal torus of diagonal matrices in SU(3) isomorphic

to U(1)2. We are particularly interested in the subgroup of the normaliser given by the

embedding

eiθ 7→

e
−iθ 0 0

0 e−iθ 0

0 0 ei2θ

 , (4.2.6)

which is generated by 2E7. The action of E7 leaves the diagonal part of the endomorphism

(4.2.4) invariant but we have

ad(2E7)(e3 ⊗ E5 − e4 ⊗ E6) = −6(e3 ⊗ E6 + e4 ⊗ E5),

ad(2E7)(e3 ⊗ E6 + e4 ⊗ E5) = 6(e3 ⊗ E5 − e4 ⊗ E6).

This has several consequences. First, Reidegeld [Rei08, p. 154] concludes that in the

non-diagonal case it suffices to consider 5 instead of 6 parameters. Secondly, any SU(3)-

invariant metric on N(1,−1) with this additional U(1)-symmetry is diagonal, i.e. of the

form

a2(e2
1 + e2

2) + b2(e2
3 + e2

4) + c2(e2
5 + e2

6) + f2e2
7. (4.2.7)

We say that the metric is SU(3) × U(1)-invariant. The space of SU(3) × U(1)-invariant

metrics on N(1,−1) is 4-dimensional.

Remark 4.2.8. Besides the Aloff–Wallach spaces, three further homogeneous spaces with
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a transitive action of SU(3) are relevant to us. F3 = U(3)/U(1)3 = SU(3)/U(1)2 is the

manifold of complete flags in C3. If we embed SU(2) in SU(3) as

A 7→

(
A 0

0 1

)
,

then S5 = SU(3)/SU(2) is the 5-sphere and CP 2 = SU(3)/(SU(2) × U(1)), where U(1)

denotes the subgroup (4.2.6) of SU(3). Any Aloff–Wallach space N(k, l) is a circle bundle

over F3. For example, the bundle structure of N(1,−1) over F3 is given by right mul-

tiplication with the circle (4.2.6) and thus is generated by 2E7. The flag manifold F3

is the twistor space of CP 2, and in particular an S2-bundle over CP 2. This leads to a

fibration of each Aloff–Wallach space N(k, l) over CP 2. As discussed in Remark 4.2.2,

permutations of the triple (k, l − k − l) lead to isomorphic Aloff–Wallach spaces. How-

ever, the fibration structure over CP 2 depends on the choice of a particular triple in an

equivalent class. The fibres of N(k, l) over CP 2 are given by the lens spaces L(1, |k + l|)
(for more details we refer to [GS02, Section 4.1]). Here for convenience L(1, 0) is defined

to be S1 × S2. The equivalence class of the Aloff–Wallach space N(k, l) therefore gives

rise to L(1, |k|), L(1, |l|) and L(1, |k+ l|)-bundles over CP 2. The equivalence classes of the

exceptional Aloff–Wallach spaces N(1,−1) and N(1, 1) give rise to two different bundle

structures while the equivalence classes of the generic Aloff–Wallach spaces give rise to

three different bundle structures.

4.2.2 Spin(7)-structures with principal orbit N(1,−1)

We now want to describe SU(3) × U(1)-invariant cohomogeneity one Spin(7)-structures

with principal orbit N(1,−1), where the extra U(1)-factor acts as described in Remark

4.2.5. We adopt the viewpoint from Section 4.1.1 that outside the singular orbit a torsion-

free cohomogeneity one Spin(7)-structure is a solution to the evolution equation (4.1.5)

in the space of co-closed invariant G2-structures on N(1,−1). In Remark 4.2.8 we have

explained that N(1,−1) is a circle bundle over the flag manifold F3. In the introduction

we have noted the motivation for this work: torsion-free ALC Spin(7)-structures with

principal orbit N(1,−1) collapsing to the SU(3)-invariant Bryant–Salamon AC G2-metric

on Λ2
−CP 2, which is asymptotic to the cone over the homogeneous nearly Kähler structure

on the flag manifold F3. We want to describe SU(3) × U(1)-invariant Spin(7)-structures

with principal orbit N(1,−1) in such a way that we can easily read off this fibration.

We start with the base F3. The circle bundle structure of N(1,−1) over F3 is generated

by 2E7. Therefore T[Id]F3
∼= U1⊕U2⊕U3 = span{E1, · · · , E6}. We denote ei1 ∧· · ·∧eik by

ei1...ik . The SU(3)-invariant nearly Kähler structure on F3 is given by (see [MS10, Section
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6])

ω0 = e12 + e43 + e56, (4.2.9a)

Ω0 = e136 + e246 + e235 − e145 + i(e236 − e146 − e135 − e245). (4.2.9b)

To determine the space of SU(3)-invariant G2-structures on N(1,−1) we need to compute

the other invariant 3-forms. In the course of this computation we need the following

Lemma 4.2.10. Let Ck = Span{v1, v2} be an oriented U(1)-module of weight k and Cl =

Span{v′1, v′2} be an oriented U(1)-module of weight l. Then as oriented U(1)-modules we

have

Ck ⊗ Cl = Ck+l ⊕ Ck−l,

where

Ck+l = Span{v1 ⊗ v′1 − v2 ⊗ v′2, v1 ⊗ v′2 + v2 ⊗ v′1},

Ck−l = Span{v1 ⊗ v′2 − v2 ⊗ v′1, v1 ⊗ v′1 + v2 ⊗ v′2}.

Lemma 4.2.11. (i) The space of SU(3)-invariant 1-forms on N(1,−1) is spanned by

e7.

(ii) The space of SU(3)-invariant 2-forms on N(1,−1) is five dimensional and spanned

by

e12, e34, e56, e35 − e46, e36 + e45.

(iii) The space of SU(3)-invariant 3-forms on N(1,−1) is seven dimensional and spanned

by

e127, e347, e567, e357 − e467, e367 + e457,

Re Ω0 = e136 − e145 + e235 + e246, Im Ω0 = −e146 − e135 + e236 − e245.

Proof. (i) follows immediately from (4.2.3).

(ii) As U(1)-modules we have

U∗1
∼= U1

∼= C2, U∗2
∼= U2

∼= C1, U∗3
∼= U3

∼= C−1, U∗4
∼= U4

∼= R.
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Using Lemma 4.2.10 we compute the invariant 2-forms:

Λ2m∗ = Λ2U1 ⊕ Λ2U2 ⊕ Λ2U3 ⊕ (U1 ⊕ U2 ⊕ U3)⊗ U4 ⊕ (U1 ⊗ U2)⊕ (U1 ⊗ U3)⊕ (U2 ⊗ U3)

∼= R3 ⊕ C2 ⊕ C1 ⊕ C−1 ⊕ (C3 ⊕ C1)⊕ (C3 ⊕ C1)⊕ (C2 ⊕ R2).

If we write U∗2 = span{e3, e4} and U∗3 = span{e5, e6} as oriented U(1)-modules of weight 1

and -1, respectively, then the trivial R2 ⊂ U∗2 ⊗ U∗3 is spanned by

e35 − e46, e36 + e45.

Hence the space of invariant 2-forms is 5-dimensional and spanned by the claimed forms.

(iii) The space of 3-forms decomposes as

Λ3m∗ =Λ2U1 ⊗ (U2 ⊕ U3 ⊕ R)⊕ Λ2U2 ⊗ (U1 ⊕ U3 ⊕ R)⊕ Λ2U3 ⊗ (U1 ⊕ U2 ⊕ R)

⊕ (U1 ⊗ U2 ⊗ U3)⊕ (U1 ⊗ U2 ⊗ R)⊕ (U1 ⊗ U3 ⊗ R)⊕ (U2 ⊗ U3 ⊗ R).

We have

U1 ⊗ U2 ⊗ U3 = C2 ⊗ C1 ⊗ C−1 = C4 ⊕ 2C2 ⊕ R2.

The C1 part in U1 ⊗ U2 is spanned by

e14 − e23, e13 + e24.

Hence the invariant part of U1 ⊗ U2 ⊗ U3 is spanned by

(e14 − e23) ∧ e5 − (e13 + e24) ∧ e6, (e14 − e23) ∧ e6 + (e13 + e24) ∧ e5.

We conclude that the space of invariant 3-forms is 7-dimensional and spanned by the

claimed forms.

Using the Maurer–Cartan equation and the structural constants we can compute the

exterior derivatives of some of the invariant forms computed in Lemma 4.2.11.
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Lemma 4.2.12. We have

de7 = −2e43 + 2e56,

de12 = de43 = de56 = Re Ω0,

de127 = Re Ω0 ∧ e7 − 2e1243 + 2e1256,

de437 = Re Ω0 ∧ e7 + 2e4356,

de567 = Re Ω0 ∧ e7 − 2e4356,

dIm Ω0 = −2ω2
0,

d(e357 − e467) = d(e367 + e457) = 0.

Now we are ready to describe SU(3) × U(1)-invariant Spin(7)-structures on (0,∞) ×
N(1,−1) in a way such that the asymptotic behaviour can be conveniently read off the

coefficient functions. Starting with the homogeneous nearly Kähler structure (4.2.9) on F3,

we can scale U1, U2, U3 respectively by non-zero a, b, c to get the invariant SU(3)-structure

ω = a2e12 + b2e43 + c2e56,

Ω = abc Ω0.

On (0,∞)× F3 we evolve such SU(3)-structures to get the G2-structure

ϕ̃ = dt ∧ ω + Re Ω = a2dt ∧ e12 + b2dt ∧ e43 + c2dt ∧ e56 + abc Re Ω0,

∗ϕ̃ =
1

2
ω2 − dt ∧ Im Ω = a2b2e1243 + b2c2e4356 + c2a2e1256 − abc dt ∧ Im Ω0.

If we now consider (0,∞)×N(1,−1) as a circle bundle over (0,∞)×F3, this G2-structure

together with the multiple −fe7 of the invariant connection gives the Spin(7)-structure

ψ =(−fe7) ∧ ϕ̃+ ∗ϕ̃

=(−fe7) ∧
(
a2dt ∧ e12 + b2dt ∧ e43 + c2dt ∧ e56 + abc Re Ω0

)
+
(
a2b2e1243 + b2c2e4356 + c2a2e1256 − abc dt ∧ Im Ω0

)
=a2fdt ∧ e127 + b2fdt ∧ e437 + c2fdt ∧ e567 − abc dt ∧ Im Ω0

+ abcf Re Ω0 ∧ e7 + a2b2e1243 + b2c2e4356 + c2a2e1256. (4.2.13)

By the formulas (2.1.15) and (2.1.16) the Spin(7)-structure (4.2.13) induces the metric

g = dt2 + a2(e2
1 + e2

2) + b2(e2
3 + e2

4) + c2(e2
5 + e2

6) + f2e2
7. (4.2.14)

Remark 4.2.15. As promised the choice of parameters a, b, c, f easily allows to read off the
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asymptotic behaviour. Because the nearly Kähler structure on F3 is given by a = b =

c = 1 and the coefficient f describes the length of the circle fibres of the circle bundle

(0,∞) × N(1,−1) → (0,∞) × F3, ψ is an ALC Spin(7)-structure asymptotic to a circle

bundle with fibre length ` over the G2-cone over the homogeneous nearly Kähler structure

on F3 if

a(t)/t→ 1, b(t)/t→ 1, c(t)/t→ 1, f(t)→ ` as t→∞.

While the above construction of the Spin(7)-structure is helpful in reading off the

asymptotic behaviour, it is not compatible with the viewpoint from Section 4.1.1 that

cohomogeneity one Spin(7)-metrics correspond to an evolution of G2-structures. However,

alternatively we can consider N(1,−1) as a circle bundle over F3 now equipped with the

rotated SU(3)-structure (ω, Ω̃) = (ω, iΩ). Then on N(1,−1) we get the G2-structure

ϕ =(fe7) ∧ ω + Re Ω̃

=fω ∧ e7 − abc Im Ω0

=a2fe127 + b2fe437 + c2fe567 − abc Im Ω0,

∗ϕ =
1

2
ω2 − (fe7) ∧ Im Ω̃

=a2b2e1243 + b2c2e4356 + c2a2e1256 + abcf Re Ω0 ∧ e7.

This G2-structure induces on (0,∞)×N(1,−1) the Spin(7)-structure

ψ = dt ∧ ϕ+ ∗ϕ,

which coincides with (4.2.13).

Remark 4.2.16. In Remark 4.2.5 we showed that any SU(3) × U(1)-invariant metric on

N(1,−1) is purely diagonal. Furthermore, a direct computation shows that the additional

U(1)-action also preserves the G2-structure ϕ. Therefore, we are really studying SU(3)×
U(1)-invariant Spin(7)-structures.

The next Lemma shows that the static part of the torsion-free condition (4.1.4a), i.e.

that ϕ is coclosed is always satisfied.

Lemma 4.2.17. The G2-structure ϕ is coclosed.

Proof. Using Lemma 4.2.12 we get

d ∗ ϕ = a2b2Re Ω0 ∧ (e12 + e43) + b2c2Re Ω0 ∧ (e43 + e56) + c2a2Re Ω0 ∧ (e56 + e12)

+ abcf(dRe Ω0 ∧ e7 − Re Ω0 ∧ (−2e43 + 2e56)).
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The result follows because

Re Ω0 ∧ e12 = Re Ω0 ∧ e43 = Re Ω0 ∧ e56 = 0

and Re Ω0 is closed by the nearly Kähler condition (2.2.6).

Remark 4.2.18. With (4.2.13) we have constructed one SU(3) × U(1)-invariant Spin(7)-

structure which induces the metric (4.2.14). To see if there are others, we can ask

equivalently what SU(3) × U(1)-invariant G2-structures other than ϕ induce the metric

(4.2.7) on N(1,−1). Reidegeld [Rei08, Lemma 3.1.50] has shown that the set of all SU(3)-

invariant G2-structures on N(1,−1) which induce the metric (4.2.7) is parametrised by

NSO(7)U(1)1,−1/NG2U(1)1,−1 and that the connected component of the identity is isomor-

phic to U(1) [Rei10, (42) on p. 22]. Furthermore, he has shown that ψ is up to discrete

symmetries the only SU(3)×U(1)-invariant Spin(7)-structure inducing the metric g which

can be torsion-free [Rei10, Theorem 4.4 (2)]. The reason is that the other invariant G2-

structures in the connected component of ϕ are not coclosed, i.e. fail to solve the static

condition (4.1.4a).

The evolution equation (4.1.5) given by dϕ = ∂t ∗ ϕ is equivalent to an ODE system

for the coefficient functions a, b, c, f .

Proposition 4.2.19. The Spin(7)-structure (4.2.13) on I × N(1,−1), where I ⊂ Rt is

some interval, is torsion-free if and only if (a, b, c, f) is a solution of the ODE system

ȧ

a
=
b2 + c2 − a2

abc
, (4.2.20a)

ḃ

b
=
c2 + a2 − b2

abc
− f

b2
, (4.2.20b)

ċ

c
=
a2 + b2 − c2

abc
+
f

c2
, (4.2.20c)

ḟ

f
=
f

b2
− f

c2
. (4.2.20d)

The holonomy of the associated metric is all of Spin(7).

Proof. ψ is torsion-free if and only if ϕ solves the system (4.1.4). By Lemma 4.2.17 the

static equation (4.1.4a) is always satisfied. The evolution equation (4.1.4b) is equivalent
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to a system of ODEs, which we now derive using Lemma 4.2.12.

dϕ =a2f(Re Ω0 ∧ e7 − 2e1243 + 2e1256) + b2f(Re Ω0 ∧ e7 + 2e4356)

+ c2f(Re Ω0 ∧ e7 − 2e4356) + 2abc ω2
0

=(a2 + b2 + c2)f Re Ω0 ∧ e7

+ (−2a2f + 4abc)e1243 + (2a2f + 4abc)e1256 + (2b2f − 2c2f + 4abc)e4356.

Equating this with ∂t ∗ ϕ leads to the system

∂t(a
2b2) = −2a2f + 4abc,

∂t(b
2c2) = 2b2f − 2c2f + 4abc,

∂t(c
2a2) = 2a2f + 4abc,

∂t(abcf) = (a2 + b2 + c2)f.

Denoting differentiation with respect to t by a dot, we can simplify the above system to

get

ȧ

a
+
ḃ

b
= − f

b2
+ 2

c2

abc

ḃ

b
+
ċ

c
=
f

c2
− f

b2
+ 2

a2

abc
ċ

c
+
ȧ

a
=
f

c2
+ 2

b2

abc

ȧ

a
+
ḃ

b
+
ċ

c
+
ḟ

f
=
a2 + b2 + c2

abc
.

This finally gives (4.2.20). The statement about the holonomy group follows from [Rei10,

Theorem 4.4]

Remark 4.2.21. The system (4.2.20) is compatible with f ≡ 0, b ≡ c. It reduces to

ȧ = 2− a2

b2
, (4.2.22a)

ḃ =
a

b
. (4.2.22b)

Because we are interested in positive solutions, by equation (4.2.22b) we can invert the

function b on a domain of interest, and therefore we can reparametrise that interval with
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a coordinate r such that b(r) = r. With respect to r the general solution is given by

a(r) = r

(
1 +

C

r4

) 1
2

.

This is the Bryant–Salamon solution on Λ2
−CP 2 asymptotic to the cone over the homoge-

neous nearly Kähler structure on F3.

Remark 4.2.23. As explained in remark 4.2.15 ALC asymptotics can be easily read off from

the coefficient functions a, b, c, f . The same is true for an AC Spin(7)-structure asymptotic

to the cone over the diagonal SU(3)-invariant nearly parallel G2-structure on N(1,−1).

Substituting the coefficients a(t) = ac t, b(t) = bc t, c(t) = cc t, f(t) = fc t of the conical

Spin(7)-structure in the system (4.2.20) gives

ac =
2√
5
≈ 0.89, bc =

√
2

15
(5−

√
5) ≈ 0.61,

cc =

√
2

15
(5 +

√
5) ≈ 0.98, fc =

4

3
√

5
≈ 0.60.

Remark 4.2.24. More generally, SU(3)-invariant torsion-free Spin(7)-structures with prin-

cipal orbit a generic Aloff–Wallach space N(k, l) are characterised by the ODE system

ȧ

a
=
b2 + c2 − a2

abc
+
m

∆

f

a2
, (4.2.25a)

ḃ

b
=
c2 + a2 − b2

abc
+

l

∆

f

b2
, (4.2.25b)

ċ

c
=
a2 + b2 − c2

abc
+
k

∆

f

c2
, (4.2.25c)

ḟ

f
= −m

∆

f

a2
− l

∆

f

b2
− k

∆

f

c2
. (4.2.25d)

Here m = −k − l and ∆ = k2 + kl + l2. Besides N(1,−1) we are also interested in the

principal orbit N(1, 0), which is equivariantly diffeomorphic to N(1,−1). Note that the

system (4.2.25) for (k, l,m) = (1, 0,−1) coincides with the system for (k, l,m) = (1,−1, 0)

after swapping a and b. For us it will be convenient to consider cohomogeneity one torsion-

free Spin(7)-structures with principal orbit N(1, 0) as solutions of the system (4.2.20) after

exchanging the initial conditions for a and b.

4.2.3 Preservation laws and a coordinate change on projective space

To understand the long-time behaviour of local solutions of the system (4.2.20) it is crucial

to understand preserved orderings of the functions a, b, c and f . The following Lemma is
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an elementary yet important observation.

Lemma 4.2.26. Assume that a (local) solution (a, b, c, f) of the system (4.2.20), where

a, b, c, f are positive functions, satisfies both

(i) b < c and

(ii) a < c

at some time t0. This set of conditions is preserved forward as long as the solution exists,

and f is strictly monotone increasing from then onwards.

Proof. As long as the solution exists all functions stay positive.

(i) Assume b(t1) = c(t1) for some t1 > t0. Then at time t1

ḃ =
a

b
− f

b
,

ċ =
a

b
+
f

b
.

Because f > 0 we get ḃ(t1) < ċ(t1), which is a contradiction if t1 is the smallest t1 > t0

such that b(t1) = c(t1).

(ii) Assume a(t1) = c(t1) for some t1 > t0. Then at time t1

ċ =
b

a
+
f

c
>
b

a
= ȧ.

The monotonicity of f is a direct consequence of (i) as

ḟ =
f2

b2
− f2

c2
.

The previous Lemma suggests that the quotients a/c and b/c are well-behaved. Because

the right-hand side of the ODE system (4.2.20) is homogeneous we can consider the system

in the projective coordinates

A =
a

c
, B =

b

c
, F =

f

c
. (4.2.27)

A similar use of projective coordinates was made by Atiyah–Hitchin [AH88, Chapter 9].
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In the following we derive the evolution equations in these coordinates.

d

dt
log a− d

dt
log c = 2

c2 − a2

abc
− f

c2
,

d

dt

a

c
=

2

b

(
1−

(a
c

)2
)
− af

c3
, (4.2.28)

d

dt
log b− d

dt
log c = 2

c2 − b2

abc
− f

(
1

b2
+

1

c2

)
,

d

dt

b

c
=

2

a

(
1−

(
b

c

)2
)
− f

bc

(
1 +

(
b

c

)2
)
, (4.2.29)

d

dt
log f − d

dt
log c =

f

b2
− 2

f

c2
− a2 + b2 − c2

abc
,

d

dt

f

c
=
f2

b2c
− 2

f2

c3
+
f

c

c2 − a2 − b2

abc
. (4.2.30)

Changing the parameter by dt = ab
c ds (4.2.28)-(4.2.30) becomes

d

ds
A =

d

ds

a

c
= 2

a

c

(
1−

(a
c

)2
)
− a2bf

c4

= 2A(1−A2)−A2BF,

d

ds
B =

d

ds

b

c
= 2

b

c

(
1−

(
b

c

)2
)
− af

c2

(
1 +

(
b

c

)2
)

= 2B(1−B2)−AF (1 +B2),

d

ds
F =

d

ds

f

c
=
af2

bc2
− 2

abf2

c4
+
f

c

c2 − a2 − b2

c2

=
AF 2

B
− 2ABF 2 + F (1−A2 −B2).

To sum up, if we denote differentiation with respect to s by a dot, then the system

(4.2.20) takes the form

Ȧ = A
(
2− 2A2 −ABF

)
, (4.2.31a)

Ḃ = B

(
2− 2B2 −ABF − AF

B

)
, (4.2.31b)

Ḟ = F

(
1−A2 −B2 − 2ABF +

AF

B

)
. (4.2.31c)
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The main difficulty in the analysis of the ODE system (4.2.20) is that apart from

monotonicity under the conditions (i) and (ii) in Lemma 4.2.26 nothing can be said about

the behaviour of f in relation to any of the other functions. In particular, it is of concern

that f blows up in finite time. The lack of control of f is reflected by the fact that for the

system (4.2.31) no bounds can be derived for F . A key observation is that the controlled

quantities a/c and b/c dominate the ill-behaved quantity f/c. To be more precise, set

X = A2, Y = B2, Z = ABF. (4.2.32)

Still denoting differentiation with respect to the variable s by a dot, the ODE system takes

the form

Ẋ = 2X(2− 2X − Z), (4.2.33a)

Ẏ = 4Y − 4Y 2 − 2Y Z − 2Z, (4.2.33b)

Ż = Z(5− 3X − 3Y − 4Z). (4.2.33c)

Remark 4.2.34. Let (a(t), b(t), c(t), f(t)) be positive functions which solve the system

(4.2.20) for t in the interval (T1, T2). Then there exists a corresponding solution (X(s),

Y (s), Z(s)) of (4.2.33) defined on the interval (S1, S2), where S1 ∈ {−∞}∪R, S2 ∈ R∪{∞}.
After choosing s(t0) arbitrarily for some t0 ∈ (T1, T2), because of dt = ab

c ds the s-parameter

is given by

s(t) =

∫ t

t0

c(t̃)

a(t̃)b(t̃)
dt̃+ s(t0).

This is well-defined because a, b, c are positive functions. We will say that the solution

(X(s), Y (s), Z(s)) is associated to (a(t), b(t), c(t), f(t)).

All of the information on f is contained in Z. We are finally able to control this

quantity.

Lemma 4.2.35. Assume that a (local) solution (X,Y, Z) of the system (4.2.33) satisfies

all of the three conditions

(i) 0 < X < 1,

(ii) Y < 1,

(iii) 0 < Z < κ, κ ≥ 5
4 ,

at some time s0. Then this set of conditions is preserved forward as long as Y > 0.

Proof. 0 < X,Z is preserved as the system (4.2.33) is compatible with X ≡ 0 and Z ≡ 0.
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(i) Assume X(s1) = 1 for some s1 > s0. Then at time s1

Ẋ = −2Z < 0.

(ii) Assume Y (s1) = 1 for some s1 > s0. Then at time s1

Ẏ = −4Z < 0.

(iii) Assume Z(s1) = κ with κ ≥ 5
4 for some s1 > s0. Then at time s1

Ż = 4Z(5/4− Z)− 3Z(X + Y ) ≤ −3Z(X + Y ) < 0.

All cases lead to a contradiction.

Besides controlling f we also got rid of all singularities on the right-hand side of the

ODE system. This means that a local solution (X,Y, Z) can only develop a singularity by

shooting off to infinity in finite time. If we start with the conditions in Lemma 4.2.35 the

solution is contained in a compact cube until it hits the hypersurface Y = 0. If (X,Y, Z) is

a solution associated with a solution (a, b, c, f) of the system (4.2.20), Y = 0 implies b = 0,

i.e. the original solution already develops a singularity at Y = 0. To sum up, we have

enough preservation laws such that the long-time behaviour of any solution to the system

(4.2.20) is encoded only in the ratio b/c. More precisely we get

Lemma 4.2.36. Let (a, b, c, f) be a (local) solution of the system (4.2.20), where a, b, c, f

are positive functions satisfying a, b < c. If for the associated solution (X,Y, Z) of the

system (4.2.33) given by Remark 4.2.34 the function Y stays bounded away from zero,

then the solution (X,Y, Z) is forward complete, i.e. it exists for all large s. Moreover,

(a, b, c, f) itself is forward complete, i.e. it exists for all large t.

Proof. Because a, b, c, f are positive and we have a, b < c, the conditions of Lemma 4.2.35

are satisfied for some κ. As they are preserved and we assume that Y stays bounded away

from zero the solution (X,Y, Z) is contained in a compact region and is therefore forward

complete and positive for all s. To obtain (a, b, c, f) from (X,Y, Z) we need to make one

more integration. With a
√
Y ds = dt we can reformulate the evolution equation (4.2.20a)

for a as

d

ds
log a =

1

a

da

ds
=
√
Y
da

dt
= Y −X + 1.

We already know that a exists for some s0 = s0(t0). Then we recover a by

log a(s) = log a(s0) +

∫ s

s0

(Y −X + 1)dŝ. (4.2.37)
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Because X < 1 is preserved the integrand is always positive and hence a is positive and

uniformly bounded from below. Because a,X, Y, Z are all positive this gives (a, b, c, f).

Finally we recover the t-parameter as

t(s) = t(s0) +

∫ s

s0

a
√
Y dŝ.

We know that a is bounded away from zero and the same is true for Y by assumption.

Therefore t → ∞ as s → ∞. We conclude that (a, b, c, f) extends to a forward complete

solution of (4.2.20).

Remark 4.2.38. To conclude this section we discuss the fixed points of the dynamical

system (4.2.33) and their geometric interpretation. As we consider solutions with positive

coefficients we only list critical points with non-negative coordinates. These are given by

(0, 0, 0), (1, 0, 0), (0, 1, 0), (1, 1, 0),

(
15− 3

√
5

10
,
3−
√

5

2
,
3
√

5− 5

5

)
. (4.2.39)

Before we move on to describe these in more detail, we quickly review the theory of

hyperbolic fixed points. For details we refer to [Per96, Chapter 2.7]. A fixed point p of

a dynamical system ẋ = Φ(x) is called hyperbolic if the real parts of all eigenvalues of

the linearisation dΦ|p of the system at the fixed point are non-zero. If the system is n-

dimensional and dΦ|p has k eigenvalues with negative real part and (n − k)-eigenvalues

with positive real part, then there is a k-dimensional submanifold, the stable manifold at p,

of trajectories converging towards p, and a (n− k)-dimensional submanifold, the unstable

manifold at p, of trajectories emanating from p. Moreover, by the Hartman–Grobman

theorem [Per96, Chapter 2.8] the dynamical system in a neighbourhood of p is equivalent

to the linearised system.

All of the fixed points (4.2.39) are hyperbolic:

• (0, 1, 0) has a 1-dimensional stable manifold and a 2-dimensional unstable manifold.

In Section 4.3 we describe up to scale a 1-parameter family Ψµ of smooth cohomo-

geneity one Spin(7)-structures with principal orbit N(1,−1) closing smoothly on a

S5. The trajectories of the associated solutions originate in this critical point and

sweep out an open subset of the unstable manifold. Therefore, this fixed point can

be thought off as the singular orbit S5.

• The dynamics around (1, 0, 0) are the same as around (0, 1, 0) and correspond to the

singular orbit CP 2. A 1-parameter family Υτ of smooth cohomogeneity one Spin(7)-

structures with principal orbit N(1, 0) closing smoothly on a CP 2 is described in

Section 4.3. One of the two trajectories which compromise the 1-dimensional stable
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manifold is the explicit solution

X(s) =
e4s

1 + e4s
, Y (s) = 0, (4.2.40)

which emanates from (0, 0, 0).

• (0, 0, 0) is a source. We have not found a geometric interpretation of this fixed point.

• (1, 1, 0) is a sink. Geometrically this fixed point can be interpreted as an ALC end.

An ALC Spin(7)-structure as described in Remark 4.2.15 in terms of (X,Y, Z) will

converge to this critical point as s→∞.

• The fixed point

(Xc, Yc, Zc) :=

(
15− 3

√
5

10
,
3−
√

5

2
,
3
√

5− 5

5

)
≈ (0.83, 0.38, 0.34) (4.2.41)

corresponds to the Spin(7)-cone C over the unique SU(3) × U(1)-invariant nearly

parallel G2-structure onN(1,−1). Indeed, the associated solution of the cone solution

described in Remark (4.2.23) is this fixed point. The linearisation of the system

(4.2.33) at (Xc, Yc, Zc) is given by
−6 + 6√

5
0 −3 + 3√

5

0 −6 + 14√
5
−5 +

√
5

3− 9√
5

3− 9√
5

4− 12√
5

 .

The eigenvalues rounded to one digit after the decimal point are −4.1,−1.7, 1.4. By

the discussion above there is a 2-dimensional stable manifold and a 1-dimensional

unstable manifold. In Section 4.4 we construct up to scale two cohomogeneity one

Spin(7)-metrics with principal orbit N(1,−1) and an isolated conical singularity

modelled on the Spin(7)-cone C. The two trajectories of the associated solutions

constitute the unstable manifold at (Xc, Yc, Zc). Furthermore, we show that the

2-dimensional stable manifold is made up of a 2-parameter family Ψac
α,β of AC ends.

4.3 Local solutions around the singular orbits S5 and CP 2

In Remark 4.2.8 we have explained that N(k, l) is a L(1, |k + l|)-bundle over CP 2. For

N(1,−1), the fibre L(1, 0) = S1 × S2 is not a sphere. In particular, there is no cohomo-

geneity one space with principal orbit N(1,−1) and singular orbit CP 2 (see Section 4.1.1

for details). However, N(1,−1) is an S2-bundle over the 5-sphere S5 = SU(3)/SU(2) (see
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Remark 4.2.8). Indeed, the adjoint bundle MS5 of the principal SU(2)-bundle SU(3) →
SU(3)/SU(2) is a cohomogeneity one space with principal orbit N(1,−1) and singular or-

bit S5. The group diagram is given by U(1)1,−1 ⊂ SU(2) ⊂ SU(3). The extra U(1)-factor

(4.2.6) also is in the normalizer of SU(2), and therefore gives a global symmetry of MS5 .

As explained in Section 4.1.1, we want to approach the construction of Spin(7)-metrics

on MS5 by first considering local invariant Spin(7)-structures closing smoothly on the

singular orbit S5 and then decide which of these extend to complete Spin(7)-structures to

all of MS5 . Local cohomogeneity one Spin(7)-structures around the singular orbit have

been investigated by Reidegeld [Rei10]. He proves

Theorem 4.3.1. [Rei10, Theorem 6.1] For any µ ∈ (0,∞) there exists a unique SU(3)×
U(1)-invariant torsion-free Spin(7)-structure Ψµ in a neighbourhood of the singular orbit

S5 in MS5 with

a(0) = 0, b(0) = c(0) = 1, f(0) = µ.

The holonomy of the associated metric is all of Spin(7). Ψµ depends continuously on µ.

The asymptotic expansion of Ψµ is given by

a(t) =2t− 4

27
(9− µ2)t3 +O(t5), (4.3.2a)

b(t) =1− 1

3
µt+

(
1− 5

18
µ2

)
t2 +

1

810
µ(126− 167µ2)t3 +O(t4), (4.3.2b)

c(t) =1 +
1

3
µt+

(
1− 5

18
µ2

)
t2 − 1

810
µ(126− 167µ2)t3 +O(t4), (4.3.2c)

f(t) =µ+
2

3
µ3t2 +O(t4). (4.3.2d)

In the coordinates (X,Y, Z) the short-distance asymptotic expansion takes the form

X(t) = 4t2 − 8

3
µt3 +O(t4), (4.3.3a)

Y (t) = 1− 4

3
µt+

8

9
µ2t2 − 8

405
µ(83µ2 − 99)t3 +O(t4), (4.3.3b)

Z(t) = 2µt− 8

3
µ2t2 +

4

27
µ(31µ2 − 36)t3 +O(t4). (4.3.3c)

Remark 4.3.4. µ = 0 gives the Bryant–Salamon AC G2 holonomy metric on Λ2
−CP 2 with

f ≡ 0 and b ≡ c described in Remark 4.2.22. The continuous dependence of the functions

(a, b, c, f) on µ extends to µ = 0.

Remark 4.3.5. By Remark 4.2.34 each Ψµ gives rise to an associated solution of the system

(4.2.33). By abuse of notation we will denote them by the same symbol Ψµ. Let us
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determine the range of parameters s for which these are defined. It follows from the

asymptotic expansion (4.3.2) that we can find a positive constant C and a small time t0

such that for all t ∈ (0, t0)

Ct−1 <
c

ab
.

Set s(t0) = s0 where s0 is an arbitrary constant of integration. Then

s(t) = −
∫ t0

t

c

ab
dt̂+ s(t0) < −C

∫ t0

t
t̂−1dt̂+ s(t0) = C log(t)− C log(t0) + s(t0).

Hence s → −∞ as t → 0. Therefore, there exists some S ∈ R such that Ψµ is defined for

s ∈ (−∞, S). As s→ −∞, for each µ the solution (X,Y, Z) converges to the critical point

(0, 1, 0). Hence this critical point corresponds to a singular orbit S5.

To use CP 2 as the singular orbit, we need to use N(1, 0) instead of N(1,−1) as the

principal orbit. Indeed, by Remark 4.2.8 N(1, 0) is a L(1, 1) = S3 bundle over CP 2, and the

universal quotient bundle MCP 2 is a cohomogeneity one space with principal orbit N(1, 0)

and singular orbit CP 2 (see [GST03]). The extra U(1)-factor (4.2.6) also is a subgroup of

the normalizer of U(1)1,0 and of the isotropy group of CP 2. Therefore, the extra symmetry

from Remark 4.2.5 acts globally on MCP 2 .

As mentioned in Remark 4.2.24, an SU(3)-invariant torsion-free Spin(7)-structure with

principal orbit N(1, 0) is still characterised as a solution of the system (4.2.20). We only

need to swap the roles of a and b in the discussion of smooth extension over the singular

orbit. Taking this into account, Reidegeld proves

Theorem 4.3.6. [Rei10, Theorem 7.1] For any τ ∈ R there exists a unique SU(3)×U(1)-

invariant torsion-free Spin(7)-structure Υτ in a neighbourhood of the singular orbit CP 2

in MCP 2 with the asymptotic expansion

a(t) = 1 +
2

3
t2 +

−104− τ
288

t4 +O(t5), (4.3.7a)

b(t) = t− 12 + τ

24
t3 +O(t5), (4.3.7b)

c(t) = 1 +
5

6
t2 +

−140 + τ

288
t4 +O(t5), (4.3.7c)

f(t) = t+
τ

12
t3 +O(t5). (4.3.7d)

The holonomy of the associated metric is all of Spin(7). Υτ depends continuously on τ .
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In (X,Y, Z) coordinates the short-distance expansion takes the form

X(t) = 1− 1

3
t2 − −40 + τ

72
t4 +O(t5), (4.3.8a)

Y (t) = t2 − 32 + τ

12
t4 +O(t5), (4.3.8b)

Z(t) = t2 +
−56 + τ

24
t4 +O(t5). (4.3.8c)

Remark 4.3.9. Using the asymptotic expansion (4.3.7), as in Remark 4.3.5 we can show

that for every τ ∈ R there exists some S > 0 such that the solution of the system 4.2.33

associated with Υτ is defined for s ∈ (−∞, S). As s → −∞, the solution (X,Y, Z)

converges to the critical point (1, 0, 0). Hence this critical point corresponds to the singular

orbit CP 2.

Remark 4.3.10. Scaling a Ricci-flat metric by a non-zero positive constant gives another

Ricci-flat metric. In the situation of the Spin(7)-structure (2.1.16), replacing the Spin(7)-

form ψ = dt ∧ ϕ + ∗ϕ by ψ̂ = κ4ψ scales the associated metric to κ2g = κ2dt2 + κ2h.

Now t̂ = κt is the arc-length parameter meeting the principal orbits orthogonally. The

scaled Spin(7)-structure ψ̂ is represented by the coefficient functions (â(t), b̂(t), ĉ(t), f̂(t)) =

(κ a(t/κ), κ b(t/κ), κ c(t/κ), κ f(t/κ)). We are only interested in solutions to (4.2.20) up

to scale. In Theorem 4.3.1 we chose the scale for the family Ψµ such that b(0) = 1, and in

Theorem 4.3.6 we chose the scale for the family Υτ such that a(0) = 1.

4.4 CS and AC ends

In this section we will construct families of local SU(3)×U(1)-invariant CS and AC Spin(7)-

metrics with principal orbit N(1,−1). In both cases the asymptotic cone is the cone over

the unique SU(3)×U(1)-invariant nearly parallel G2-structure on N(1,−1). As in [FHN18]

this will be achieved by considering a singular initial value problem around the conical

singularity in the CS case and at infinity of the asymptotic cone in the AC case. The

following statement can be found in [FHN18, Theorem 5.1]. A proof can be found in

Picard’s treatise [Pic28, Chapter I, §13].

Theorem 4.4.1. Consider the singular initial value problem

tẏ = Φ(y), y(0) = y0, (4.4.2)

where y takes values in Rk and Φ: : Rk → Rk is a real analytic function in a neighbourhood

of y0 with Φ(y0) = 0. After possibly a change of basis, assume that dΦ|y0 contains a

diagonal block diag(λ1, . . . , λm) in the upper-left corner. Furthermore assume that the

eigenvalues λ1, . . . , λm satisfy:
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(i) λ1, . . . , λm > 0;

(ii) for every h = (h1, . . . , hm) ∈ Zm with |h| = h1 + · · ·+ hm ≥ 2 the matrix

(h · λ)Id− dΦ|y0

is invertible. Here λ = (λ1, . . . , λm) and h · λ =
∑m

i=1 hiλi.

Then for every (u1, . . . , um) ∈ Rm there exists a unique solution y(t) of (4.4.2) given as a

convergent generalised power series

y(t) = y0 + (u1t
λ1 , . . . , umt

λm , 0 . . . 0) +
∑
|h|≥2

yht
h·λ.

Furthermore, the solutions depend real analytically on u1, . . . , um.

In the following, denote by ν1, ν2, ν3 the ordered roots of the cubic equation

x3 + 8x2 − 4x− 60 = 0.

The numerical values, rounded to two digits after the decimal point, are given by

ν0 ≈ −7.46, ν1 ≈ −3.12, ν2 ≈ 2.58. (4.4.3)

Proposition 4.4.4. Let C be the Spin(7)-holonomy cone over N(1,−1).

(i) For every λ ∈ R there is some ε > 0 such that on (0, ε) × N(1,−1) there exists

a torsion-free CS Spin(7)-structure Ψcs
λ asymptotic to C which has the asymptotic

expansion

√
5

2
t−1a(t) ≈ 1− 0.25λ tν2 +O(t2ν2), (4.4.5a)√

15

2(5−
√

5)
t−1b(t) ≈ 1− 4.84λ tν2 +O(t2ν2), (4.4.5b)√

15

2(5 +
√

5)
t−1c(t) ≈ 1 + 0.09λ tν2 +O(t2ν2), (4.4.5c)

3
√

5

4
t−1f(t) ≈ 1 + 10λ tν2 +O(t2ν2). (4.4.5d)

Here all coefficients of (4.4.5a)-(4.4.5c) have been rounded to two digits after the

decimal point.

(ii) For every (α, β) ∈ R2 there is some T > 0 such that on (T,∞)×N(1,−1) there exists

a torsion-free AC Spin(7)-structure Ψac
α,β asymptotic to C which has the asymptotic
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expansion

√
5

2
t−1a(t) ≈ 1− 10.6α tν1 + 3.6β tν0 +

∑
k,l≥0,k+l≥2

akl t
kν1+lν0 , (4.4.6a)

√
15

2(5−
√

5)
t−1b(t) ≈ 1 + 10.8α tν1 + 0.8β tν0 +

∑
k,l≥0,k+l≥2

bkl t
kν1+lν0 , (4.4.6b)

√
15

2(5 +
√

5)
t−1c(t) ≈ 1− 5.1α tν1 − 4.8β tν0 +

∑
k,l≥0,k+l≥2

ckl t
kν1+lν0 , (4.4.6c)

3
√

5

4
t−1f(t) ≈ 1 + 10α tν1 + β tν0 +

∑
k,l≥0,k+l≥2

fkl t
kν1+lν0 . (4.4.6d)

Here the leading coefficients of (4.4.6a)-(4.4.6c) have been rounded to one digit after

the decimal point and the higher coefficients akl, bkl, ckl, fkl are determined by (α, β).

If α = 0, Ψac
α,β has decay rate ν0, otherwise it has decay rate ν1.

Proof. Recall from Remark 4.2.23 that the cone over the SU(3) × U(1)-invariant nearly

parallel G2-structure on N(1,−1) is given by

a =
2√
5
t, b =

√
2

15
(5−

√
5) t, c =

√
2

15
(5 +

√
5) t, f =

4

3
√

5
t.

Therefore, any deformation of the conical Spin(7)-structure on (0,∞) × N(1,−1) can be

described as

t−1a =
2√
5

(1 +X1), t−1b =

√
2

15
(5−

√
5)(1 +X2),

t−1c =

√
2

15
(5 +

√
5)(1 +X3), t−1f =

8

3
√

5
(1 +X4).

Setting (X1, X2, X3, X4) = (0, 0, 0, 0) recovers the Spin(7)-cone. The system (4.2.20) be-

comes

tẊ1 =−X1 +
5−
√

5

4

1 +X2

1 +X3
+

5 +
√

5

4

1 +X3

1 +X2
− 3

2

1 +X1

1 +X2

1 +X1

1 +X3
− 1,

tẊ2 =−X2 +
5 +
√

5

4

1 +X3

1 +X1
+

3

2

1 +X1

1 +X3
− 5−

√
5

4

1 +X2

1 +X3

1 +X2

1 +X1
− 2√

5− 1

1 +X4

1 +X2
− 1,

tẊ3 =−X3 +
3

2

1 +X1

1 +X2
+

5−
√

5

4

1 +X2

1 +X1
− 5 +

√
5

4

1 +X3

1 +X1

1 +X3

1 +X2
+

2√
5 + 1

1 +X4

1 +X3
− 1,

tẊ4 =−X4 +
2√

5− 1

(1 +X4)2

(1 +X2)2
− 2√

5 + 1

(1 +X4)2

(1 +X3)2
− 1.
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The linearisation L of the right-hand side at (0, 0, 0, 0) is given by

L =


−4 −

√
5+3
2

√
5+3
2 0

−
√

5+3
2

√
5− 3 1 − 2√

5−1√
5+3
2 1 −

√
5− 3 2√

5+1

0 −
√

5− 1
√

5− 1 1

 .

The eigenvalues of L are given by ν0, ν1, ν2 and −1. Writing y = (X1, X2, X3, X4), this is

a system of the form (4.4.2) with y0 = (0, 0, 0, 0).

We will first construct the family of CS solutions. The numerical values (4.4.3) show

that condition (ii) in Theorem 4.4.1 is satisfied if we set m = 1 and λ1 = ν2. The eigenspace

of L associated with ν2 is spanned by (−0.25,−4.84, 0.09, 10), where all components are

rounded to two digits after the decimal point. The existence of the 1-parameter family Ψcs
λ

follows from Theorem 4.4.1.

We have to replace t by 1/t to construct the AC ends with Theorem 4.4.1. Then the

linearisation is given by −L. By using the numerical approximations (4.4.3), one can see

that the non-resonance condition (ii) of Theorem 4.4.1 is satisfied if we set m = 2 and λ1 =

−ν0, λ2 = −ν1. Rounded to one digit after the decimal point, the eigenspaces associated

with ν0 and ν1 are spanned by the vectors (3.6, 0.8,−4.8, 1) and (−10.6, 10.8,−5.1, 10),

respectively. The statement follows with Theorem 4.4.1.

The solution Ψcs
0 is the Spin(7)-cone itself. All solutions Ψcs

λ , λ > 0, are related by

scaling, as are all solutions Ψcs
λ , λ < 0. By Remark 4.2.34 each Ψcs

λ gives rise to an

associated solution of the system (4.2.33). Because by passing to (X,Y, Z) coordinates

Spin(7)-structures related by scaling are identified, we only get three distinct solutions and

different choices of λ of the same sign merely correspond to a shift in the s-parameter. The

associated solution of the Spin(7)-cone Ψcs
0 is the fixed point (Xc, Yc, Zc), which we have

described in Remark 4.2.38. To determine the remaining two trajectories corresponding to

the conically singular solutions Ψcs
λ , we use the asymptotic expansion (4.4.5) to argue as

in Remark 4.3.5 that for each Ψcs
λ we can find an S ∈ R such that the associated solution

(X,Y, Z) is defined for s ∈ (−∞, S). As s→ −∞, the solution (X,Y, Z) converges to the

fixed point (Xc, Yc, Zc), which corresponds to the Spin(7)-cone. Thus, the two trajectories

associated with the families Ψcs
λ , λ > 0, and Ψcs

λ , λ < 0, are precisely the two branches of

the 1-dimensional unstable manifold at (Xc, Yc, Zc).

It will still be useful to us to compute the asymptotic expansion with respect to the
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t-parameter of the associated solution of Ψcs
λ as t→ 0, which is given by

X(t) ≈ Xc(1− 0.68λtν2 +O(t2ν2)), (4.4.7a)

Y (t) ≈ Yc(1− 9.86λtν2 +O(t2ν2)), (4.4.7b)

Z(t) ≈ Zc(1 + 4.46λtν2 +O(t2ν2)). (4.4.7c)

Again all coefficients are rounded to two digits after the decimal point.

The solution Ψac
0,0 is the Spin(7)-cone itself. Next we determine which ones of the AC

ends Ψac
α,β, (α, β) 6= (0, 0), are related by scaling. In Remark 4.3.10 we have described how

the Spin(7)-structures scale. After rescaling by κ > 0, the AC end κΨac
α,β is described by

the functions

(â(t), b̂(t), ĉ(t), f̂(t)) = (κ a(t/κ), κ b(t/κ), κ c(t/κ), κ f(t/κ)).

This corresponds to replacing the functions (X1(t), X2(t), X3(t), X4(t)) from the proof of

Proposition 4.4.4 by (X1(t/κ), X2(t/κ), X3(t/κ), X4(t/κ)). By the asymptotic expansion

(4.4.6), the latter quadruple can also be obtained by replacing the parameters (α, β) by

(κ−ν1α, κ−ν0β). Hence the orbits of the action of R+ on R2−{(0, 0)} given by κ ◦ (α, β) =

(κ−ν1α, κ−ν0β) consist precisely of parameters corresponding to AC ends which are related

by scaling. The quotient of R2 − {(0, 0)} by this action is homeomorphic to S1 and each

orbit has a unique representative on S1 ⊂ R2.

Using the asymptotic expansion (4.4.6), again we can argue similarly as in Remark 4.3.5

to deduce that for each (α, β) there exists S ∈ R such that the solution (Xα,β(s), Yα,β(s), Zα,β(s))

associated with Ψac
α,β this time is defined for s ∈ (S,∞). As s→∞, the solution approaches

the Spin(7)-cone (Xc, Yc, Zc). Furthermore, because S1 is compact, we can find s0 ∈ R in-

dependent of (α, β) ∈ S1 ⊂ R2 such that the associated solution of Ψac
α,β for any (α, β) ∈ S1

is defined for s ∈ (s0,∞). The map

S1 → R3,

(α, β) 7→ (Xα,β(s0), Yα,β(s0), Zα,β(s0)),

is an embedding. As we increase the choice of s0, this embedded circle sweeps out a punc-

tured embedded 2-ball centred at (Xc, Yc, Zc). Thus, the 2-dimensional stable manifold

at the fixed point (Xc, Yc, Zc) corresponds precisely to the trajectories associated with the

AC ends Ψac
α,β. This proves

Lemma 4.4.8. Let (X,Y, Z) be a forward complete solution of the system (4.2.33) which

converges to the critical point (Xc, Yc, Zc). Then there exist α0, β0 ∈ R such that (X,Y, Z)

is associated to the AC end Ψac
α0,β0

.
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In the construction of the AC ends in the proof of Proposition 4.4.4, the linearisation

−L also has the positive eigenvalue 1. Deformations given by this eigenvalue correspond

to translations of the t-variable, and therefore do not give new solutions. In particular we

get

Corollary 4.4.9. There exists a gauge such that any SU(3)×U(1)-invariant AC Spin(7)

metric which is asymptotic to the cone over the unique SU(3) × U(1)-invariant nearly

parallel G2-structure on N(1,−1) has decay rate equal to ν0 or ν1.

4.5 Analysis of the ODE system

In the remainder of the paper we want to investigate which members of the families Ψµ,

Υτ and Ψcs
λ give rise to forward complete Spin(7)-holonomy metrics and determine the

asymptotic type of complete solutions. As discussed in Section 4.2.3, solutions of the ODE

system (4.2.20) are best studied by looking at their associated solutions of the system

(4.2.33) described in Remarks 4.3.5, 4.3.9 and at the end of section 4.4.

The following Lemma will allow us to compare the local solutions for different param-

eters.

Lemma 4.5.1. Suppose (X1, Y1, Z1) and (X2, Y2, Z2) are two solutions of the system

(4.2.33), where all functions are positive. Furthermore, suppose at some time s0 ∈ R
we have

X1 > X2, Y1 > Y2, Z1 < Z2.

Then this condition is forward preserved as long as all functions stay positive.

Proof. We start by looking at the quantity Z. Assume all three inequalities are preserved

until some time s1 > s0 when we have Z1(s1) = Z2(s1) = α > 0. Note that at s1 there

must be a strict inequality for either X1 > X2 or Y1 > Y2. Otherwise the solutions would

be the same. Furthermore at s1 we have

Ż2 − Ż1 = 3α((X1 −X2) + (Y1 − Y2)) > 0.

Therefore, Z1 < Z2 is strictly preserved as long as X1 ≥ X2 and Y1 ≥ Y2. Given that,

suppose that at s1 > s0 we have X1(s1) = X2(s1) = α > 0. Then at the same time

Ẋ2 − Ẋ1 = 2α(Z1 − Z2) < 0.
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If we suppose that at s1 > s0 we have Y1(s1) = Y2(s1) = α > 0, then at the same time

Ẏ2 − Ẏ1 = −2(1 + α)(Z2 − Z1) < 0.

All cases lead to a contradiction.

As an immediate application of Lemma 4.5.1 we obtain

Lemma 4.5.2. Denote by (X1, Y1, Z1) and (X2, Y2, Z2) the two solutions of the system

(4.2.33) corresponding to

• Ψµ1 and Ψµ2 for 0 < µ1 < µ2, respectively, or

• Υτ1 and Υτ2 for τ1 < τ2, respectively, or

• Ψcs
λ1

and Ψcs
λ2

for λ1 < λ2, respectively.

In all three cases we have

X1 > X2, Y1 > Y2, Z1 < Z2,

as long as the solutions exist.

Proof. By the short distance asymptotic expansions (4.3.3), (4.3.8), (4.4.7) all three state-

ments are true for small times. By Lemma 4.5.1 this is preserved as long as all functions

stay positive. Any of the (X,Y, Z) coordinates becoming zero means that one of the cor-

responding functions a, b, c, f must be zero, and thus that the respective solution develops

a singularity.

A simple consequence of the above comparison argument is that the families Ψµ and

Υτ contain at most one AC space.

Lemma 4.5.3. Suppose (X1, Y1, Z1) and (X2, Y2, Z2) are two complete solutions of the

system (4.2.33), where all functions are positive and satisfy

X1 > X2, Y1 > Y2, Z1 < Z2.

for all times. Then not both solutions can converge to the cone (Xc, Yc, Zc) as s→∞.

Proof. The positivity and the given ordering of the two solutions imply

Ẏ1 − Ẏ2 = 4(Y1 − Y2)− 4(Y 2
1 − Y 2

2 )− 2Z1(1 + Y1) + 2Z2(1 + Y2)

> 4(Y1 − Y2)− 4(Y 2
1 − Y 2

2 )− 2Z1(1 + Y1) + 2Z1(1 + Y2)

= (Y1 − Y2)(4− 4Y1 − 4Y2 − 2Z1).
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If both solutions converge to the cone, for ε > 0 arbitrarily small and all sufficiently large

times we get with (4.2.41)

4− 4Y1 − 4Y2 − 2Z1 > 4− 8Yc − 2Zc − ε =
14√

5
− 6− ε ≈ 0.26− ε.

Therefore, the function Y1 − Y2 is monotone increasing for large times. In particular, Y1

and Y2 cannot have the same limit which is a contradiction.

4.5.1 Extrema of Y

By the asymptotic expansions (4.3.3) and (4.3.8) for Ψµ and Υτ , respectively, and the

fact that all Ψcs
λ originate in the cone (Xc, Yc, Zc), all these solutions initially satisfy the

conditions of Lemma 4.2.35. With these preservation laws our main insight in Section 4.2.3

was Lemma 4.2.36: it is sufficient to bound the function Y of the associated solution away

from zero to obtain forward completeness for the original solution (a, b, c, f) of the system

(4.2.20). In this section we approach the problem of bounding Y from below by studying

minima of Y . Further strong motivation for this strategy comes from the geometry of

the family Ψµ. In Remark 4.2.38 we have noted that the local solutions Ψµ originate in

the critical point (0, 1, 0) and ALC solutions converge toward the critical point (1, 1, 0).

Because for all parameters µ the corresponding function Y is initially decreasing, for any

complete ALC solution Y necessarily has a minimum at some time. If however Y never

has a minimum and eventually reaches 0, the solution is incomplete. A further possibility

is that Y is monotone decreasing with Y → Yc which corresponds to an AC solution.

Therefore, studying extremal points of the function Y should allow us to make statements

about completeness and asymptotic behaviour of complete solutions.

This approach has two further important advantages. First, Y having a minimum is

an open condition. In this chapter we will show that we can characterise forward complete

ALC solutions among the family Ψµ by Y having a minimum. Hence the subset of pa-

rameters µ which give rise to ALC solutions is an open subset. This will allow us later to

deduce the existence of an AC solution. Secondly, the next Lemma shows that the study

of extrema of Y is essentially a 2-dimensional problem. This will allow us to project the

trajectories on the (X,Y )-plane and we obtain a much more tractable problem.

Lemma 4.5.4. (i) For the growth of Y we have

Ẏ < (>,=) 0 ⇔ Z > (<,=) 2Y
1− Y
1 + Y

.
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(ii) In the following we set

Q(X,Y ) := −3X +
5Y 2 − 6Y + 5

1 + Y
.

If Y has a minimum at time s0 with Y (s0) ≥ 0, then Q(X(s0), Y (s0)) ≤ 0. If Y has

a maximum at time s0 with Y (s0) ≥ 0, then Q(X(s0), Y (s0)) ≥ 0.

Proof. The first statement follows easily from the evolution equation for Y . To determine

the nature of critical points we compute the second derivative of Y at a critical point:

d2

ds2
Y =

d

ds

(
4Y − 4Y 2 − 2Y Z − 2Z

)
= −2(1 + Y )Ż.

Hence, at a critical point of Y with Y ≥ 0 the second derivative of Y has the opposite sign

as the first derivative of Z. We can use the equation Ẏ = 0 to solve for Z and obtain

d

ds
log(Z) = 5− 3X − 3Y − 4Z

= 5− 3X − 3Y − 8Y
1− Y
1 + Y

= −3X +
5Y 2 − 6Y + 5

1 + Y
.

We see that a critical point of Y is a minimum if Q(X,Y ) ≤ 0. The statement for maxima

of Y follows analogously.

The above Lemma suggests that that we can study extrema of Y by ignoring Z and

considering the projection of the trajectory on the (X,Y )-plane. More specifically, the

curve Q(X,Y ) = 0 partitions the plane in two disjoint regions such that Y can have a

minimum only in one of them and a maximum only in the other one. As explained in

the beginning of this section, all solutions of our interest satisfy the bounds 0 < X < 1

and Y < 1. Because the Spin(7)-structure associated with the solution (X,Y, Z) becomes

singular at Y = 0, we only partition the unit square. Finally, to extract information on

the asymptotic geometry of complete solutions we should compare the evolution of Y with

Yc, the Y -coordinate of the critical point corresponding to the conical solution. In fact,

the intersection of the curves Q(X,Y ) = 0 and Y = Yc is precisely the projection (Xc, Yc)

of the cone (Xc, Yc, Zc). We partition the unit square as

D1 = {(X,Y ) ∈ [0, 1]2| Q(X,Y ) > 0, Y > Yc},

D2 = {(X,Y ) ∈ [0, 1]2| Q(X,Y ) ≤ 0, Y > Yc},

D3 = {(X,Y ) ∈ [0, 1]2| Q(X,Y ) > 0, Y ≤ Yc},

D4 = {(X,Y ) ∈ [0, 1]2| Q(X,Y ) ≤ 0, Y ≤ Yc}.
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Note that Q(X,Y ) = 0 is equivalent to

X =
1

3

5Y 2 − 6Y + 5

1 + Y
. (4.5.5)

S5 ALC

Cone

CP 2

D1 D2

D3

D4

We can now reformulate Lemma 4.5.4 as

Lemma 4.5.6. Let (X,Y, Z) be a local solution contained inside the unit square. The

function Y can have a minimum only in D2 ∪ D4 and a maximum only in D1 ∪ D3.

To proceed from here, we again look at the family Ψµ for motivation. The solutions Ψµ

start out in D1 and Y is initially decreasing. The next Lemma is the key technical insight

of this section. It essentially says that the regions D2 and D3 are traps. If Y decreases

enough and the solution enters D3, then it is trapped there and later we will see that in

this case the solution is doomed to develop a singularity at Y = 0. If on the contrary Y

has a minimum inside D2, then it is trapped there being drawn towards the critical point

(1, 1, 0), the ALC end.

Lemma 4.5.7. Let (X(s), Y (s), Z(s)) be a solution of the system (4.2.33) satisfying the

conditions of Lemma 4.2.35.

(i) Assume that at some time we have Ẏ ≥ 0 and the solution projects to the interior of

the common boundary of D1 and D2. Then at this time we have

d

ds
Q(X,Y ) < 0.

In particular, if at some time the solution is in D2 while Ẏ ≥ 0, from then onwards,

it is trapped in D2 and Y is monotone increasing.

(ii) Assume that at some time we have Ẏ ≤ 0 and the solution projects to the interior of
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the common boundary of D3 and D4. Then at this time we have

d

ds
Q(X,Y ) > 0.

In particular, if at some time the solution is in D3 while Ẏ ≤ 0, from then onwards

as long as Y ≥ 0, it is trapped in D3 and Y is monotone decreasing.

Proof. (i): We have

∇Q(X,Y ) =

(
−3,

5Y 2 + 10Y − 11

(1 + Y )2

)
.

Because Ẏ ≥ 0, by Lemma 4.5.4 (i) we have Z ≤ 2Y 1−Y
1+Y . Combining this with (4.5.5) we

get

∂XQ(X,Y )Ẋ = −6X(2− 2X − Z)

≤ −2
5Y 2 − 6Y + 5

1 + Y

(
2− 2

3

5Y 2 − 6Y + 5

1 + Y
− 2Y

1− Y
1 + Y

)
=

8

3

(Y 2 − 3Y + 1)(5Y 2 − 6Y + 5)

(1 + Y )2
. (4.5.8)

This function is negative if Y > Yc = 3−
√

5
2 and positive if Y < Yc = 3−

√
5

2 .

Because ∂XQ(X,Y )Ẋ is negative on the common boundary between D1 and D2 and

Ẏ ≥ 0 by assumption, we can assume ∂YQ(X,Y ) to be non-negative. This allows the

estimate

∂YQ(X,Y )Ẏ = ∂YQ(X,Y )(4Y − 4Y 2 − 2Y Z − Z)

≤ ∂YQ(X,Y )4Y (1− Y ) =
5Y 2 + 10Y − 11

(1 + Y )2
4Y (1− Y ). (4.5.9)

Combining (4.5.8) and (4.5.9) we get

d

ds
Q(X,Y ) = ∇Q(X,Y ) · (Ẋ, Ẏ )

≤ 8

3

(Y 2 − 3Y + 1)(5Y 2 − 6Y + 5)

(1 + Y )2
+

5Y 2 + 10Y − 11

(1 + Y )2
4Y (1− Y )

= −4

3

5Y 4 + 57Y 3 − 119Y 2 + 75Y − 10

(1 + Y )2
,

which is negative for Y > 1
5 . By Lemma 4.5.6 the function Y cannot have a maximum as

long as the solution is in D2. Because the conditions X < 1 and Y < 1 are preserved by

Lemma 4.2.35 and Ẏ ≥ 0 as long as the solution is in D2, it can exit D2 only along the
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common boundary of D1 and D2. This was shown to be impossible.

(ii): Because now Ẏ ≤ 0, we get (4.5.8) with reversed inequality sign. This estimates

∂XQ(X,Y )Ẋ from below by a function which is positive if Y < Yc = 3−
√

5
2 . Furthermore

∂YQ(X,Y ) is negative if Y < Yc = 3−
√

5
2 . Because we assume Ẏ ≤ 0 we get

d

ds
Q(X,Y ) = ∇Q(X,Y ) · (Ẋ, Ẏ ) = ∂XQ(X,Y )Ẋ + ∂YQ(X,Y )Ẏ > 0.

By Lemma 4.5.6 the function Y cannot have a minimum in D3. As 0 < X < 1 is preserved

by Lemma 4.2.35 and Ẏ ≤ 0 by assumption, the solution can exit D3 only at Y = 0 or on

the common boundary with D4. The latter was shown to be impossible.

The following partition of the unit square gives another trapping argument.

Q1 = {(X,Y ) ∈ [0, 1]2| 0 < X ≤ Xc, Yc ≤ Y < 1},

Q2 = {(X,Y ) ∈ [0, 1]2| Xc ≤ X < 1, Yc ≤ Y < 1},

Q3 = {(X,Y ) ∈ [0, 1]2| Xc ≤ X < 1, 0 ≤ Y ≤ Yc},

Q4 = {(X,Y ) ∈ [0, 1]2| 0 < X ≤ Xc, 0 ≤ Y ≤ Yc}.

Lemma 4.5.10. Let (X,Y, Z) be a solution of the system (4.2.33).

(i) Assume the solution is in Q1 at some time and then enters the interior of Q2 at time

s0. Then the solution is trapped in the interior of Q2.

(ii) The solution cannot enter Q3 straight from Q1.

(iii) Assume the solution is in Q3 at some time and then enters the quadrant Q4 at time

s0. Then the solution is trapped in the interior of Q4 as long as it is contained in the

unit square.

(iv) The solution cannot enter Q1 straight from Q3.

Proof. (i): If the trajectory enters Q2 from Q1 at time s0, then, in particular, we have

X(s0) = Xc, Y (s0) ≥ Yc and Ẋ(s0) ≥ 0. This implies

0 ≤ 1

2

d

ds

∣∣∣∣
s=s0

logX ≤ 2− 2Xc − Z(s0). (4.5.11)

From this we deduce Z(s0) ≤ Zc. Because X(s0) = Xc and the solution is not the Spin(7)-

cone, one of the inequalities Y (s0) ≥ Yc and Z(s0) ≤ Zc is strict. Assume that Z(s0) = Zc.

Then at time s0 we have Y (s0) > Yc and

d

ds
logZ < 5− 3Xc − 3Yc − 4Zc = 0. (4.5.12)
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Hence for small ε > 0 we have Z(s0 +ε) < Zc. By the same reasoning the condition Z < Zc

is preserved as long as the solution is contained in Q2.

For s > s0 on the common boundary of Q2 and Q3, we have

d

ds
Y = 4Yc − 4Y 2

c − 2YcZ − 2Z > 4Yc − 4Y 2
c − 2YcZc − 2Zc = 0. (4.5.13)

On the common boundary of Q2 and Q1 we have

1

2

d

ds
logX = 2− 2Xc − Z > 2− 2Xc − Zc = 0. (4.5.14)

In both cases the solution cannot cross the boundary and is trapped in Q2.

(ii): Assume that the solution enters Q3 from Q1 at time s0. Then, in particular,

(X(s0), Y (s0)) = (Xc, Yc), Ẋ(s0) ≥ 0 and Ẏ (s0) ≤ 0. By (4.5.11) we again get Z(s0) ≤ Zc.
Because (X,Y, Z) is not the constant cone solution the inequality is strict. We get a

contradiction by (4.5.13).

(iii) and (iv) follow as (i) and (ii), respectively, by reversing all inequalities.

We are now ready to make the above mentioned intuition for the family Ψµ precise.

Proposition 4.5.15. Suppose (X,Y, Z) is the (local) solution of (4.2.33) associated to

Ψµ.

(i) If Y attains a minimum in D2, then the solution is trapped in D2, Y is monotone

increasing from then onwards and in particular Ψµ is complete.

(ii) Ψµ can never enter D4.

(iii) Y can have a minimum only in D2.

(iv) If Ψµ enters D3, then it is trapped there as long as it exists and Y is monotone

decreasing.

(v) Y is monotone after some time.

Proof. (i): This follows from Lemma 4.5.7 (i). Completeness follows with Lemma 4.2.36.

(ii): Because Y can have a minimum only in D2 and D4, by (i) we know that if the

solution enters D4 the first time, then Ẏ ≤ 0. By Lemma 4.5.7 (ii) this cannot happen on

the interior of the common boundary with D3. By Lemma 4.5.10 (i) it cannot enter D4

in the interior of the common boundary with D2 as this is the same as exiting Q2 after

entering it from Q1. By Lemma 4.5.10 (ii) it cannot enter D4 via (Xc, Yc).

(iii) is a consequence of (ii) and Lemma 4.5.6.

(iv): By (i) and (iii) we have Ẏ ≤ 0 if Ψµ enters D3. The statement follows from

Lemma 4.5.7 (ii).
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(v): Initially Y is decreasing. If it has a minimum, by (iii) this can only happen in

D2 and by (i) it is monotone increasing from then onwards. Otherwise Y is monotone

decreasing.

We can draw analogous conclusions for the family Υτ .

Proposition 4.5.16. Suppose (X,Y, Z) is the (local) solution of (4.2.33) associated to Υτ .

(i) If the solution enters D2, then the solution is trapped in D2, Y is monotone increasing

from then onwards and in particular Υτ is complete.

(ii) If the solution enters Q4 then it is trapped there as long as it exists.

(iii) Υτ can never enter D1.

(iv) Y is monotone after some time.

Proof. (i): The solution cannot enter D1 before entering D2 by Lemma 4.5.10 (iii), (iv).

Therefore, if s0 is the first time the solution enters D2, this must happen along the common

boundary with Q3. Then Ẏ (s0) ≥ 0. Because Y cannot have a maximum in D2 ∪D4, Y is

monotone increasing as long as the solution is in D2. By Lemma 4.5.7 (i) it is trapped in

D2 and complete by Lemma 4.2.36.

(ii): If the solution enters Q4 by (i) and Lemma 4.5.10 (iv) it has to get there via Q3.

The statement follows from Lemma 4.5.10 (iii).

(iii): follows from (i), (ii) and Lemma 4.5.10 (iv).

(iv): If the solution enters D2 at some time, the statement follows from (i). Because

Q4 ⊂ D3, Y can have only a maximum in Q4. Therefore, if the solution ever enters Q4,

the statement follows from (ii). We are left to deal with the case in which the solution

is contained in Q3 as long as it exists. If Y ever has a maximum, then by Lemma 4.5.6

this must occur in Q3 −D4. Then by Lemma 4.5.7 (ii) the solution is trapped in Q3 −D4

as long as it exists and Y is monotone decreasing from then onwards. If Y never has a

maximum, then it is monotone increasing.

4.5.2 Convergence to a critical point

In Propositions 4.5.15 (v) and Proposition 4.5.16 (iv) we have seen that for Ψµ and Υτ

the function Y is monotone after some time. In accordance with our philosophy that the

behaviour of the solution (X,Y, Z) is encoded solely in the function Y , this is enough

information to deduce that all three functions become monotone after some time and the

trajectory of (X,Y, Z) converges to one of the critical points listed in Remark 4.2.38.

Proposition 4.5.17. Let (X,Y, Z) be a solution of the system (4.2.33) satisfying the

conditions from Lemma 4.2.35, and suppose that Y stays positive and after some time is

monotone. Then the solution is complete and converges to a critical point as s→∞.
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Proof. Completeness follows from the fact that by the assumption that Y stays positive

the conditions from Lemma 4.2.35 are preserved. Because Y is monotone and bounded, it

has to converge to some Y∞ as s→∞. Using this we will first show that the same is true

for X. At a critical point of X or Z, the respective second derivative is given by

1

2

d2

ds2
logX = −Ż, (4.5.18)

d2

ds2
logZ = −3Ẋ − 3Ẏ . (4.5.19)

First assume that Y is monotone decreasing after some time. If for example we denote by

(+ − +) the chamber where X is increasing, Y decreasing and Z increasing, we get the

following diagram:

(+−+) (−−+)

(+−−) (−−−)

Here an arrow between two chambers indicates that a solution of (4.2.33) can transition

from one chamber to the other in the direction of the arrow. Because (+−+)→ (+−−)→
(+−+) is the only cycle, we see that X eventually has to become monotone and only Z

can possibly oscillate.

If we assume that Y is monotone increasing after some time, we get the diagram

(−+ +) (+ + +)

(−+−) (+ +−)

Again X becomes monotone after a finite time. Because it is additionally bounded, we can

conclude X → X∞ as s→∞ for some X∞.

If we set L = 1
4(5− 3X∞ − 3Y∞), then after a finite time

4Z(L− ε− Z) < Ż < 4Z(L+ ε− Z)

for arbitrarily small ε > 0. If at a sufficiently large time Z < L − ε, then either Z is

monotone increasing from then on or Z > L− ε after some time, which is preserved. If at

a sufficiently large time Z > L+ ε, then either Z is monotone decreasing from then on or

Z < L − ε after some time, which is preserved. We can conclude that either Z becomes

monotone or converges to L. Because Z is globally bounded, in either case Z converges
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to some Z∞ as s → ∞. It is clear that (X∞, Y∞, Z∞) is a critical point of the system

(4.2.33).

4.5.3 Summary

We summarise the results of this section for the 1-parameter families Ψµ and Υτ .

Proposition 4.5.20. (i) Y has a minimum at some time if and only if Ψµ is forward

complete with (X,Y, Z) converging to (1, 1, 0).

(ii) Ψµ is incomplete if and only if the solution enters the interior of D3 at some time.

Proof. (i): If Y has a minimum at some time, by Proposition 4.5.15 (i), (iii) the solution

is trapped in D2 and forward complete. Furthermore, Y is monotone increasing from then

onwards. By Proposition 4.5.17 the trajectory has to converge to a critical point which

projects to D2 while Y is monotone increasing. This excludes all but (1, 1, 0) from the list

given in Remark 4.2.38.

If Ψµ is forward complete and converges to (1, 1, 0), then Y has a minimum at some

time because the trajectory originates in (0, 1, 0) and Y is initially decreasing.

(ii): It follows immediately from Lemma 4.2.36 that Ψµ can only develop a singularity

at the hypersurface Y = 0, and thus must enter the interior of D3 after some time.

To prove the reverse direction, we argue by contradiction. Suppose that Ψµ enters

the interior of D3 at some time and is complete. By Proposition 4.5.15 (iv) the solution

is trapped in D3 and Y is monotone decreasing. Then its trajectory must converge to

a critical point by Proposition 4.5.17. The only critical points from the list in Remark

4.2.38 which project to D3 are (0, 0, 0) and (1, 0, 0). However, (0, 0, 0) is a source and the

branch with X < 1 of the 1-dimensional stable manifold at (1, 0, 0) is given by the explicit

solution (4.2.40) along the X-axis. Thus Ψµ cannot approach either of them which is a

contradiction. We conclude that Ψµ is incomplete.

Proposition 4.5.21. (i) The set Xalc := {µ | Ψµ is complete and lims→∞(X,Y, Z) =

(1, 1, 0)} is open.

(ii) The set Xac := {µ | Ψµ is complete and lims→∞(X,Y, Z) = (Xc, Yc, Zc)} is closed.

(iii) The set Xinc := {µ | Ψµ is incomplete} is open.

The aforementioned sets are disjoint and the union is (0,∞).

Proof. By Proposition 4.5.20 (i) µ lies in Xalc if and only if Y has a minimum at some

time. This is an open condition as Ψµ depends continuously on µ. By Proposition 4.5.20

(ii) µ lies in Xinc if and only if Ψµ enters the interior of D3 which again by continuity is an

open condition. It is clear that the three sets are disjoint. (ii) follows once we show that

the union is (0,∞).
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Assume that µ lies neither in Xalc nor in Xinc. By Proposition 4.5.20 (ii) Y never falls

below the threshold Yc. Therefore, Ψµ is complete by Lemma 4.2.36. Because µ /∈ Xalc, by

Proposition 4.5.20 (i) Y is monotone decreasing. By Proposition 4.5.17 (X,Y, Z) converges

to some critical point (X∞, Y∞, Z∞) with non-negative coordinates. By assumption Yc ≤
Y∞. Furthermore Y∞ < 1 as Y is monotone decreasing. The only such critical point is the

Spin(7)-cone (Xc, Yc, Zc) and we get µ ∈ Xac.

Next we treat the family Υτ in an analogous way.

Proposition 4.5.22. (i) Y has a maximum at some time if and only if Υτ is incomplete.

(ii) The solution enters the interior of D2 if and only if it is complete with (X,Y, Z)

converging to (1, 1, 0).

Proof. (i): Suppose Y has a maximum at some time. By Proposition 4.5.16 (iii) the

solution can never enter D1. Hence by Lemma 4.5.6 Y can have a maximum only in D3.

By Lemma 4.5.7 (ii) Y is monotone decreasing after attaining a maximum and the solution

is trapped in D3. Υτ is incomplete by the same argument which we have used in the proof

of Proposition 4.5.20 (ii).

By Lemma 4.2.36 Υτ can become incomplete only at the edge Y = 0. Therefore, if Υτ

is incomplete, Y needs to have a maximum as it starts out at 0 and is initially increasing.

(ii): If the solution enters D2, by Proposition 4.5.16 (i) it is trapped there from then

onwards, complete and Y is monotone increasing. By Proposition 4.5.17 the solution has

to converge to a critical point which projects onto D2 with increasing Y . This excludes all

but (1, 1, 0) from the list given in Remark 4.2.38.

The reverse direction is clear.

Proposition 4.5.23. (i) The set Yalc := {τ | Υτ is complete and lims→∞(X,Y, Z) =

(1, 1, 0)} is open.

(ii) The set Yac := {τ | Υτ is complete and lims→∞(X,Y, Z) = (Xc, Yc, Zc)} is closed.

(iii) The set Yinc := {τ | Υτ is incomplete } is open.

The aforementioned sets are disjoint and the union is R.

Proof. Yalc is open because by Proposition 4.5.22 (ii) τ ∈ Yalc if and only if it enters D2,

which is an open condition. Yinc is open because by Proposition 4.5.22 (i) τ ∈ Yinc if and

only if the function Y of Υτ has a maximum, which is an open condition. The sets are

clearly disjoint. (ii) follows once we have shown that the union is all of R.

Assume τ /∈ Yinc. In particular, Υτ is complete and by Proposition 4.5.22 (i) Y is

monotone increasing. By Proposition 4.5.17 the solution has to converge to a critical

point. Because it cannot enter D1 by Proposition 4.5.16 (iii), the only critical points left

are the cone and (1, 1, 0). Therefore, τ must lie in Yac or Yalc.
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Remark 4.5.24. By Lemma 4.4.8 all members of the sets Xac and Yac are AC. In section

4.6 we will make rigorous the intuition from Remark 4.2.38: forward complete solutions

converging to (1, 1, 0) are ALC. Therefore the sets Xalc and Yalc corresponds precisely to

complete ALC solutions. Our roadmap to prove the existence of at least one complete AC

metric in each of the families Ψµ and Υτ , which then must be unique by Lemma 4.5.3, is

now clear:

• Show that Xalc and Yalc are non-empty.

• Show that Xinc and Yinc are non-empty.

4.6 Complete ALC metrics

4.6.1 ALC Asymptotics

In this section we are going to show that any forward complete solution (a, b, c, f) of the

ODE system (4.2.20) describes an ALC Spin(7)-structure if and only if the associated

solution (X,Y, Z) of the system (4.2.33) converges to the critical point (1, 1, 0) as s→∞.

Lemma 4.6.1. Let (a, b, c, f) be a solution of the system (4.2.20), where a, b, c, f are

positive functions satisfying a, b < c. If the associated solution (X,Y, Z) of the system

(4.2.33) is forward complete with lims→∞(X,Y, Z) = (1, 1, 0), then (a, b, c, f) is forward

complete and there exists ` > 0 such that

lim
t→∞

a(t)

t
= 1, lim

t→∞

b(t)

t
= 1, lim

t→∞

c(t)

t
= 1, lim

t→∞
f(t) = `. (4.6.2)

Proof. (a, b, c, f) is forward complete by Lemma 4.2.36. The relation

(X,Y, Z) = (a2/c2, b2/c2, abf/c3)

allows us to substitute lims→∞(X,Y, Z) = (1, 1, 0) into the right-hand side of the ODE

system (4.2.20) to obtain

lim
t→∞

ȧ(t) = 1, lim
t→∞

ḃ(t) = 1, lim
t→∞

ċ(t) = 1.

This proves the assertion for a, b and c.

Next we show that f is bounded. By assumption

Z =
abf

c3
=
(a
t

)(b
t

)(
t

c

)3 f

t
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converges to zero. By the already established limiting behaviour on a, b, c, we see that f

grows at most as o(t). In particular, there exists some κ > 0 such that for sufficiently large

times f(t) < t/κ. To see that f is bounded we write

ḟ =
f2

t2
t2

b2
(1− Y ).

Hence because limt→∞ Y (t) = 1 and limt→∞ b(t)/t = 1 we see that for a sufficiently large

times f(t) < t/κ and

ḟ < κ
f2

t2
.

The boundedness of f follows from Lemma 4.6.3. Because we have b < c, f is monotone

increasing by Lemma 4.2.26. Since f is bounded, monotone increasing and positive, it will

converge to some positive constant `.

We have used the following comparison principle.

Lemma 4.6.3. Let f ∈ C1([T,∞)) with T > 0. If there exist t0 > T and C > 0 such that

ḟ < Cf2/t2 for all t ∈ [t0,∞) and f(t0) < t0/C, then f is bounded from above.

Proof. The solution of the model equation ḣ = Ch2/t2 is

hα(t) =
t

C − αt

where α is the constant of integration. For us only α < 0 is relevant. In this case hα

has a singularity at t∗ = C/α < 0 with limt↗t∗ h(t) = ∞ and limt↘t∗ h(t) = −∞ and is

asymptotic to 1/|α| for t→ ±∞.

If f(t0) < t0/C for some t0 > T , we can find an α < 0 to make this inequality slightly

stronger:

f(t0) <
t0

C − αt0
= hα(t0).

By the above discussion hα is smooth for t ≥ 0 because α < 0 and bounded from above

by 1/|α|. Hence for all t ≥ t0 we have the bound f(t) < hα(t) < 1/|α|. It follows that f is

bounded.

Proposition 4.6.4. Assume that (a, b, c, f) is a forward complete solution of the system

(4.2.20) which satisfies (4.6.2). Write

ã(t) = t−1a(t)− 1, b̃(t) = t−1b(t)− 1, c̃(t) = t−1c(t)− 1, f̃(t) =
1

`
f(t)− 1.
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Then there exists γ > 0 such that ã(k)(t), b̃(k)(t), c̃(k)(t), f̃ (k)(t) behave like O(t−k−γ) as

t→∞ for k ≥ 0. Here ã(k)(t) denotes the k-th derivative of ã(t).

Proof. Set

a(t) = t(1 +X1(t)), b(t) = t(1 +X2(t)), c(t) = t(1 +X3(t)), f(t) = `(1 +X4(t)).

The assumption (4.6.2) is equivalent to

lim
t→∞

Xi(t) = 0, for i = 1, . . . , 4

After the change of variable eτ = t the system (4.2.20) becomes

dX1

dτ
= −X1 +

(1 +X2)2 + (1 +X3)2 − (1 +X1)2

(1 +X2)(1 +X3)
− 1,

dX2

dτ
= −X2 +

(1 +X3)2 + (1 +X1)2 − (1 +X2)2

(1 +X3)(1 +X1)
− ` e−τ 1 +X4

1 +X2
− 1,

dX3

dτ
= −X3 +

(1 +X1)2 + (1 +X2)2 − (1 +X3)2

(1 +X1)(1 +X2)
+ ` e−τ

1 +X4

1 +X3
− 1,

dX4

dτ
= ` e−τ

(1 +X4)2

(1 +X2)2
− ` e−τ (1 +X4)2

(1 +X3)2
.

Setting X5 = e−τ and X = (X1, X2, X3, X4, X5), we get a system of equations of the form
dX
dτ = Φ(X), where X(0) = 0 and the linearisation of Φ at 0 is given by

dΦ|U=0 =


−3 1 1 0 0

1 −3 1 0 −`
1 1 −3 0 `

0 0 0 0 0

0 0 0 0 −1

 .

dΦU=0 has a 1-dimensional kernel spanned by (0, 0, 0, 1, 0) and four negative eigenvalues.

Moreover, {(0, 0, 0, c, 0) | c ∈ R} is the center manifold of the system. The center manifold

equation is

dX4

dτ
= 0.

Hence by [Car81, Theorem 2] for any solution X converging to the stationary point X = 0

as in our hypothesis there exists γ > 0 such that

(X1, X2, X3, X4, X5) = (0, 0, 0, 0, 0) +O(e−γτ ).
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The polynomial decay follows by switching back to the variable t. The argument for the

derivatives of (X1, X2, X3, X4) follows from a bootstrap argument.

The results in this section prove

Proposition 4.6.5. Let (a, b, c, f) be a solution of the system (4.2.20), where a, b, c, f

are positive functions satisfying a, b < c. Suppose the associated solution (X,Y, Z) of the

system (4.2.33) is forward complete with

lim
s→∞

(X,Y, Z) = (1, 1, 0).

Then (a, b, c, f) defines an SU(3)×U(1)-invariant ALC Spin(7) metric on (T,∞)×N(1,−1)

for some T > 0.

4.6.2 Existence of ALC solutions

In this section we address the first part of the strategy outlined in Remark 4.5.24, i.e.

the existence of ALC metrics among the families Ψµ and Υτ . Cvetič–Gibbons–Lü–Pope

[CGLP02a], Gukov–Sparks [GS02] and Kanno–Yasui [KY02] found an explicit ALC mem-

ber of the family Υτ . This shows that Yalc is non-empty. In his treatment of highly

collapsed ALC Spin(7)-manifolds, Foscolo [Fos19] showed that Ψµ is ALC if µ is very

small. This proves that Xalc is non-empty. Alternatively, this result can be recovered using

ODE methods.

Proposition 4.6.6. If µ > 0 is sufficiently small, then Ψµ is complete and ALC.

Proof. By Proposition 4.6.5 it is enough to show that the solution (X,Y, Z) of the system

(4.2.33) associated with Ψµ converges to the critical point (1, 1, 0) as s → ∞ if µ is

sufficiently small. The linearisation of the system (4.2.33) around (1, 1, 0) is given by−4 0 −2

0 −4 −4

0 0 −1

 .

Therefore, the critical point (1, 1, 0) is a sink. As explained in Remark 4.3.4, µ = 0 gives

the Bryant–Salamon G2 holonomy metric on Λ2
−CP 2, of which the associated solution

(X,Y, Z) converges to (1, 1, 0). Because Ψµ depends continuously on µ, if µ is sufficiently

small, Ψµ at some time will be close to the sink (1, 1, 0) and then sucked towards it. The

statement follows from Proposition 4.6.5.
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4.7 Existence of incomplete solutions

In this section we carry out the second step in the strategy outlined in Remark 4.5.24. We

show that Ψµ and Υτ are incomplete if µ and τ , respectively, are sufficiently large. This

shows that the sets Xinc and Yinc are non-empty.

We start by considering the family Ψµ. Looking at the asymptotics (4.3.2) suggests

to rescale time by t̂ = µt and consider Ψ̂µ = {â, b̂, ĉ, f̂} = {µa, b, c, f/µ}. This prevents a

from collapsing and f from exploding in the limit. We are now going to derive the ODE

system for these functions with respect to the new parameter. We will write ε = 1/µ.

d

dt̂
â =

b̂

ĉ
+
ĉ

b̂
− ε2 â

2

b̂ĉ
, (4.7.1a)

d

dt̂
b̂ =

ĉ

â
+ ε2

â

ĉ
− b̂2

ĉâ
− f̂

b̂
, (4.7.1b)

d

dt̂
ĉ = ε2

â

b̂
+
b̂

â
− ĉ2

âb̂
+
f̂

ĉ
, (4.7.1c)

d

dt̂
f̂ =

f̂2

b̂2
− f̂2

ĉ2
. (4.7.1d)

The key insight is that this system of equations is well-defined for ε = 0. This allows us

to make sense of the limit of Ψ̂µ as µ→∞. However, because Ψµ is only defined for finite

values of µ, we need to prove the short time existence of Ψ̂ε for ε = 0 and show that Ψ̂ε

depends continuously on ε. The continuity in the parameter ε will allow us to reduce the

study of Ψ̂µ for large µ to the study of the system (4.7.1) in the limit ε = 0. To carry out

this program, we need to consider a singular initial value problem of the following form:

Theorem 4.7.2. [FHN18, Theorem 4.3] Consider the initial value problem

ẏ =
1

t
M−1(y) +M(y, t), y(0) = y0, (4.7.3)

where y takes values in Rk, M−1 : Rk → Rk is a smooth function of y in a neighbourhood

of y0 and M : R× Rk → Rk is smooth in t, y in a neighbourhood of (0, y0). Assume that

(i) M−1(y0) = 0;

(ii) hId− dy0M−1 is invertible for all h ∈ N, h ≥ 1.

Then there exists a unique solution y(t) of (4.7.3) which is smooth up to t = 0. Furthermore

y depends continuously on y0 satisfying (i) and (ii).

This allows us to prove

Proposition 4.7.4. For every ε ≥ 0, there exists a local solution Ψ̂ε of the rescaled system

(4.7.1), such that after a coordinate and parameter change Ψ̂ε corresponds to Ψ1/ε for

ε > 0. Moreover, Ψ̂ε depends continuously on ε.
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Proof. Using the relation Ψ̂µ = {â, b̂, ĉ, f̂} = {µa, b, c, f/µ} and the asymptotic expansion

(4.3.2) allows us to write

â = 2t̂+ x1t̂
3, b̂ = 1− 1

3
t̂+ x2t̂

2, ĉ = 1 +
1

3
t̂+ x3t̂

2, f̂ = 1 + x4t̂
2

with

x1(0) = − 4

27
(9ε2 − 1), x2(0) = x3(0) = ε2 − 5

18
, x4(0) =

2

3
. (4.7.5)

Denoting differentiation with respect to t̂ by a dot, the ODE system (4.7.1) becomes

ẋ1 =
1

t̂
(−3x1 − 4ε2 + 4/9) + F1(x, t̂, ε),

ẋ2 =
1

t̂

(
−3x2 + x3 + 2ε2 − 5/9

)
+ F2(x, t̂, ε),

ẋ3 =
1

t̂

(
x2 − 3x3 + 2ε2 − 5/9

)
+ F3(x, t̂, ε),

ẋ4 =
1

t̂
(−2x4 + 4/3) + F4(x, t̂, ε).

Here F1(x, t̂, ε), F2(x, t̂, ε), F3(x, t̂), F4(x, t̂, ε) are functions which depend smoothly on (t̂, x).

This is a system of the form (4.7.3). M−1 vanishes at the initial condition (4.7.5). The

linearisation L of M−1 is given 
−3 0 0 0

0 −3 1 0

0 1 −3 0

0 0 0 −2

 .

We have

det(nId− L) = (n+ 2)(n+ 3)(n2 + 6n+ 8),

which is positive for n ≥ 0. The statement follows with Theorem 4.7.2.

To study long time behaviour of the local solutions Ψ̂ε for the rescaled system (4.7.1),

analogously to the treatment of the original ODE system (4.2.20) we switch to coordinates
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(X̂, Ŷ , Ẑ) = (â2/ĉ2, b̂2/ĉ2, âb̂f̂/ĉ3). The rescaled analogue of (4.2.33) is the system

d

dŝ
X̂ = 2X̂(2− 2ε2X̂ − Ẑ), (4.7.6a)

d

dŝ
Ŷ = 4Ŷ − 4Ŷ 2 − 2Ŷ Ẑ − 2Ẑ, (4.7.6b)

d

ds
Ẑ = Ẑ(5− 3ε2X̂ − 3Ŷ − 4Ẑ). (4.7.6c)

The analysis of this system is much easier than that of (4.2.33) because the system

simplifies significantly if we pass to the limit ε = 0:

d

dŝ
X̂ = 2X̂(2− Ẑ), (4.7.7a)

d

dŝ
Ŷ = 4Ŷ − 4Ŷ 2 − 2Ŷ Ẑ − 2Ẑ, (4.7.7b)

d

ds
Ẑ = Ẑ(5− 3Ŷ − 4Ẑ). (4.7.7c)

In particular, we have the subsystem

d

dŝ
Ŷ = 4Ŷ − 4Ŷ 2 − 2Ŷ Ẑ − 2Ẑ, (4.7.8a)

d

ds
Ẑ = Ẑ(5− 3Ŷ − 4Ẑ). (4.7.8b)

for the evolution of (Y,Z). The fist step in the analysis of the system (4.7.8) is to derive

the same preservation laws as in Lemma 4.2.35.

Lemma 4.7.9. Assume that a (local) solution (Ŷ , Ẑ) of the system (4.7.8) satisfies

(i) Ŷ < 1,

(ii) 0 < Ẑ < 5
4 .

Then this set of conditions is preserved as long as Ŷ is positive.

This allows us to prove

Lemma 4.7.10. Assume (Ŷ , Ẑ) is a (local) solution of (4.7.8) satisfying the conditions

from Lemma 4.7.9 and additionally d
dŝ Ŷ < 0 and d

dŝ Ẑ > 0. Then this set of conditions is

preserved and after a finite time Ŷ attains the value 0.

Proof. By Lemma 4.7.9 (Ŷ , Ẑ) ∈ (0, 1)× (0, 5/4) is preserved unless Ŷ attains the value 0.

Extremal points of Ŷ are characterised by the equation

Ẑ = 2Ŷ
1− Ŷ
1 + Ŷ

. (4.7.11)
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and extremal points for Ẑ is characterised by the equation

Ŷ =
5

3
− 4

3
Ẑ. (4.7.12)

In particular, there are no critical points in [0, 1]× [0, 5/4]. At an extremal point of Ŷ the

second derivative is given by

d2

dŝ2
Ŷ = −2(1 + Ŷ )

d

dŝ
Ẑ.

This is negative by assumption. Hence, under our assumptions as long as Ŷ is non-negative

it cannot have a minimum and is monotone decreasing.

The second derivative of Ẑ at an extremal point is given by

d2

dŝ2
Ẑ = −3Ẑ

d

dŝ
Ŷ ,

which is positive by assumption. Hence under our assumptions Ẑ cannot have a maximum

and is monotone increasing.

If the solution exists for all times with Ŷ > 0, then it has to converge to a critical point

(Ŷ∞, Ẑ∞) ∈ [0, 1]× [0, 5/4], which doesn’t exist. Therefore, Ŷ has to cross 0 after a finite

time.

We get

Proposition 4.7.13. For µ sufficiently large, the function Y of the associated solution of

Ψµ reaches 0 after a finite time and therefore Ψµ is incomplete. In particular, the set Xinc

is non-empty.

Proof. Because Ψ̂ε depends continuously on ε and Ŷ reaches the value 0 if ε = 0, the same

is true for ε small, i.e. µ large. In particular, if µ is sufficiently large Y = Ŷ attains 0 after

a finite time and therefore Ψµ is incomplete.

Next we consider the family Υτ . Here the rescaling

t̂ =
√
τt, (â, b̂, ĉ, f̂) = (a,

√
τb, c,

√
τf)
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is helpful. Writing ε = 1/
√
τ the ODE system becomes

d

dt̂
â = ε2

b̂

ĉ
+
ĉ

b̂
− â2

b̂ĉ
, (4.7.14a)

d

dt̂
b̂ =

ĉ

â
+
â

ĉ
− ε2 b̂

2

ĉâ
− f̂

b̂
, (4.7.14b)

d

dt̂
ĉ =

â

b̂
+ ε2

b̂

â
− ĉ2

âb̂
+ ε2

f̂

ĉ
, (4.7.14c)

d

dt̂
f̂ =

f̂2

b̂2
− ε2 f̂

2

ĉ2
. (4.7.14d)

Proposition 4.7.15. For every ε ≥ 0, there exists a local solution Υ̂ε of the rescaled system

(4.7.14), such that after a coordinate and parameter change Υ̂ε corresponds to Υ1/ε2 for

ε > 0. Moreover, Υ̂ε depends continuously on ε.

Proof. The short distance asymtptotic expansion (4.3.7) allows us to write

â(t̂) = 1 + x1(t̂)t̂2, b̂(t̂) = t̂+ x2(t̂)t̂3, ĉ(t̂) = 1 + x3(t̂)t̂2, f̂(t̂) = t̂+ x4(t̂)t̂3,

with

(x1(0), x2(0), x3(0), x4(0)) =

(
2

3
ε2,−1

2
ε2 − 1

24
,
5

6
ε2,

1

12

)
.

For x = (x1, x2, x3, x4) we get the system

ẋ1 =
1

t̂
(−4x1 + 2x3 + ε2) + F1(x, t̂, ε),

ẋ2 =
1

t̂
(−2x2 − x4 − ε2) + F2(x, t̂, ε),

ẋ3 =
1

t̂
(2x1 − 4x3 + 2ε2) + F3(x, t̂, ε),

ẋ4 =
1

t̂
(−2x2 − x4 − ε2) + F4(x, t̂, ε),

where F1(x, t̂, ε), F2(x, t̂, ε), F3(x, t̂, ε), F4(x, t̂, ε) are smooth functions of x and t̂. Hence, it

is of the form (4.7.3). M−1 vanishes at (x1(0), x2(0), x3(0), x4(0)), and the linearisation is

given by

L =


−4 0 2 0

0 −2 0 −1

2 0 −4 0

0 −2 0 −1

 .
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We have

det(nId− L) = n4 + 11n3 + 36n2 + 36n,

which is positive for n ≥ 1. The statement follows from Theorem 4.7.2.

Again transforming to (X,Y, Z) coordinates, the system (4.7.14) becomes

d

dŝ
X̂ = 2X̂(2− 2X̂ − ε2Ẑ), (4.7.16a)

d

dŝ
Ŷ = 4Ŷ − ε24Ŷ 2 − ε22Ŷ Ẑ − 2Ẑ, (4.7.16b)

d

dŝ
Ẑ = Ẑ(5− 3X̂ − ε23Ŷ − ε4Ẑ). (4.7.16c)

In the limit ε = 0 this becomes

d

dŝ
X̂ = 4X̂(1− X̂), (4.7.17a)

d

dŝ
Ŷ = 4Ŷ − 2Ẑ, (4.7.17b)

d

dŝ
Ẑ = Ẑ(5− 3X̂). (4.7.17c)

The asymptotic expansion of Υ̂τ as t̂→ 0 is given by

â(t̂) = 1 +
2

3
ε2t̂2 +

−104ε2 − 1

288
ε2t̂4 +O(t̂5),

b̂(t̂) = t̂− 12ε2 + 1

24
t̂3 +O(t̂5),

ĉ(t̂) = 1 +
5

6
ε2t̂2 +

−140ε2 + 1

288
ε2t̂4 +O(t̂5),

f̂(t̂) = t̂+
1

12
t̂3 +O(t̂5).

In (X̂, Ŷ , Ẑ) coordinates we obtain the asymptotic expansion

X̂(t̂) = 1− ε2

3
t̂2 +

40ε2 − 1

72
ε2t̂4 +O(t̂5), (4.7.18a)

Ŷ (t̂) = t̂2 +
−64ε2 − 2

24
t̂4 +O(t̂5), (4.7.18b)

Ẑ(t̂) = t̂2 +
−56ε2 + 1

24
t̂4 +O(t̂5). (4.7.18c)

Proposition 4.7.19. For τ sufficiently large, Y reaches 0 after a finite time and therefore

Υτ is incomplete. In particular, Yinc is non-empty.
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Proof. We first study the limit system 4.7.17. The general solution of the first equation

is X̂(ŝ) = e4ŝ/(C + e4ŝ). Because we know from the asymptotic expansion (4.7.18) that

X̂(ŝ) = X(s) → 1 as ŝ → −∞, we can conclude that C = 0 and X̂ ≡ 1. The remaining

system for (Ŷ , Ẑ) solves as

Ŷ (ŝ) = C2e
4ŝ + C1e

2ŝ, Ẑ(ŝ) = C1e
2ŝ,

where C1, C2 are constants. From the asymptotic expansion, we can see that Ẑ > 0, which

implies C1 > 0, and that Ŷ < Ẑ, which implies C2 < 0. Then clearly in finite time Ŷ = 0.

Because Υ̂ε depends continuously on ε, the same is true for ε small, i.e. τ large. From

Ŷ = τ2Y , we can conclude the same for the function Y of Υτ for τ sufficiently large.

4.8 Proofs of Theorems B, C and D

Proof of Theorem B. By the Propositions 4.5.21, 4.6.6 and 4.7.13 the sets Xalc and Xinc

are open and non-empty. Proposition 4.5.21 and Lemmas 4.5.2 and 4.5.3 imply that there

exists a unique parameter µac ∈ Xac, which gives rise to an AC space.

Suppose that µ ∈ (0, µac). Then by Lemma 4.5.2 and Proposition 4.5.20 we have

Yµ(s) > Yµac(s) > Yc as long as Ψµ exists. With Proposition 4.5.21 we get µ ∈ Xalc, and

by Proposition 4.6.5 Ψµ is ALC.

Suppose that µ > µac. With Lemma 4.5.2 we get Yµ(s) < Yµac(s) as long as Ψµ exists.

Because Yµac converges to Yc < 1 we have µ /∈ Yalc. With Proposition 4.5.21 and the

uniqueness of µac we get µ ∈ Xinc.

Proof of Theorem C. Proposition 4.5.23, the discussion at the beginning of section 4.6.2,

and Proposition 4.7.19 show that both Yalc and Yinc are open and non-empty. Proposition

4.5.23 and Lemmas 4.5.2 and 4.5.3 imply that there exists a unique parameter τac ∈ Yac,

which gives rise to an AC space.

Suppose that τ < τac. By Lemma 4.5.2 as long as Υτ exists we have Yτ (s) > Yτac(s).

Because the latter converges to Yc we get τ /∈ Yinc. By the uniqueness of τac we get

τ ∈ Yalc.

Suppose that τ > τac. Then Yτ (s) < Yτac(s) < Yc as long as the solution exists. The

uniqueness of τac implies τ ∈ Yinc.

Formulas (4.2.13) and 4.3.7 show that Υτ |CP 2 = e4356 (with the original use of the

functions a and b). This is the volume form of CP 2 with respect to the induced metric

and the appropriate orientation. Therefore, the zero section is a Cayley submanifold with

respect to Υτ for all τ . Because the CP 2 is a generator of H4(MCP 2) and its volume with

respect to Υτ is positive, the cohomology class of Υτ is non-trivial.
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Proof of Theorem D. It is clear that λ = 0 gives the Spin(7)-cone. The short distance

asymptotic expansion (4.4.7) for Ψcs
λ gives

Y (t) ≈ Yc(1− 9.86λtν2 +O(t2ν2)),

Q(X(t), Y (t)) ≈ 14.41λtν2 +O(t2ν2).

If λ < 0, this implies that Ψcs
λ enters the region D2 with Ẏ > 0. By Lemma 4.5.7 (i) it

follows that the solution is trapped in D2 for all times and Y is monotone increasing. By

Lemma 4.2.36 it is forward complete and by Proposition 4.5.17 it has to converge to a

critical point (X∞, Y∞, Z∞) which projects onto D2 with Y∞ > Yc. The only such critical

point is (1, 1, 0) and hence Ψcs
λ is ALC by Proposition 4.6.5.

If λ > 0 the solution enters D3 with Ẏ < 0. By Lemma 4.5.7 (ii) it is trapped there

as long as Y ≥ 0 and Y is monotone decreasing. If the solution is forward complete, then

by Proposition 4.5.17 it converges to some critical point (X∞, Y∞, Z∞). By Lemma 4.5.2

we can compare it with the cone to get X∞ ≤ Xc, Y∞ ≤ Yc, Z∞ ≥ Zc. As Y is monotone

decreasing the inequality for the Y -coordinate is strict. No such critical point exists and

therefore the solution develops a singularity at Y = 0 in finite time.
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