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Abstract

Calculations using the R-matrix theory involve solving the Schrodinger equation
within two regions of space. The two solutions obtained are matched at the
boundary to give the wave function for all space. The inner region can often
be required to be quite large which means that a large basis set is needed to
accurately represent the wave function. This can involve the diagonalisation of
very large matrices which may require considerable amounts of computer time
and memory.

In the present work, a propagation method is developed in which the radial
basis functions spanning a given region, a < r < b say, are expanded in terms
of Legendre polynomials that are orthogonal on the range [a,b]. The method
iha‘.s thé éohsidefablé a.‘dv.an»ta-ge-tlAlat‘ the eiemehté of fhé Ha.iniitonian mat;rii
for this region can be generated exactly and extremely rapidly using recurrence
relations and that also the use of Legendre polynomials leads to easy propagation
of the physical solution from one region to the next. Thus the whole space
can be subdivided into as many regions as required and the wave function can
be generated for all space by matching at each range boundary. This greatly
increases the flexibility of the R-matrix technique.

In order to assess the accuracy and the convergence properties of this method,
test calculations for the electronic energy levels and oscillator strengths of the
hydrogen atom, the hydrogen molecular ion and the HeH?* ion have been carried

out and some encouraging results obtained.
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Chapter 1

Introduction

Throughout the last decade considerable progress has been made in developing
new methods for electron-atom and electron-molecule scattering. One approach
which seems particularly useful is the R-matrix method. It was first introduced
by Wigner (1946a,b) to treat problems of resonance in nuclear physics and was
extended to include long-range interactions by Wigner and Eisenbud (1947).
Subsequently, the method was introduced into the field of atomic and molecular
physics by Burke et al (1971, 1977) as a tool for solving the close-coupling equa-
tions associated with electron-atom and electron-molecule collisions. This has
proved to be a very fruitful approach and has been extensively used in calcula-
tions of a broad range of atomic and molecular processes including, as well as low
energy electron-atom and electron-molecule scattering (Berrington et al 1974,
1978; Schneider 1975a,b; Gillan et al 1987), photoionisation of atoms (Burke
and Taylor 1975; Le Dourneuf et al 1975; Hansen and Scott 1986; Aymar and
Lecomte 1989), atomic polarisabilities and van der Waals coefficients (Allison
et al 1972a,b; Robb 1973, 1974), inelastic and reactive heavy particle scattering
(Light and Walker 1976; Light et al 1979; Maass et al 1986), spectral line shifts

(Yamamota 1980), free-free transitions (Bell et al 1977), charge transfer collisions
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(Gerrat 1984), photoabsorption (Aymar 1987; Tully 1988), attachment energies
of negative atomic ions (Le Dourneuf et al 1977) and positron-molecule collisions
(Tennyson 1986; Tennyson and Morgan 1987). Reviews of some of these develop-
ments have been given by Burke and Robb (1975), Burke (1982) and Burke and
Noble (1986). More recently the R-matrix method has been used to study vi-
brational excitation (Schneider et al 1979; Burke et al 1985) and electron impact
ionisation (Bartschat and Burke 1987; Furtado and O’Mahony 1988).

In applications of the R-matrix method to electron scattering, configuration
space is usually divided into two regions and the boundary is chosen to just
envelop the charge distribution of the target. In the inner region, the electron
interaction with the target is strong since electron exchange and correlation
effects are important and the interaction is difficult to calculate. In this region,
a set of functions are selected and used to set up a matrix corresponding to the
Hamiltonian operator for the atomic or molecular system. Diagonalisation of
this matrix then gives a set of eigenenergies and eigenvectors that specify the
basis set. As emphasised by Fano (1978), a key property of R-matrix theory is
that the energy spectrum of particles confined within the limited volume of the
inner region is discrete with a low density of states. Provided that the condition
at the boundary is appropriately chosen, the Hamiltonian matrix is hermitian,
and this is a convenient property for the matrix to have, although in principle
is not the only possible choice. The great advantage of this approach is that,
within the region, the physical solutions of the wave equation that are required
can all be expanded in terms of the same basis set. Hence, once the basis set has
been obtained, solutions at all energies can be generated directly. In the outer
region, the electron interaction with the target is much simpler, as exchange
and correlation effects can be neglected, and the problem has an analytical or

relatively simple numerical solution. The wave functions generated within the
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two regions are linked on the boundary surface by a quantity called the R-matrix
which gives, essentially, the logarithmic derivative of the wave function at the
boundary and from this information the reactance matrix (K-matrix), scattering
matrix (S-matrix) and cross sections can be calculated.

In the application to inelastic and reactive heavy particle scattering (Light
and Walker 1976; reviewed by Light et al 1979), unlike the situation for electron
scattering, the density of states in the scattering region is now often so high that
it is no longer appropriate to use a single expansion in this region. Instead the
scattering region is divided into a number of separate subregions by subdividing
the range of the scattering coordinate, where each subregion is connected to its
neighbours by an R-matrix. The R-matrix is propagated across each boundary
for a finite region and the solution obtained is matched to asymptotic solutions in
the outer region. This method is computationally fast, stable and allows different
finite representations to be used in each subregion enabling the characteristics of
a rapidly changing wave function to be described. A general R-matrix propaga-
tion program for solving second-order differential equations has been developed
by Baluja et al (1982) and subsequently modified by Morgan (1984) to allow
more general potentials to be used. Propagation methods become particularly
useful when the radius at which electron exchange can be neglected is not large
enough to allow asymptotic expansion methods or perturbation methods used for
outer region solutions to converge to the required accuracy. In this intermediate
region, an R-matrix propagation method may be used to give a solution.

A diagnostic study of the R-matrix method was carried out by Yu Yan and
Seaton (1985) who studied the detailed properties of the expansions made in
R-matrix theory by applying the technique to the solution of the Schrodinger
equation for the hydrogen atom. That paper provided the initial inspiration for

the present work. The work presented in this thesis is a propagator method sim-
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ilar to that of Baluja et al (1982) and Morgan (1984) but instead of propagating
the R-matrix across a finite region outside the inner region, the wave function is
generated for all space. For a restricted region, a < r < b say, the R-matrix basis
functions are expanded in terms of Legendre polynomials that are orthogonal on
the range [a,b]. The method has the considerable advantage that the elements of
the Hamiltonian matrix for this region can be generated exactly and extremely
rapidly using recurrence relations and that also the use of Legendre polynomials
leads to easy propagation of the physical solutions from one region to the next.
Thus the whole space can be subdivided into as many regions as required and
this greatly increases the flexibility of the R-matrix technique.

The theory required to implement this approach for two and three body
systems is described in chapter 3. In order to assess the accuracy and the con-
vergence properties of this met'ho'd,» test calculations have been carried out and
the results are presented in chapters 4 and 5. Electronic energy levels, wave func-
tions and oscillator strengths for the hydrogen atom, the hydrogen molecular ion
and the HeH?* ion have been calculated and some encouraging results obtained.
The oscillator strengths depend on dipole matrix elements that can be generated
rapidly in exactly the same way as the elements of the Hamiltonian matrix and

provide a sensitive test of the theory.
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Chapter 2

Basic concepts of the R-matrix

method

2.1 Definition of the R-matrix
In applications of the R-matrix method to atomic processes, configuration space
is divided into two regions, 0 < r < a and r > a, where a is chosen to just envelop
the charge distribution of the target states of interest and r is the radial distance
between the electron and the centre of mass of the target (see, for example, Burke
1978). In the inner region electron exchange and correlation effects are present
and these make the interaction difficult to calculate ab initio but in the outer
region, such effects can be neglected and the collision problem can be solved
analytically or relatively easily by numerical methods.

Consider a system of N electrons moving in the field of a nucleus of charge

Z. The Schrodinger equation for the system of interacting particles is

(Hy — E)¥g =0 (2.1)
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where the Hamiltonian for the system is (in Rydbergs)
N N
2Z 2
p=1 Tp p>g=1"Tre
E is the energy and ¥ is the total wave function. Neglecting anti-symmetrisation

and exchange (which will be discussed further in §2.3) one can use the expansion

g = 3 i (R)Yipm () - Fi(r) (2.3

where r is the coordinate of an outer electron and R stands for all coordinates
of inner electrons with wave functions ;. The functions Y, () are known as
spherical harmonics. The radial functions F;(r) satisfy coupled equations of the

form

> _(¥ji — Eb5)Fi(r) =0 (2.4)

i
where ¥;; is the radial part of the Hamiltonian for the outer electron. Equation
(2.4) is obtained by multiplying (2.1) on the left-hand side by %;(R) Y, (f) and
then integrating over all electron coordinates R and the angular coordinates of

the outer electron. For a one-channel problem, (2.4) reduces to
(}(.’.' — E)E(r) =0 (2.5)

and it is this case that is considered in this section.
The solution F;(r) can be expanded in the inner region in terms of a complete

discrete set of functions fi(r), k = 1,2,...,00, defined by the equation

(Mii —ex) far(r) =0 (2.6)

and satisfying the logarithmic boundary condition

a  dfi
f,-k(a) dr r=a

where 3 is an arbitrary constant which may depend on the channel quantum

=4 (2.7)

numbers (see Burke 1978). The condition (2.7) is necessary to ensure that X;; is
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a) Spectrum of collision problem, 0 < r < o0
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b) Exact R-matrix spectrum, 0 <r <a
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Figure 2.1: R-matrix energy spectra.

hermitian and hence that the eigenenergies e, are real. A diagrammatic compar-
ison of the energy spectrum of the Hamiltonian describing the electron-target
system in the internal region with that of the wave function defined over all
space is shown in figure 2.1. The usual continuum breaks up into a discrete set
ex, k =1,2,...,00, and the corresponding eigenstates 1, form a complete set in
the internal region which is used as a basis for the expansion of the total wave

function ¥g in this region for any energy, i.e.
Vg = zk:AEklﬁk (2.8)
or in terms of the radial parts only,
Fi(r) = Zk:AEkfik(r) . (2.9)

Since the functions ¥ are independent of F, the wave function Wg can corre-

spond either to a negative energy bound-state solution or to a positive energy
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scattering solution, the only distinction arising from the different boundary con-
ditions satisfied in the external region. This result is of particular importance
when applying the R-matrix method to processes such as photoionisation, where
the initial bound state and the final continuum state are expanded in terms of the
same basis. Use of the same basis for both states means that the Hamiltonian
per symmetry

matrix only needs to be diagonalised oncepto yield all the necessary eigenen-
ergies and eigenvectors. Also, the use of the same basis avoids any systematic
errors that may arise when using two separate calculations for the wave functions
and this ensures that the representations of the relevant states are of consistent
accuracy.

In order to calculate the collision cross section at some positive energy E, =
E — E,, where Ej is the energy of the ground state of the target, it is necessary
to evaluate the logarithmic derivative of Fi(r) on the boundary of the internal
region. Substituting (2.9) into (2.5) and using the boundary condition (2.7) it can
be shown that the logarithmic derivative of the radial wave function describing
the scattered electron on the boundary is given by the expression

F(a) = Z!R,, (a, E) [a— - ﬂF] (2.10)
r=a

where

R.i(a, E) = Z——f"‘g_f’;( 9 (2.11)

is the called the R-matrix. Once the surface amplitudes f;x(a) and the eigenener-
gies ey are found, a complete description of the collision problem in the internal
region can be obtained. The solution of the problem in the outer region then
yields the phase shift of the radial wave functions and cross section.

One problem associated with the expression (2.11) for the R-matrix is that
when the energy E is equal to the energies e;, R;; and quantities expressed in

terms of it become indeterminate. In this case, the R-matrix is written in a form
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such that F; and f;; are identical and only the k for which ¢, = E contributes
to the sum. Alternatively, a diagonalisation procedure developed by Burke and

Seaton (1984) can be used to obtain determinate expressions when E is near e;.

2.2 Potential scattering

In order to get an initial idea of the assumptions and approximations used in
the practical application of the R-matrix method it is of interest to look at a
relatively simple collision problem — that of potential scattering.

Consider the case of s-wave scattering of a particle by a short-range central
potential. The R-matrix boundary is chosen to just contain the range of the

potential V (r) so that
V(r)=0 ; r>a (2.12)
where a is known as the channel radius. The radial Schrodinger equation for the

collision problem is

(H-E)F(r)=0 (2.13)
where
dz
H= ~ +V(r) . (2.14)

The solution F(r) can be expanded in the internal region r < a in terms of the

complete discrete set of real eigensolutions fi(r) which are solutions of

(H —ex)fi(r) =0 (2.15)

where the e, are eigenenergies, and which satisfy the R-matrix boundary condi-

tions

a dfk

Tola) dr _ =p (2.16)

fe(0) =0 ;
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where 8 is an arbitrary constant. The functions are also required to satisfy the

orthonormality condition

fﬁ@h@h:%'. (2.17)

The solution of (2.13) in the inner region can then be expanded as
F(r) =) Aufi(r) 0<r<a (2.18)
k=1

where the coefficients A, are obtained by multiplying (2.13) and (2.15) by fi(r)

and F(r) respectively and then integrating their difference to give

o d’F d’f, o
/(; (fk - E”_k) dr = (e,,—]_"})/0 fiFdr . (2.19)

The left-hand side of (2.19) can be evaluated using Green’s theorem and the

boundary condition satisfied by fi(r) and, after some algebra, one finally obtains
the expression - S S
_ 1 f k (a.) dF

S - _ ] 2.20
A aey — E adr ﬂF]ma ( )

If the R-matrix is now defined, as in §2.1, as

Rl i [fi(a)]® (2.21)

B a k=1 €k — E
then, according to (2.18) and (2.20), R relates the amplitude of F(r) to its

derivative on the boundary by

-1
m:p@bﬂﬁ—mﬂ (2.22)
dr r—a
The solution of (2.13) in the external region is
F(r) = sin(kr) + K cos(kr) r>a (2.23)

where k2 = E, and the phase shift 6 is related to the K-matrix by the relation
K = tan § (see, for example, Bransden 1983). Substituting (2.23) into (2.22)
gives

sin(ka) — R[xa cos(ka) — Bsin(ka)]

- " cos(ka) + R[kasin(ka) + B cos(ka)] (2.24)

20



which can be rewritten as

ka®R

tan(5+na)=1+mﬂ

(2.25)

Equations (2.21) and (2.22) give two independent expressions for the R-
matrix. The first expresses the R-matrix in terms of quantities determined solely
from properties of the basis set in the internal region while the second expression
gives the R-matrix in terms of the exact solution on the boundary. Therefore
(2.21) can be used to obtain a value for R on the boundary r = a and this value
can then be used in (2.24) to determine K and hence the phase shift.

The above theory can be extended quite easily to the case of non-zero angular
momentum by including the —I(I +1)/r? term in the inner region as well as V (r)
in (2.15) when defining the complete set of eigenstates. In the outer region, where
V(r) is zero, the sin(kr) and cos(kr) terms appearing in (2.23) are replaced by
the equivalent spherical Bessel functions, j;(xr), where

l
srj(kr) -~ sin(kr— g—) (2.26)

and the spherical Neumann functions, n;(kr), where
bm 2.27)
— krm(kr)  ~  cos(kr — -é—) (2.

(see Abramowitz and Stegun 1964). Similarly, if a long-range Coulomb poten-
tial, —1/r, is present in the external region then sin(kr) and cos(kr) must be
replaced by the regular, s;, and irregular, ¢;, Coulomb wave functions which

have asymptotic forms (see Abramowitz and Stegun 1964)

si(kr sin ;
t(sr) ~ Kr — %r + %ln(2m~) +argT(l+1-— -:;) . (2.28)

a(xr) coSs

F(r)Yim(0, ) (2.29)



and has the asymptotic form

e"&"

\Il(r) ~ eilc.r + Tf(o’ ¢) (2.30)

r — oo

where f(0,¢) is the scattering amplitude. For central scattering, which is the
case being considered here, the scattering amplitude is independent of ¢ and this

variable can be dropped from the notation. The S-matrix is defined by

F(r) ~ —mr Sl( l)l Ky (231)

r — 0o

for scattering of a particle with arbitrary angular momentum by a short-range

potential and can be related to the K-matrix and to the phase shift § by

S = = e“ 2.32
. 1K, ¢ ( )
The total cross section is then giv.enb By thé formuia. |

o(x) = [ 1£(6) Paw (2.33)

where dw = sin §dfd$ and where the scattering amplitude f(6) is given by
f(0) = 5-1— > (28 + 1) (e*® — 1) Py(cos 0) (2.34)
=0

(see, for example, Geltman 1969).

2.2.1 Computation of the R-matrix

The theory outlined so far has shown that by solving the or'iginal differential
equation (2.13) in the internal region, subject to the R-matrix boundary con-
ditions (2.16), a complete set of amplitudes fi(a) and eigenvalues e; can be
obtained from which the R-matrix, and consequently the K-matrix, S-matrix,
phase shift and cross section, can be derived. Up to this point, in principle,

the theory has been exact. However, in practice, it is obviously impossible to
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deal with an infinite number of functions f; so it is necessary to obtain a finite
representation of this set. Also, in a practical problem, the original equation is
difficult, if not impossible, to solve exactly so basis sets which satisfy some lower
order, but physically significant, equation must be used. Burke and Robb (1975)
(referred to as BR hereafter) have presented two approaches to the selection of
basis functions and these are outlined here. The first employs an orthogonal basis
set whose elements satisfy a fixed boundary condition while the second employs
an analytic basis set whose elements satisfy arbitrary boundary conditions. A
comparison between these two approaches has been made by Shimamura (1978)

who uses them to solve a model scattering problem.

Expansion in an orthogonal basis

Consider the eigensolutions of the zero-order differential equation
(Ho — eox)ve(r) =0 (2.35)
subject to the same boundary conditions (2.16), where

Ho = —Zz- + Vo(r) (236)

and Vy(r) is some suitably solvable potential whose choice determines the conver-

gence of the method. BR approximate the first N eigensolutions fi(r) in (2.15)
by

N
N N
f,s )(r) =Y cik,)vgp () ; k=1,N (2.37)
k=1
where the expansion coefficients cg:’,) are obtained by diagonalising the symmetric
matrix
2
™~ _ [*of d 0 i '
H./' = /0 v (—3’3 + V(r)) vpdr 3 k,k =1,N . (2.38)

In order to expand the solution at an arbitrary energy the basis f ,EN) is augmented

by the zero-order basis functions v), k = N + 1, 00, to form a complete set. Thus
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the complete basis can be denoted by f; (M) which is defined by (2.37) for k =1,N
and by f,£ ) = v for k = N+1, 00 and then the expansion in (2.18) can be written

as

FO() = 3 470) (2:39)
=1

where F(™) is an approximation to the exact solution of (2.13) at the energy
E. The analysis proceeds as before through equations (2.19) to (2.22) where
now it is assumed that the operator —d?/dr? + V (r) is diagonal in the basis
f,£N) (r). This assumption introduces some error which, however, becomes small
as N becomes large provided V; is chosen appropriately. The expression for the

R-matrix becomes

1= [f(N)(a)]2
R == 2.40)
a El M _g (
and for the coefficients A(N) :
(N) (6]
AP = {fw L [ a ﬂF(”)] (2.41)

where F(™) and its derivative on the boundary are related by

(V) -
RN _ F(N)(a,) [a% - ﬂF(N)] ) (2.42)

r=a
In order to calculate (V) it is necessary to approximate the infinite expansion
(2.40) in some way. One could truncate the expansion to the first N terms but
this leads to significant errors because the convergence of the R-matrix is quite
slow when not in the vicinity of a pole (see Yu Yan and Seaton 1985). The reason
for the slow convergence, as explained by Shimamura (1978), is that if all the
basis functions have the same logarithmic derivative on the boundary then any
linear combination of a finite number of these functions has the same logarith-
mic derivative. Therefore, as the number of terms is increased, the logarithmic
derivative of the resultant wave function remains constant and does not converge

uniformly to the exact value as N — oo unless the value of 3/a is chosen to be
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close to the logarithmic derivative of the true wave function at r = a. A useful
procedure, first introduced by Buttle (1967) and later discussed by Heller (1973)
and Seaton (1987), can be used whereby the contribution from the R-matrix
poles k = N + 1, 00, defined by BR as

m(N) z ["k(a)] (2.43)

@ Ny ok — E

can be added to extrapolate the summation in (2.40) to completeness, where
v2(a) and ey are the eigensolutions and eigenvalues of the zero-order equation

(2.35). Expression (2.43) can be rewritten as

wo-[ofog  LEHOL

where the first term is the R-matrix of the zero-order problem and the second
summation subtracts the first N poles which do not occur in (2.43). The first
term in (2.44) can be obtained by solving (2.35) at the energy in question but, in
practice, it does not have to be evaluated at each energy and can be approximated
to a low order polynomial in E (see Yu Yan and Seaton 1985). The new result
for the R-matrix is then

() _ Z[f,i”’(a)r 1Z[vk(a)12+[gd_v°_ﬂ]" (2.45)

ai-jer— E v0 dr r—a
where now all of the terms in this equation can be evaluated in a straightforward
manner.

The advantage of this method is that, in most applications, the zero-order
problem is very much easier to solve than the original equation describing the
problem and the main calculation is the evaluation and diagonalisation of the
Hamiltonian which only has to be done once to enable the R-matrix to be cal-
culated at all energies.

The rate of convergence of the method with increasing N depends on the

channel radius a, which should be as small as possible, and on the zero-order
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potential Vy which should represent the actual potential V (r) as closely as pos-
sible. Zvijac et al (1975) have shown how to allow variationally for convergence

errors in the Buttle corrected R-matrix calculation.

Expansion in an arbitrary basis set

In the previous paragraphs, an expression for the R-matrix has been developed

in terms of an orthogonal basis which satisfies a differential equation with R-

matrix boundary conditions. An alternative approach suggested by BR is to use

an arbitrary and, in general, nonorthogonal basis to give faster convergence.
The operator

2

H= —% +V(r) (2.46)

is not hermitian in the internal region 0 < r < a with respect to an arbitrary
set of functions but Bloch (1957) and Lane and Robson (1966) have pointed out

that by including an additional term in (2.46) of the form

Ly = §(r — a) (i _ 3) (2.47)

dr a

where 3 is arbitrary, an hermitian operator can be constructed. Then a complete

set of functions fi(r) can be introduced which satisfy
(H + Lp — ek)fk (r) =0 (2.48)

where Lg is the Bloch operator given by (2.47). These functions fi(r) may be
expanded in terms of arbitrary functions since the presence of the Bloch operator
Lg guarantees that the fi(r) satisfy the boundary conditions (2.16) even though
the expansion functions, from which the fi(r) are constructed, do not. The R-
matrix and phase shift can then be evaluated by using the same procedure as
outlined in §2.2.

The present approach may not require the inclusion of a contribution from

the distant levels to obtain reasonable convergence since the basis functions are
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not restricted to a prescribed value on the boundary and can therefore converge
more rapidly to the actual value of the logarithmic derivative of the wave function
on the boundary. The convergence of methods using a nonorthogonal basis has
been considered by Purcell (1969), Chatwin and Purcell (1971) and Oberoi and
Nesbet (1973).

2.3 Scattering of electrons by complex atoms

The R-matrix theory was first introduced into the field of electron-atom collisions
by Burke et al (1971) and it is this approach that is outlined in this section.
The most difficult and most important effects to be allowed for in the in-
teraction of an electron with an N-electron atom are electron-electron exchange
and correlation. In the R-matrix formulation, the total wave function ¥g for an

electron interacting with an N-electron target can be expanded in the form
n - m
Ve =AY OF +) dip; (2.49)
i=1 j=1

(see Burke et al 1971), where

s
&
1l

‘IIE(xla"-axN+l) ’
& = &i(X1yer XN, EN+1,ON 1) 5
-Fi = -Ft'(rN+1) ’

¢j = ¢j(xl7""xN+l)7

and where X, = r,,0, are the space-spin coordinates of the p'* electron. The
functions ®; are formed by coupling the N-electron target state wave functions
®; with the spin-angle functions for the scattered electron. The expansion coef-
ficients F; depend only on the radial coordinate of the scattered electron, ry4i,

and the ¢; are eigenstates of the (N + 1)-electron system. The operator A
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antisymmetrises the scattered electron coordinate with the N atomic electron
coordinates. In principle the summations in (2.49) can retain an infinite number
of terms but in practice they must be truncated to a finite number. Substituting

equation (2.49) into the non-relativistic Schrodinger equation gives the equations

(Q;'HN+1—E|\I’E>=0 N i=1,n
(¢ilHN+1 — E|¥g) =0 , j=1,m

(2.50)

where the Hamiltonian for any system of N electrons moving in the field of a
nucleus of charge Z is defined by (2.2) and where the integrals are taken over
all electron coordinates except the radial coordinate of the scattered electron.
These equations are known as the close-coupling equations and were originally
introduced by Massey and Mohr (1932) and have subsequently been discussed in
“detail by many authors, for instance Burke and Smith (1962), Burke and Seaton
(1971) and Smith (1971). In order to be able to evaluate the matrix elements
in (2.50), using standard methods of atomic structure theory, it is necessary to
impose the constraint that the channel functions F; (with quantum number ;)
are orthogonal to the radial functions used to construct the functions ¢;. This
does not imply a constraint on ¥g provided a suitable set of functions ¢;, usually
called correlation functions, is included in (2.49) (see Burke 1978).
The expansion in (2.49) is fully anti-symmetrised. If the second sum in (2.49),
the anti-symmetrisation and the orthogonality constraint are omitted, the equa-

tions (2.50) give for the functions F;
(h—k*+V)F =0 (2.51)

c.f. (2.4), where

a I(il+1) 2z
_ 1) 22 52
h dr? + r2 r’ (2:52)

V is a local potential operator, F is a column vector of the functions F; and

z = Z — N (see Burke and Seaton 1971). The equations are of the form (2.51) if
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one considers a target not containing any electrons and it is this case that will
be of main concern in the present thesis.

When the electron is close to the target, that is, within the effective radius
a of the charge distribution of the N electrons, the interaction becomes quite
complex since electron exchange and correlation effects are present and these
effects make the close-coupling equations difficult to solve. Therefore, in this
region the R-matrix method can be used to give a solution. In the outer region
electron exchange effects can be neglected and the coupled equations simplify
considerably enabling a solution to be evaluated directly.

A number of computer codes have been developed to solve the close-coupling
equations in the inner region, of which IMPACT (Crees et al 1978) and RMATRX
(Berrington 1974, 1978) are the most widely used. IMPACT uses finite difference
formulae to reduce the integro-differential equations to linear algébfaic equations
which are then solved. RMATRX uses the R-matrix method to give a solution.
Detailed checks have been made by Berrington et al (1987) between the two
methods and they find that the results are in close agreement. However, of the

two methods, RMATRX is considerably faster.

2.3.1 The R-matrix basis

As outlined by BR, the main problem in applying the R-matrix method to the
scattering of electrons by complex atoms is to define a suitable zero-order basis
in terms of which the total wave function can be expanded. The radius of the
internal region a is chosen such that the charge distribution of the N-electron
target is contained within the sphere r = a. The total wave function in the

internal region can then be expanded for any energy in terms of the R-matrix
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basis functions ¢, in the form

Vg =) Apts (2.53)
k
(see Burke et al 1971) where
Ve =AY cipn®iui; + Y dird; (2.54)
i5 £

and where the u;; are the finite set of continuum orbitals describing the motion
of the scattered electron.
The target functions ®;, used to construct the ®;, are expanded in terms of

orthonormal configurations in the form
®; =) aijX; (2.55)
j

where the index ¢ includes the quantum numbers of the state and where the .
configurations x; = x;(x1,...,Xn) are formed from the atomic orbitals of the N-
electron atom. Each orbital is a product of a radial function P,,(r), a spherical
harmonic and a spin function. The radial functions P, (r), which occur in the

x; in (2.55), satisfy the orthogonality relations
[ P Pagyydr = 8uin, (2.56)
0

when the orbital angular momenta satisfy /; = I; and form the expansion basis
for all configurations x;. The ¢; in (2.54) are analogous to the x; in (2.55) but
contain all the electrons of the (N + 1)-electron system.

Burke et al (1971) evaluate the P, ,(r) by expanding them in terms of a linear
combination of Slater orbitals and the coefficients a;; can then be determined by
diagonalising the matrix

where Hy is defined in (2.2). The basis orbitals can be refined, if necessary, by

using an iterative process and this procedure, together with the diagonalisation in
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(2.57) has been programmed by Hibbert (1975). An alternative, but essentially
equivalent, approach called the multiconfigurational Hartree-Fock scheme, has
been programmed by Fischer (1969, 1972) and this involves solving a set of
coupled nonlinear integro-differential equations for the orbitals, again by using an
iterative process. BR point out that although this process yields exact numerical
orbitals, it is often more difficult to obtain convergence than with the approach
considered by Hibbert.

It may be necessary to add pseudo-states to the expansion in equation (2.55)
in order to accurately reproduce the polarisability of the N-electron atom and the
infinity of open channels (Burke et al 1969). While these pseudo-states cannot
be written down exactly in the case of a complex atom they may be determined
using a variational method (see Burke and Mitchell 1974).

" The continuum basis orbitals u;; are defined by Burke et al (1971) as eigen-

solutions of the equation

& L(li+1) . mas )
— - 2 ) wii(r) = . P 2.58
(dr’ 2t V(r) + £} ) uii(r) ,.=xz,-:+1 Xijn Pri; (2.58)

where the summation over n goes over all orbitals occurring in the expansion of
the atomic states for each orbital angular momentum. The u;; are required to

satisfy the R-matrix boundary conditions

a du
+(0)=0 : i = 2.59
uJ( ) u‘_j(a) dr . ﬂ ( )
and the orthonormality condition
/0 uf‘juij' dr = 6]]1 (2.60)

for each ¢. The );;, are Lagrange multipliers and are chosen such that

/Oa u;;(r) Pu,(r)dr =0 (2.61)
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for all n and j. The conditions (2.60) and (2.61) are imposed mainly for numer-
ical convenience (Burke 1978). The coefficients ¢;;; and dj; are determined by

diagonalising Hy, in the internal region to give

(¢k|HN+ll¢k') = efH&kk' . (2'62)

The evaluation of the matrix elements in equation (2.62) proceeds in the same
way as the diagonalisation of the atomic basis in equation (2.57) and therefore
the same computer codes can be used.
An alternative approach to the evaluation of the basis orbitals u;;, considered
by Fano and Lee (1973) and Lee (1974), can be adopted whereby the parameter 8
in (2.59) is adjusted so that an eigenenergy e} *! falls at the energy E of interest.
In this approach, the R-matrix can be defined by a singular term and this avoids
.any convergence problems, and consequently the need for any Buttle corrections
(discussed in the next section). The basis orbitals can, in this case, be expanded
in terms of Slater-type-orbitals and the wave function obtained has a continuous
derivative on the boundary. The main disadvantage of this approach, over that of
Burke et al (1971), is that it requires a separate diagonalisation at each energy of
interest and so is most efficient if only a small number of energy values are being

considered. Fano and Lee have shown, however, that by suitable interpolation

procedures the diagonalisations can be made fast over a limited energy range.

2.3.2 Calculation of the R-matrix

As before, the total wave function ¥g can be expanded in the internal region at

any energy in terms of the basis ¢, to give

Vg =) Aptr (2.63)
k

where

HN+1\I’E = E‘I’E - (2.64)
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The coefficients Ag; can be determined by considering the relation

(Ve Hy 11| VE) — (Ve|HNa|ts) = (B — e ) (| g) (2.65)

which follows from equations (2.62), (2.63) and (2.64), where the radial integrals

in (2.65) are restricted to the internal region r < a. Writing

fa(r) = E Cijktij(r) (2.66)
and
Fi(r) =Y Agifa(r) (2.67)

which is the radial wave function of the scattered electron in channel ¢ in Vg,
and using the boundary condition (2.59) at r = a satisfied by the f;;, one obtains

the expression given by BR,

dF;
d

y

> fala) [a

f

- ﬂF,] = a(ef“ - E)AEk . (2.68)

r=a

This can be rewritten in terms of the R-matrix, whose elements are defined by

(see §2.1)
_ 1 fula)fi(a)
Ri; = azk: N i E (2.69)
in the form
R@ =58 [edi -8 (270
J r=a

N+1 of the R-matrix are obtained directly

The amplitudes f;;(a) and the poles e
from the eigenvectors and eigenvalues of the Hamiltonian matrix defined by equa-
tion (2.62) and then, from equation (2.70), the logarithmic derivative of the
scattered electron wave function on the boundary r = a can be determined.

Of course, in practice, the expansion in (2.69) must be truncated to a finite

number of terms and this can lead to significant error (see, for example, Yu Yan

and Seaton 1985). However, the omitted levels can be included by adding the
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correction discussed by Buttle (1967), i.e.

a du? 1 [ud(a)?
RS = | ——+ — - = L At 2.71
" [u? dr ﬂ] e @ 2’: K — K} (2.71)
where ul;(r) is the j** eigensolution of the differential equation
@ (L +1) 0 2) .0
_—— - : : =0 2.72
(& - MY 4 o) +u7) i) (212

satisfying the boundary conditions (2.59) and u(r) is the solution at an arbitrary
energy. V2(r) is the diagonal element of some zeroth-order potential in channel
t. Again, as mentioned in §2.2.1, the first term in (2.71) does not have to be
evaluated at each energy and can be approximated to a low order polynomial in

E. The quantity «? in equation (2.71) is related to the total energy E by
k}=(E—e) . (2.73)

The summation in equation (2.71) subtracts those levels that have already been

included in equation (2.69) so that R¢; only contains the contribution from the

distant neglected levels in the ¢** channel. The differential equation (2.72) can

easily be solved since exchange potentials are not included in V2.

2.3.3 Solution in the outer region

The R-matrix method can be used to provide a solution to the close-coupling
equations in the internal region r < a and now it is necessary to solve these
equations in the external region r > a.

In the external region r > a exchange effects between the scattered electron
and the target can essentially be neglected, provided a is chosen appropriately,
and the close-coupling equations (2.50) reduce to the set of coupled differential

equations, c.f. (2.51) and (2.52),

dr? r2 r

2 (1. n
(d —l—'(l'—-{—l—)-i—gg—l-fc?)ﬁ}(r):z:v}j(r)ﬂ(r) ; 1=1ln , r>a

=1
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where the potential matrix V;(r) is given by Burke et al (1971) as
»~ N -~
Vii =i 3 rin41]®5) (2.75)
k=1

and where the integrals are again taken over all electron coordinates except the
radial coordinate of the scattered electron. Using the expansion

N 00 N

Do riner = 2 a1 D rePalcos fnia) (2.76)

k=1 A=0 k=1
where cos 0y y 41 = £ - 541, €quation (2.74) becomes

( L CE ) 27” + n?) F(r) = fﬁ > alr ()

dr? r?

A=1j5=1
i i=1,n , r>a (2.77)
where
. S
oy A& Y i Pa(costn1)|®;) (2.78)

k=1
z=Z— N and M is the maximum value of ) allowed by the triangular relations

imposed by the angular integrals in equation (2.78) (see Edmonds 1960).

Assuming that at the energy of interest

k2>0, 1=1,n,, open channels (2.79)

k2<0, t=n,+1,n, closed channels

the asymptotic form of the solution defining the K-matrix is then given by

1 . ]
Fj v ki (8;sind; + Kijcos6;) i=1,n TR a80)
Fi 7, 0™ i=n,+lLn j=1n,

where the second index j has been introduced on the solution vector F;; to label

the n, independent solutions and where

0; = kir — 2w — 0y In(2K:7) + 0y,
ni = —z[K;

o, = argl'(l; + 1+ in,) . (2.81)
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To relate the n X n dimensional R-matrix given in equation (2.69) to the n, X n,
dimensional K-matrix given in equation (2.80), a set of n + n, linearly indepen-

dent solutions v;;(r) of equation (2.77) are introduced which satisfy the boundary

conditions
vij v Giysind; +0(r™Y) t=1...n j=1...n,
i o Oii-ngcosti +O(r7Y)  i=1...n j=n,+1...2n,
vij r~ binge M+ 0(r7Y)  i=1..n j=2n,+1...n+n,

(2.82)

These solutions can be calculated using any one of the codes ASYM (Norcross

1969), ASYPCK (Crees 1980, 1981) or CFASYM (Noble and Nesbet 1984). Al-

ternatively, they may be represented by Bessel functions or evaluated using the
perturbatlon method described by Seaton (1985)

Burke et al (1971) expa.nd the radial wave functlon of the scattered electron

in the form

ntne
F,-_,,-(r)z Z Zy;V4 i=1...n j=1...na (2.83)
where the coefficients z;; satisfy the n + n, equations

:L'lj-:K‘,;;(Su l=1...na

n4ng dvml .
Z zi; | va(a Z?R.m a——ﬂv,,d =0 i1=1...n (2.84)

r=a
which must be solved for each Jj =1...n, It follows from equation (2.80) that
l . .

Kij = K} T(i4n,); ,7=1...n, (2.85)

and the S-matrix is now given by the matrix equation

_1+4K
T 1—-1K

(2.86)

from which the cross section can be evaluated using standard methods (e.g. Blatt

and Biedenharn 1952; Lane and Thomas 1958).
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2.3.4 Calculation of bound states using the R-matrix

The close-coupling approximation of electron-atom collision theory can be used
to make calculations for bound states of atomic systems and this application is
usually referred to as the frozen-cores (FCS) approximation (see Seaton 1985).
Extensive FCS calculations have been made, for many systems, using the com-
puter program IMPACT (Crees et al 1978) to solve the integro-differential equa-
tions (see, for example Saraph and Seaton 1980; Giles et al 1979; Mendoza 1981,
1982) and using the computer program RMATRX to calculate bound states
that are required for the determination of photoionisation cross sections (see,
for example, Burke and Ohja 1983; Taylor and Burke 1976; Le Dourneuf et al
1975, 1976). Seaton (1985) has given a detailed account of the implementation
of the FCS method wii_:h »pa‘rticu_la.‘r emphasis on its use in conjunction with the
R-matrix method.

The idea of closed and open channels was introduced in §2.3.3. When all of
the channels are closed the wave function corresponds to a bound state of the
electron plus target atom and the problem reduces to finding a discrete eigenvalue
and the corresponding eigenvector of Hy,;. In this case one can define a set of
n linearly independent solutions of equations (2.77) spanning the outer region,

r > a, which satisfy the boundary conditions

v"j ~ e_ln;|r6ij , i,j = l’n (2,87)

r — 00

(see Seaton 1985) and which can be calculated using the computer codes and
methods mentioned in the previous section. The required solution can then be

expanded in terms of these solutions to give
n
F,=) vjz; , i=1ln a<r<oo (2.88)
i=1
and the coefficients z; can then be determined by substituting equation (2.88)
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into equation (2.70) which leads to the n homogeneous equations

2": (v., Z?R.k Iadvk’ — pv k,] ) ;=0 , 1=1n. (2.89)

i=1

These equations can be simplified by writing

z B,','Ij =0 N 2 = l,n (2.90)
i=1
where
dvk
Bij = ch Z Rix a— - ﬂvk; . (2-91)

Equations (2.91) only have non-trivial solutions at the negative energy eigenval-
ues corresponding to bound states of the electron-atom system and the condition
for a solution is

detB=0 . (2.92)

In order to find a solution BR suggest solving the equations
Y Bijzij=-By , i=2,n (2.93)
obtained by setting z; = 1 in (2.90), and then looking for zeros of

4(E) = z_j Bz (2.94)

as a function of energy. This can be achieved using Newton’s iteration method
which involves determining the asymptotic functions in equations (2.87) at a
sequence of negative energies until convergence on the required root is obtained.

When r > a the second expansion in (2.54) does not contribute and the first

expansion when substituted into (2.53) can be summed to yield
Up=AY &F(r) , a<r<o . (2.95)

If the state is sufficiently strongly bound this term will be very small due to

the rapid exponential decay of the components v;;. It can therefore usually be
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neglected in applications to photoionisation or electron-atom ionisation from the
ground state. However, in the case of negative ions, where the electron affinity
is small, a significant contribution to the integrals can be expected from this
region.

In the previous sections, Buttle corrections have been considered only for
positive energies. BR have considered the evaluation of a Buttle correction for
negative energies and conclude that such a correction, given by equation (2.71),

can be extended to negative energies without much difficulty.

2.4 Electron-molecule collisions

R-matrix theory has also been successfully introduced into the field of electron-
‘molecule scattering by Schneider (1975a,b) and Schneider and Hay (1976) who -
show how the scattered electron can be represented by analytic rather than
numerical orbitals. Subsequently, these ideas have been developed by Burke
et al (1977) to formulate a general R-matrix theory of low-energy scattering of
electrons by diatomic molecules based on the frame transformation of Chang and
Fano (1972).

The R-matrix theory of electron-molecule scattering starts from the 'fixed-
nuclei approximation’ in which the motions of the scattered and target electrons
are first calculated in the field of the nuclei which are assumed fixed in space. The
fixed-nuclei approximation then provides the first stage in a calculation where
the nuclear motion is explicitly included. The inclusion of the nuclear motion
will not be covered here but a detailed account of this stage of the calculation
can be found in the paper by Gillan et al (1987) who apply the R-matrix method
to electron-nitrogen molecule scattering.

For each fixed internuclear separation, configuration space is partitioned into
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two regions separated by a sphere of radius r = a where r is the relative coor-
dinate of the scattered electron and the centre of gravity G of the N-electron
target (see figure 2.2). The radius a is chosen large enough to just envelop the
charge distribution of the target states of interest. Therefore, when the scattered
electron is in the internal region, r < a, it lies within the molecular charge cloud
and electron exchange and correlation effects must be included. In this region
the target molecule plus scattered electron behave analogously to a bound state
and a multi-centre configuration interaction expansion of the wave function can
be used. On the other hand, when the scattered electron is in the external re-
gion, r > a, electron exchange between the scattered electron and the target
is unimportant. The scattered electron then moves in the long-range multipole
potential of the target and a single-centre expansion of the wave function can be

adopted.

2.4.1 The inner region

The inner region is defined by r, < a for all p, where r, is the distance between the
p** electron in the scattering system and the centre of gravity, G, of the molecule.
Figure 2.2 shows the coordinate frame for the molecular expansion. Following
the method of Burke et al (1977) (referred to as BMS hereafter) the trial wave
function describing scattering of a low-energy electron by an N-electron diatomic

molecule is expanded in terms of the multi-centre basis

e = A awindini + Y Baxi (2.96)
ij i
where
¢k = wk(x17°-'1xN+l) ’
(};,' = éf(xla-"axNaaN-{-l) ’
ni = ni(rn41),
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. Figure 2.2: Coordinate frame for the molecular expansion.

Xi = Xi’(xla"-axN-{—l)’

and where x, = r,,0, are the space-spin coordinates of the electrons. The
operator A antisymmetrises the scattered electron coordinate with the N target
electron coordinates. All the quantities in (2.96) depend parametrically on R,
the internuclear separation, and for any given situation R is considered to be
fixed (making use of the Born-Oppenheimer approximation). The functions <$.-
are formed by coupling two-centre target eigenstates ¢; to the spin function of
the scattered electron to form eigenstates of the total spin operator and its z
component. Some pseudo-states may also be included in the set ¢; (see Gillan

et al 1988). The target eigenstates ¢; are expanded in the form
¢ =) dijp; (2.97)
J

where ; are formed from bound molecular orbitals of the N-electron target.

The molecular orbitals are constructed from atomic orbitals centred on the nuclei
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which become negligibly small on the boundary r = a. The coefficients d;; are
evaluated by diagonalising the Born-Oppenheimer Hamiltonian Hy for the N-

electron system to give

<¢l IHNI¢]> Nau (2.98)
where
N 2z4 22z 2zAzB
Hy = (-v2 _ 2 —) + 3 = (2.99)
l’gl P orap 7B y>zq:— rpq R

in Rydbergs.

The n; are three-centre orbitals representing the scattered electron which are
non-zero on the boundary of the internal region. BMS expand these functions
in terms of linear combinations of Slater-type-orbitals (STO) centred on the two
nuclei and on the centre of gravity of the target, G. An alternative expansion
for the orbitals centred on G is given by Schneider (1975a) in terms of floating
.Géuésians which are evaluated in prolate spheroidal coordinates. Although this
expansion is more flexible than that used by BMS for diatomic molecules, it leads
to a more complicated matching procedure at the last stage of the calculation.
The use of STO for the orbitals on the centre of gravity of the molecule has since
been abandoned due to linear dependence effects (see Wilson 1987) and has been
superseded by the use of numerical basis functions for these orbitals suggested

by Burke et al (1983). Thus the n; can be expanded in the form

n;(r) = Zr i (r) Yim, () as; + ZX. (r)by; + Z xB(r)ei; (2.100)
where the u; are the numerical basis functions, the ¥;m, are spherical harmonics
and the x! and xP are STO centered on the nuclei. The coefficients a;;, b;; and
¢;; are obtained by Schmidt orthogonalisation so that the #; are normalised and

orthogonal to the orbitals used to construct the ¢; and x;. The numerical basis

functions satisfy the equation

(£, e

dr? r?

+ VO(T) + K?) ‘U:.'(T) = Z A,'ij(r) (2.101)
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subject to the boundary conditions

a du;
; = : - =b . 2.102
ul(o) 0 ] u." dr ( )

Some singlecentre components P;(r) of the molecular orbitals can be included
on the right hand side of (2.101). In this case the Lagrange multipliers A;; are

chosen so that
| " wi(r)P;(r)dr = 0 (2.103)
0
(see Tennyson et al 1987). Vo(r) is a model potential and in the work of Gillan

et al is chosen to be the spherically symmetric part of the static potential of the

target.

2.4.2 The R-matrix
The development of the R-matrix for atomic processes, given in previous sections,
requires a zeroth-order approximation to the true Hamiltonian to generate the
basis functions. However, in the case of scattering by molecules there is no simple,
solvable zeroth-order Hamiltonian so a theory, discussed in detail by Shimamura
(1977) and Gillan et al (1987), has been developed which does not require such
an approximation.

The Schrodinger equation for the total system in the Born-Oppenheimer ap-

proximation is

(Hy+1 — E)¥ =0 (2.104)
where Hpy,y is defined analogously to Hy in (2.99) and ¥ is the total wave
function. The restriction of the wave function to a finite region of configuration

space leads to a non-hermitian Hamiltonian but by using the Bloch (1957) L-

operator formalism, the operator

vas = 3o 5656y 000805~ ) (2 — 22 (0 ¥, 5

(2.105)
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can be added to (2.99) to give an hermitian operator (see Gillan et al 1987),
where

J’j(f‘i) = éj(X, vy Xie1,Xig 1y o0y XN41,03)
and b is an arbitrary constant. The expansion coefficients a;;; and B;; in equation
(2.96) are then determined by diagonalising the operator Hy4; + Ly41 in the

internal region to give

(¢k|HN+1 + LN+1|¢|;'> = exbyy (2-106)

where the eigenenergies e, are real.

The Schrodinger equation in the internal region can be written for each fixed
R as
(Hn41+ Ly — E)¥ = Ly, ¥ (2.107)

and this can be formally solved to give
V= (Hy41+Lysy1 — E) 'Ly . (2.108)

The operator (Hy+1+Ln+1—E) ™! can be expanded in terms of the eigenfunctions

defined by (2.96) and (2.106) to give

|‘I’) — Z I¢k><¢k|LN+l|\I’) . (2_109)
k € — E

This equation is projected onto the channel functions gg,-Y;'.m,._ and evaluated on

the boundary r = a. By defining the reduced radial functions F; by
Fi(r) = ($i¥im, |¥) (2.110)

and the surface amplitudes f;; by

fix = (&i},l,-mg..lwk)r:a (2.111)
Gillan et al finally obtain the expression
dF;
Fi(a) = Y 85(E) |52 — bF;(a) (2.112)
7 r=a
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where the R-matrix

Rij = %Z f"‘é—a)_f’f‘E(i) (2.113)
k k

has been introduced. The R-matrix is obtained at all energies by diagonal-
ising Hy41 + Ly41 once to determine the eigenvalues e, and the correspond-
ing eigenvectors ;. The surface amplitudes f;; can then be obtained directly.
The calculations involved in setting up and diagonalising Hy4; + Ln+1 can be
performed using the ALCHEMY molecular structure package programmed by
McLean (1971) and modified by Noble (1982) to enable numerical orbitals to be
included.

In practice, all the terms in (2.113) cannot be retained and in this case a
Buttle (1967) correction (discussed in previous sections) may be included to

allow for the effect of the higher lying poles not included explicitly.

2.4.3 The external region

In order to relate the R-matrix calculated on the boundary at r = a to the
solution of the problem in the outer regions it is necessary to derive the explicit
form of the equations in these regions corresponding to expansion (2.96). These
equations are assumed to be single-centre no-exchange close-coupling equations
in the molecular frame.

Since exchange can be neglected in the outer regions the total wave function

can be expanded in the form

V= Z ‘;i(xla ey XN, 0N+1)71;].}.1E(7N+1)K'.ml; (fN+1) . (2.114)

Substituting (2.114) into the Schrodinger equation and projecting onto the chan-
nel functions q'g,-Yl'.m,; Gillan et al show that the reduced radial functions F; satisfy,

for each internuclear separation, the set of coupled differential equations
d  L+1
(L-M) ) ko =SweEe) e
]

dr? r?
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where

k}=(E—e) (2.116)

and eN are the eigenenergies of the target states ¢;. In the outer region the
radial coordinate of the scattered electron can be assumed to be greater than
that of any of the target electrons. Therefore, as suggested by Burke and Schey
(1962), Burke et al (1964) and Gailitis (1976), the potential V;; can be written
as a multipole expansion in inverse powers of r. The coupled equations must be

solved for each energy E subject to the asymptotic boundary conditions
-1
Fj v & *(sinfibi; + cos 6:K;) (2.117)

where 0; = k;r — l;7/2 in radians. This equation defines the K-matrix which
couples the open channels. Substituting the solutions defined by (2.117) into
(2.112) gives the K-matrix in terms of the R-matrix.

A number of codes have already been mentioned in earlier sections for cal-
culating outer region solutions. Gillan et al use the R-matrix propagation code
of Baluja et al (1982) and Morgan (1984) (which is described in detail in §2.5)
together with the asymptotic code of Noble and Nesbet (1984) to solve (2.115)

in the external region.

2.5 R-matrix propagation methods

R-matrix propagation methods were first introduced into scattering theory by
Light and Walker (1976). They developed a new approach to the solution of
close-coupled equations which essentially propagated information pertaining to
a physical boundary value problem. This approach avoided all difficulties with
exponential growth of closed channels and lead to algorithms which substantially
reduced the computer time required for integrating close-coupled equations. The

method is based upon a division of configuration space into smaller regions in
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each of which a local R-matrix may be determined analytically. These local R-
matrices are then assembled recursively to give the R-matrix spanning the entire
region. The scattering matrix (S-matrix) is then determined in a straightforward
way from the final R-matrix.

This method has proved to be useful in a number of areas of physics. For
example, it has recently been introduced into the field of semiconductor physics as
a practical technique for estimating the electronic energy levels in multiquantum
well structures (Schwartz 1987) and aperiodic semiconductor structures (Vasquez
1987). It has also proved useful in the study of chemical reactions where, for
example, it has been used to develop a direct method for determining time delays
for reactive scattering problems (Walker and Hayes 1989).

In electron scattering processes, propagation methods become particularly
useful when the radius at which electron exchange can be neglected is not large
enough to allow asymptotic expansion methods or perturbation methods, used
for outer region solutions, to converge to the required accuracy. In this interme-
diate region, an R-matrix propagation method may be used to give a solution.
Baluja et al (1982) have developed an R-matrix propagation program (RPROP)
for solving coupled second-order differential equations over a given range of the
independent variable. Given the R-matrix at one end of the range the program
calculates the R-matrix at the other end of the range. This version of the pro-
gram restricts the potential interaction to the long-range multipole potential
between an electron and an atom ion or molecule. A modified version of the pro-
gram (RPROP2) has been produced by Morgan (1984) in which more general
potentials are treated.

The program of Baluja et al (1982) (referred to as BBM hereafter) propagates

the solution of the set of n coupled differential equations
2

(% T "‘?) Fi(r) = Z:Ve,-(r)F,-(r) , (2.118)
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which are of the form (2.115), over a range from r = a to r = b, where b may be

greater or less than a. The R-matrix at r = a is given by (see §2.1)

Fi(a) = 3 R4(a) [a% _B i=1,.n (2.119)
=1

]
r r=a
and the program calculates the corresponding R-matrix at r = b for a specified

set of energies, where R;;(b) is defined analogously to (2.119). In order to solve

(2.118) it is rewritten in matrix form as
(H-E)F=0 (2.120)

where the matrix elements of H are

d2
Hij = — [(Eﬁ + K] — '62) bij — Vi:'(')] (2-121)
and E is the diagonal matrix
By=xt; . (2122)

BBM choose the value of « such that k? = «2 so that the total energy is measured
relative to the first threshold.

In practice, the range a to b is divided up into a number of subranges, where
a3, as,ds, ... are the dividing points, and the R-matrix is propagated across each
of these in turn. Consider the subrange [a;,a;] where a; > a;. BBM introduce

the Bloch operator
d b
Lij = (5(1’ - 0,2)2; - = 6(7‘ - al); + ;:) 6,'j (2.123)
into (2.120), where f3;, B; are arbitrary constants, to give
H+L-E)F=LF (2.124)

and this ensures that H + L is hermitian over the interval [a;, a;] for functions
that satisfy arbitrary boundary conditions at a; and a;. Equation (2.124) can

be formally solved to give
F=H+L-E)'LF . (2.125)
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The Green’s function (H + L — E)~! can be expanded in terms of an orthonormal

basis v;(r) over the range [a;,a;]. If the functions f;;(r) are now defined as
} 4
fa() =Y auvi(r) , i=1n k=1,np, (2.126)

where the coefficients a;;; are obtained by diagonalising H + L over the range
[a1,as), i.e.

(ka(H + L) |fk') = ck&kk' ’ ka k' = 1) np , (2‘127)
equation (2.125) can then be written as
F) = Z |f" <f'° |L|F) (2.128)

Substituting for the Bloch operator L from (2.123) and evaluating (2.128) at

r = a; and r = a; gives the equations

- S (- 20)_ i (52|

a1
(2.129)
and
. d
Fi(a2) Z f'k(az) Z [f:k (éf“ - %F;) — fix(a1) (% - %F) ) ] .
" (2.130)

Using the definition in (2.119) and by defining the matrices

(Rl ZM.(G_I) R_ )U Z fck a ka(a2)

€ — €r — E
fix(az) fix(a1) fi(az) fix(az)
.= LALANCILE LA ot T2 = s feser to 2.131
(221)11 ; er — E (222)11 zk: ex — E ( )
equations (2.129) and (2.130) can be used to write the R-matrix at r = a3 in

terms of the R-matrix at r = a4, i.e.
a:R(az) = Raz — Ra1[R11 + axR(a1)] ™ Ryz - (2.132)
Equation (2.132) can be inverted to express R(a;) in terms of R(az) to give
—a;R(a1) = Ru1 — Ria[R2z — asR(az)] 'Ry - (2.133)
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BBM use equation (2.132) for outward propagation and (2.133) for inward prop-
agation and demonstrate that, since Ry; and R, are symmetric and RT, = Rz,
both inward and outward propagation preserves the symmetry of the R-matrix.

Having chosen an orthogonal basis in each subrange in [a, ], a single diag-
onalisation analogous to equation (2.127) is carried out for each subrange and
the surface amplitudes f;; and eigenenergies e, are determined and stored. The
R-matrix can then be propagated from a to b at each energy by just forming
the R-matrices defined by equation (2.131) and solving either equation (2.132)
or (2.133) in each subrange.

BBM choose the basis functions v;(r) to be orthonormal shifted Legendre

polynomials defined as

27 —1 .
vl(r) = a:‘_ al,PJ',—l(x) oy, X = la_p o _(2.'134).
where
1 1
r= E(az +a;) + i(az —a))z (2.135)

and P,(z) is a Legendre polynomial of degree n. With this choice, BBM evaluate
the matrix elements of the kinetic energy term in (2.121) analytically and the
remaining terms using a ten-point Gauss-Legendre quadrature formula. The
program also limits the number of basis functions in each range to ten which
imposes a restriction on the maximum value of |a; — a1| in order to obtain results
of sufficient accuracy. The most difficult radial function F;(r) to represent is the

one with the largest wave number and, in practice, the criterion
Kmaz|@2 — a1| = 6 (2.136)

is imposed, where k,,,, is the maximum wave number in any channel considered.
If closed channels are included then K,,,. is replaced by |kmasz|- The program
uses this criterion to subdivide the total range into a number of subranges before

carrying out the calculations.
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Due to the imposition of (2.136) the program becomes less efficient if propa-
gation is required for energies that span a large range. In such a case the energy
range is subdivided into smaller ranges in each of which the program uses a differ-
ent subdivision in the range of r. For each subrange in energy, the Hamiltonian
matrices have to be set up and diagonalised, so a balance has to be achieved
in the number of subranges in energy and subranges in r to achieve maximum
efficiency.

In the modified version of RPROP (RPROP2, Morgan 1984), the restriction
imposed on the form of the potential interaction is removed. Instead, the user
must provide a subroutine which generates the potential matrix at the abscissae

of the quadrature scheme.
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Chapter 3

A modified propagation method

Chapter 2 provides a brief outline of the basic concepts of the R-matrix method
in applications to atomic and molecular collisions. In such applications the basis
functions are calculated numerically by diagonalising the Hamiltonian in the
inner region. Although this needs to be done only once to obtain the R-matrix
at all energies the Hamiltonian matrix can become very large and this limits the
number of basis functions used to the amount of computer time and memory
available for the diagonalisation.

In this chapter an R-matrix propagation approach, similar to that of Baluja
et al (1982), is developed which involves the division of configuration space into
many regions and in a given region, a < r < b say, the radial basis functions
spanning this interval are expanded in terms of an orthogonal set of Legendre
polynomials. Unlike the work of Baluja et al who propagate the R-matrix across
a finite range outside the inner region, the present method propagates the wave
function for all space tncluding the inner region and ensures that the conditions
at the origin are obeyed exactly. Also, the elements of the Hamiltonian are gen-
erated exactly and extremely rapidly using recurrence relations that are satisfied

by the Legendre polynomials and a stable and accurate method for doing this is
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