UCL Discovery
UCL home » Library Services » Electronic resources » UCL Discovery

Atlas construction and spatial normalisation to facilitate radiation-induced late effects research in childhood cancer

Veiga, C; Lim, P; Marin Anaya, V; Chandy, E; Ahmad, R; D'Souza, D; Gaze, M; ... Gains, J; + view all (2021) Atlas construction and spatial normalisation to facilitate radiation-induced late effects research in childhood cancer. Physics in Medicine & Biology 10.1088/1361-6560/abf010. (In press). Green open access

[thumbnail of Veiga2021_PMB.pdf]
Preview
Text
Veiga2021_PMB.pdf - Accepted Version

Download (1MB) | Preview

Abstract

Reducing radiation-induced side effects is one of the most important challenges in paediatric cancer treatment. Recently, there has been growing interest in using spatial normalisation to enable voxel-based analysis of radiation-induced toxicities in a variety of patient groups. The need to consider three-dimensional distribution of doses, rather than dose-volume histograms, is desirable but not yet explored in paediatric populations. In this paper, we investigate the feasibility of atlas construction and spatial normalisation in paediatric radiotherapy. We used planning computed tomography (CT) scans from twenty paediatric patients historically treated with craniospinal irradiation to generate a template CT that is suitable for spatial normalisation. This childhood cancer population representative template was constructed using groupwise image registration. An independent set of 53 subjects from a variety of childhood malignancies was then used to assess the quality of the propagation of new subjects to this common reference space using deformable image registration (i.e., spatial normalisation). The method was evaluated in terms of overall image similarity metrics, contour similarity and preservation of dose-volume properties. After spatial normalisation, we report a dice similarity coefficient of 0.95±0.05, 0.85±0.04, 0.96±0.01, 0.91±0.03, 0.83±0.06 and 0.65±0.16 for brain and spinal canal, ocular globes, lungs, liver, kidneys and bladder. We then demonstrated the potential advantages of an atlas-based approach to study the risk of second malignant neoplasms after radiotherapy. Our findings indicate satisfactory mapping between a heterogeneous group of patients and the template CT. The poorest performance was for organs in the abdominal and pelvic region, likely due to respiratory and physiological motion and to the highly deformable nature of abdominal organs. More specialised algorithms should be explored in the future to improve mapping in these regions. This study is the first step toward voxel-based analysis in radiation-induced toxicities following paediatric radiotherapy.

Type: Article
Title: Atlas construction and spatial normalisation to facilitate radiation-induced late effects research in childhood cancer
Location: England
Open access status: An open access version is available from UCL Discovery
DOI: 10.1088/1361-6560/abf010
Publisher version: https://doi.org/10.1088/1361-6560/abf010
Language: English
Additional information: © 2021 IOP Publishing. As the Version of Record of this article is going to be/has been published on a gold open access basis under a CC BY 3.0 licence, this Accepted Manuscript is available for reuse under a CC BY 3.0 licence immediately (see https://creativecommons.org/licenses/by/3.0/https://creativecommons.org/licenses/by/3.0/).
Keywords: Childhood cancer, Computed tomography, anatomical atlas, image registration, radiotherapy, spatial normalisation
UCL classification: UCL
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Medical Sciences
UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Medical Sciences > Cancer Institute
UCL > Provost and Vice Provost Offices > UCL BEAMS
UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Engineering Science
UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Engineering Science > Dept of Med Phys and Biomedical Eng
URI: https://discovery.ucl.ac.uk/id/eprint/10124671
Downloads since deposit
97Downloads
Download activity - last month
Download activity - last 12 months
Downloads by country - last 12 months

Archive Staff Only

View Item View Item