UCL Discovery
UCL home » Library Services » Electronic resources » UCL Discovery

Linguistic Threat Assessment: Understanding Targeted Violence through Computational Linguistics

Van Der Vegt, Isabelle; (2021) Linguistic Threat Assessment: Understanding Targeted Violence through Computational Linguistics. Doctoral thesis (Ph.D), UCL (University College London). Green open access

[thumbnail of thesis_iwjvandervegt_final.pdf]
Preview
Text
thesis_iwjvandervegt_final.pdf - Accepted version

Download (1MB) | Preview

Abstract

Language alluding to possible violence is widespread online, and security professionals are increasingly faced with the issue of understanding and mitigating this phenomenon. The volume of extremist and violent online data presents a workload that is unmanageable for traditional, manual threat assessment. Computational linguistics may be of particular relevance to understanding threats of grievance-fuelled targeted violence on a large scale. This thesis seeks to advance knowledge on the possibilities and pitfalls of threat assessment through automated linguistic analysis. Based on in-depth interviews with expert threat assessment practitioners, three areas of language are identified which can be leveraged for automation of threat assessment, namely, linguistic content, style, and trajectories. Implementations of each area are demonstrated in three subsequent quantitative chapters. First, linguistic content is utilised to develop the Grievance Dictionary, a psycholinguistic dictionary aimed at measuring concepts related to grievance-fuelled violence in text. Thereafter, linguistic content is supplemented with measures of linguistic style in order to examine the feasibility of author profiling (determining gender, age, and personality) in abusive texts. Lastly, linguistic trajectories are measured over time in order to assess the effect of an external event on an extremist movement. Collectively, the chapters in this thesis demonstrate that linguistic automation of threat assessment is indeed possible. The concluding chapter describes the limitations of the proposed approaches and illustrates where future potential lies to improve automated linguistic threat assessment. Ideally, developers of computational implementations for threat assessment strive for explainability and transparency. Furthermore, it is argued that computational linguistics holds particular promise for large-scale measurement of grievance-fuelled language, but is perhaps less suited to prediction of actual violent behaviour. Lastly, researchers and practitioners involved in threat assessment are urged to collaboratively and critically evaluate novel computational tools which may emerge in the future.

Type: Thesis (Doctoral)
Qualification: Ph.D
Title: Linguistic Threat Assessment: Understanding Targeted Violence through Computational Linguistics
Event: UCL (University College London)
Open access status: An open access version is available from UCL Discovery
Language: English
Additional information: Copyright © The Author 2021. Original content in this thesis is licensed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) Licence (https://creativecommons.org/licenses/by-nc/4.0/). Any third-party copyright material present remains the property of its respective owner(s) and is licensed under its existing terms. Access may initially be restricted at the author’s request.
Keywords: computational linguistics, threat assessment, terrorism, targeted violence
UCL classification: UCL
UCL > Provost and Vice Provost Offices
UCL > Provost and Vice Provost Offices > UCL BEAMS
UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Engineering Science
UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Engineering Science > Dept of Security and Crime Science
URI: https://discovery.ucl.ac.uk/id/eprint/10124525
Downloads since deposit
116Downloads
Download activity - last month
Download activity - last 12 months
Downloads by country - last 12 months

Archive Staff Only

View Item View Item