Integrating Human Factors with Structured
Analysis and Design Methods

by

Kee Yong Lim

University College London

Submitted for the Degree of Doctor of Philosophy
at the University of London

June 1992

ProQuest Number: 10610965

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction isdependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,
a note will indicate the deletion.

uest

ProQuest 10610965

Published by ProQuest LLC(2017). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States Code
Microform Edition © ProQuest LLC.

ProQuest LLC.

789 East Eisenhower Parkway
P.O. Box 1346

Ann Arbor, M 48106- 1346

Abstract

Current human factors input to system development is effected through methods,
tools and guidelines. Although the input prompts the consideration of human
factors concerns during system design, reports have highlighted inadequacies with
respect to the scope, granularity, format and timing of the contributions, e.g.
Smith, 1986; Chapanis and Burdurka, 1990; Sutcliffe, 1989; etc.

The thesis argues that such problems are obviated if design needs of both Software
Engineering and Human Factors are appropriately represented within an overall
system design cycle. Intersecting concerns may then be identified for explicit
accommodation by the design agenda. To derive an overall design cycle, current
conceptions for the individual disciplines should be examined. Since these
conceptions are expressed at a lower level as methods, an overall design cycle may
be instantiated more specifically by integrating compatible methods from the two
disciplines. Methodological integration is desirable as design inter-dependencies
and roles may be defined explicitly. More effective inter-disciplinary

communication may also accrue from the use of a common set of notations.

Methodological integration is facilitated if the design scope, process and notation of
individual methods are well defined. Such characteristics are found in a class of
Software Engineering methods commonly referred to as structured analysis and
design methods. Unfortunately, the same are not currently to be found for human
factors since its methods are generally unstructured and focus only on later design
stages.! Thus, a pre-requisite for integration is the derivation of a reasonably
complete and structured human factors method. Since well developed Software
Engineering methods already exist, it would be appropriate (for the purposes of
methodological integration) to structure human factors methods around specific
structured analysis and design methods. The undertaking is exemplified by the
present research for the Jackson System Development method. In other words, the
scope of the thesis comprises the derivation, test and integration of a structured

1 The imbalance derives from the historically late recruitment of human factors to system
design.

human factors method with the Jackson System Development method.

In conclusion, the research contributes to the Human Factors discipline in two
respects. Firstly, it informs the research community on how similar work with
other structured analysis and design methods may be set up. Secondly, it offers
designers an extended Jackson System Development method that facilitates the

incorporation of human factors during system development.

PN 1134 oF: Tl SRR 1
[O1) 1 175) 1 1 £ J0 e PP PR PO SRR PPTRPPPPPIN 3
List of Figures......ccccouiiimiiiiiiiiieiriiiiiceereeneecvneeeeneerenecenneennes 6
List of Tables.....cc.ccoiiiuiiiiniiiiniieriiiiiieierienerenneeeeneeenessenenenns 12
Acknowledgements...........ccceeeeuueeinieirnniieenieeeeneneeeneernnerennnnns 15
Preface.....ccciiiiieiiiiiiiicc et e e e caae s e seesaae s e nnaneees 17
PART I: Research Background............cccccvevveeiiinnnnnnnnne 21

Chapter One : Introduction....ccccveuiiiiiiiniiiiniiiiniinininiinieieninne. 23

Chapter Two: On Human Factors Input during System Development...33

PART II: On Human Factors Integration with
Structured Analysis and Design Methods (SADMs)............ 59

Chapter Three: General Research Requirements, Activities and
Plan for Integrating Human Factors with SADMs.............c......... 61
Chapter Four: Towards a Conception of
Structured Human Factors Design........ccceeeeeeiiniinnnenicieannanns 78
Chapter Five : A Review of Previous Research into the
Integration of Human Factors with SADMs.......cccccccerueiennnens 105

PART III : On Human Factors Integration with

the Jackson System Development Method.......................... 130
Chapter Six : General Research Concerns for Integrating Human
Factors with the Jackson System Development Method.............. 132
Chapter Seven: Research Highlights in Integrating Human
Factors with the Jackson System Development Method.............. 155

PART IV : A Structured Human Factors Method
for the Jackson System Development Method.................... 186

Chapter Eight: An Overview of the JSD* and JSD*(HF) Methods.....188
Chapter Nine : The Elicitation and Analysis Phase of the

JSD*(HF) Method.......cccviiiiiiiniiiiniiiniiiinniiniiinrnennne 198
Chapter Ten : The Synthesis Phase of the JSD*(HF) Method.......... 239
Chapter Eleven : The Design Specification Phase of the

JSD*(HF) Method.....ccccciviiiieniiniiiniiniiiiiiiiiininninnienenne, 273

PART V : Synopsis of the Research..............c............. 307

Chapter Twelve : An Assessment of the Present Work and
Opportunities for Follow-up Research........ccccceevivireninncennnne. 309

PART VI ¢ Ref @I eNMCeS. .. ieeieeieeeeeeeeeeeeeeeeeeereeeeeeneaanas 338

PART VII : Appendices......cciiiiiiiiiiiiiiiiinininnnenneeeeeeen. 356

1€ (1TE: o 20 T O U PP 358
Index of Abbreviations.......ccociieeiieiieniiniiieninincerieinieceecencenneenns 361
A DN XS i uiieiniieinieiieteeeneerenssncnsancnssnsasensosenssssesenssssesesssnsnsens 364
Bibliography...ccoviiiiiiiiiiiiiiiiiiiiiiiniin e 413

Figure in Preface ;

Figure P-1: Research Concerns and Thesis Structure.........cccceeeeeiiennnen. 20

Figure 1-1: Cost of Fixing Design Errors Relative to the

System Design CyCle...ccoiiiiuuiiiiiuieieinieienrerereereneeereeneseennennns 26
Figure 1-2 : Effort Ratios for Human and Machine Design

Relative to the System Design Cycle.......uueeeiiiiiiiiiiiniiiiiinnnnncnnnee 28
Figure 1-3: Relating the Impact of Human Factors to Various

Phases of the System Design Cycle.......cooorviimnnnniiiceniiiiininneeenacns 29
Figure 1-4 : Relating Design Outcomes to the Duration of

Human Factors Involvement at Various Stages of the Design Cycle........ 29

Figures in Chapter Two ;

Figure 2-1 : Basic Characteristics of Human Factors Design Toolsets......... 34
Figure 2-2 : Merits of Rapid Prototyping.........ccccceereieeemeniccieienneeene. 44
Figure 2-3 : Demerits of Rapid Prototyping........ccceceeeeeerieennncccreniennes 45
Figure 2-4 : Merits of Structured Analysis and Design Methods................ 48
Figure 2-5 : Demerits of Structured Analysis and Design Methods............. 48

Figure in Chapter Three :
Figure 3-1: A Research Plan for Specifying an Integrated Method............ 72

Figures in Chapter Four ;

Figure 4-1: An Initial Conception of Structured Human Factors Design......98
Figure 4-2 : A Conception of the Structured Design of

Human-Machine Systems (Jones, 1973)...cccccciiiiimieiiiiiiinienniennnne 99
Figure 4-3 : An Updated Conception of the Structured

Design of Human-Machine Systems (Shackel, 1986a)..................... 101

Figure 4-4 : A Modified Version of Shackel's (1986a)

Conception of Structured System Design........cccoceeiiviinniiiinninnns 103
Figure 4-5 : An Enhanced Conception of Structured

Human Factors Desigh.....cccccceeiiiiuiiiiiiiniiiuiiiniieniiuiiiseneenen 104

Figures in Chapter Five ;

Figure 5-1: Schematic Representation of a Human Factors Method

that Complements the SASD Method (Blyth and Hakiel, 1988)........... 108
Figure 5-2: Function Allocation using a System Function Model............ 111
Figure 5-3 : Schematic Representation of a Human Factors

Method that Complements DIADEM (Damodaran et al, 1988)............. 116
Figure 5-4 : Checklists, Questionnaires, Observation Sheets

and Summary Forms for User Analysis in DIADEM............cccccu.... 117
Figure 5-5: Design Steps of the Task Charting Technique..........cccu.... 118
Figure 5-6 : DIADEM's Task Allocation Chart Notation...........cccceueeeen. 119
Figure 5-7 : JSD Initial Model Extended to Include a

Human-Computer Interaction Layer (Carver et al, 1987)................... 126
Figure 5-8 : Screen Layout Description Corresponding to

the Extended JSD Initial Model in Figure 5-7.......cccccoeiiiivvnnvunnnenes 127
Fi in Ch ix
Figure 6-1 : Basic Constructs of JSD Structured Diagram Notation.......... 135
Figure 6-2 : A Schematic Representation of JSD

Specifications (Renold, 1989).....cccccivurirreiiiincrennniinecerennenacnes 139
Figure 6-3 : An Instantiation of the General Research Plan

for Human Factors Integration with the JSD Method....................... 148

Figures in Chapter Seven :
Figure 7-1: A Summary of Research Activities for Human

Factors Integration with the JSD Method.......cccccvveiieiiniiiniinnnienen. 156
Figure 7-2 : Using JSD Structured Diagrams to Link Screen Object

Behaviours to Corresponding Changes in their Appearance................ 162
Figure 7-3 : Initial JSD* and JSD*(HF) Conceptions........ccccceevuureernne 166
Figure 7-4 : A Product-Oriented Conception of JSD*.........c.ccevvuuiinnnns 167

Figure 7-5 : Scope of the Review of Current Concerns of

Human Factors Design.....cccccceeiiiiiniiiiiieiiuiieiiinnciiecninisenien 168
Figure 7-6 : Setting Human Factors Models Against the

System Design Life-Cycle.....ccciuuiiiiiiiiniiiiiiiiieccieceeneneenees 175
Figure 7-7a: Further JSD* Conceptions IL.......ccccccccvviiiiiiiiniennnciinians 178
Figure 7-7b: Further JSD* Conceptions IL......ccccccorrmmreriicennnnencnnnnnn. 179
Figure 7-8 : "Basic Elements' for Describing a User Interface Design........ 180
Figure 7-9a: Early Versions of the JSD* Method I..............oueueeeeeennne. 182
Figure 7-9b: Early Versions of the JSD* Method IL...........ccceeeeunnneene. 184

Figures in Chapter Eight :

Figure 8-1 : Locating the JSD*(HF) Method within the JSD* Method.......189
Figure 8-2 : Block Diagram Summary of Each Design
Stage of the JSD*(HF) Method.......cccccoeiinniiiieiiiinnninnniennnnneenn. 196

F s in Ch r Nine :

Figure 9-1 : Block Diagram Summary of the Extant

Systems System Analysis (ESSA) Stage......cccceeeeeeereeeeeeeeecsenenns 201
Figure 9-2 : Extant System Categories Assumed by

the JSD*(HF) Method......cccooiiiiiiiiuiiiiiiiinininiinieniinnincenenne, 206
Figure 9-3 : Task Description for Network Security

Management at University College London Computer

Centre (TD(UCLCC)) -- Pages 1-4.....coueeueeeemmeeciiciiiieeieeaiennnenns 213
Figure 9-4 : Task Description for PC Security Management for

the MacPassword™ Application (TD(MPASS)) -- Pages 1-2.............. 220

Figure 9-5 : Generalised Task Model Description for Network
Security Management at University College London

Computer Centre (GTM(UCLCC)) -- Pages 1-3........cccovuereueeeenn. 226
Figure 9-6 : Block Diagram Summary of the Generalised

Task Model (GTM) Stage.....ccccceiiiimieiiriencriinensnererecccseeneecaenes 230
Figure 9-7 : Generalised Task Model of Network Security

Management for the Target System.......ccccccririiiiiriinciiannincninnenen. 233
Figure 9-8 : Generalised Task Model Description for an

Extant System Composite (GTM(x)) -- Pages 1-3.....ccccoeevurrcenannnen 236

Figures in Chapter Ten :
Figure 10-1: Block Diagram Summary of the Statement of

User Needs (SUN) Stage.....cccceeeiiiieniiiiiniisnniininianiieniincanees 241
Figure 10-2: Part of SUN(y) for Network Security Management.............. 243
Figure 10-3: DoDD(y) for Network Security Management..................... 246

Figure 10-4: Block Diagram Summary of the Composite

Task Model (CTM) Stage....ccccuieeieiiunciinieracinnceursrnecseesssscssnses 249
Figure 10-5: CTM(y) for Network Security Management -- Pages 1-3.......252
Figure 10-6: Design Products Exchanged between JSD*(SE) and

JSD*(HF) Methods at the First Inter-Dependency Point.................... 260
Figure 10-7: Block Diagram Summary of the System and User

Task Model (SUTaM) Stage....cccccceviiiivuecerienieiinnennnneecsiecsesennes 265
Figure 10-8: Part of STM(y) for Network Security

Management -- Pages 1-3......ccccciiiiiniiiiiiiinniiiiiniiin, 267
Figure 10-9: Design Products Exchanged between JSD*(SE) and

JSD*(HF) Methods at the Second Inter-Dependency Point................ 271

Figures in Chapter Eleven :
Figure 11-1: Block Diagram Summary of the Interaction

Task Model (ITM) Stage....c.cccceeiiiumiiiiniiriuiireniiiuieneeeeneneen 275
Figure 11-2: Part of ITM(y) for Network Security

Management -- Pages 1-2......ccccooiiiiiiiiiiiiiiiiiniiiinnnnn, 278
Figure 11-3: Pictorial Screen Layout of Screen 3A..............cccuueeenne. 280
Figure 11-4: Pictorial Screen Layout of Screen 3B........cccoovvcinirieinnnen. 281
Figure 11-5: Dimensioned Pictorial Screen Layout of Screen 3A.............. 286
Figure 11-6: Block Diagram Summary of the Interface

Model (IM) and Display Design (DD) Stages.......cccceeerveeersvecerenas 288
Figure 11-7: Part of DITaSAD(y) for Network Security Management........ 293
Figure 11-8: Pictorial Screen Layout of Screen 4B............ccccoeunvriinnnn. 294
Figure 11-9: IM(y) Description of Radio Buttons in Screen 4B................ 295
Figure 11-10: Pictorial Screen Layout of Screen El........ccccocvniiiinnnnnnne 296
Figure 11-11: Pictorial Screen Layout of Screen 5B-1........c.ccceuveeennnen. 299

Figure 11-12: IM(y) Description of Item(s) in the User
Name Display' Window -- Screen S5B-l........cccoviiiieniiinninnnncnns 300

9

Figure 11-13: IM(y) Description of a 'Generic' Radio

Button in the 'User List' Window -- Screen 5B-1........cccovcuiiiinennn. 301
Figure 11-14: IM(y) Description of the 'Show' Button -- Screen 5B-1........ 302
Figure 11-15: Pictorial Screen Layout of Screen 5B-2...........ccouvevevinnne 303
Figure 11-16 : Pictorial Screen Layout of Screen C2.........cccceevencrvnnecnne. 305

Figure in Chapter Twelve :
Figure 12-1: Locating the JSD*(HF) Method within a Range of
Human Factors Support for System Development.........cccooveeciiennnne 331

Figures in Annex A :
Figure AA-1: Constructs of JSD and JSD* Structured Diagram Notation.....365

Figure AA-2: JSD and JSD* Structured Diagram
Descriptions of a Fictitious Task "T' ...cceoiiiiieiiminniiiccnieennnnenienns 365

Figure in Annex B ;
Figure AB-1: Scenarios for Applying Generification..........cccceeeeciennnnn. 367

Figures in Annex C:
Figure AC-1: The Hierarchical Conception of Work Assumed by

the JSD*(HF) Method.....cccccooiiuiiiuniiiniiiiniiiniinunnineininienennn 371
Figure AC-2: Task Classes and their Relationship to Human

and Computer Components of a System.......ccccovvureenereecirenieninnee 373

Figures in Annex D :
Figure AD-1: Extract from the Extant Statement of User Needs for

the University College London Computer Centre (SUN(UCLCO))....... 379
Figure AD-2: Extract from the Extant Statement of User

Needs for the MacPassword™ Application (SUN(MPASS))............. 380
Figure AD-3: Domain of Design Discourse Description for the

University College London Computer Centre (DoDD(UCLCCO)).......... 381
Figure AD-4: Domain of Design Discourse Description for

the MacPassword™ Application (DoODD(MPASS)).....cccccceveuvueenne. 383

10

Figures in Annex E ;
Figure AE-1 : Extant Task Description for the Recreation Facility

Booking SysStem......cccoiiiiiiiiiiiiiiiiiiiiiiiiin 388
Figure AE-2 : Domain of Design Discourse Description for the

Target Recreation Facility Booking System (DoDD(y)).....ccccceererunnee. 393
Figure AE-3 : Composite Task Model for the Target Recreation

Facility Booking System (CTM(Y)).cccoerrerreerereriimmmmuenmennsnssonenses 395
Figure AE-4 : Design Inter-dependencies between Software

Engineering and Human Factors Streams of the JSD* Method............ 396
Figure AE-5 : Decomposition of CTM(y) into STM(y) and UTM(Y)....cccecueene 399
Figure AE-6: System Task Model for the Target Recreation

Facility Booking System (STM(Y))...cccccrerremmrirrracsesneeerecnnerenenne 400

Figure AE-7 : Deriving ITM(y) by Decomposing Human (H:) Leaves
of STM(y) on the Basis of the Domain of Design Discourse

Description and the Chosen User Interface Environment................... 404
Figure AE-8 : Interaction Task Model for the Target Recreation
Facility Booking System (ITM(Y))..cceceeerereeesrrerieneenneraonsonessennes 405

Figure AE-9 : Deriving IM(y) by Decomposing Computer (C:) Leaves
of STM(y) on the Basis of the Domain of Design Discourse

Description and the Chosen User Interface Environment................... 407
Figure AE-10 : Inter-Linkages between Products of
the Display Design Stage........ccccceerrreiriiiirininnnisieneerernnnninennnns 408

Figure AE-11 : Dialogue and Inter-Task Screen Actuation Description

for the Target Recreation Facility Booking System (DITaSAD(y))........ 409
Figure AE-12 : A Pictorial Screen Layout Description for the

Target Recreation Facility Booking System.........cccoevevuiiiiinenennnne 410

11

Tables in Chapter F
Table 4-1 : Reported Human Factors Concerns and their

Approximate Sequencing during System Design L..........ccouuieennnen. 82
Table 4-2: Reported Human Factors Concerns and their

Approximate Sequencing during System Design IL.........c.cccovurnnneee 83
Table 4-3: Reported Human Factors Concerns and their

Approximate Sequencing during System Design IIlL...........ccccocerrennnee 84
Table 4-4: Reported Human Factors Concerns and their

Approximate Sequencing during System Design IV.......ccccevnnnvinnnne 85
Table4-5: A Basic' Set of Human Factors Concerns Identified

from Reports Surveyed in Tables 4-1 to 4-4.....cccovvviiiinninnnenercnnncnns 86
Table 4-6: Deriving the Relative Sequence of Human Factors Design.......... 87

Table in Chapter Six :

Table 6-1: Human Factors Deficiencies of Existing Structured
Analysis and Design Methods (after Anderson, 1988).........ccccevnunee 141

Tables in Chapter Seven :

Table 7-1: Profile of Case-Study Applications Used in the Research......... 157
Table 7-2: Profile of Research Developments and Reports...........cccceee... 158
Table 7-3: Information Description Capability of Existing JSD Notations...159
Table 7-4: Scope of Description of Various Models of

Human-Computer Dialogue (after Hartson and Hix, 1988)................ 171
Table 7-5: Comparison of User Interface Design Concerns of CLG

(Moran, 1981) and the JSD*(HF) Method......cccccoevvunriiernnnniecennnne 171
Table 7-6: Comparison of User Interface Design Concerns of Foley

and van Dam's Method (1982) and the JSD*(HF) Method................. 172
Table 7-7: Comparison of Newman's (1988) Conception of User

Interface Design 'Practice' and the JSD*(HF) Method............cc.ccu. 177

12

Tables in Chapter Nine :

Table 9-1: TD(UCLCC) Table -- Pages 1-3.....cccoovvvvmnniiiiernnninnnnnnns 217
Table 9-2: TD(MPASS) Table -- Pages 1-2.....ccccevvirirmmmmmniiiiiiinennens 222
Table 9-3: GTM(y) Table....coivruiiniiiiiiiiiiiiiiiiiiiiiiiienneaenns 234

Tables in Chapter Ten :

Table 10-1: DoDD(y) Table...ccoiruiruiiiiuiiniiniiiiiniieiiinieniiinninennenenn, 246
Table 10-2: CTM(y) Table..ccciviiiuiiiiiiiiiiniiiiiniiiiiiicieieceneennn, 255
Table 10-3: Event Table for Network Security Management.................... 257
Table 10-4 : Part of a Functions List for Network Security Management.......261
Table 10-5: STM(y) Table..cociviiiniiniiiriiiiiiiiiiiiie e 270

Tables in Chapter Eleven :

Table 11-1: Objects Dictionary -- Screen 4B........cccccoevvmicveeiiriiiinnnnnene 295
Table 11-2: Objects Dictionary -- Screen El.......ccccccvviiiiiiiniinnnnnnnnnnnn. 296
Table 11-3: Part of DET(y) for the Target Network

Security Management SYStemM......cccceirereecreenrirraniceeniceranieceneeens 296
Table 11-4: Objects Dictionary -- Screen S5B-l.......eiiiiiiiinnennnnnen. 300
Table 11-5: Objects Dictionary -- Screen 5B-2 (Pages 1-2).........ccueueeee. 304
Table 11-6: Objects Dictionary -- Screen C2........cceviiviinninieenenninnnne 306

Table in Chapter Twelve :
Table 12-1: Comparing JSD* Against Other Integrated Methods............... 323

Tables in Annex D :
Table AD-1: DoDD(UCLCC) Table -- Pages 1-2.......ccccccuvvmvunnrnnennannnnns 382
Table AD-2: DoODD(MPASS) Table.....cccoiiurianiiniiuiiiniieiiniennencnncnnnnes 384

Tables in Annex E ;
Table AE-1 : Extant Task Description Table for the Recreation

Facility Booking SyStem......ccccceeieeriiiuiiiniiniiruiienieininnmcenneens 389
Table AE-2 : Dictionary of Screen Objects for the Target

Recreation Facility Booking System (Screen 1)........cccceviveneiininne 411

13

Table in Bibliography :

Table B-1: Authorship Summary for RARDE Project

Working Documents

...

14

Acknowledgements

I am indebted primarily to Professor John Long for his exertions as my supervisor,
and for his limitless enthusiasm and support (both moral and intellectual) for this

work.

My gratitude is extended to Nigel Silcock for his contributions to parts of this work;
and in particular to his bravery as the first 'subject' (perhaps unknowingly) in
'informal tests' on the learnability and utility of the structured method proposed in
this thesis.

I am also grateful to Andy Whitefield and Andrew Life for their encouragement and
effort in reviewing the structured method in its final form.

Thanks are also due to all members of the Ergonomics Unit for creating such a

congenial and pleasant work environment.

I am happy to acknowledge the indirect financial support provided by the
Procurement Executive, Ministry of Defence (Royal Armaments Research and
Development Establishment, RARDE).2 Special acknowledgements are due to
individual members of staff at CA2 (RARDE)3 for their contributions in priming

the research.

Last but not least, I wish to thank close friends whose encouragement and

company, made life during this period a balanced and enriching experience.

2 1t should be noted that views expressed in the thesis are those of the author and should not be
attributed to the Ministry of Defence.

3 Military regulations do not permit citing their names.

15

To my family, in particular to my mother, whose

endless love, patience and support allowed

the fruition of this work.

16

Preface

"We (Ergonomists) borrow and invent techniques to serve our special needs.”

A. Chapanis, 1990.

To achieve the objective of developing a more effective means for human factors
input to system design, existing problems and solutions should be examined. Such

an examination would :

(a) highlight current problems with respect to the role of human factors in
system design, i.e. ‘who', ‘what’, ‘when’ and "how’ issues;
(b) support the formulation of promising solutions to observed problems;

(c) indicate how the specification of a solution may be facilitated.

The thesis proposes that one solution for improving human factors contributions
throughout the design cycle is to locate its inputs against the explicit design
framework of Software Engineering structured analysis and design methods. In
addition, similarly structured human factors methods could be developed for
integration with particular structured analysis and design methods. Complementary
Software Engineering and Human Factors design roles are thus defined explicitly

with respect to the stage-wise scope, process and notation of the integrated method.

To this end, the thesis is divided into five parts which address the following

concerns .

Part I : Research Background -- describes problems of existing approaches
for human factors input to system development. The potential of structured

analysis and design methods for supporting the development of a solution is
then described. The research scope is thus defined as the development and
subsequent integration of a structured human factors method with a

particular Software Engineering structured analysis and design method.

17

Part IT : On Human Factors Integration with Structured Analysis an

Design Methods (SADMs) -- describes general requirements and the
research entailed by methodological integration. Specifically, a general
research plan is proposed to exemplify how such research could be
conducted. Lower level activities of the plan are then described, e.g. a
survey of previous reports on human factors design conceptions and human

factors integration with structured analysis and design methods.

Part III : On Human Factors In ion with_th kson tem
Development Method -- two chapters in this part recount how general
requirements and considerations set out in Part II are instantiated and
realised during the integration of human factors with the Jackson System
Development method. For instance, characteristics of the latter method are
examined to identify its requirements for human factors support.
Constraints specific to this research are then introduced to condition the
general research plan proposed in Part II. A specific plan is thus derived.

Research milestones corresponding to the specific plan are then reviewed.

Part IV : A Structured Human Factors Method for the Jackson System
Development Method -- the main product of the research, i.e. the extended
Jackson System Development (or JSD*) is presented. As the Software
Engineering component of the integrated method is largely unchanged (i.e.
the Jackson System Development method), the thesis focuses primarily on
the human factors component of the method (namely, the structured human
factors method). However, obligatory design inter-dependencies between
the two components of the integrated method are highlighted.

Part V : Synopsis of the Research -- three concerns characterise this part of

the thesis, namely how the present work should be assessed; the outcome of

these assessments; and what follow-up research may be undertaken.

Part VI : References -- this part provides an alphabetical listing of all
references cited in the thesis.

18

Part VII : Appendices -- the appendices support the main text of the thesis.
A list of publications and internal reports of the research is also provided.

The above structure of the thesis is summarised graphically in Figure P-1.

In conclusion, the present work contributes to the Human Factors discipline in two

respects :

(a) it informs the academic community on how similar research may be
conducted;
(b) it offers human factors designers an extended Jackson System

Development method for system design.

These contributions are organised in the thesis as follows :
(1) for group (a) above, Parts I, II and V of the thesis would be directly
relevant. Part ITI may also be informative.

(2) for group (b) above, Part IV provides a detailed account of the extended
Jackson System Development method.

Kee Yong Lim,
June 1992,

19

Figure P-1 : Research Concerns and Thesis Structure

Chapter 1 :
Problems of HF input during system
development, e.g. 'too-little-too-late'.
High level solution : make HF design
explicit over the system design cycle

Chapter 2 :

Assess existing conceptions of the
system design cycle, e.g. rapid prototyping
vs SADMs. Select integration of HF with
SADMs as the preferred solution

I 14od

vy

Chapter 3 :

General requirements and research scheme
for HF integration with SADMs. Survey
existing HF conceptions for the design of
systems, e.g. HCI models

)
o)
l 3

~

Chapter 5 : Chapter 4 :

Review and assess previous research Derive a HF conception of the

into HF integration with SADMs structured design of systems

Chapter 6 : y

Assqss support Specific requirements and research
requirements of ——— scheme for HF integration with the
the JSD method JSD method |

!

Chapter 7 :
Derivation of the JSD*(HF) method and
subsequent integration with the JSD method

~
Chapters 8 to 11 : §
The JSD* and JSD*(HF) methods .
<
Y \ 4
~
Chapter 12 :)
Assessment of the research and the <
JSD* and JSD*(HF) methods <

20

11 34vd

PART I :

Research Background

21

Chapter One : Introduction..........c.cccceuiiiiiiiiiiiiiiniiniiiieneeanennes 23
1.1. Current Problems of Human Factors Input to Systems Design....... 23
1.2. Preliminary Scope and Objectives of the Research.........cceeervnenee 32

Chapter Two : On Human Factors Input during

System Development......cccccvvieiieiirereiirieciesessrsesessssescnscessssessesones 33

2.1. An Assessment of Current Solutions for Supporting

Human Factors Input into System Development......cceeecencenceanes 34
2.2. Conceptions of the System Design Cycle : Traditional

System Development Life-Cycle versus Rapid Prototyping 42
2.3. A Case for Integrating Human Factors with

Structured Analysis and Design Methods.....cceeereeinceccnsecneseenees 51
2.4. Detailing the Scope and Objectives of the Research......cceceeueeennee 57

22

Chapter One : Introduction

....... in the design domain we can never know enough.”
Rosson, 1985.

"If at first you know where you are, and whither you are tending, you will better
know what to do and how to do it."
Abraham Lincoln, 1809-1865.

This chapter reviews current problems of human factors input to system design.
The research context is thus characterised. For instance, the review indicated that
current human factors contributions are poorly timed relative to design support
requirements that vary throughout the design cycle. Thus, the relevance, format and
granularity of its inputs are non-optimal for effective uptake of human factors
inputs. Promising solutions may then be proposed to address the observed

problems.

In other words, Chapter One sets the context for Chapters Two to Five which
considers what improvements to existing means of human factors input are

necessary, and how such improvements could be achieved.

1.1. Current Problems of Human Factors Input to Systems Design

Recent developments in computer technology has resulted in a shift from
mainframes to interactive personal computers, e.g. the availability and affordability
of personal computers and the rapid diversification in computer applications.
Today, personal computers have made significant inroads into both the workplace
and the home. Thus, the computer user base is widened considerably. The wider
user base, together with market forces, highlighted the importance of designing
computer applications that are appropriate in both functionality and usability. The
success of Macintosh computers is an example (see also Shackel, 1985 and 1986b;
CCTA (Draft) Report, 1988, Annex 1; Shuttleworth, 1987). In addition, it was

23

recognised that poor usability implies :

(a) greater training requirements which is a particularly serious problem
with a highly mobile information technology work force;

(b) an incomplete utilisation of the software (Hirschheim, 1985; Stevens,
1983);

(c) possible failure of the system to achieve its intended purpose
(Underwood, 1987; Lucas, 1975);

(d) slower than anticipated uptake of information technology in the
workplace (Fdhnrich et al, 1984; Eason and Cullen, 1988).

In short, poorly designed systems do not compete well in the market. The
importance of user testing, and hence human factors, was thus recognised. This
form of human factors recruitment was established and its designers were called
upon only to evaluate the usability of a particular design (Rosson, 1987).
Correspondingly, human factors methods gravitated towards later stages of system
development. It appears that the need for wider human factors involvement was
unrecognised until Software Engineering design processes were made more

explicit. Thus, recognition may have been triggered by the following events :

(a) the advent of more powerful computers that led to the development of
larger and more complex systems. Such developments constitute longer
term projects with multiple design deliverables and a greater propensity to
over-run specified deadlines;

(b) the penetration of software applications into novel domains (i.e.
domains which are ill defined) as opposed to the direct computerisation of
manual systems (Benyon and Skidmore, 1987; Galliers, 1984);

(c) the emergence of expert systems and artificial intelligence.

The greater demands on the system design process imposed by these events
highlighted the following requirements :

(a) to ensure that system development is 'correctly’ conducted, e.g. the

24

adoption of a systematic design approach to enforce orderly design
development, modification and post-delivery maintenance; continuous
verification of design specifications;

(b) to ensure that a valid or 'correct’ system is developed, i. e. a more
reliable means of capturing and confirming user requirements;

(c) to increase design consistency, throughput and capability, e.g. the
development of computer-based tools to reduce system delivery times; the
employment of greater manpower to handle larger scale projects (i.e.
emphasis is on design teams as opposed to individual hackers);

(d) to ensure better project management.

These design requirements may be mapped onto the following Software

Engineering solutions :

(a) design principles and techniques, e.g. delaying design commitment,
incremental design, rapid prototyping, software re-usability;

(b) executable specifications and high level languages, e.g. new generation
languages (Fourth and Fifth Generation Languages);

(c) formal notations and methods, e.g. Z, Communicating Sequential
Processes (CSP), Calculus of Communicating Systems (CSP), Vienna
Development Method (VDM);

(d) structured analysis and design methods, e.g. Structured Systems
Analysis and Design Method (SSADM), Jackson System Development
(JSD) method;

(e) computer-based tools, e.g. Computer Aided Software Engineering
(CASE), Integrated Project Support Environment (IPSE).

These solutions support software engineers in a number of ways. For instance,
more reliable specification through proveability via formal methods; more efficient
and effective utilisation of design resources via directly executable notations and
computer-based tools (such as code generators and consistency checkers); better
design management and more systematic design analysis via structured analysis and

design methods; etc.

25

These Software Engineering developments led to a more explicit definition of the
system design process. Thus, it became apparent that human factors involvement
only at the evaluation stage was inadequate for ensuring a satisfactory design
outcome, e.g. an efficient design of a valid system. Specifically, effective human
factors contributions may become inordinately difficult at this late design stage. For
instance, the formulation of human factors contributions may be hampered by
poorly documented design rationale and decisions. Thus, late human factors
involvement may result in contributions which are 'too-little', i.e. the contributions
comprise little more than advice. Since late involvement implies that human factors
activities do not constitute a basic part of design specification, its contributions may
also be 'too-late’, i.e. the recommendations could not be acted upon (Rosson,
1987). For instance, actions could be thwarted because desired modifications are
too far reaching and hence excessively difficult and expensive to implement (see
Figure 1-1). Human factors recommendations may be too far reaching as a result of
early errors being magnified through subsequent design stages, i.e. a progressive
degradation of the design specification (Alvey MMI Workshop Report, 1984, pg.
20). Alternatively, modifications may be restricted because fully developed designs

Figure 1-1 : Cost of Fixing Design Errors Relative to the System
Design Cyclel |

Smaller software projects

Relative cost
for fixing errors

Larger software projects

Requirements Design Code Development Acceptance Operation
test test

>
Phase in which error is detected and corrected

1 From Béhm (1981).
26

become 'frozen' by inter-locking dependencies and are thus more resistant to
change (Grudin et al, 1987; Bury, 1984). Such ineffective design development has
resulted in the consumption of a disproportionately large amount of project
resources by design maintenance,2 e.g. up to 70% of project resources may be
consumed for this purpose alone (B6hm, 1976 and 1981; Multi-User Computing,
1989, pg. 20).3. 4

Thus, to avoid the 'too-little-too-late’ problem human factors involvement should
not only be early but sustained throughout the design cycle (see also Alvey Human
Interface Committee Report, 1987, pg. 9; Eason and Cullen, 1988). Early design
involvement ensures more effective human factors input because human issues
which predominate at early design stages (Figure 1-2) may then set the constraints
for later design stages which largely concern the device (Alvey MMI Workshop
Report, 1984, pg. 20). Continuous involvement ensures correct translation and
incorporation of human factors inputs into the design. It also ensures that inputs are
timely and contextually relevant to design concerns at each stage of the design
cycle. For instance, wider involvement would support the incorporation of human
factors contributions during functional design, e.g. contributions may include
descriptions of user goals, tasks and abilities, and these constitute an appropriate
basis for functional design. Thus, human factors became involved in the
specification of system usability and functionality (as opposed to only evaluation).
In other words, human factors may contribute to the analysis, specification,

implementation and evaluation of systems, i.e. its contributions permeate the entire

2 Design maintenance, by definition, includes both corrective actions resulting from design
errors, and modifications and/or enhancements arising from changes in initial design requirements
(Fitzgerald, 1988).

3 Other accounts report that : large software projects cost, on average, twice as much as their
initial budgets; they are usually completed a year late; and a quarter of the projects are never
completed at all (Multi-User Computing, 1989, pg. 22).

4 The contribution of human factors to the reduction of maintenance costs has been reported by
Norman (1986), and Rubinstein and Hersh (1984),

27

Figure 1-2 : Effort Ratios for Human and Machine Design Relative
to the System Design Cycles

design effort
(conceptual)

Proportion of
Design Effort Ideal machine
design effort
(technical)
Design Cycle
gn Cy >
Human Issues < > Machine Issues
Dominate Dominate

design cycle (see Alvey Human Interface Committee Report,® 1987, pg. 32;
Alvey MMI Workshop Report, 1984, pg. 37 & 39; Buxton et al, 1983). The design
impact of human factors is thus maximised by earlier and wider design involvement

(see Figures 1-3 and 1-4).

Unfortunately, these positive design developments could not be exploited directly

due to the following reasons :

(a) to exploit the positive developments, corresponding developments in

human factors are required, namely :

(i) the scope of human factors means of design input (e.g. standards,
methods, etc. -- henceforth referred to collectively as 'toolsets' (see
Chapter Two)) should be extended to rectify the historically narrow

5 Adapted from Alvey MMI Workshop Report (1984), pg. 20.
6 The report emphasised that significant impact on product design will not accrue unless human

factors is incorporated in all phases of the design cycle.

28

Figure 1-3 : Relating the Impact of Human Factors to Various
Phases of the System Design Cycle?

gloo
S
2
E
<3
=
2
S
V
R
1] 1 /\
0 1 2 3 4 5 6

Design Phases

1 : Conceptual Phase; 2 : Prototype; 3 :Detailed Version;
4 : Production; 5 : Evaluation; 6 : Operation.

Figure 1-4 : Relating Design Qutcomes to the Duration of Human

Factors Involvement at Various Stages of the Design Cycle8

Profile for
" optimal
design outcomes
R
= Profile for
SR sub-optimal
§ E design outcomes
=
-
® =
]]

0 1 2 3 4 5
Design Stage

O :Investigate; 1 :Design; 2 :Prototype; 3 :Implement; 4 :Test; 5 :Release.

7 From Moraal and Kragt (1990).
8 From Lundell and Notess (1991).

29

coverage of the system design cycle (ALV/MMI/PRJ/143, 1988, pg.
3). The extension is necessary as human factors is reported to be
"lacking in methodology' (Klein and Newman, 1987);

(ii) human factors design should be made more explicit and complete
(i.e. to elevate its practice from craft to engineering status (Long and
Dowell, 1989);

(iii) human factors contributions should be more specific to rectify
current problems in their translation into design specifications, e.g.
current inputs focus on what should be done but not how (Sutcliffe,
1989); the format of inputs do not support effective communication
(Mantei and Teorey, 1988).

Since the above developments are extensive, a significant time lag is
incurred between the supply and demand of human factors design support
(see also Underwood, 1987; CCTA (Draft) Report, 1988, Annex 1;
Galliers, 1984);

(b) the exploitation of positive developments was hampered by a number of
mismatches between Software Engineering and Human Factors design
approaches and activities, e.g. machine-centered versus user-centered
design. These mismatches arose because previous solutions for improving
system development were formulated independently by the individual
disciplines.? To facilitate wider human factors design involvement,
existing solutions for improving system development should thus be
reconciled across the disciplines (Long and Dowell, 1989; 10 Carroll and

9 Grudin et al (1987) observed that in general, human factors is either inadequately represented or
omitted from Software Engineering literature. Human factors has also been ‘perceived as irrelevant
to system development' (Klein and Newman, 1987).

10 Human Computer Interaction, as a discipline comprising Human Factors and Software

Engineering (Long and Dowell, 1989), is compatible with this perspective.

30

Campbell, 198611),

The above considerations were summarised aptly by Carroll and Campbell (1986)

as follows :

"Human-computer interaction....... will favour inter-disciplinary co-
operation between psychology and computer science......will not sustain
approaches that are too low level, too limited in scope, too late, and too
difficult to apply in real design......"

Since existing Software Engineering toolsets are better developed, it follows that
human factors toolsets should be constructed to augment them (this is also
consistent with the current supporting role of human factors). To this end, human

factors research should focus on the following :

(a) in the short term, the development of a means of compensating for the
current incompleteness of human factors knowledge, e.g. approximation
and empirical techniques for deriving design information that cannot be
prescribed analytically;

(b) definition of a complete human factors design cycle. This definition
would make human factors design roles and responsibilities more explicit;
(c) identification of design relationships between Software Engineering and
Human Factors throughout the system design cycle. Making such design
relationships explicit would facilitate human factors involvement throughout
the design cycle;

(d) development of appropriate toolsets to support the incorporation of
human factors inputs throughout the system design cycle. The
configuration of such toolsets should complement existing Software
Engineering design toolsets. Specifically, existing design notations,

techniques, methods and tools should be taken into account during the

11 As per Footnote 10, but Carroll and Campbell's (1986) conception of Human Computer
Interaction comprises Computer Science and Psychology. The difference may be attributed to the

scope assumed for the component disciplines.

31

construction of human factors toolsets; 12
(e) in the long term, the accumulation of further human factors design
knowledge.13

The above research agenda has also been proposed elsewhere, e.g. Alvey Human
Interface Committee Report (1987); Alvey MMI Workshop Report (1984); Glasson
(1984); Mantei and Teorey (1988); Grudin, Ehrlich and Shriner (1987); Klein and
Newman (1987); Robertson (1987); CCTA (Draft) Report (1988, Annex 1);
McKeen (1983); Innocent (1982); etc.

Preliminary objectives for the present work were then defined with respect to the

research agenda.

1.2. Preliminary Scope and Objectives of the Research
Preliminary objectives of the research comprise the following :

(a) to assess the scope and configuration of current human factors toolsets
for supporting system development, and to identify problems reported in
their use. The objective of the assessments is to characterise the problems
that are addressed by the research (see Chapter Two);

(b) to propose and demonstrate, on the basis of (a) above, methodological
integration as a means of improving human factors input to system design.
The demonstration comprises several design case-studies involving the
development and application of a structured human factors method. The
latter method is constructed specifically for integration with a particular
Software Engineering method (see Part II).

A detailed account of the research entailed by these objectives follows.

12 Such a perspective is consistent with existing configurations of design teams, i.e. system
design is led by software engineers with human factors designers providing collaborative support.

13 jtem (e) does not fall within the scope of the research. It is included here for completeness.

32

Chapter Two : On Human Factors Input during
System Development

“All things exist in time. They are not unchanging, and they cannot be designed
without regard for the way they operate and are used over time."
Charles Owen, 1986, Design Processes Newsletter.

“To every Form of being is assigned’, Thus calmly spoke

"m

the venerable Sage, ‘An active principle.
William Wordsworth, 1814, The Excursion.

Having characterised the research scope, existing human factors toolsets should be
assessed to determine what enhancements would ensure a more effective input to
system design. Three complementary classes of human factors toolsets will be

assessed briefly, namely :

(a) principles, guidelines, and standards;
(b) computer-based tools;
(c) techniques and methods.

Following the review, greater emphasis will be placed on (c) as a member of its
class, namely Structured Analysis and Design Methods (SADMs), could provide
frameworks to support the development and recruitment of (a) and (b) above.
Specifically, design support requirements at various stages of the design cycle are
defined explicitly by the scope, process and representation of SADMs. On this
basis, HF toolsets could be contextualised appropriately to system design needs.
Similarly, toolsets could be organised more effectively to maximise their symbiosis.
Thus, the weaknesses of one are compensated appropriately by the other, while
strengths are jointly exploited, e.g. complementary roles for procedural and
declarative toolsets may be defined explicitly at various stages of the design cycle.
Consequently, a case is made for integrating human factors methods with SADMs.
The preliminary scope and objectives of the research are then expanded to support
the proposed integration of Human Factors and Software Engineering methods. A

more detailed account of how methodological integration may be achieved is

33

described in Chapters Three to Five.
In summary, the objectives of the chapter comprise the following :

(a) to describe and contrast existing classes of human factors toolsets;

(b) to identify typical problems of the classes of toolsets in (a) above;

(c) to highlight required enhancements of the classes of toolsets so that the
problems identified in (b) above could be obviated;

(d) to propose and assess methodological integration as a solution with

respect to (b) and (c) above.

2.1. An Assessment of Current Solutions for Supporting Human
Factors Input into System Development
Existing human factors toolsets may be characterised in terms of their scope

(subject matter) and process (delivery) (Figure 2-1).

Figure 2-1 : Basic Characteristics of Human Factors Design Toolsets

Human Factors
Contributions
Scope/Subject Matter Delivery/Process
Declarative Procedural

(Substantive) (Methodological) ~ Fassive Reactive/Active

N

Enactive Proactive Retroactive

34

A brief account of these characteristics follows :

(a) scope (subject matter) -- declarative-procedural dimension. If the
subject matter of a toolset is concerned directly with attributes of the artefact
to be designed, its support is termed declarative (or substantive). General,
requirements of declarative toolsets comprise the provision of the

information that is :

(1) correct and relevant to the design concerns at hand;
(2) presented using appropriate notational schemes so that the
information is in an easily accessible and concise format;

(3) expressed at the appropriate level of description.

A toolset may alternatively provide procedural (or methodological) guidance
on how a design of the artefact should be derived. For instance, a set of
intermediate design representations and transformations may be
recommended to support problem analysis and design development.
General requirements of procedural toolsets are that its design

representations and transformations should :

(1) be compatible with established design practices;

(2) cover the design cycle adequately;

(3) be expressed appropriately to support design reasoning and the
management of design complexity. Too low a level of expression of
the toolset may impose undesirable constraints on designers (e.g.
methods have been criticised for hampering designer creativity), and
limit its applicability across different design scenarios. Conversely,
too high a level of expression of the toolset may result in inadequate

design guidance, e.g. some methods are no more than checklists.

Since procedural support is not a substitute for human factors knowledge,

declarative support is invariably required in some form.

35

(b) process (delivery) -- passive-active dimension. This dimension
describes how and when human factors contributions may be delivered
during system development, e.g. handbooks are passive in their delivery,
while computers and consultants are active or interactive to varying degrees.

Active input can impact systems design in three ways, namely :

(1) retroactively (or 'after-the-fact' intervention), e.g. human factors
audit; ‘

(2) proactively (or 'before-the-fact' intervention or feed-forward
prescription), e.g. design handbooks;

(3) enactively (or 'during-the-fact' intervention), e.g. participative

design.

Ideally, human factors toolsets should support design actively to ensure the
timeliness, relevance and granularity of human factors contributions relative
to design support needs at various stages of the design cycle. In other

words, one needs to consider :

(1) what human factors inputs are necessary to support end-users of
the target system;

(2) how and when human factors inputs should be presented during
system design, i.e. software engineers should be supported
appropriately as users of human factors design inputs. Better
understanding and conceptual cohesion may then accrue. Thus, the
uptake of human factors contributions (and their eventual realisation in
the design artefact) would improve significantly if human factors
inputs are contextualised to existing software engineering conceptions

of the system design cycle.

Consequently, the process (how and when) and product (form and content) of
design input are equally important concerns for improving the uptake of human
factors contributions during system design. In other words, attention should be
directed both at incrementing human factors design knowledge (to widen its scope)

and at improving its delivery and presentation.

36

Bearing the above considerations in mind, an assessment of existing classes of

human factors toolsets follows.

The first class of human factors toolsets comprises design principles, guidelines
and standards. The design support provided by this class is predominantly
declarative (see Williams, 1989; Smith and Mosier, 1984). Although the declarative
content varies, design guidelines in general tend to be detailed and lengthy, and
their focus can be either vague or specific. Similarly, design principles tend to be
simple, compact and general (McKenzie, 1988; Norman, 1988). In addition, design
recommendations may vary from mere advice to legislated standards.

Problems reported with this class of human factors toolsets are as follows :

(a) poor scope and presentation format of inputs. Human factors inputs by
these toolsets are presented at either too high or too low a level of
description. Thus, the recommendations are either too vague to provide
effective guidance, or too rigid and specific for application across various
design scenarios respectively (Smith, 1986; Chapanis and Budurka, 1990,
Hirsch, 1984). In either case, extensive interpretation, adaptation and
extrapolation would be required for application during design (Klein and
Brezovic, 1986). These problems highlight a serious weakness of the class
of toolsets. To aggravate matters, Smith (1986) reported that designers who
are insufficiently competent in human factors may not even recognise the
need to adapt the declarative content;

(b) conflicting advice may be offered. As the declarative content of these
toolsets becomes more comprehensive and detailed, contradictory advice
may arise (Maguire, 1982; Alexander, 1987). Generally, no guidance is
provided by the toolsets on hpw such contradictions may be resolved
(Marshall, 1984);

(c) poor accessibility of human factors information. As a class, these
toolsets are difficult to use (Rogers and Pegden, 1977; Eason and Cullen,

1988), and the reference document quickly becomes voluminous and

37

daunting (Norman, 1988).14 Thus, the toolsets tend to become part of the
back-drop of design and are therefore overlooked frequently (McClelland,
1990);

(d) questionable validity of human factors recommendations. In particular,
the validity of standards is doubtful as current human factors knowledge
may not adequately support their imposition (Smith, 1986). Furthermore,
existing human factors standards are not testable (Chapanis and Budurka,
1990). Thus, effective enforcement is contentious;

(e) poor mapping of human factors inputs to the design context. Reports
have indicated that system developers frequently fail to make relevant
human factors considerations at appropriate stages of the design cycle
(McKenzie, 1988; Smith, 1986). In response to the problem, a common
exhortation is that human factors advice should be sought earlier in the
system design cycle. However, in the absence of an explicitly structured
framework for human factors design,15 judgements on what constitutes
appropriate and early human factors input remain subjective;

(f) the declarative emphasis of the class of toolsets encourages a narrow
view of the recruitment of human factors designers, i.e. as consultants as
opposed to active participants in design specification. Comprehensive
analysis of human factors concerns may be discouraged as a result;

(g) inadequate project resourcing for a comprehensive account of relevant
standards, guidelines and principles. Such difficulties arise because an
appropriate representation of human factors design by the system design

agenda remains unaddressed.

For these reasons, this class of toolsets has been viewed by designers as restrictive

or mere formalities at best, and at worst a hindrance to design (Smith, 1986).

14 gor example, Smith and Mosier (1984) identified more than 600 guidelines for user interface

design alone.

15 At the highest level, a structured human factors design framework may comprise a human

factors design life-cycle, while at the lowest level it assumes the form of a structured analysis and

design method.

38

In summary, this class of toolsets fail to address adequately the process and
product of human factors input. For instance, when and how inputs should be
delivered (process); and what inputs should be recruited in particular system design
contexts (product). To resolve these problems, enhancements of this class of

toolsets would involve addressing the following :

(1) contextualising the configuration and declarative content of the toolsets
appropriately to the design support required at various stages of the system
design cycle. To this end, a structured framework for human factors design
needs to be defined explicitly. Thus, the scope of human factors guidelines
has been extended to include procedural guidance, e.g. BS 6719:1986 (see
also Gould, 1988; McClelland, 1990). The format and declarative content of
human factors guidelines, principles and standards may then be configured
to meet design support requirements as defined by the stage-wise scope and
process of the framework. An example of work in this direction may be
found in Esgate, Whitefield and Life (1990);

(2) ameliorating problems of accessing a rapidly increasing declarative
knowledge-base, i.e. passive delivery through handbooks is an inadequate
solution. To address this problem, Smith (1986) suggested the following
procedures for identifying relevant design guidelines :

(i) begin with a guidelines review;

(ii) discard guidelines which are irrelevant;

(iii) modify, expand and weigh the importance of the remaining set of
guidelines in anticipation of trade-offs and documentation at later

stages of system design.

Although Smith's suggestions are helpful, a guidelines review would
remain a daunting task in view of (c) and (g) above. Thus, computer-based
tools have been developed to support the application of this class of human

factors design support. Computer-based tools will be discussed later.

To conclude, principles, guidelines and standards as a class of human factors

toolsets, relies heavily on appropriate consultation during system design. In the

39

absence of an explicitly structured human factors design framework, major pitfalls

may include the following :

(a) continued perception of human factors designers as design consultants
as opposed to active participants in design specification;

(b) human factors design would remain a craft practice (see Long and
Dowell, 1989);

(c) comprehensive human factors analysis may be discouraged due to
inadequate allocation of project resources, €.g. the time set aside for human

factors design may be unrealistically short.

The second class of human factors toolsets comprises computer-based tools. As
with principles, guidelines and standards, computer-based tools should not be
developed in a 'vacuum'. In other words, their configuration should support design
requirements at each stage of the sy-stem design cycle. Thus, design support
requirements must be identified sufficiently if appropriate functional coverage is to

be realised in such tools.

Generally, computer-based tools provide both procedural and declarative design
support. Procedural support provided by computer-based tools may include the

following (after existing Software Engineering tools) :

(a) project planning, e.g. for scheduling design deliverables, tracking
project progress;

(b) design specification and documentation, e.g. text and graphics editors,
consistency checkers (for notational rules);

(c) design evaluation, e.g. simulators, prototypers, animators;

(d) design implementation, e.g. compilers, linkers.

To provide ‘total systems solution’ or ‘design cycle support’ the above categories

of design support should be covered comprehensively (Hewett and Durham, 1987).

Computer-based tools that provide declarative design support are a recent

development. For instance, tools that monitor the appropriate application of human

40

factors design guidelines are emerging (Perlman, 1987).

In general, computer-based tools suffer from similar problems as principles,
guidelines and standards, e.g. Hartson and Hix (1989) reported that the functional
coverage of computer-based tools is frequently too narrow. Aside from these
problems, it is frequently the case that a long time lag separates the recognition of
design support needs and the development of a computer-based tool. For instance,
Software Engineering CASE and IPSE tools were not developed until structured
analysis and design methods became well established (Hewett and Durham, 1987).
In view of these observations, it may be expected that computer-based tools for
human factors would not be realised unless its design cycle is defined explicitly.
Specifically, appropriate requirements for computer-based design support can not
be identified in the absence of an explicit conception of human factors design.
Consequently, for human factors the development of computer-based tools may be

considered a longer term objective.16

The final class of human factors toolsets comprises design techniques and methods
(e.g. task analysis). Examples of such toolsets are described by Meister (1984) and
Kloster and Tischer (1984). Although there is a wealth of human factors techniques
and methods, the procedural support provided by this class of toolsets generally
suffer from the following problems :

(a) too narrow a coverage of the system design scope. Existing toolsets tend
to focus on later stages of the design cycle;

(b) the format of toolset outputs is contextualised poorly to design support
needs at each stage of the system design cycle;

(c) the toolsets are difficult to use (Wilson et al, 1986), and are expensive
and time consuming to apply, e.g. rigorous experiments. In addition, the
validity of the derived results may be doubtful, e.g. experimental results

may not be applicable to real world tasks since they are derived under

16 Current computer-based support for human factors design is in the early stages of
development. The support presently provided is limited, e.g. HUFIT tools (ESPRIT 385, 1989 and
1990) comprise primarily checklists and form-fill schemes.

41

controlled conditions.

In conclusion, to achieve maximum effectiveness all classes of toolsets should be
configured with respect to a better defined human factors design cycle. For
instance, the scope of current human factors methods and techniques could be
extended to cover the design cycle more completely. Since adequate human factors
computer-based tools are generally unavailable at present, the extended methods
and techniques would facilitate their development, e.g. their explicit design scope,
process and representation constitute design support requirements to be met by the
tool (see also CCTA (Draft) Report, 1988, pg. 20; Alvey Human Interface
Committee Report, 1987, pg. 18 and 32). In other words, a pre-requisite for
enhancing existing toolsets is the definition of a sufficiently complete and structured
human factors design framework. To this end, well developed Software
Engineering conceptions of the system design cycle should be examined. In this
respect, two conceptions have gained prominence, namely those entailed by rapid
prototyping and the traditional system development life-cycle (as instantiated by
SADMs). A brief review and comparison of the conceptions follows. The focus of

the comparison is on the strengths and weaknesses of the conceptions :

(a) for facilitating human factors involvement throughout system design;

(b) in providing a model for configuring a human factors design cycle.

2.2. Conceptions of the System Design Cycle : Rapid Prototyping
versus the Traditional System Development Life-Cycle

It was suggested that a pre-requisite for enhancing existing human factors toolsets
is a structured human factors design framework. By definition, a structured
framework is one whose stage-wise scope, process and notation are sufficiently
explicit and complete with respect to the system design cycle. To specify such a

framework, the following questions need to be answered :

(a) what conceptions of the system design cycle presently exists;

(b) which conception would best support the derivation of a structured

42

human factors design framework;

(c) what is entailed by the derivation of such a framework ?
Question (c) will be addressed in Chapters Three and Five.

Questions (a) and (b) constitute the subject of this sub-section. Specifically, two
contrasting conceptions are assessed for their potential as a reference base for
constructing a human factors design framework. The conceptions assessed
comprise rapid prototyping and the traditional system development life-cycle
(exemplified by SADMs).

Rapid prototyping involves 'fast-building' a preliminary design followed by
various forms of iterative testing and prototyping cycles, namely step-wise or
incremental prototyping, evolutionary prototyping and throw-away prototyping
(Hekmatpour and Ince, 1987). The essence of rapid prototyping is either a brief or
an altogether absent design specification stage. Design documentation at this stage

is usually poor.

Rapid prototyping is frequently equated with prototyping (e.g. Wilson and
Rosenberg, 1988). For instance, benefits of prototyping in general have frequently
been cited as arguments in support of rapid prototyping. Such assumptions are
misleading as these benefits may be reaped without incurring costs which are
unique to rapid prototyping. In particular, to speed up the construction of a
prototype, rapid prototyping typically minimises the time spent on design analysis
and specification. Thus, the assumption of rapid prototyping (implicitly or
otherwise) is that iterative prototype construction-and-test cycles constitute an
adequate substitute for such a design phase. It can not be over-emphasised that the
assumption is fallacious as prototyping a design is not the same as designing a
prototype (the former may involve minimal analysis and design). In this respect, the
time saved by skimping on the design phase may subsequently incur heavy costs in
terms of extensive maintenance, updates and bug fixing (Shuttleworth, 1987).
Alternatively, an uneconomic number of prototypes may have to be tested before a
satisfactory solution is eventually derived (Long and Neale, 1989; Keller, 1987). In

contrast with the assumption of rapid prototyping, prototyping is usually

43

undertaken following comprehensive design analysis.17 Consequently,
prototyping and rapid prototyping should be differentiated explicitly. Further
differences will be highlighted later when rapid prototyping is compared with
SADMs. To support these considerations, the merits and demerits of rapid

prototyping are listed in Figures 2-2 and 2-3 respectively.

In the context of a traditional system development life-cycle, design is described in
terms of sequential phases, each of which implicates a number of stages. An early
example of the life-cycle conception is the waterfall model (see B6hm, 1984; Jensen
and Tonies, 1979; Fox, 1982). Generally, existing conceptions of the traditional
system development life-cycle differ essentially in the scope of their design
coverage and the number of phases into which the scope is decomposed, e.g. the
design scope may range from business analysis (Wigander et al, 1979) to post-
mortem examination of retired systems (Olle, 1988); and the number of phases may
vary from three to fifteen phases. Although slight differences in the sequencing of
design phases exist, there is general agreement on the conceptual aspects of system

design, e.g. the emphasis on : requirements before specification,

Figure 2-2 : Merits of Rapid Prototyping

[Arguments for rapid prototyping include the following :

(a) it enables earlier conceptualisation of the design problem and facilitates the elicitation of user
feedback;

(b) by demonstrating the prototype, it helps users visualise their system requirements. A more
accurate identification of user requirements may thus be derived. Consequently, the quality and
completeness of the functional specifications is improved, and the probability of attaining the
expected performance is increased;

(c) it reduces development time and encourages the investigation and testing of various design
solutions;

(d) it provides a tangible design artefact for problem analysis and discussion among design team
members;

(e) it provides a means of testing design concems specific to the artefact.

17 Prototyping unlike, rapid prototyping, is thus compatible with structured analysis and design
methods, e.g. see Multi-User Computing, (1989), pg. 26.

44

Figure 2-3 : Demerits of Rapid Prototyping

-

Arguments against rapid prototyping include the following :

(a) two unsatisfactory outcomes may arise if inadequate time has been spent on analysis and problem
formulation, namely : an inappropriate prototype may be constructed; and incorrect test criteria may be
applied to the prototype leading to inappropriate interpretations of test results. Thus, the design
rationale used in the construction of subsequent prototypes may be flawed. Consequently, successive
iterations may not facilitate efficient convergence onto a design solution;

(b) inappropriate prototypes may cause end-users to be committed prematurely to a specific design
solution. As a result, inadequate problem analysis and poor design solution may be exposed at too late
a design stage (Long and Neale, 1989). Thus, Thimbleby (1987) highlighted that rapid prototyping
potentially violates the principle of delaying design commitment;

(c) there may be resistance towards discarding prototypes especially if the time and expense incurred in
their creation is not insignificant. Thus, non-ideal design characteristics may be carried forward. In the
worst scenario, prototypes may be passed off as the final system (Boar, 1984; Fox, 1982);

(d) design audits can not be conducted properly as the design documentation is frequently inadequate.
Thus, rapid prototyping may propagate design communication problems similar to program 'hacking'.
Inadequate documentation would also imply poor support for later design modification and
maintenance;

(e) a heavy reliance on computer-based tools can lead to over-design (Mantei, 1986). In addition, the
paradigm implied by rapid prototyping of entering knowledge directly into the computer-based
prototype, engenders an ad hoc or ‘magic box' strategy. Such a strategy would not adequately support
projects with ill defined domains, and co-operative work in design teams that characterises large system
development (Long and Neale, 1989);

(f) rapid prototyping encourages inappropriate deferment of design decisions since it relies heavily on
their resolution via prototype construction-and-test cycles (Grudin et al, 1987);

(g) limitations and constraints that apply to the target design artefact can be ignored during
prototyping;

(h) a prototype can be oversold, creating unrealistic expectations in the target design artefact;

(i) the prototyping process can be difficult to manage and control.

specification before implementation; design iterations; etc.

Despite repeated criticisms and calls for their rejection, life-cycle conceptions have
persisted to the present. The conceptions survived because the criticisms are either
not serious, or may be attributed to expectations that are incongruent with its

intended purpose (see later). Some of the criticisms are reviewed below.

The most common criticism is that life-cycle conceptions describe system design
erroneously as proceeding in discrete sequential phases. Overlaps between adjacent
phases have been cited as evidence to the contrary (Grudin et al, 1987). Although

this criticism may be correct, it should be noted that life-cycle conceptions are not

45

intended as accurate models of system design activities. Instead, they are simplified
design frameworks that support and so facilitate the systematic management of

design tasks.

Another criticism of life-cycle conceptions is that system development is viewed as
a discrete event with defined start- and end-points (Grudin et al, 1987). Although
this is a fair criticism, one could view such conceptions as describing a steady-state,
finite element with implicit inputs from preceding projects and influences on future

projects.

A further criticism of the validity of life-cycle conceptions argues that system design
is not sequential but parallel. Multiple asynchronous threads of modular design
development are cited as evidence. Nevertheless, it may be argued that such
observations do not necessarily imply the breakdown of the life-cycle model since
design in each of the threads may still conform to the latter model. In other words,

modular design development is not excluded by life-cycle conceptions.

Consequently, such arguments do not affect significantly the utility of life-cycle
conceptions for supporting system design. Indeed life-cycle conceptions have
persisted through the years, and design methods have been established on their
basis. The most notable of these methods is a class commonly referred to as
structured analysis and design methods (SADMs). A brief account of these methods
follows.18

SADMs, as a class of Software Engineering methods, are defined by the following

characteristics :

(a) the procedural support they provide is reasonably complete with respect
to the system design cycle;
(b) system design is advanced in stages, each of which comprise explicitly

18 Formal methods will not be considered here since they do not generally cover the system
design cycle sufficiently, e.g. requirements capture is unlikely to be a target of a formal method
(Norris, 1985).

46

defined scope, process and notation, i.e. design is advanced via a series of
intermediate design products;
(c) independent design concerns are addressed separately, e.g. analysis

before specification, specification before implementation.

Having defined what constitutes a SADM, existing misconceptions about these

methods should be dispelled. Major misconceptions comprise the following :

(a) the design approach of SADMs, as a class, involves 'getting-it-right-the-
first-time' (Gould and Lewis, 1983). Such a view has been interpreted to
imply that SADMs do not involve iterative design. Thus, a more appropriate
characterisation of the design approach of SADMs is 'getting-it-right-to-
begin-with' (Grudin et al, 1987) or 'getting-the-first-best-guess-solution’;

(b) all SADMs involve top-down design exclusively. The generalisation can

not be true for two reasons, namely :

(1) design is seldom confined to top-down processes only;
(i) some SADMs have explicitly disowned top-down design and

emphasised on a 'middle-out’ approach instead, e.g. JSD.

Thus, criticisms directed at top-down design should not be applied
unquestioningly to SADMs. Unfortunately, sweeping criticisms have been
proposed on this basis, e.g. the design support capability of SADMs is
confined only to well defined domains;

(c) prototyping does not have a role in SADMs. This fallacy is addressed
later when SADMs are compared with rapid prototyping. To this end, the
merits and demerits of SADMs are listed in Figures 2-4 and 2-5
respectively.

A comparative assessment between SADMs and rapid prototyping follows. It is
argued presently that SADMs constitute better reference frameworks for the
specification of an explicit human factors design cycle. A structured method may
then be developed for human factors to support a more effective incorporation of its

47

inputs throughout system design. The arguments for SADMs are three-fold.

Firstly, the benefits of rapid prototyping are shown to be matched potentially by

Figure 2-4 : Merits of Structured Analysis and Design Methods

(
Existing Structured Analysis and Design Methods (SADMs) provide the following design support :

(a) quality assurance : the well defined stage-wise scope and process of SADMs facilitate design
reasoning and decisions. In addition, the methods encourage complete logical analysis before physical
design (Hares, 1987). Also see other points below;

(b) management of design complexities : the nature and sequence of intermediate design decisions are
defined explicitly by SADMs. In addition, independent concems are separated, while related concerns
are grouped appropriately;

(c) design communication : well developed stage-wise notations of SADMs support a range of
intermediate design descriptions which facilitate communication between system developers, between
developers and managers, and between developers and users (Hares, 1987);

(d) review of design decisions and rationale : design audits are supported by the explicit and
comprehensive design documentation advocated by SADMs;

(e) continuous verification and validation of design specifications : the emphasis of SADMs on the
production of stage-wise design products encourages testing, prototyping, and design iteration at
various stages of the design cycle;

(f) detailed project planning : intermediate design products of SADMs are defined explicitly. Thus,
design resource estimations and the setting of project milestones are both supported;

(g) recruitment of inter-discipinary knowledge and methods : the well developed methodological
structure of SADMs constitutes a framework for recruiting such knowledge and methods. Thus,
missing or inadequate design knowledge may be identified for further attention.

Figure 2-5 : Demerits of Structured Analysis and Design Methods

e
General criticisms of existing Structured Analysis and Design Methods (SADMs) include the
following :

(a) they are deficient in the identification of user requirements;

(b) they do not address user interface design;

(c) their notation may not adequately convey the actual workings of the system to the user (Mantei
and Teorey, 1988). Howeuver, it should be noted that positive reports on these notations have also
been published, e.g. Hares (1987);

(d) they require comprehensive intermediate design products and documentation. These requirements
exact heavy demands on resources that are not available to smaller system development projects;
(e) their application may be cumbersome unless supported by computer-based tools.

48

SADMs. In particular :

(1) advantages (a) and (b) of rapid prototyping (i.e. facilitating design
discussions and user feedback elicitation, Figure 2-2) are also supported by
the explicitly defined and documented stage-wise design products entailed
by SADMs. Prototyping is similarly encouraged by SADMs (Long and
Neale, 1989; Essink, 1988; Keller, 1987). Thus, remaining doubts on the
efficacy of SADM notations for facilitating user feedback may be removed
by the emphasis on prototyping and the use of graphical notations for
design description (see Fitter and Green, 1979). In addition to these
arguments, it should be noted that rapid prototyping may not be viable for
novel design (Thimbleby, 1987). Specifically, an adequate start-point is
required before a design can be prototyped, i.e. an extended period of
analysis and design is necessary. Such design scenarios are supported by
SADMs;

(2) advantage (c) of rapid prototyping (i.e. significant reduction in system

development time, Figure 2-2) is questionable for the following reasons :

(i) demerits (a) and (d) in Figure 2-3;

(ii) design management problems inherent in rapid prototyping
(Crinnion, 1989);

(iii) difficulties in integrating final design specifications (B6hm, 1984;
Morrison, 1988).

Thus, failures of rapid prototyping in realising faster system development
have been reported, e.g. Grgnbdk (1989) that in nine projects undertaken
using rapid prototyping, deadlines for design completion were all exceeded
considerably. As a result, overall development times were found to be the

same as other system design approaches.

Secondly, critical human factors reservations in respect of rapid prototyping should

be considered. Specifically, rapid prototyping may not be compatible with human

49

factors objectives because :

(a) rapid prototyping may be seen as replacing rather than supplementing
early human factors involvement in system design (Grudin et al, 1987;
Clark and Howard, 1988). For instance, it may restrict its involvement to
prototype evaluation as opposed to active design specification. This problem
is serious since prototyping would not substitute adequately for design (see
Figure 2-3 : (a), (b) and (f));

(b) rapid prototyping engenders a false impression that human factors is
contributing effectively to system design. In the best case, the recruitment of
human factors only at the prototype evaluation stage, may propagate the
‘too-little-too-late’ problem of human factors input to system design. In the
worst case, resistance against discarding an expensive prototype (see (c) in
Figure 2-3) may result in non-implementation of human factors
recommendations;

(c) rapid prototyping engenders a false impression that end-users are
invariably involved in the test and modification of successive prototypes.
Reports indicate that prototype evaluation and modification may be

undertaken exclusively by expert reviewers (Long and Neale, 1989).

Thus, it is concluded that a number of critical human factors problems remain
unaddressed by rapid prototyping. Two particularly serious concerns comprise the
absence of a direct human factors contribution to design analysis and specification,
and the frequently inadequate documentation of design decisions and rationale. The
importance of adequate design documentation is highlighted by the meteoric rise of
reverse engineering, design recovery and re-documentation methods in Software
Engineering.19 These design recovery methods exact high resource costs on the
project in both human and financial terms. Thus, SADMs are increasingly applied

in system development. Consequently, SADMs constitute better reference

19 These methods had to be invoked frequently to rectify design inadequacies (Chikofsky and
Cross II, 1990).

50

frameworks for structuring human factors input to system development.20

To complete the argument for SADMs, a case for adopting SADMs over a simple
system development life-cycle should be made. To this end, the characteristics of
SADMs should be assessed with respect to the provision of more specific contexts
for structuring human factors inputs throughout the system design cycle. These

concerns are addressed in the next sub-section.

2.3. A Case for Integrating Human Factors with Structured Analysis
and Design Methods

Having argued against rapid prototyping as the reference framework for structuring
human factors inputs, a further question needs to be answered, namely : do SADMs
provide better reference frameworks than the traditional system development life-
cycle ? In other words, what additional benefits motivate the adoption of SADMs
instead of a simpler life-cycle conception ? Thus, the contrast is between the
following schemes for structuring human factors inputs throughout the system

design cycle :

I) taking the reference framework defined by the stages of the traditional
system development life-cycle, intersecting Software Engineering and
Human Factors design concerns may be identified. Relevant human factors
contributions may then be located as appropriate. Thus, existing human
factors toolsets may be ‘clustered’ as 'toolkits' around specific stages of the
system design cycle. This assignment of existing human factors toolsets

with respect to the traditional system development life-cycle was previously

20 A choice must be made between the two conceptions of the system design cycle because rapid
prototyping and SADMSs are incompatible design approaches (note that SADMs are compatible
with prototyping in general -- see Footnote 17). In particular, SADMs emphasise a stage-wise
design analysis, specification and documentation as opposed to the rapid generation of a prototype.

Thus, the time and effort spent on design specification by the two approaches are very different.

51

proposed by Grandjean (1984); Berns (1984); Rubinstein and Hersh
(1984); Gould (1988); McClelland (1990); Meister (1984); Eason (1987);
IT) taking the reference framework defined by explicit characteristics of a
particular structured analysis and design method (comprising stage-wise
scope, process and notation), intersecting Software Engineering and Human
Factors design concerns may be identified. With respect to the
characteristics and support requirements of the SADM, existing human
factors methods are recruited and then organised into a corresponding
structured human factors method.2! Since both Software Engineering and
Human Factors methods are structured explicitly, their integration is
facilitated. Methodological integration entails inter-weaving design stages,
products and notation (if possible) entailed by the methods of the individual
disciplines. Thus, the scope, timing and communication of human factors
inputs are contextualised to specific design support requirements of the
chosen SADM.

A brief assessment of the above schemes follows.

Although scheme I contributes to the solution of some human factors problems,

others remain unaddressed. For instance :

(1) inadequate allocation of project resources for human factors design. The
allocation deficit may be attributed to the absence of a sufficiently structured
conception of human factors design. Such problems have been reported
widely, e.g. Meister (1984); Chapanis and Budurka (1990); Pikaar et al
(1990). Although the inclusion of a human factors engineer at the project
planning stage may alleviate the problem, accurate prediction of resource

requirements (e.g. development time and effort) would still be difficult in

21 The structured human factors method is expected to provide a reasonably complete coverage of
the system design cycle. Human factors design is expressed by the method in terms of explicitly
defined stage-wise design scope, process and notation. On the basis of such a method, other human

factors toolsets, e.g. declarative and computer-based toolsets, may then be recruited as appropriate.

52

the absence of comprehensive records of previous projects. To obviate the
problem, O'Niel (1980) reported that records gathered with respect to a
structured conception of system design activities are instrumental for good
project planning. In other words, the collation of such records is supported
by structured methods. Thus, scheme II would facilitate an appropriate
accommodation of human factors design needs by the system design
agenda;

(2) problems in integrating design descriptions since the format and notation
of outputs from individual human factors techniques and methods may be
very different;

(3) problems in communicating human factors design outputs to software
engineers since human factors notations are frequently insufficiently
specific;

(4) sub-optimal uptake of human factors contributions. In the absence of an
explicit conception of how human factors design is structured within the
system design cycle, the scope, timing and granularity of human factors
contributions may not be specific to the system design context. The uptake
of human factors outputs is thus affected adversely;

(5) inefficient utilisation of project resources. Following the identification of
suitable human factors techniques and methods, care must be taken to avoid
unnecessary repetitions during their individual application. In other words,
design activities of disparate methods which overlap have to be
concatenated. Information requirements should also be reconciled across the
methods. These pre-requisites are common. For instance, human factors
methods have been reported to indicate only what should be designed but
not how, e.g. prescriptive advice on how design decisions may be
formulated following initial analysis is frequently omitted (Sutcliffe, 1989;
Chapanis and Budurka, 1990). Thus, in the absence of a structured human
factors method, valuable project time would have to be spent on :

(a) assessing the suitability of individual human factors methods;

(b) tailoring relevant methods into a coherent set as described above;

(c) extending the methods to ensure sufficiently structured and

53

complete coverage of the system design cycle, e.g. human factors

methods may be inadequate in stage-wise scope, process and notation.

To perform the above tasks, the human factors designer would have to be

very well informed.22

In summary, four requirements for improving human factors input to system design

are highlighted by the above account, namely :

(a) the coverage of human factors toolsets should be sufficiently complete
with respect to the system design cycle;

(b) human factors toolsets should be coherently integrated;

(c) resource requirements for human factors design should be
accommodated explicitly by the overall design agenda;

(d) Human Factors and Software Engineering design inter-dependencies

should be defined sufficiently throughout the system design cycle.

Presently, scheme II (i.e. methodological integration via SADMs) is reviewed to
highlight its potential as a solution that satisfies the above requirements.

Since their introduction in the seventies and eighties, SADMs have made rapid
inroads into system development. For instance, SSADM has been recommended as
a standard by the CCTA (Hewett and Durham, 1987). Notwithstanding the above
account, such events may necessitate the following appraisal of human factors

involvement in system development :

(1) the impact of SADMSs on the effectiveness of current means of human
factors input. For instance, are existing human factors methods compatible
with SADMs ? Since these concerns are subsumed in (2) below, they will
be discussed when the case for the integration of Human Factors and

22 This task may not be trivial. For instance, a recent report counted 96 methods for task
analysis alone. Thus, the need to perform such tasks while under project pressures may be

unacceptably inefficient (as well as stressful).

54

Software Engineering methods is presented;
(2) the possibility of exploiting SADMs for improving the effectiveness of

current human factors input. For instance :

(a) the explicit stage-wise design scope, process and notation of
SADMs may comprise methodological characteristics to be emulated
by human factors methods;

(b) the well defined design framework of SADMs constitutes a
reference context for structuring human factors input to system
design. The timeliness, granularity, and format of human factors
inputs vis-a-vis design support needs at various stages of the system

design cycle is thus ensured.

Exploiting SADMs in this way, constitutes a structured integration of

Human Factors and Software Engineering methods, i.e. scheme II above.
A more detailed account of the arguments in favour of scheme II follows :

(1) well developed notations of existing SADMs may be used to describe
human factors design outputs. The recruitment may help to improve the
specificity of human factors descriptions. In addition, the use of a common
notation may also facilitate the communication of human factors design
products to software engineers;

(2) the emphasis of SADMs on comprehensive design documentation
facilitates the capture of design rationale, i.e. antecedents and consequents
of design decisions are dbcumcntcd explicitly. Comprehensive
documentation is essential to support quality assurance since it is an
effective means for detecting and correcting design errors, e.g. design
audits (and hence input) by human factors designers and end-users are
supported appropriately (see Long and Neale, 1989; Butler et al, 1989;
Akscyn and McCracken, 1984; Alvey Human Interface Committee Report,
1987, pg. 34). The recruitment of documentation schemes of existing

SADMs is also important because adequate design records are frequently

55

written into contractual agreements;

(3) the well defined characteristics of SADMs support a more specific
intersection with human factors design concerns, i.e. SADMs provide a
more specific framework for locating human factors contributions. For
instance, existing human factors methods may be recruited to meet design
support requirements specific to the chosen SADM. The recruited methods
may then be developed into a structured human factors method. Such a

method benefits human factors in three ways.

Firstly, it facilitates the identification of suitable human factors toolsets for

further development. For instance :

(a) deficient areas of declarative human factors knowledge may be
highlighted for further research. In the mean time, user testing on
prototypes corresponding to design products of the method may
compensate for such knowledge deficiencies;

(b) computer-based tools comparable to Computer-Aided Software
Engineering (CASE) tools and Integrated Project Support
Environments (IPSEs) may be developed based on the structured
human factors method (see Hewett and Durham, 1987; Bott, 1988 for
an account on the contributions of SADMs to the development of such

computer-based tools).

Secondly, it facilitates the recruitment of relevant declarative human factors
knowledge.

Thirdly, Human Factors and Software Engineering design roles and inter-
dependencies may be specified explicitly by integrating a structured human
factors method with the chosen SADM. In other words, human factors
design stages are located explicitly against corresponding SADM design
stages. Such an integration of the methods would promote greater
awareness and understanding of inter-disciplinary design needs. For
instance, integration would provide familiar reference points that support the

assimilation of human factors inputs by software engineers (and vice versa).

56

Thus, more effective human factors input and uptake may be expected;

(4) the structured integration of human factors methods and SADMs
constitutes the specification of a 'unified’ system design cycle. Such a
design cycle would ensure an explicit accommodation of human factors
design needs. Specifically, adequate design resource allocation may be

ensured in two ways :

(a) better project planning and estimates of resource requirements. In
particular, more accurate projections of system development
timescales would accrue from an explicit definition of inter-
disciplinary design deliverables. Projections of design resource
requirements are also supported by more specific records of previous
projects.

(b) explicit representation of human factors on the design agenda. In
other words, resource are allocated explicitly for human factors
design. Thus, encroachment on its design resources may be obviated.
Explicit resource allocation is important because encroachments have
been reported frequently. For instance, unrealistic time schedules have
been imposed on human factors design (often considered a lower
priority) as a result of technical difficulties and delays in system
launch (Eason and Cullen, 1988; Meister, 1984).

For these reasons, the focus of the present research is on the integration of
structured human factors methods with SADMs. Presently, the preliminary research
scope and objectives described in Chapter One may be detailed further.

2.4. Detailing the Scope and Objectives of the Research

The research scope comprises the derivation of a general conception of structured

human factors design, followed by its instantiation as a structured method that is
appropriate for integration with the chosen SADM. To this end, the objectives of

57

the research comprise the following :

(a) to specify general requirements and a research scheme for integrating
structured human factors methods with SADMs (see Chapter Three);

(b) to derive a general conception of structured human factors design by
collating and extending existing conceptions (see Chapter Four);

(c) to review previous research on the integration of human factors methods
with SADMs (Chapter Five);

(d) to describe research concerns involved with the specification and
subsequent integration of a structured human factors method with a chosen
SADM (namely the Jackson System Development (JSD) method). The
specification involves instantiating the general requirements and research
scheme in (a) above with respect to both the JSD method and specific
constraints of the research (e.g. available resources may limit the scope of
the research to a subset of (b) above). These concerns are described in
Chapter Six;

(e) to construct an appropriate structured human factors method for
integration with the JSD method. Method construction and integration
should satisfy the requirements stipulated in (a) and (d) above. In addition,
lessons learnt in (c) above should be incorporated (see Chapters Seven to
Eleven);

(P) to assess the research in general and the integrated method in particular;
and to propose directions for furthering the present research (see Chapter

Twelve).

A detailed account of the work entailed by these objectives follows.

58

PART II :

On Human Factors Integration with
Structured Analysis and Design
Methods (SADMs)

59

CONTENTS

Chapter Three : General Research Requirements, Activities

and Plan for Integrating Human Factors with SADMs........ccccceuueee. 61
3.1. General Requirements of Methodological Integration.......cceceeeeeees 61
3.2. General Research Concerns for Methodologically
Integrating Human Factors with SADMS.....cc.ccevirencennncnneennes 65
3.3. A General Research Plan for Methodologically
Integrating Human Factors with SADMS.....cccccevecrncrncrnecrnennne 71
Chapter Four : Towards a Conception of
Structured Human Factors Design.......c.cccecureieinieieieciiinncenecncececennns 78

4.1. A Survey of Existing Conceptions of Human Factors Design........ 79
4.2. Analytic Derivation of a Simplified
Framework for Structured Human Factors Design........ccccceueee. 89

4.3. Towards an Enhanced Conception of

Structured Human Factors Desigh...ccicecreeirrcecneererocecacecsncens 99
Chapter Five : A Review of Previous Research
into the Integration of Human Factors with SADMs........c.ccccveenee 105

5.1. Human Factors Integration with the Structured

Analysis and Structured Design (SASD) Method..........cccccueeeee 105

5.2. Human Factors Integration with the Structured
Systems Analysis and Design Method (SSADM)....c.ccevecinernennes 114

5.3. Human Factors Integration with the Jackson

System Development (JSD) Method......c.cceeeuevencieeceercecenceaes 120
5.3.1. The Work of Sutcliffe (1988a and b).....cccceeeeeevecencnennee 120

5.3.2. The Work of Carver, Clenshaw, Myles
and Barber (1987)...cc.cuvierreieriuiecincecsencereesansensenes 124

Chapter Three : General Research
Requirements, Activities and Plan for
Integrating Human Factors with SADMs

"The last thing one knows in constructing a work is what to put first."”
Blaise Pascal, 1909, Pensées.

Observations made in the preceding chapters are drawn together in this chapter to
characterise general research requirements for structured integration of human
factors methods with SADMs. Thus, the concerns of the present chapter are as

follows :

(a) defining what constitutes structured integration of human factors
methods with SADMs. The definition serves two purposes, namely it
identifies high level requirements for integration, and sets the criteria for
assessing previous research in the area (see Chapter Five);

(b) specifying a general research plan for achieving structured integration.
This specification serves two purposes. Firstly, it provides general guidance
to other researchers who may wish to undertake similar work. Secondly, its
framework supports the formulation of a specific research plan for
instantiating structured integration of human factors methods with a chosen
SADM (see Chapter Six).

These concerns are expanded in the following sub-sections.

3.1. General Requirements of Methodological Integration
The most general requirement for structured integration relates to the functional

definition of a method. Most definitions are expressed in terms of the design scope,
process and notation of a method (e.g. Carver, 1988; Maddison, 1983; etc.). For

61

instance, the following definition was suggested by Hartson and Hix (1988) :

"A methodology for system development consists of a set of procedures
that indicate a step-by-step development process over a life-cycle, and a
notational scheme that is the means for representing designs that evolve

during that life-cycle.”

SADMs, as a class of methods, requires additionally that the stage-wise :

(a) design scope should be well defined;

(b) design process should be sufficiently explicit, grouped appropriately and

sequenced logically to support system development;

(c) design notations should be appropriate for documenting design products

which are generated at various stages of the system design cycle.

Thus, it follows that a structured integration of human factors methods with

SADMs should uphold the above methodological requirements. Specifically,

general requirements for methodological integration comprise the following :

(1) design stages of the structured human factors method should be

intersected appropriately with those of the SADM, i.e. the design scope and

process of the two methods are inter-woven to define a coherent overall

design schedule;

(2) existing notations of the SADM should be recruited (with extensions as

necessary) for describing human factors design products. The maximum

use of a common notation supports inter-disciplinary design

communication. In particular, it improves the communicability of human

factors design products;

(3) tighter design relationships should be defined between the structured

human factors method and the SADM to facilitate overall design

management, e.g. to ensure efficient co-ordination of design team

62

activities.] Thus, the status of serial and parallel design stages between
the two component methods should be made more explicit. Since serial
design stages imply information inter-dependencies, obligatory contact
points (termed design inter-dependencies) should be imposed. In the case of
parallel design stages, check points should be specified to ensure efficient
design.2 Specifically, check points (or design conjunctions) are necessary
to ensure that design specifications generated by the two streams of the
integrated method are convergent, i.e. to check 'design drift'. Thus, check
points should be specified for stages where much design extrapolation is
involved. Too few check points or the failure to adhere to them, may result
in potential mismatches between Software Engineering and Human Factors
designs. Additional design iterations are necessary and the design thus

becomes inefficient.

The above requirements for methodological integration may be met in three ways,

namely by :

(i) directly integrating structured human factors methods and SADMs;

(ii) extending a structured human factors method to include a SADM that
has been configured to suit the characteristics of the former;

(iii) extending a SADM to include a structured human factors method that

has been configured to suit the characteristics of the former.

Although there is a wealth of human factors methods (Gould, 1988), none of the
methods could be considered to provide a sufficiently structured coverage of the

system design cycle (see Chapters One and Two). Consequently, (i) and (ii) above

1 Large system development projects are generally undertaken by multi-disciplinary design
teams. Thus, it is reasonable to assume that human factors designers and software engineers would
undertake design with respect to the structured human factors method and SADM respectively. An
integrated method should therefore specify how the disparate design streams should be co-ordinated.
2 Siwmation-specific check points (e.g. those peculiar to the organisation or design team) should

be excluded to maintain the general applicability and flexibility of the method.

63

are not directly amenable routes for a structured integration of human factors
methods with SADMs. Conversely, since the stage-wise design scope, process and
notation of any SADM is better formed than any comparable human factors method,
(iii) represents a logical route for structured integration. Other arguments for

selecting (iii) are as follows :

(1) the current status of SADMs -- SADMs are already well established. As
such, the integration should focus on how human factors methods may be
configured to support existing Software Engineering practice;

(2) existing tool support for SADMs -- computer-based support tools are
available. Such tools (e.g. graphics editors) may benefit human factors
design if SADM notations were adopted for describing its design products;
(3) the current role of human factors in system design -- since human
factors plays a supporting role, the onus is on human factors to ensure that
its methods are contextually appropriate to support early and continued
system design involvement (Carver, 1988). In addition, appropriate support
should be provided to software engineers to ensure an effective assimilation
of human factors into the existing system design practice. Thus, human
factors methods should be located against reference points with which

software engineers are already familiar, e.g. the design stages of SADMs.

However, a price is paid in structuring human factors methods around SADMs.
Specifically, a constraint is imposed which requires existing SADMs to be left
largely unchanged by methodological integration. Since SADMs are generally well
developed, the consequences of the constraint would not be severe if human factors

design is represented appropriately in the integrated method (see later).

Presently, the research following (iii) is described. Specifically, (iii) implies the
construction of a structured human factors method that satisfies the design support
required by the chosen SADM. To this end, general research requirements would

comprise the following :

(a) extension of the design scope of the SADM to include human factors.

64

The extension is not necessarily a simple addition since the scope covered
by a particular SADM may overlap with human factors, e.g. requirements
analysis;

(b) integration of human factors design stages with corresponding SADM
stages. In other words, the location and timing of human factors design
processes are specified with respect to those of the SADM. Design inter-
dependencies are thus identified;

(c) extension of the notational capability of the SADM to include the
description of human factors products. As in (a) above, the extension is not
necessarily a simple addition since SADM notations may be sufficiently

powerful for describing human factors products.

These research requirements may be matched against the pre-requisites for effective
human factors input (see Chapter Two). In particular, human factors contributions
should be matched against design support needs at various stages of the system
design cycle. Thus, the scope, timing, granularity and format of human factors
products are appropriate for the system design context. Improved uptake of human
factors is thus ensured by the greater applicability, relevance and communicability

of its stage-wise design inputs.

An account of research concerns that correspond to the above requirements follows.

3.2. General Research Concerns for Methodologically Integrating
Human Factors with SADMs

It was suggested earlier that methodological integration implicates the specification
of a structured human factors method that appropriately supports the design context
of the chosen SADM. General research requirements for integration were then

identified. The requirements may be detailed into the following research concerns :

(a) derivation of a conception of structured human factors design. The
conception should be constructed by extending existing conceptions;
(b) identification of human factors design support required by the SADM.

65

The required support may be identified by intersecting the design scope of
the SADM with the conception derived in (a) above. Design support
requirements should be identified for individual design stages of the chosen
SADM. Thus, a pre-requisite is an adequate understanding of the SADM;

(c) specification of a structured human factors method to support the chosen
SADM. Specifically, a review of existing human factors methods may be
conducted with respect to the design support requirements identified in (b)
above. For instance, existing requirements analysis methods would be
reviewed if the scope of the SADM does not explicitly include such design
considerations. Relevant methods are then modified and recruited to the
structured human factors method that is being constructed. The recruitment

of existing methods is motivated by two reasons, namely :

(i) faster convergence on an acceptable structured human factors
method may result since it builds upon existing human factors
knowledge;

(ii) positive transfer of training with respect to the subsequent
application of the structured method may be maximised for the same

reason.

Prior to their recruitment, existing methods may be developed further to
meet the requirements for methodological integration. For instance, the
design scope of the methods may be extended and their stage-wise design
products, process and procedures may be defined more explicitly;

(d) integration of the structured human factors method with the chosen
SADM. Following the derivation of a satisfactory3 structured human
factors method, its integration with the SADM may be specified explicitly.
At this juncture, three requirements of methodological integration should be
addressed (see previous sub-section). Specifically :

(i) the design stages of the structured human factors method should be

3 The reader is referred to Chapter Six for an account of what constitutes a satisfactory

structured human factors method.

66

inter-woven appropriately with those of the SADM;

(ii) existing notations of the SADM should be recruited (as
appropriate) for describing human factors design products. Note that
this requirement may be addressed initially in (c) above;

(iii) contact points (termed design inter-dependencies) and check
points (or design conjunctions) should be specified to ensure efficient

design.

(e) evaluation and iterative development of the structured human factors
method and the integrated method.4 Iterative development may be applied
following each method specification cycle.

More needs to be said about method tests alluded in (c) to (e) above. In configuring

method evaluation tests, two considerations should be addressed, namely :

(D) the tests should take account of the current status of the methods. In the
present context, both the structured human factors method and integrated
method are under development. Thus, the tests should be configured to
provide information that would support iterative method development.

(II) the tests should consider resource constraints of the research. In
particular, its configuration should allow a sufficient number of test cycles
without the need to encroach on resources allocated to address other

research concerns.
To satisfy consideration (I), the tests should address the following issues :

(a) demonstration of the design support provided by the methods at each
stage of system development;

(b) validation of the methods in the field to establish the pertinence of the
design support provided with respect to a real design context;

4 The focus of integrated method development is confined to the specification of appropriate

design contact- and check-points, since its component SADM remains essentially unchanged.

67

(c) realisation of superior design artefacts. Specifically, a link should be
established between the derivation of superior design artefacts and
improvements in human factors design support attributable to

methodological integration.

Although the issues are interacting, their effects could be addressed incrementally
by adopting an appropriate research strategy during method development. A

suitable strategy should support sequential advancement of the research as follows :

(i) iterative method development and demonstration of design support
while indirectly ensuring field validity and the realisation of superior design
artefacts;

(ii) field validation of developed methods.

Such a strategy would comprise the following :

(1) the recruitment of established human factors methods and knowledge.
By building upon established research and design practice, it would be
reasonable to expect that field validity will accrue to the structured method
being developed. Similarly, it may be expected that superior design artefacts
would result from its application;

(2) the adoption of stringent methodological requirements entailed by
existing SADMs. Emulating the systematic and comprehensive design
emphasis of SADMs ensures an orderly design process in the structured
method being developed. Since an orderly design process encourages more
complete problem analysis, it would be reasonable to expect that superior

design artefacts would result from the application of the method.

The adoption of such a research strategy is additionally motivated by resource
constraints, i.e. consideration (II) above. In particular, since method evaluation
constitutes only part of the research concerns and more than one test cycle is
desired, field tests should be deferred until the method is sufficiently well

developed. Such tests would exact unacceptably heavy demands on project

68

resources since they would require extensive longitudinal and lateral studies to

control for the following :

(a) designer experience and capability;

(b) characteristics peculiar to the particular system development project, e.g.
€conomic pressures;

(c) organisational and social influences on the conduct of the design;

(d) design team composition.

Thus, by partially separating method development from method validation
concerns, the strategy decomposes the research into more manageable modules. A
suitable scope for method evaluation that is commensurate with available research
resources may then be defined. Specifically, in the case of the method development
module, method demonstration tests would predominate. Thus, the nature and

scenario of method evaluation may be summarised as follows :

(i) nature of tests : demonstration before validation of method capability;
direct address of design support capability and indirect address of the
realisation of superior design artefacts;

(ii) evaluation scenario : demonstration of method capability by method
developers, 'in-house’ designers and design teams (in that order), before

field validation with other designers and design teams.

It should also be noted that the above ordering of evaluation scenario is consistent
with the procedure for methodological integration, i.e. derivation of a satisfactory
structured human factors method before explicit integration with the chosen SADM.
In other words, evaluation using a design team scenario is only applicable after an
integrated method has been specified.

Two further concerns of method evaluation need to be addressed, namely the focus

of evaluation and the type of test beds that should be selected.

Firstly, the evaluation could focus on functionality and usability characteristics of

the method. Since the type of evaluation is influenced by the nature and scenario of

69

method evaluation (above), it may be inferred that functionality evaluation takes
precedence over usability evaluation during method development. On deriving a
satisfactory method, usability evaluation may then be conducted to assess the
appropriateness of its expression. For similar reasons, subjective assessment takes
precedence over objective assessment. Relevant subjective assessments of the
method may include : completeness of design scope, flexibility, utility,
acceptability, learnability, and compatibility with the SADM and other established
design methods and practices, etc. In the longer term, sufficient data may be
accumulated from its application to support objective assessments of the method.
For instance, the method could be assessed in terms of its capability for facilitating
improvements in design performance, e.g. quality of project management, design
documentation and final design artefact; errors committed and detected during
design development; project turn-around time; overall project resource

requirements; etc.

Secondly, the above nature and scenario of method evaluation indicate that
appropriate case-study systems should be selected as test beds during method

development. To this end, the selection criteria comprise :

(a) the case-study system domain. During initial method development, the
system domain should not be unnecessarily complex or unfamiliar to the
method developer. Alternatively, the domain of the initial case-study system
should not be ill defined. These criteria help to ensure maximum
expenditure of research time and effort on method development as opposed
to domain familiarisation. On deriving a reasonable method, other system
domains may be considered to broaden the scope of method tests, e.g. to
test the capability of its notation for describing different design domains;

(b) the size of the case-study system : for the same reason as in (a) above,
the scale of case-study systems should be incremented progressively as the
method is developed. Alternatively, successively larger modules of a case-
study system may be selected as test beds;

(c) the complexity of the case-study design scenario : for the same reason as
in (a) above, a simpler design scenario should be selected at early stages of

method development. For instance, a variant design scenario would be

70

more suitable than a novel design scenario. Following the development of a
satisfactory method, tests under a novel design scenario may be introduced,

e.g. to test elicitation procedures of the method more fully.

The preceding account describes research concerns which apply generally to the
structured integration of human factors methods with any SADM. The research
concerns may be decomposed into more detailed activities (see Figure 3-1). A
research plan comprising modular schemes and strategies, may then be specified to

manage the activities more efficiently. A description of such a plan follows.

3.3. A General Research Plan for Methodologically Integrating
Human Factors with SADMs

To manage the research effectively, an appropriate plan is necessary. The function

of such a research plan is three-fold :

(a) to arbitrate between alternative ways of conducting the research;
(b) to support method specification, e.g. derivation of design procedures;
(c) to support the implementation of case-study tests and iterative method

development.

Figure 3-1 shows a general research plan for the structured integration of human
factors methods with SADMs. Note that the integrated method is referred to as a
SADM*. As shown in the Figure, the research plan essentially comprises a
schedule of activities operationalised by modular schemes and strategies.
Specifically, the research is made more tractable by the application of three

strategies, namely S*, S1 and S2. A review of the plan follows.

The plan is initiated by a problem statement which identifies general objectives of
the research. In the present context, the objective is to facilitate the design of better
human-computer systems by ensuring human factors input throughout the system
design cycle (see Chapter One). Literature reviews may be conducted to detail the

research problem further. For instance, the current problem of human factors input

71

Figure 3-1 : A Research Plan for Specifying an Integrated Method

General Scheme for Manguine
Structured HF Method Specification

Define Research Problem

Literature Reviews

Define Solution Requirements
Specification of Research Plan
and Literature Reviews

1 » Review A .
Define Conception of Structured HF Design
Backwards “
Engineering Specification
tAssess HF Support Requirements of chosen SADM
Implement ---—----1 1
A apply SI apply S* mm Specify and Test Versions of a Structured |g||g|

|§ |f]|j IIScheme for Specifying Scope an

|lgglg|WMProcess ofthe Structured HF Method

Review and Recruit Design Scope and

: Process of Selected HF Methods

w apply si :

HF Method for chosen SADM

Scheme for Specifying the Notation

d
I>of the Structured HF Method

Review SADMseand other Notations |||

1

|| General Design Description Tests $gg

\ Preliminary Version of Design Scope
and Process of Structured HF Method 1 apply S*
| Modul I | I Preliminar)i?\lotations of
odular -
truct Meth
:Proceduralisation Itr[p| 1A Structured ethod
;of Design Process Jk s ' Refine 1 apply SI Refute

Case-Study Implementation
Design Derivation Tests

| Case-Study Implementation
IDesign Description Tests
[»

-H *1:11
v k
Acceptable Version of Design Scope Final Notations of
' mand Process of Structured HF Method Structured HF Method 1
Wm wm I J

|Specification of a Structured ISynthesise an Acceptable Version of Structured HF Method

*HF Method for the Chosen
SADM

Note

S*, ST & S2 are different
research strategies.

S*: Super-ordinate strategy
of 'specify followed by
implement or test'.

SI: Strategy of'backwards
before forwards engineering'.
S2: Strategy of 'test using
case-studies of increasing size
and complexity'.

Specify Design Inter-Dependencies and
Check-Points between SADM and
Structured HF Method
Derive the First Version of an
Integrated Method, i.e. SADM*

Forwards T
Engineering Specification

Implement
. apply
~ Acceptable Version f. SI. §2
g of SADM*

72

was revealed as the 'too-little-too-late’ problem. In addition, previous research

solutions should be reviewed to uncover potential pitfalls and useful ideas.

New design support requirements and solutions may then be outlined. For instance,
a requirement may be the explicit location of appropriate inter-disciplinary design
concerns with respect to the system design cycle. Making design intersections
between Human Factors and Software Engineering explicit ensures that human
factors inputs are optimally relevant to design support needs at each stage of system
development, i.e. ensuring the timeliness, format and granularity of human factors
inputs. A solution that satisfies these requirements may be to integrate Human
Factors and Software Engineering methods structurally. Since the design structure
of SADMs is explicitly defined throughout the system design cycle, its recruitment
would facilitate the structured integration of Human Factors with Software
Engineering methods (see Chapter Two). Similarly, it follows that integration
would also be facilitated by a correspondingly structured human factors design
method. Since an adequately structured human factors method does not exist, it
needs to be specified (see earlier sub-sections). To this end, existing conceptions of
human factors design are surveyed and recruited as appropriate. The recruited
conceptions are then extended and synthesised to derive a structured conception of
human factors design (see Chapter Four). The structured conception constitutes the
basis for specifying a structured human factors method. For instance, the scope of
such a method may be identified by intersecting the human factors design
conception with the support requirements of the chosen SADM. Thus, a compatible
structured human factors method may be specified and integrated with the SADM.

To support the specification and integration of structured methods, previous reports
of similar research should be reviewed (see Chapter Five). The review may indicate
an appropriate SADM for human factors integration, e.g. a SADM that was

previously unexplored.3

5 The selection of the JSD method for the present research is dictated primarily by its sponsors
(see Chapter Six).

73

Following the selection of a SADM, its requirements for human factors design
support should be identified (see Chapter Six). Generally, the requirements may be

extracted from two sources, namely by :

(a) reviewing previous reports of the inadequacies of the chosen SADM and
SADMs in general;

(b) comparing the design scope addressed by the SADM against the
structured conception of human factors design derived earlier.

On the basis of these requirements, a structured human factors method may be
specified using two research schemes, namely a scheme for specifying its design
scope and process; and another for specifying its notation. These schemes may be
applied in parallel if the notations of the chosen SADM are sufficiently developed

and promising for describing human factors design products.

Figure 3-1 shows that early versions of a structured human factors method may be
backwards engineered® using simple case-study systems (see Chapter Seven).
Such systems are characterised by well defined design start-points (requirements)
and end-points (implemented design artefacts). Following the specification of a
preliminary structured human factors method, incrementally larger case-study
systems and forwards engineering’ tests may be applied (in that order).
Successive versions of a structured human factors method are thus tested and

refined iteratively.

On deriving an adequate structured human factors method, explicit integration with
the chosen SADM may be attempted. Design inter-dependencies and check-points

6 This process will be explained later when research strategies are described. Suffice it to say at
present that reverse or backwards engineering is defined as the process of deriving a set of design
specifications from a finished system, i.e. it entails a post-hoc examination by person(s) other
than the developer(s) (Rekoff, 1985). A design process for the system is thus revealed.

7 Forwards engineering is the opposite of reverse or backwards engineering. It may be viewed as

the 'normal’ process of design specification.

74

are thus specified to co-ordinate design advancement between the two component
streams of the integrated method (or SADM*). The SADM* is then subjected to
further forwards engineering tests. The primary objective is to assess the
appropriateness of the design inter-dependencies and check-points. Thus,
successive versions of the integrated method are tested and refined as appropriate.
The method refinement and test cycle is continued until a satisfactory SADM* is

derived.

More needs to be said about the strategies that support the research. In particular,

three research strategies are applicable, namely :

(a) a super-ordinate strategy (S*) that involves iterative cycles of method
specification followed by its implementation in case-study tests. At the end
of each cycle, the method is upgraded. Such a strategy is analogous to
hypothesis testing, i.e. a method is specified (the hypothesis) and then
implemented in the design (the test) of a case-study system (the test bed);

(b) a sub-ordinate strategy (S1) that facilitates the specification of early
versions of a structured human factors method. The strategy involves
backwards engineering before forwards engineering (see Figure 3-1).
Backwards or reverse engineering is a technique for deriving intermediate
design specifications and processes for a developed product. Although the
technique originates from hardware design, it is increasingly applied in
software design to rectify poorly managed projects, e.g. for post-
implementation design recovery and re-documentation (Chikofsky and
Cross II, 1990). Thus, backwards engineering could support the early
stages for specifying a structured human factors method. Specifically, by
applying the technique iteratively under various design scenarios for a class
of design artefacts (e.g. software user interfaces), a generic design process
may be abstracted for that class. The generic design process may then be
subjected to forwards engineering tests to assess its capability for
supporting the design of artefacts within that class. In the present context,
backwards engineered versions of a structured method may be assessed

initially by simulating a variant design (forwards engineering) of the same

75

case-study system. On deriving a satisfactory method, other case-study
systems (or another module of the current case-study system) may be

introduced as test beds.

During method tests, answers to the following questions are sought :

(i) are design processes and intermediate design products of the
method sufficiently well defined to support human factors design, e.g.
user interface specification (Figure 3-1, left side) ?

(ii) can notations of the method describe intermediate design products
adequately to facilitate inter-designer and designer-user discussions ?
Are they also specific enough to support unambiguous implementation
of human factors specifications (Figure 3-1, right side)?

(iii) are the specified design inter-dependencies and check-points
sufficient to ensure efficient design convergence between the
component streams of the SADM* ? Are unnecessary design
constraints imposed by these inter-dependencies and check-points

(Figure 3-1, lower part) ?

Thus, appropriate upgrades to the current version of the method may be
inferred.

(c) a second sub-ordinate strategy (S2) that supports the selection of
appropriate case-study systems for testing the method. Specifically, strategy
S2 prescribes the separation of test-bed complexity (e.g. familiarity with the
domain of the case-study system) from method development concerns. For
instance, strategy S2 could be applied to support strategies S1 and S* as

follows :

(1) use backwards engineering to derive a preliminary version of the
structured human factors method (strategy S1);

(2) test method iteratively (strategy S* -- see (3) below) under a
forwards engineering scenario (strategy S1), using case-study

systems of increasing complexity and size (strategy S2);

76

(3) iteratively develop the method via method specification and test

cycles (strategy S*).

A variant of strategy S2, namely the separation of method development
concerns, may also be applied to control the complexities of the research.
Specifically, strategy S2 prescribes that during the initial stages of method
development, the research should focus on the definition of stage-wise
design products entailed by the method. On adequate definition, attention
may then be directed on their derivation.

This account completes the description of a general research plan for the
specification of an integrated method. In implementing the research plan, specific
research constraints need to be addressed. An instantiation of the general research

plan is presented as follows :

(a) Chapters Four and Five summarise the outputs of literature reviews
prescribed by the research plan for initiating method development.
Specifically, existing conceptions of human factors design were reviewed
and recruited (as appropriate) to the specification of a structured conception
of human factors design (Chapter Four). In addition, previous research on
human factors integration with SADMs were reviewed to inform the present
research on past successes and failures (Chapter Five). With minor
exceptions, the outputs of these reviews are general to this class of research;
(b) Chapters Six and Seven describe an implementation of the schemes and
strategies entailed by the general research plan. Detailed research activities
for specifying a particular SADM*, namely an integrated Jackson System
Development method (or JSD*), are thus operationalised. The content of

these chapters are therefore specific to the present research. Their objective

is to establish the context for subsequent discussions on the JSD* method.

77

Chapter Four : Towards a Conception of
Structured Human Factors Design

"A precedent embalms a principle.”
Lord Stowell, Advocate General, 1788.

In previous Chapters, the importance of earlier and wider human factors design
involvement was highlighted. Consequently, additional areas of human factors
inputs have been identified. However, the inputs mapped poorly onto the design
support needed at various stages of the design cycle since the process of human
factors design remains largely implicit. The unsatisfactory state of affairs results
directly from the historically late recruitment of human factors in system design.
Specifically, late recruitment predisposed its design methods to a narrow coverage
of the system design cycle. Thus, to alleviate the observed problems an adequately
structured conception of human factors design is a pre-requisite. In addition, a
structured conception would facilitate the integration of human factors methods with
SADMs. For instance, the requirements for structured integration may be defined
by intersecting the scope of the conception with the chosen SADM. Relevant human
factors methods may then be recruited to the specification of a structured human
factors method that is appropriate for integration with the SADM (see Chapter

Seven).

To this end, the derivation of a structured conception of human factors design

constitutes the focus of this chapter. Thus, its objectives comprise the following :

(a) to review existing conceptions of human factors design and then collate
them into a 'consensus' conception. On the basis of the 'consensus'
conception, an initial conception of structured human factors design may be
derived (see (b) below);

(b) to construct analytically a structured human factors design framework.
The framework is derived by extending the ‘consensus' conception via the
application of basic human factors design premises. Thus, stage-wise

manipulations of human factors design primitives (namely task, human,

78

device and environment) may be specified;

(c) to assess existing conceptions of structured human factors design and to
collate them with the analytic framework derived in (b) above. An enhanced
conception of structured human factors design is thus derived. The latter
conception is then used to identify existing human factors techniques and
methods that may be recruited to the construction of a structured human
factors method.

These objectives are discussed in the sub-sections that follow.

4.1. A Survey of Existing Conceptions of Human Factors Design

To derive a 'consensus' conception of human factors design, a review of relevant
reports by researchers and practitioners was conducted. The survey highlighted the

following :

(a) the coverage of human factors design is confined to a narrow part of the
system design cycle. Thus, it may be concluded that human factors design
is generally incomplete;

(b) the taxonomy and scope of existing human factors design concerns are
poorly defined. As such, the location of human factors concerns with
respect to the system design cycle are inconsistent across reports. For
instance, Shackel (1986a) located task analysis after functional design while
Grudin et al (1987); Haubner (1990); Pikaar et al (1990); etc. reported the
reverse order;

(c) there is no agreement on the scope of human factors input to system
design. For instance, Mantei and Teorey (1988) included pre-design
product acceptance analysis, and Haubner (1990) included post-
implementation product surveys;

(d) very few reports include an explicit identification of the inputs required
for human factors design and the intermediate design products that are
derived subsequently. Reports that fulfil this criteria were generally

dedicated to design analysis at specific stages of the design cycle, e.g. task

79

analysis. Thus, it may be concluded that human factors design is generally
implicit;

(e) very few reports identify explicit relationships between human factors
design stages and describe how design should be advanced. For instance, it
is unclear what outputs of a particular design stage would constitute inputs
to a succeeding design stage. Of the hundred or more reports surveyed,
only two addressed this issue, namely those by Shackel (1986a) and Jones
(1973). Other reports generally described human factors design as
comprising a vague ordering of design concerns. Such reports would only
be informative with respect to what human factors concerns should be
considered but not how they should be addressed during design;

(f) there are two levels of human factors input to system design, namely at
the organisational level and the interactive work system level. These levels

may correspond to system and sub-system design respectively.

A summary of reports selected from the above human factors design survey is
shown in Tables 4-1 to 4-4. It can be seen from the Tables that human factors
design was described as a mixture of design process and product concerns. Also,
the design concerns were neither described at the same level nor mutually exclusive.
For instance, it is unclear across reports whether task elicitation and description
should be included in task analysis (these were considered distinct concerns in
Shackel (1986a)). For these reasons, a ‘consensus' conception of human factors
design can not be inferred directly from these reports. To derive such a conception,
a simple ranking scheme had to be applied. The procedures of the scheme are as

follows :

(a) the number of items in Tables 4-1 to 4-4 was reduced by grouping
similar items under one category, e.g. user analysis and user
characterisation are grouped under the latter. Similarly, subsets are grouped
into a super-ordinate set, e.g. task analysis and task description are
categorised under the former. Minor or 'non-main stream' human factors
concerns are excluded, e.g. late customisation and product survey. To
reduce the categories of human factors concerns further, a 'basic' set was

selected from the reports by imposing an acceptance threshold. Specifically,

80

only design concerns that were mentioned in more than fifty percent of the
reports would be selected for inclusion in the basic set.8 Thus, nine
categories of human factors concerns were identified. Following
identification, human factors concerns cited in each report were classified
under the categories (Tables 4-1 to 4-4). The results are shown in Table 4-5;
(b) the reported sequence of human factors design categories was noted and
ranked for each of the reports (refer to Tables 4-1 to 4-4 -- pull the tabs for a
complete view). As the number of categories across the reports are
different, the rankings (raw score) were normalised to the maximum
number of categories,? i.e. to base nine. The modal and adjacent score(s)
of the normalised set (shown in parenthesis in Table 4-6) were then
considered to decide the sequence of the nine categories of human factors
design. The sequence thus constitutes a ‘consensus' view of human factors

design for the surveyed reports.

The derived 'consensus' conception of human factors design may be summarised

as follows :

System level considerations

Stage 1 : System performance definition (i.e. requirements
specification)

(Stage 1a : User characterisation)

Stage 2 : Function allocation

(Stage 2a : User characterisation, Extant system task analysis, task

synthesis, Environmental design & Training projection)

8 Relevant contextual information should be noted to support more specific insights into human
factors design. For instance, appropriate contextual information would support a lower level
interpretation of the ‘consensus' conception, €.g. to uncover why task analysis is located at various
design stages.

9 A sample calculation for normalising a score from base 8 to base 9 (see Table 4-6, column 2,

row 2, Eason (1987)) is as follows : 2 (raw score) x 9/8 = 2 (normalised score to nearest integer).

81

| UNFOL™

P

I

¥

WA

88 285

udisoq weisAkS Suump Suoudnbog ojewnxorddy moyl pue surddouo)) s1030ej uewny pouoday [Q[qel

82

[uSisqq welsdS Suump Suuonbag ojewinxorddy 1oy pue SUIdOUO)

si00e,] uewny popoday

I

dqeL,

82

[
+~
%)
= 7!
a — 9
” w
v
sw =<
2N
ol
- w
s P me. >R
S e o @n
A S S 0832 W

udisog wsAS Suump Surouonbog djewixoirddy 1Oy pue suidduo)) s1030e uewny papoday 7 QqelL

&3

UNFOLD

aRD
g o .0

. . Bow
Q.o F
sio: SR . 2SHsal o8

2 &
E 1
wi i

2
Qi 3 8§

bt b

P-T3

s
HH C3

84

[T udisoq wesk§ Sunmp Surouonbog djewnxorddy IOy pue Suroouo)) S1030e] uewnyg popoddy ¢ QIqeL

>

UNFOLD

Al USIS)q wesAS

et 8 m%

2l

Qo3 v OO
a 6%.m»sm. WN3u
0 :OFOU) B i

e
«BOR nR® Ooes

s BOoR =5

Suump Suuonbog ojewnxorddy moy pue suIddUO)

I2

ovimys 5 gob

S10)08,] UBWINE]

2 £ K

3

‘a o0

43 4sep c@%@Q

payoday

144

JqeL

85

Al USIdq wwysdS Surmp Supudnbag dyeuwnxoaddy

1Y) pue

SUIDUO))

s10)ov,] uewmpy pariodoy

rv

dqeL

8

11/9

11/11

11/9

I1/L

I1/6

11/8

T1/L

17/01

1T/L

pasnna sy
Jo saqumy

€L, sduof

]
ujdues)

» Lipd

1]
weqiioN
® WO

98, g, JOYOsiL| LS. It P

401D [sagsory

apniy

98,
pPYIeys

06,
Buqneq

udjsap
juswnosjang (6)

uojjenjeaq (8)

udjsap Zmjupeay, (L)

06 It P
Ieexg

88, K303y
» pely | L8, U0seH

uojjesjaajovILyd
Jasn (9)

udisp W (5)

aojjedof[e
nojpuny (b)

udisap qof (g)

siskjsue yssl (7)

mopuyep ddurwojiad
wasks (1)

susaduod udjsap
wayshs siope] uewng

p-p 03 T-p SIIqBL, W pajsr] spioday wiody PAPRIXY SUINU0) UISH 5I0)de] UBWANH Jo JAS ,dISeq, V : S-p Qe

86

(#2807 153183 0} PAPUNOI) 1 10 ['T = 8/6 X | U SI (6 95q 03) 2100S PISI[EULIOU AP ‘§
Jomo | Jo 21005 me1 e poudisse sem ((1) KoFare)) vonnyep sowewuopad WoISAS, Yy ‘ULM|0D /8, UOSLH U 10J : SMOJJO] SE ST 100§ PISEULIOU I JO UOKE[NOED Jdures y
"SULLIN0O OM) ISE] ST} UT SI100S SATIB[QI Oty SUTULIIAP 0} PIST UAL ST Q008 PISI[EULIOU 3], *6 358q 0} PISTEULIOU 91008 Teuonisod oy} S1eorpur Sisaypuared ur paso[oud SIqumy

— — — - ugisp

4 L - L6 Mt | ©¢ | Wy w9 6)8 -

= | s |0t ou|8d| ©s| @ |6 0| ©® | 08 | ©c | O o 5

— €7 |63 — - - - — udisop Sururex] (1)
8)¢ 7 ot g WL | @t (8) 01 150 Sunurery,

- fewr | = f@Or Jor o | - o |62 e | = | = | - |owwewme

89 | () |89 -~ |69 oy

9 8 ©v e 6% 94 ®)8 S_N ws | ®s¢ ®)L i 159 TN (6)

€ (4 ©r | @¢ | @ — WL | ®@s [@c | @ | ©c¢ - — | uomeooye wonom (y)

S - A%wm mﬂw ©)s ﬁm.m - | Ws - | @ - | @O uisap qof (¢)

e |9 | - o |99 Jor [0 | oy |90 100 o | 01 | 0 | semmo

- 8D L - (L1 — | 6D (€1 voniuap

1 9t T ©9 s Wy | M1 A ¢ | Ot i1 [oomumopdumash ()

21008 , ndurex)y 106, WeyuoN Y8, 008IL | s9. TR0 06181 | g8, £aoo, SwIOU0 ufisop

mwww opogy | £L 59001 8% bmw bt 175 | o oy | gy [%8P0 fo6 | | | 5 wersts soong weumg

UR1sa($10308, uewiny Jo dudanbag aAnepY dy) SulALRQ : 9-p Iqey,

87

Sub-system level considerations

Stage 3 : User characterisation

(Stage 3a : Function allocation)

Stage 4 : Jobdesign

(Stage4a : Training design)

Stage 5 : Task analysis

(Stage 5a : User interface design)

Stage 6 : Environmental design

Stage 7 : User interface design & Training design
Stage 8 : Evaluation

(The italics indicate human factors concerns that may also be relevant at the design

stage.)

Although the 'consensus’ conception seems reasonably complete with respect to the
system design cycle,10 the underlying human factors design assumptions and
logic' remain implicit. To support a better understanding of human factors design,
its design variables and manipulations should be made explicit. One solution is to
extend the ‘consensus' conception into a structured design framework. The
framework may be derived analytically by extending the conception with respect to
basic primitives of human factors design, namely the task, user, environment and

device. The derivation of such a framework is described in the next sub-section.

10 Tpe completeness of a conception is a function of the state of human factors knowledge at a
particular point in time. It may be determined directly by conducting exhaustive tests on promising
conceptions. Alternatively, it may be ensured implicitly by deriving a ‘consensus’' conception via a
sufficiently wide review of reported conceptions. For completeness, the derived conception should
be extended analytically. Finally, its completeness with respect to the system design cycle is

assessed against the scope of existing Software Engineering SADMs.

88

4.2. Analytic Derivation of a Simplified Framework for Structured

Human Factors Design

The preceding sub-section highlighted that the 'consensus' conception of human
factors design is inadequately explicit and structured. Thus, it was suggested that
basic premises of human factors design (comprising its design approach, primitives
and assumptions) should be examined analytically to derive a structured human
factors design framework. The framework may then be imposed on the ‘consensus’

conception to derive a structured conception of human factors design.

Generally, human factors design may be viewed as an extension of Grandjean's
(1988) concept of user-centered design. Thus, the objective of the design is to : fit
<x> to the human’ where x = task + device + environment. Specifically, the

perspective implies the following system!1 design stages :

(a) identify the user population;

(b) define performance requirem_entsl2 of the human-machine system;

(c) define requirements of the user population with respect to the task,
environment and device;

(d) user-centered specification of the conceptual task, interactive task,

environment, user interface and workstation.

Any 'shortfall' in the specifications of (d) that can not be rectified to meet the
requirements in both (b) and (c) (e.g. owing to technological limitations), may then
be ‘compensated’ by appropriate personnel training and selection. In other words,
fitting the human to <x>’ should follow fitting <x> to the human’.

11 A system may comprise one or more sub-systems. Systems generally comprise users and
devices operating in a particular environment. They perform work by executing tasks to effect
desired state changes of real world objects (Dowell and Long, 1989).

12 Satisfactory system performance may be interpreted as the achievement of work requirements

at an acceptable level of human and computer costs (Dowell and Long, 1989).

89

Similarly, in the context of human-computer systems, the objective of human
factors design is to achieve system goals at acceptable user costs via appropriate
configurations of the interactive task, device (both hardware and software) and
environment. Thus, system design involves manipulating the attributes of these

design primitives so that the desired system performance is met, i.e. :

Desired system performance = f {environment, task, device, user}

or Psyswm = f{E, T, D, U}

An expansion of design manipulations of these attributes follows.

Generally, system design is instigated by desired changes in system requirements.
In turn, the changes may be attributed to required :

(a) improvements in current system performance from some value P
to P’

system

system °
(b) modifications of system or sub-system(s) design attributes at the same

level of performance.!3

Specifically, system requirements are addressed (e.g. pre-set training needs and
environmental limits) and expressed in terms of necessary modifications and
extensions of the current system (note that the current system may be a manual
system). For instance, sub-systems may be defined, functions may be allocated
between human and device components of the sub-systems, and socio-technical

interactions14 among sub-systems may be described explicitly in terms of their

13 Note that the design activities in (a) and (b) above are not mutually exclusive. For instance,
system performance improvements in (a) may necessitate sub-system design changes in (b), since

the former is a function of the performances of the latter, i.e. :

14 Since informal work relationships are extremely varied, they should be addressed as they are

met.

90

work relationships and information exchanges. Thus, the purpose and performance
of the target system is defined conceptually. The conceptual design is then detailed
progressively by iterations of sub-system(s) design followed by their integration.
Such a view of system design was reported by Eason (1987); Gillett and Northam
(1990); Shackel (1986a); Jones (1973); and Pikaar et al (1990).

In accordance with the central tenet of human factors design (namely user-oriented
design), sub-system design is initiated by a specific definition of users and their
needs!3 (Grudin et al, 1987; Clowes, 1986; Gillet and Northam, 1990; Haubner,
1990; etc. -- see Table 4-1 to 4-4). Prominent characteristics of users are assumed
and documented as sub-system design constraints.16 On the basis of these
constraints, attributes of other human factors design primitives (namely
environment, task and device attributes) are then manipulated iteratively to meet
sub-system performance requirements. Since these design primitives are
interacting, design iterations should be assumed to pervade the overview that
follows. In addition, the designer may apply the following design prioritisation
strategies :

(a) firstly, determine the attributes of central, critical and limiting design
primitives. In this way, constraints which increase with design advancement
are accommodated by primitives that are more amenable to design
manipulations. For instance, users' jobs and tasks are addressed before
environment and device design. Thus, the latter is designed to accommodate
the constraints imposed by the former;

(b) secondly, determine the attributes of independent and easily controlled
design primitives. A clearer and more stable set of design constraints is thus
defined for subsequent accommodation by dependent design primitives.

For instance, environment design should precede user interface design. In

15 User characterisation may include an assessment of the implications of changes to the current
task, e.g. transfer of learning effects implicated by a particular target sub-system design.
16 It can not be over-emphasised that the assumption does not imply the obviation of user

testing.

91

this way, interactions among design primitives may be managed more

effectively.

Bearing in mind preceding design decisions, the task to be performed by a
particular user group is defined. Task design involves decomposing sub-system
functions (comprising the human and device) so that on-line and off-line task
components!”? are detailed sufficiently to support job and training design
considerations. For instance, on-line tasks may be decomposed into interactive
tasks. At this design stage, participatory design and task analysis techniques may be
recruited. The preceding task design manipulations may be represented informally
as follows :

U ---- > U (i.e. presumed user attributes are upheld)

T -—->T (i.e. the existing task is re-designed)

Since T =T, tine + Toff-line :

Ton-tine * Tott-tine > T on-tine + T off-tine
(i.e. new on-line and off-line tasks are defined)

T =Ty *+ Tinteraction

(i.e. new device tasks (T'y,,;c.) and

i
on-line evice

interactive 1asks (T 10paction) @7€ detailed).
Presently, system level descriptions of the social and physical environment may be
specified at a lower level of description. Specifically, earlier socio-technical
assumptions are made explicit and various design options for the physical

environment may be investigated. In particular, :

(a) the macro environment may be tempered to a range that is acceptable to
the target system, e.g. by air conditioning;

(b) a micro-environment may be created via an ancillary device, e.g.

17 On-line and off-line tasks are device-supported and manual tasks respectively.

92

protective clothing to shield the user from adverse conditions;

(c) the user may be trained physiologically to tolerate periods of work in the
environment, while the machine is designed to withstand the conditions,
e.g. training fighter pilots to tolerate gravitational forces;

(d) a combination of all of the above.

A design option is selected following appropriate consideration of both the
psychological and physiological implications of the stressor, and technological
constraints on the solution. The design manipulations described thus far may be
represented informally as follows :

U -—--- > U) attributes of these primitives are
T ----- > Tontine + T off-line) carried forward to constrain the
Tondine = Tdevice T Tinteraction) design of the environment (E).

E ----- > {E', E} (i.e. the existing environment (E) is either left

unchanged, or some changes may be planned (E’)).

At this juncture, device design (comprising software, hardware and workstation
design) may be undertaken. To this end, functional design is pursued via iterative
decompositions of device and interactive task components of the on-line task, i.e.

1
and T interaction
be consistent with design decisions and constraints that have been carried forward

interaction ShOUld
complement each other. An appropriate user interface design may then be specified

T device respectively. The resulting lower level descriptions should

to this stage. In addition, the inputs and outputs of T 4oy and T'

on the basis of T".

interaction (€-&- its inputs and outputs)!8 and an organisation's in-

house style (if any). These human factors design manipulations may be summarised

18 Since all design decompositions up to and including the interactive task and user interface
design are shaped by the adopted user model, a closer match between the designer's and user's model

of the system may be expected. Appropriate device usability and functionality would thus accrue.

93

informally as shown below :

U ----- > U) attributes of these primitives are
E ----- > {E', E}) carried forward to constrain the
T ----- > T + T) design of the device (D).

T

off-line
+ T

interaction)

on-line

1 — 4
on-line — Tdev1ce

T ----> {sub-tasks, procedures, object-action pairs}

'interaction
(i.e. the interactive task is decomposed to the device level)

T gevice —-> {device programs}

D —---- > D'

(i.e. a functionally new device is designed to replace the old)

D} ----- > {T yntine » D'} or (T +T. D'}

(T device interaction *
(i.e. a new set of tasks and devices is derived)

on-line °

A brief summary of other design scenarios as follows.
i) Re-designin user interf: f a devi

In this case, the off-line and device tasks are unchanged. Thus, the design
manipulations may be summarised informally as follows :

{Ton—line’ D} - > {T'on-line , D'} or {Tdevice + Tinteraction ,D')
(i.e. the device task is unchanged while interactive task
characteristics are modified)

T'interaction ————> {sub-tasks, procedures, object-action pairs}

(i.e. the alternative interactive task is described at
the device level)

Tgevice -—> {device programs}

(i.e. unchanged core application)

D --->D

(i.e. a new user interface is designed to replace the old)

94

Such a design scenario may be undesirable since it could imply an increased

workload corresponding to increases in the off-line task. Alternatively, the
user may be compelled to undertake further off-line tasks to compensate for
inadequate on-line support. In both cases, user costs are increased to meet
desired performance requirements, while device costs remain unchanged
(since additional on-line support is not provided). The design manipulations

may be summarised informally as follows :

T = Ton-tine + T off-line
{T,D} ----- > {T",D} or {Ton-line + T'off-line » D}

(i.e. on-line task (and hence device design) is
unchanged while off-line task is modified)
iii) Re-designing man k

In this case, on-line tasks do not exist. Thus, the design manipulations are

summarised informally as follows :

T = Toptine + Toff-line

T = Totttine = Tmanual since Ty jine = {} and D = {}
T ----- > T
===> Tyanual = > T hanual

(iv) Automation of an existing set of manual tasks

The introduction of a device to support existing tasks essentially involves

function allocation and the specification of on-line tasks. Thus, the design

95

manipulations may be summarised informally as follows :

T = Toptine + Toft-line

T = Totttine = Tmanual since Toy jjpe = {} and D = {}
if D -—>D and D' # {}
then Tmanual -2 T'on-line + T'off-line and T.on-line # []

(i.e. function allocation)

T =T + T

H "
on-line device interaction

T'interaction > {sub-tasks, procedures, object-action pairs)
T evice ——-> {device programs}
{Tmanual » B} - > {Toff-ﬁne + T'device + Tinteraction » D'}
(i.e. the manual task is replaced by a new task

comprising off-line, interactive and device tasks)

v) Automatin xtending an existing set of man k.

This scenario is a variant of (iv) above since the existing task is extended in
addition to the introduction of a device. Thus, function allocation and on-
line tasks have to be specified (not shown below -- see (iv) for further

details). The design manipulations may be summarised informally as
follows :

T = Toptine + Toft-tine

T = Totttine = Tmanual since Ty jjpe = (} and D = {}
if Tott-tine > T'off-line © T manual
andif D -—-> D' andD' = ()
then T'manual """ > T"on-line + T“off—l.ine

As a final consideration, user selection and appropriate training may be considered
if the desired level of sub-system performance cannot be achieved through further

design iterations. The design manipulations involved may be summarised informally

96

as follows :

T > Tontine + T off-line) attributes of these

Tontine = Tdevice * Tinteraction) primitives are

E - > {E', E}) carried forward to
T'nteraction ~---> {sub-tasks, procedures, object-action pairs}) constrain training

T gevice —-> {device programs})) design and user

D ----- > D') selection criteria.

U > U

(i.e. modifying user attributes by training and selection)

Although the preceding account is a simplified description of structured human
factors design (e.g. stage-wise design iterations anwi evaluation have been .omitted),
its emphasis on stage-wise design manipulations supports a more specific
interpretation of the 'consensus’ concéption of human factors design (see sub-

section 4.1). Specifically, the structured framework supports the :

(a) inclusion of task synthesis at different levels of description. Specifically,
task synthesis at a high level would precede functional allocation as the latter
cannot begin without some notion of the system task. At a lower level, sub-
system task synthesis supports human-machine interaction design (see
Figure 4-1). Similarly, task description is subsumed in task synthesis and
task analysis.

(b) interpretation of design relationships described by the 'consensus'
conception. In addition, it supports thé instantiation of these relationships in
the initial conception of structured human factors design that is derived

subsequently (see Figure 4-1).
The conception is then enhanced by incorporating further contributions from other

structured design conceptions. On the basis of the enhanced conception, a

structured human factors method may then be constructed. These research concerns

97

are addressed in the next sub-section.

Figure 4-1 : An Initial Conception of Structured Human Factors

Design
Training
projection
. : System
Extant system | | Environment performance |«g
task analysis design definition

v v

System task p| Function —> User
allocation |qg—| characterisation

synthesis
]
-
& v Y A
(ﬁTarget sub-system design ~N Y
> Task)
synthesis j
Task Job
analysis design
N W) ? ‘
Environment Training
design design
| | User interface
design
Sub-system
evaluation /
,,x"'l
\ ; J/
Sub-system
integration
System
evaluation

98

4.3. Towards an Enhanced Conception of Structured Human Factors
Design

In 1973, Jones proposed a general conception for designing human-machine
systems (Figure 4-2) that accommodates early ideas on function allocation, e.g. as
suggested by Fitts (1962), Chapanis (1965) and Singleton (1972).

Figure 4-2 : A Conception of the Structured Design of Human-
Machine Systems (Jones, 1973)

Specify inputs
and outputs of
system

v

Specify functions
of system
components

v

Allocate functions
to humans or to
machines

Design
machine
components

v

Check system
for internal
and external

compatibility

Although the conception is rather simple, it highlights the following human factors

99

design concerns :

(a) specification of user requirements (expressed as human performance
setting) prior to user interface design;
(b) separation of human and machine design;

(c) design of user interfaces in parallel with ancillary support and training.

Since then, the scope of human factors design has grown to include :

(a) conceptual definition of the target system, e.g. task and information
flows of the system;

(b) functional specification, e.g. human-machine allocation;

(c) organisational and socio-technical design;

(d) job specification and personnel selection;

(e) system integration and evaluation.

Thus, the scope of Jones' conception was updated appropriately (see Shackel,
1986a). Although the updated conception is an improvement, the meaning and
underlying rationale of some aspects of the conception remain unclear (see Figure
4-3). In particular, :

(a) the translation of Jones' 'man-machine interface design' into 'man-
machine workstation design' may not be appropriate since the scope of the
latter usually comprises the anthropometric design of workspaces. Thus, it
is unclear where user interface design is addressed. Further confusion may
arise from Shackel's exclusion of software and hardware design from the
scope of human factors design (these concerns have been identified as
‘machine factors');

(b) the representation of task description, analysis and synthesis as distinct

concerns is unexplained. While a case may be made for distinguishing

100

between task analysis and task synthesis,19 it is unclear why task

description would not be a sub-activity of the two;

(c) the purpose of the Relate to' arrow emanating from the 'Other systems’

circle is obscure. One interpretation is that it highlights the need to consider

extant system characteristics so that transfer of learning effects (both

positive and negative) may be addressed. However, the interpretation is

Figure 4-3

: An Updated Conception of the Structured Design of
Human-Machine Systems (Shackel, 1986a)

e

Define purpose
& performance

relate to

Other
systems

Y

Available
population

Allocate Task Task f—————pp Job Selection
functions P synthesis B description specifications P criteria
Specify machine TﬂSk' | ‘ T
sub-systems analysis | l I
Design hardware J Man-machine Organisation & Job aids Training
and software < workstation management design design
* design aspects
|
System
integration g
Evaluation ?’”””S Whole design team
brrrrard
‘ m Machine factors
Regular
operation D Human factors

19 In particular, task analysis can not be conducted in the absence of an extant or reasonably

developed system. Thus, to contribute to design analysis for specification (as opposed to design

analysis for evaluation) task analysis needs to be augmented by another step which addresses

target system design, namely task synthesis.

101

inconsistent with other aspects of Shackel's conception. For instance, the
suggested location of extant systems analysis relative to task analysis
implies that the former is not supported by the latter. The implication would
be difficult to support since the strength of task analysis is in extant system
analysis. In addition, the location of task analysis seems to imply that the
information it generates would not support design decisions on function
allocation and task synthesis (see Figure 4-3). Again, the inference would
be inconsistent with considerations on transfer of learning effects;

(d) the implications of the 'Regular operation' box for human factors design
is unspecified, i.e. its purpose in the design conception is unclear;

(e) the designation of some of the boxes as 'machine factors' is debatable
(see Figure 4-3 and (a) above);

(f) the meaning of inter-connecting arrows between the boxes is obscure.
Thus, Shackel's conception needs to be expanded further so that its stage-
wise design scope and activities are identified explicitly. Also, the boxes
and arrows of the resulting conception should represent at a common level
of description, the scope and process of human factors design respectively.
The derivation of such a conception is a pre-requisite for the development of
a structured method.

To this end, it would be helpful (as an intermediate step) to construct an enhanced

conception of structured human factors design as follows :

(1) the initial conception of structured human factors design derived
previously (Figure 4-1) is carried forward;

(2) an improved version of Jones' and Shackel's conceptions (Figures 4-2
and 4-3) is proposed (Figure 4-4). Since Shackel's conception may be
regarded as an extension of Jones' conception, the latter need not discussed
further. Modifications implicated by the preceding assessment of Shackel's
conception are thus implemented as shown in Figure 4-4;

(3) the conceptions derived in (1) and (2) above are collated into an
enhanced conception. Specifically, Shackel's conception (Figure 4-4) is

compared with the initial conception (Figure 4-1) and promising aspects of

102

the former are recruited and integrated with the latter, e.g. organisational

analysis, personnel selection and job aids (off-line) design.

Figure 4-4 : A Modified Version of Shackel's (1986a) Conception of
Structured System Design

Define purpose
& performance

y

Allocate

functions |

% Task pl Job Selection
Specify synthesis specifications criteria
sub-systems

; Task' |
Design —»]_malysis L I

hardware 4 . —
and software] Organisation & Job aids Training
management design design

‘ L $1 aspects

System
integration

'I‘"f

Lp Evaluation % .5 Whole design team D Human factors

AbS

The enhanced conception derived is shown in Figure 4-5. Since it describes a
reasonably complete human factors design scope, it constitutes the basis on which a
structured human factors method may be specified for integration with a chosen
SADM (see Chapter 7). Specifically, the scope of the structured method to be
developed (and hence the scope of the enhanced conception addressed) is
determined by the human factors design support required by the chosen SADM. In
other words, the design scope of the SADM is intersected with the enhanced
conception to identify a relevant subset of the latter. The subset constitutes a
framework for developing a complementary structured human factors method for

integration with the SADM. Thus, existing human factors methods and techniques

103

Figure 4-5 : An Enhanced Conception of Structured Human Factors

Design
Training
projection
- System L nnscsnsnen§ Organisation &
Extant system || Environment performance management
task analysis design definition [aspects
¥ v FY Y Y
System ta.sk Function _’ User
synthesis ’ allocation @—| characterisation
|
o ' Y
ff;ar - 7 Y)
get sub-system design \
> Task)
synthesis ﬁ
Task Off-line Job Selection
analysis aids design design i criteria
Environment T .
. Training |
design | designg
» f
User interface
design
Sub—sytstcm /
evaluation VJ.»J
- . /
Sub-system
integration Grey boxes, arrows and
v italics highlight parts
recruited from Shackel's
System (1986a) conception.
evaluation

are examined and recruited appropriately to the construction of a structured method

(see Chapters Six and Seven).

To complete the background information associated with this class of research, a

review of previous reports on human factors integration with SADMs follows.

104

Chapter Five : A Review of Previous Research
into Human Factors Integration with SADMs

"......And urge the mind to aftersight and foresight.”
T.S. Eliot, 1888-1965, Little Gidding.

In this Chapter, previous research into the integration of human factors with
SADMs are reviewed. The review covers three SADMs, namely the Jackson
System Development (JSD) method; Structured Systems Analysis and Design
Method (SSADM); and Yourdon Structured Method. The objectives of the review

are as follows :

(a) to note the problems encountered by previous research in the area.
Potential pitfalls may then be avoided. Similarly, important research
requirements are highlighted for address by the present research;

(b) to incorporate relevant outputs of previous research into the current
research (with enhancements as necessary);

(c) to locate the current research against similar work to facilitate later

assessment.

An overview of the review follows.20

5.1. Human Factors Integration with the Structured Analysis and
Structured Design (SASD) Method

This research was carried out by Hakiel and Blyth (1988, 1989) in response to the

20 The present account does not reflect the order of the SADMs reviewed during the research.
Instead, the presentation is sequenced to support the logical development of the thesis. For
example, although the work of Carver et al (1987) was reviewed first (since it constitutes the
predecessor of the current research) it is presented last (since it sets the context for Chapters Six

and Seven).

105

commercial requirement (Plessey) for a human factors method for user interface
design. An additional requirement was that the human factors method should be
compatible with their organisation's in-house system design method (namely, the
Structured Analysis and Structured Design (SASD) method, otherwise known as
the Yourdon Structured Method). The objective of their research was to extend the
scope of the SASD method to include human factors design. A human factors
method was thus derived. The method will be described following a review of the

main concerns addressed by the research.

As in most SADMs, a key activity of the SASD method is the derivation of a
context diagram to describe the Essential System Model. The model defines events
to which the system must respond and specifies data flows from the system to
external terminators. In addition, the model also determines implicitly the scope of
subsequent analysis and design activities. Unfortunately, in the SASD method (as
in most SADMS) users are frequently located outside the system boundary, e.g.
users are described in the context diagram as 'external event generators'. Thus, ata
very early stage of system development, the design scope is already confined
inappropriately to the specification of a computer system rather than a human-
computer system (Hakiel and Blyth, 1990a). The implication of such a restricted
design scope would be an ineffective system since user tasks would not be
addressed sufficiently to support the identification of appropriate system
functionality and usability. In particular, the exclusion of users from the Essential
System Model implies that a particular function allocation (both between users, and
between users and machines) is assumed prior to an analysis of overall system
performance. Consequently, design considerations on human-computer interaction
tend to be expressed only in terms of the event list and data elements of the context
diagram. Interaction specification is thus subsumed in the design of communicating
sub-systems, i.e. machine-centered design. Such a design perspective would be
biased towards the premature definition of low level input and output operations.
Since the operations are specified in the absence of a task context, appropriate
considerations are precluded on how human-computer interaction may be supported
more effectively. As a result, user interface design is restricted to the optimisation
of individual displays.

106

To obviate the observed problems, Blyth and Hakiel (1989) assert that system
design should begin with task analysis. On the basis of the analysis, design
decisions are then made with respect to the functional deployment of resources (at
the organisational and individual level) and the exploitation of new technologies. In

other words, early system design activities should comprise the following :

(a) decomposition of system goals into system tasks;

(b) conceptual definition of a system model;

(c) further decomposition of system tasks to support function allocation;

(@) function allocation and description of human tasks, computer tasks and
collaborative tasks;

(e) specification of context diagram terminators and an event list.

It was suggested that the above design approach ensures a more accurate Essential
System Model which may then be used to constrain system design. In this way, the

expected human-machine performance may be ensured.

These suggestions have since been extended into a method via a review of human
factors literature (see Figure 5-1). The method structures system design into eight
sequential levels of description; namely goal, task, conceptual, semantic, syntactic,

lexical, alphabetic and physical levels. Their design scope are as follows :

(a) Goal and Task levels : detailed analysis of system goals and tasks, and
function allocation. The design output is a set of task models deriving from
various abstractions of the domain (see steps 1 to 4 later);

(b) Conceptual level : identification of conceptual objects that should be
represented at the user interface (see step 5 later);

(c) Semantic level onwards : top-down specification of human-computer

interaction.

A step-wise description of the method follows.

107

Step 1 : Analysis of extant systems

(a) identify functional goals of the target system by consulting the initial

statement of requirements;

(b) identify existing human-machine systems which share some or all of the

target system goals. Real world tasks which map onto target system goals

may then be derived and analysed systematically by sampling across a range

of existing systems. Technological equivalence between existing and target

systems is not required as the subsequent creation of an abstract task model

would remove all implementation level details. Where computer-based

Figure 5-1 :

Schematic Representation of a Human Factors Method

that Complements the SASD Method (Blyth and Hakiel, 1988)

World

Market
opportunities |
and constraints

Technological

opportunities
and constraints

Whole system
requirement

v

End user

Organisational
role model

Abstracted
extant task
model

Task modelling

System

requirements
definition

Analysis of
user requirements

requirement

pplication software design

A
System
JSunctional
model
/, e
Machine
task model Domain
; concept
Allocan'on model
of function
Task des gn f
’
Domain
semantic

model

User interface design
Domain concepts layer «

Dictionary

what you want to do,

to what and with

what, and how you
know it worked

)

activities

analisis

>
Task

Specific task

model

M:

108

Presentation
User interface S - methods layer
management equencing
system rules and
dialogue ol
i what s you
constraints hve to :
Allocation z . Mppen,mmu
D;:l:g:e Interaction {low yl:;l;lknow
t acti ly
U W1 vocabulary/ | ¢
m‘ef:;lon ; symbology happened
model
) IR
what you have to
y 1/0 devices | do to the hardware
design modules that may o f'f rfal
be undertaken in parallel. and get it right
\ J

support is already in use, both computer and human sub-tasks should be
described.

Blyth and Hakiel's (1989) suggestion to analyse existing systems in general (see
(b) above), may be contrasted with the common system development practice of
focusing solely on the current system, i.e. the system currently used by the client
organisation. The motivation for the suggestion was unfortunately left implicit.
Nevertheless, further insight on the suggestion may be found in Lim (1986, 1988d)

where a similar analysis of extant systems was proposed2! as a means of :

(1) ensuring wider consideration of design alternatives. Alternatively, it
obviates premature commitment to a design solution (i.e. 'blinkered'
design) and the tendency towards the replication of the current solution;

(2) assessing the possibility of wider transfer of learning effects (both

positive and negative).

Following extant systems analysis, Blyth and Hakiel's method involves the
derivation of task models at various levels of description. To support these
descriptions, comprehensive definitions of goals, tasks, roles, jobs, functions, and
plans were proposed. Their definitions, as well as those suggested by Dowell and

Long (1989), have contributed to a hierarchical taxonomy of work (see Annex C).

Step 2 : User characterisation

(a) identify different classes of users and their particular goals and tasks;

(b) derive the system perspectives corresponding to each class of users.

21 Some aspects of Blyth and Hakiel's (1989) method are similar to the method described in this
thesis. The authors have acknowledged the contributions of the present work, e.g. Blyth and Hakiel
(1989).

109

Step 3 : Task analysis using the Task Analysis for Knowledge Based Description
(TAKD) technique (Johnson et al, 1984)

Blyth and Hakiel selected TAKD since it shows the greatest promise as a task

analysis technique for supporting the design of human-computer systems. For

instance, the following TAKD procedures were adapted for their method :

Step 4 :

(a) identify a representative set of tasks from an analysis of existing users
and systems. Specifically, the roles and jobs of users should be explored to
define a typical set of tasks;

(b) analyse the tasks and describe procedures, goals, sub-goals, etc.,
textually. The information should be elicited from interviews and
observations rather than manuals since the latter tend to describe what users
should do rather than what is actually done;

(c) extract a list of all objects (nouns) and actions (verbs) from the task
descriptions. These objects and actions constitute the basis on which a
conceptual model of the target system may be derived;

(d) apply TAKD techniques (generification in particular) to derive generic
actions and objects. Using these generic descriptors, re-express the task

description as Knowledge Representation Grammar (KRG) sentences.

Allocation of Functions

(a) the existing task model derived in Step 3 is incorporated with new
requirements and Software Engineering views of target system
functionality. An essential system function model with an explicit boundary
is thus defined;

(b) function allocation between the human and computer may then be
considered iteratively to meet the performance requirements of the overall
system (see Figure 5-2). Since existing performance data may not provide
adequate support, prototyping might be necessary in determining an

appropriate allocation of function.

110

Several weaknesses in this step of the method are noticeable, namely :
(1) the relationship between KRG descriptions of the existing task model

and the processes in Figure 5-2 is unclear, e.g. would one KRG sentence

be equivalent to a process ?

Figure 5-2 : Function Allocation using a System Function Model22

.Possi‘t?le function model
in which the system
boundary has not been
decided, i.e. operational
requirements have not
been determined.

process
. Jeasibility and
Sunctional
analysis
6 System function model
process in which the boundary
has been decided, i.e.

system boundary operational requirements
process \ have been determined.
4)
@ allocation of

Junction

v

System function model in
which the allocation of
tasks has been decided.

. System boundary Note the additional

oo\, 4 A information flows
- machine

introduced to organise and
_ user _intrface

terminator

support user interaction
with machine tasks.

22 Figure reproduced from Hakiel and Blyth (1990a).

111

(2) previous weaknesses of TAKD remain unaddressed. For instance, it is
unclear how KRGs are organised to define task structures and user roles.
Yet, the task model is required to make three crucial contributions to
function allocation, namely : to ensure job, role and task coherence; to
provide an explicit account of potential workloads; and to ensure that
information flows across the user interface are appropriately contextualised
to task requirements. In the absence of further developments, these

contributions would not materialise.

In contrast to the derivation of an essential system function model, function
allocation concerns were considered in much greater detail. For instance, two
function allocation techniques, namely those proposed by Price (1985) and Clegg et
al (1989), were identified by Blyth and Hakiel (1989) and Hakiel and Blyth
(1990b) respectively. Since these techniques appear to be promising, they were
noted for further investigation (see Chapter Seven).

At this step of the method, the performance statements should be specified in an
appropriate format to facilitate the assessment of alternative allocations of function.

Specifically, the format should comprise the following :

Who ? e.g. user characteristics

Doing what ? e.g. nature of task

What circumstances ? e.g. work environment

What performance ? e.g. worse and best case for a particular prototype

How performance is tested ? e.g. full system scenario.

Since the format satisfies ISO's proposal that requirement specifications should be
linked to testing schemes (ISO/TC 159/SC 4/WG 5 N84), it was noted for later
comparison with similar proposals by other researchers, e.g. Whiteside et al
(1985).

inin 1 model of

The conceptual model of the system comprises a set of objects and user actions that

112

the system must support. It is derived as follows :

(a) task objects are separated into classes and sub-classes and their
properties are defined. For each object, actions that affect its properties are
defined. A scheme for documenting these descriptions is included in the
method (see Blyth and Hakiel, 1988, 1989). These design activities
correspond to those found in the modelling phase of the Jackson System
Development (JSD) method;

(b) compositional and taxonomic relations between objects that comprise the
domain knowledge of the user, are described using a network diagram.
Such diagrams are used for similar descriptions in the development of
knowledge based systems (see Ragoczei and Hirst, 1990). Since the
description represents a useful summary of domain semantics, it was noted
for further consideration during the specification of a human factors method
to complement the JSD method (see Chapter 7);

(©)a spcciﬁc task model is generated to describe how objects and actions of
sub-tasks may be composed into higher level tasks. It appears that the
concept of a specific task model was recruited from the Knowledge
Analysis of Task (KAT) technique (Johnson and Johnson, 1988).
However, its present purpose is unclear since higher level tasks would have

been specified in Steps 3 and 4.

Subsequent to this step, user interface design at the semantic, syntactic, lexical,
alphabetic and physical levels is undertaken. However, little information is available
on these design activities. Hence, no further comment is possible on the rest of the
method.

In conclusion, Blyth and Hakiel's work failed to include an explicit integration of
the human factors method with the SASD method. In particular :

(1) design inter-dependencies and the timing of design processes between

the two methods were not made explicit;

(2) the possibility of using a common notation was not considered.

113

Also, some steps of the method are poorly described or incomplete. Thus, the
potential contributions of their work with respect to the present research, are

restricted largely to :

(1) the identification of promising human factors techniques, e.g. function
allocation and TAKD;

(2) the specification of human factors definitions, e.g. tasks, functions, etc.;
(3) the identification of promising design description schemes, e.g. formats

for performance specification and domain description.

5.2. Human Factors Integration with the Structured Systems
Analysis and Design Method (SSADM)

This consultancy based project (200 person-days) was undertaken by HUSAT
(Loughborough) for the Department of Health and Social Security (DHSS). Its aim
was to extend DHSS's in-house version of SSADM called DIADEM (Departmental
Integrated Application Development Methodology). The result is a conglomeration
of SSADM, PROMPT (Project Management Technique) and a human factors
method that may be used by designers with little human factors training. The latter

method constitutes the focus of this sub-section.

HUSAT's human factors method adopts a participative approach and its scope was
intended to cover both human and organisational design.23 However, the original
scope was curtailed as only four out of the following areas of human factors design
concerns (namely those in bold italics below) were targeted by the client for
incorporation into DIADEM :

(1) user analysis and socio-technical systems analysis

23 The scope of the project also includes collating reference manuals to support users of
extended DIADEM who are not trained specifically in human factors. Thus, the manuals describe
declarative knowledge associated with the selected areas of human factors design concerns (see

above). Since the manuals are not available, no further discussion is possible.

114

(2) user involvement in decision making
(3) user acceptability criteria

(4) methods of user involvement

(5) job design and work organisation
(6) task allocation/job stream charts
(7) human computer interface design

(8) prototyping

(9) workplace and workstation design
(10) user support

(11) management of change

(12) institutionalising human factors

The objectives of the project were to specify and locate design activities and
procedures of the above design concerns around DIADEM (see Figure 5-3).
Unfortunately, detailed information on most of these design concerns is not
available as the work is crown copyright. The relatively few published reports on
the project?4 provide only partial coverage of the work. As such, it is unclear how
design is operationalised between levels which are far apart, e.g. moving from :
task allocation and job design ---> work organisation ---> dialogue design (see
Figure 5-3, right-hand section). Although a set of lower level design products have
been specified (Figure 5-3, middle section), the information is still insufficient to
support an assessment of the method, e.g. its overall coherence and completeness.
Thus, only two of the above design concerns, namely user analysis and task
allocation charts (i.e. (a) and (f) respectively), will be reviewed presently. These
design concerns were reported in Damodaran et al (1988) and Ip et al (1990)

respectively.

In the context of the method, user analysis comprises the following design

24 The present review was collated from a seminar presentation (Damodaran, 1988) and two

conference papers (namely Damodaran et al,1988; Ip et al, 1990).

115

activities :

(1) user classification
(2) job and task characterisation

(3) work role analysis

The set of design checklists, questionnaires, observations sheets and description
summary forms for user analysis is shown diagrammatically in Figure 5-4.
Unfortunately, no further comment can be made since detailed information is

unavailable.

Figure 5-3 : Schematic Representation of a Human Factors Method
that Complements DIADEM (Damodaran et al, 1988)

SSADM Stages Human Factors Products Human Factors Stages
(_Taskdescriptions)% [tcer and task
Analysis of systems, —— analysis
operations and current LUser/task charactensauon) yst
pmtiems (J0b satisfaction details > v
HF requirements
(__User needs) ificat
Specification of — . — specitication
technical requirements (Speaﬁc job design criteria +
* System boundary Task allocation 3
. and job design
Selection of (Job stream options
technical options *
7 Work
Work organisation models o foati R
Logical data (organisation
design *
+ \(User interface speciﬁcaﬁon)‘@-w Dialogue e
Logical process design
design Whole jobs) *
* (Awareness strategy) Prototyping
Physical design (Training needs) %
(Documentation
Modifications

116

The second human factors concern of the method addresses task allocation. In
particular, a task charting technique was proposed to support requirements

specification. Specifically, the technique supports the following :

(a) definition of the computer system boundary. The definition involves an
exploration of alternative human-machine task allocations and their impact
on users' jobs;

(b) definition of functional requirements of alternative designs derived in (a)
above. The system boundary is then finalised by selecting a particular
configuration of human-machine task allocation, e.g. functional
requirements for the on-line task are detailed. These design decisions
precede the Logical Design Stage of DIADEM;

(c) communication of alternative designs to different end-user groups. For
instance, manual job design alternatives may be explored. Since various job
roles are discussed with users, their feedback may be more completely

incorporated into the design. Thus, the selection, integration and evaluation

Figure 5-4 : Checklists, Questionnaires, Observation Sheets and

Summary Forms for User Analysis in DIADEM

User analysis interview checklists User analysis
Jobftask B | Job design User role observation checklists
Profile issues characteristics Job/task
profile profile
User analysis questionnaires User analysis
observation sheet

1. Job/task profile
2. Job design issues
3. User role characteristics profile

Data analysis summary forms

Job design
criteria

117

of on-line and manual job design alternatives are facilitated. Appropriate

design alternatives can then be elaborated into user requirement

specifications to constrain the design of the automated system.

The steps of the task charting technique are summarised diagrammatically in Figure

5-5 below.

Figure 5-5 : Design Steps of the Task Charting Technique

Analyse current Define outline Assess
system functional requirements organisational impact
| @ K
=3 Detailed
@ *: @ , 4@ Specification
Stage
o *
TAC 1 : TAC 2 : TAC 3 : TAC 4 :
To explore possible To outline To explore To analyse and
system boundaries, functional various manual evaluate job design
analyse them and requirements for job design options and select
select the required the chosen system options. the required
system boundary(ies). boundary(ies). option(s).

(TAC = Task Allocation Chart)

The notation for describing alternative job designs is shown in Figure 5-6. This

notation was preferred over data flow and entity life history diagrams since it was

considered more appropriate for end-users. In particular, task allocation charts

provide visual representations of the procedures of task functions. In addition, they

can be used to link proposed screen formats to textual descriptions of the functions.

Thus, it was asserted that the task charting technique is particularly useful for

highlighting relationships between users' jobs, and dialogue and screen design.

However, several problems with the technique have been reported by Ip et al

(1990).

118

Firstly, the documentation of task flow charts is cumbersome. Specifically, chart
drawing is a time-consuming and labour intensive task. In addition, the descriptions
that are produced require an inordinately large volume of paper. These problems are
compounded further by the need to produce charts at various levels of task flow

description, e.g. job and work organisation levels.

Figure 5-6 : DIADEM's Task Allocation Chart Notation

details | k1
Enter Display
Place task of task of
task 2
on file person 1 person 2
Check
claims
If yes If no
Receive
= Claimant new claim
Process Explain ©
claim refusal entity outside task of
+ . system person 2
* o = selection
Check 10% . .
of claims = lteration
Job design option 1 Job design option 2
TAC 1 Receive and locate claim Option 1 TAC 2 Receive and locate claim Option 2
Junior clerk Claims clerk Computer Junior clerk Claims clerk Computer
Open Open
post post
* .
Sort Sort . Display
claims claims [E#]Enter claims 7L | locations
* numbers
: , f
Enter claims Elp DISP. lay
numbers) locations P ss* 7
" claims
* P
Fetches cess
claims
Less work for junior clerk.
More complete job for junior clerk. Clat,ns clerk can work more autonomously.
Easier to retrieve records held on computer.

119

Secondly, at the time of the project, it was found that users of the technique could
not identify the relationship between the charts and design outputs of DIADEM. Ip
et al (1990) reported in retrospect that the charts may be linked to events associated
with one or more entities of DIADEM. In other words, particular sequences of user
task events should intersect with the Events Catalogue (a DIADEM output). Similar
observations have been made by Carver et al (see later) with respect to users' tasks
and entity actions modelled in the Jackson System Development method.

In conclusion, the DHSS project failed to specify explicit design inter-dependencies
between the human factors method and DIADEM. Specifically, a high level
conception of how human factors activities should be located against DIADEM
stages, would not be specific enough to support the definition of design inter-
dependencies. Furthermore, there is little evidence to suggest that a structured
human factors method was derived for integration with DIADEM. Instead, the
project seems to have concluded with the assignment of a set of discrete human
factors techniques against the methodological framework of DIADEM. In the
absence of detailed publications and development of the method, the contribution of
the DIADEM project to the present research has been limited.

5.3. Human Factors Integration with the Jackson System
Development (JSD) Method

Two attempts have been made at integrating human factors with the Jackson
System Development (JSD) method, namely those undertaken by Carver et al
(1987) and Sutcliffe (1988a, b). Presently, their contributions are reviewed in turn.
5.3.1. The Work of Sutcliffe (1988a and b)

Sutcliffe's work was motivated by his belief that the :

n

...... practice of good human-computer interface design will only result

120

from the integration of Human-Computer Interaction principles and
procedures within existing system design methods, rather than by the

creation of stand-alone Human-Computer Interaction methods."”

Although his motivation is consistent with the present research, the scope of his
work primarily comprises the location of disparate human factors techniques at
particular stages of the JSD method. In other words, no attempt was made at
developing a structured human factors method to complement the JSD method.
Thus, the present review is confined to the human factors considerations and
techniques that were recruited to support an extended JSD method. Specifically, the
scope of the method was extended to include task analysis and user-computer

dialogue specification (Sutcliffe, 1988a).

In respect of task analysis and the JSD method, three human factors considerations
were highlighted. Firstly, the complexity of initial task descriptions should be
analysed to support decisions on the allocation of on-line, off-line and automated

tasks. Specifically, Sutcliffe suggested that complexity analysis would support :

(a) design analysis and modifications. For instance, an unacceptably
complex task would indicate that smaller sub-task elements need to be
specified. Thus, appropriate computer functions and displays may then be
designed to support the on-line tasks;

(b) an appropriate matching of user skills and task complexity;

(c) design decisions on an appropriate variation of task complexity within an

individual user's work.

It was also suggested by Sutcliffe (1988a) that a simplified application of the
Cognitive Complexity Theory (CCT) would enable such an analysis. The
simplification is motivated by the concern that CCT as it stands is much too
complicated for direct application by designers. These suggestions were then
investigated in a student trial. The results indicated that the expected benefits of
complexity analysis did not accrue (Sutcliffe, 1988a). The negative outcome may be

121

explained by the following :

(a) the subjects found the complexity metrics difficult to interpret and use in
spite of the simplications proposed by Sutcliffe (see (b) below for an
example). Thus, the simplified technique was not well received. Further
comment on the technique is not possible in the absence of a more complete
description in the reports;

(b) the results derived from applying the technique were imprecise. The
latter may be attributed to the assumption that subjectively assigned
complexity units may be summated to determine the overall complexity of
the task. The validity of such assumptions is presently undemonstrated;

(c) the task of translating assessment results into an appropriate design
expression is almost completely dependent on craft knowledge and designer

expertise.

Thus, the proposed analysis technique can not be considered as promising.

Secondly, in contrast to a recommendation of the JSD method, Sutcliffe
emphasised that links between the JSD entity model and the user's task should be
made explicit. Specifically, task activities constitute processes which interact with
JSD entities. Thus, the scope of JSD interactive functions could be extended to link
task processes with the JSD model as the central focus.25 For instance, the user's
task may be related to relevant attributes of the entity (e.g. for the book entity, an
example may be state = 'reserved’' and location = 'shelving stack’). These
suggestions by Sutcliffe are similar to those of Carver et al (1987) as described in

the next sub-section.

Thirdly, Sutcliffe suggested that JSD structured diagram notation could be used to
describe tasks so that design communication problems may be avoided by the use
of a common language between the disciplines. Again, a similar suggestion may be

found in Carver et al (1987). However, Sutcliffe proposed a novel interpretation of

25 This may be contrasted with user-centered design for which the focal point is the user's tasks.

122

the selection construct when found in a task description. He asserted that these
incidences would correspond to logical break-points in task execution, and that they
should be considered as task closures during display design. Unfortunately, an
illustration on the influences of task closures on user interface design was not
provided. Thus, apart from the specification of computer response times their

intended application remains unclear.

Sutcliffe's extension of the JSD method also includes four suggestions on user-

computer dialogue specification, namely :

(a) entity actions should map onto permissible actions on objects at the user
interface since the JSD entity model is essentially an object and event model.
For instance, in a library application, actions carried forward from the JSD
model to the user interface may include 'Acquire’' and 'Archive’ a book.
However, Sutcliffe's suggestion is less specific than the proposals of
Carver et al (1987). Specifically, the latter highlighted that JSD entity
actions do not necessarily correspond on a one-to-one basis with the actions
of user interface objects. This observation was not revealed by Sutcliffe's
case-study as it was too simple;

(b) previous functional support specifications for the user's task should
comprise the basis for user-computer dialogue specification. However, the
suggestion was not expanded. Although a case-study was considered, the
structured diagram descriptions of the user's task failed to illustrate how
user interface design may be constrained; 26

(c) the set of JSD filter processes constitutes a framework for user interface
design (Sutcliffe, 1988b). It was suggested that the user-computer dialogue
may be derived by extending JSD input sub-system specifications since they

describe user inputs and errors with respect to the JSD model (i.e. its

26 The inadequacy is rectified by a later paper, namely Sutcliffe and Wang (1991). The paper was
excluded from the present review of previous research contributions to the thesis because many
ideas from this thesis were recruited by them (rather than vice versa). However, a comparison

between the thesis output and their overall research output is described in Chapter Twelve.

123

actions and entity attributes -- also see (a) above). For instance, dialogue
control requirements for error recovery, prompts and feedback messages,
may be detailed as separate simple filter process descriptions. Although the
descriptions are consistent with the JSD method, they provide only a
segmented view of the interactive task (i.e. as opposed to a coherent
whole). Thus, Sutcliffe suggested that inputs of filter processes should be
grouped into transactions in accordance with the user's view. However, no
example was provided on how the grouping should be described.
Fortunately, a similar suggestion was proposed in Walsh et al (1989) where
it was suggested that filter process inputs should be sequenced using one
JSD structured diagram (more structured diagrams if concurrent processes
are involved). Thus, relevant feedback from users may be elicited to derive
a user-centered view of the interactive task;

(d) JSD structured diagram notation should be used to describe user

interface objects, e.g. to relate permissible object actions and roles.

In conclusion, Sutcliffe's suggestions are focused on extending the JSD method.
His objectives did not include the specification and integration of a structured
human factors method with the JSD method. In particular, his proposals did not
include an adequate account of the scope and process of human factors design. As
such, the design relationships identified between human factors and JSD is
confined predominantly to the scope of the latter, e.g. few locations and
intersections of JSD and human factors design stages were identified.
Consequently, Sutcliffe's suggestions constitute a less specific subset of the
proposals of Carver et al (1987).

5.3.2. The Work of Carver, Clenshaw, Myles and Barber (1987)

Carver et al (1987) reported an informal attempt at integrating human factors with
the JSD method. The attempt was motivated by the following observations :

(1) inadequately specified systems were extremely difficult to modify;

124

(2) significant benefits would accrue from earlier and closer collaboration
between human factors designers and software engineers. Thus, the

problems observed in (a) above may be obviated.

Their observations derive essentially from experiences of design projects
commissioned by the Ministry of Defence, e.g. experiences on the Divisional
Intelligence (G2) All Sources Cell project during military exercises ‘Crested Eagle'
and 'Lionheart'. The following objectives to provide human factors support for the
JSD method were thus defined :

(a) to improve the usability of the JSD method by enhancing existing
procedures;

(b) to extend the design coverage of the JSD method to include the
specification of the human-computer interface;

(c) to explore the possibility of documenting the design process in machine

readable form.

In respect of objective (a) above, two proposals were made, namely :

(i) the procedure of extracting nouns and verbs from interview transcripts to
identify candidate entities and actions respectively should be modified.
Carver et al (1987) noted that the current procedure of constructing and
refining independent lists of nouns and verbs resulted in the loss of useful
information since verbs were extracted out of context. Thus, they proposed
that candidate actions should be collated by listing events in terms of their
verbs, subjects and objects. In this way, a list of entities and actions could
be extracted more effectively;

(ii) requirements definition should be represented explicitly prior to the
modelling stage of the JSD method. Specifically, the information elicited
from interviews and existing documentation should adequately support : the
formulation of user needs statements; the identification of any hardware
constraints; the definition of a requirements statement on the types of

facilities that should be supported by the system.

125

These proposals were targeted at enhancing procedures of the existing JSD
method. In contrast, objective (b) above is targeted at extending the design scope
of the method. For instance, its scope could be extended to include project
selection, cost and benefit analysis, project planning and management, and user
interface specification. Due to resource constraints, Carver et al (1987) focused on
an extension of JSD to include user interface specification. In this respect, they

suggested the following :

(1) JSD specifications during the initial model stage should explicitly address
human-computer interaction. In particular, it was noted that preliminary
specifications of the input sub-system should be linked to user interface
design since the former interposes between the real world and the JSD
model. Thus, screen display entities that intervene between the JSD model
and the real world (via the user) may be defined (see Figures 5-7 and 5-8).
Interactive facilities supporting the processes and connections associated
with the display entities are then detailed in the information function stage.

In this way, a list of on-line interactions with the facilities may be linked to

Figure 5-7 : JSD Initial Model Extended to Include a Human-
Computer Interaction Layer (Carver et al, 1987)

Message G2
Stream Co-ordinator

—»| Message-1 Item-1 Recard-1
) }
N\

126

Figure 5-8 : Screen Layout Description Corresponding to the
Extended JSD Initial Model in Figure 5-7

. Record or
Map window quene window
. o
Message window { Item area '

specific actions of the JSD model. It should be noted that such linkages
would not always comprise a one-to-one relationship. Display design is
then undertaken based on the described interactions;

(i1) task and goal analysis should be recruited to the method to clarify the
purpose of the computer system and the functional support it should provide

in respect of the user's task.

To address the above concerns, Carver and Cameron (1987) suggested the
following high level procedures for user interface specification in the extended JSD
method : |

(i) build the JSD model;

(ii) identify functions in the network phase. A basic set of inputs (one for
each action and enquiry) is thus defined;

(iii) associate the inputs with users' tasks;

(iv) define the interactions required for each input, and express the
interactions as a combination of actions on the user interface;

(v) introduce further functions to support the required interaction and the
users' task;

(vi) specify off-line events to complete the description of the users' task.

127

The final objective of Carver et al (1987) was to document the user interface
specifications in a machine readable form. In this respect, it was observed initially
that the JSD structured diagram notation could not describe events that are ordered
unpredictably; e.g. multiple events that occur haphazardly; and multi-tasking with
no pattern of controlling each of the ongoing processes. However, such problems
were resolved by extending the constructs of the JSD notation, e.g. to include the
description of concurrent events. Thus, it was demonstrated that the notation
constitutes a powerful language for task description and user-computer dialogue
specification. Furthermore, existing computer tools such as Program Development
Facility (PDF), MacDraw™ and FileVision™ may be recruited to support design
documentation. Consequently, Carver et al (1987) reported that machine readable

documentation was achieved.

To summarise, the work of Carver et al (1987) highlighted the following :

(a) the JSD method is defined sufficiently to support an intersection of its
design concerns with those of human factors design (Carver et al, 1987);

(b) the JSD method encourages user centered design since it emphasises real
world modelling. Thus, its design approach is compatible with human
factors design (Carver, 1988);

(c) the JSD structured diagram notation constitutes a common language for
describing Human Factors and Software Engineering design. Thus, inter-

disciplinary communication is facilitated (Carver and Cameron, 1987).

In conclusion, the work of Carver et al (1987) may be considered the precursor of
the present research (see Chapter Seven, and Chapters Nine to Eleven).27 To
extend their work, the objectives of the present research would include the

following :

(i) to derive a more complete and explicit scope and process of human

factors design;

27 To be more specific, their observations culminated in the initiation and sponsorship of the

present research.

128

(ii) to identify a more complete intersection between human factors design
and the JSD method on the basis of (i) above;

(iii) to construct a structured human factors method that complements the
JSD method;

(iv) to integrate the human factors method with the JSD method.

Since the scope of human factors design is extensive (see Chapter 4, sub-section

4.3), only a subset of the concerns derived in (i) above can be addressed. Thus, the

final scope of the present research is re-defined in the next Chapter.

129

PART III :

On Human Factors Integration with the
Jackson System Development
Method

130

CONTENTS

Chapter Six : General Research Concerns for Integrating
Human Factors with the Jackson System Development Method...... 132
6.1. Choice of the Jackson System Development Method
and other Constraints on the Present Research......cceeeeeecrnncnnnes 132
6.2. An Overview of the Jackson System Development Method......... 137
6.3. Identifying the Human Factors Design Support
Required by the Jackson System Development Method.............. 140
6.4. Research Requirements for Human Factors Integration
with the Jackson System Development Method......cceeeeeceancenens 142
6.5. An Instantiation of the General Research Plan for Integrating

Human Factors with the Jackson System Development Method....145

Chapter Seven : Research Milestones in Integrating Human

Factors with the Jackson System Development Method................. 155

7.1.

An Overview of the Research into Human Factors

Integration with the Jackson System Development method.......... 155

7.1.1. A Review of Activities for Specifying Stage-Wise

Design Notations and Documentation Schemes of
the JSD*(HF) Method.....cccocoivinneereinnieerneernneceneces 157

7.1.2. A Review of Activities for Specifying Stage-Wise

Design Scope and Processes of the JSD*(HF) Method......164

7.1.3. A Review of Activities for Specifying Inter-Dependencies

between Design Streams of the JSD* Method................. 180

131

Chapter Six : General Research Concerns for
Integrating Human Factors with the Jackson
System Development Method

".....Thought is the child of action....."
Disraeli, 1826, Vivian Grey.

This Chapter establishes the context of the research activities described in Chapter

Seven. To this end, its objectives are as follows :

(2) to set out the constraints of the present research, and expose the rationale
for integrating human factors with the Jackson System Development (JSD)
method;

(b) to identify the human factors design support required by the JSD
method;

(c) to define the research scope and requirements of (a) and (b) above. For
instance, the constraints of the present research essentially limits its scope to
a sub-set of the human factors design concerns identified in Chapters Four
and Five;

(d) to instantiate the general research plan for integrating human factors with
SADMs (Chapter Three) with respect to the present research context, i.e.
the instantiated plan should address the requirements set out in (c) above.

An expanded account of these objectives follows.

6.1. Choice of the Jackson System Development Method and other
Constraints on the Present Research

Two criteria dictated the choice of the Jackson System Development (JSD) method

for the present research; namely the appropriateness of the method and the

preference of the research sponsor. Since the latter was influenced by the former,

132

subsequent discussions on the choice of the JSD method are focused on its

beneficial characteristics.

In addition to the benefits of SADMs in general (see Chapter Two; Lim et al, in
press), the JSD method is also beneficial for the following reasons :

(a) JSD is a well established SADM and is among the more popular
methods for developing real-time systems (Morrison, 1988; Wilson et al,
1989);

(b) JSD specifications are in principle directly executable (Carver and
Cameron, 1987). Thus, a system produced using JSD may be viewed as a
simulation of the relevant parts of the real world and its functions provide
outputs of the simulation (Carver, Clenshaw et al, 1987). An emphasis on
simulating the real world may provide a means for accommodating an
appropriate user's model of the system (see (c) below);

(c) JSD starts by modelling the proposed computer system in terms of
objects and events in the real world of the user (this may be contrasted with
SSADM which begins by data flow description). Since JSD specifications
are developed from an understanding of the user's world, they intersect
with user requirements capture, task description and analysis (see Chapter
Five, sub-section 5.3). These intersections facilitate the integration of
human factors with the JSD method;

(d) JSD has been shown to complement object-oriented methods and is
itself object-oriented (Birchenough and Cameron, 1989; Cameron, 1987).
Thus, the methodological framework of JSD could potentially contribute to
the design of object-oriented user interfaces. Since such user interfaces are
reportedly superior in usability characteristics (Selby and Long, 1991) and
have made considerable inroads in the personal computer market (e.g.
Apple Macintosh), it would be pertinent to consider the integration of
human factors with an object-oriented method such as JSD;

(e) the well developed methodological framework of JSD facilitates the
location of human factors inputs. For instance, its input sub-system has
been used as a framework for locating user interface design (Sutcliffe,
1988b; Carver et al, 1987). In addition, general design concepts of JSD

133

may be recruited. For instance :

(1) its input sub-system specification provides a taxonomy of input
errors, e.g. context error, simple input error, etc.; |

(2) its information functions address design semantics, €.g. system
outputs are contextualised to the requirements of the JSD model;

(3) its categories of information flow (e.g. state vector inspection and
data-streams) and its assignment of time grain markers identify
important aspects of information specification, i.e. content; direction

of flow; timing, currency and duration of display; etc.

(f) JSD structured diagram notation has been shown to be suitable for
precise description of users' tasks (Carver, 1988; Carver and Cameron,
1987; Sutcliffe, 1988a). Specifically, the notation offers well developed
constructs which describe sequential, selection, iteration, concurrent, inter-
locking, backtracking and uncertain events (see Figure 6-1; Carver and
Cameron, 1987). JSD notation has also been shown to be a graphical
equivalent of BNF (Boldyreff, 1986). This equivalence with an established
notation for describing human-computer interaction, not only indicates the
capability of the JSD notation for similar description, but additional benefits
owing to its graphical nature may also accrue. For instance, the notation has
been reported to be easily understood by users (Carver, 1988; Finkelstein
and Potts, 1985). Thus, user feedback elicitation is facilitated. Other
benefits which accrue from recruiting the notation for human factors

descriptions are as follows :

(1) the poor specificity of current human factors descriptions would
improve since the notation is more precise;

(2) the use of a common notation would obviate communication
problems between software engineers and human factors designers.
Since the primary objective of integrating human factors with SADMs
is to ensure early and continued human factors involvement (i.e. via
collaborative design), effective and unambiguous communication

between designers of the two disciplines is essential. A common

134

language is therefore crucial. Since existing JSD notations also
support human factors descriptions (see above), notational integration
is facilitated;

(3) formal human factors specification may accrue in the future since
JSD notations could potentially map onto the notations of formal
methods. Such a translation has been demonstrated by Sridhar and

Hoare (1985) for CSP (Communicating Sequential Processes).

Figure 6-1 : Basic Constructs of JSD Structured Diagram Notation

Structured Diagram Structured Text
A A s;;q Sequence :
Cf A consists of one B, followed
T } — A]e)n’ 4 by one C, followed by one D.
B c D A is a sequence of B, C, and D.
A A iter Iteration :
B; A consists of zero or more
1 A end whole Bs.
B A is an iteration of B.
A select Selection :
A B;
A alt A consists of either one B, or
;] . G one C, or one D.
0 o 0 A alt
B c D D; A is a selection of B, C, or D.
A end

These desirable characteristics of JSD exerted a strong influence on its choice for
the current research. The choice is also appropriate since no research has been
commissioned specifically to investigafe the integration of human factors with the
method. Previous insights on the potential of the integration were gleaned from
opportunistic and incidental observations during system design and consultancy

projects. In other words, previous efforts were not directed at method development.

135

A contrary situation applies for SSADM (see Chapter Five, Sub-sections 5.2 and
5.3).

Present research constraints may be attributed generally to the project time-frame
and the requirements of the research sponsor. Significant constraints comprise the

following :

(i) human factors integration should not unduly disrupt current JSD
practices. Specifically, the integrity of JSD should be preserved and its
notations should be exploited for human factors descriptions (see (f)
above). It should be noted that these constraints need not necessarily affect
the research adversely. On the contrary, the integration of a human factors
method around an essentially unchanged JSD method implies that human
factors inputs are located at design reference points and practices which are
familiar to software engineers. The assimilation of human factors inputs is
thus facilitated. Improved uptake is therefore expected to accrue;

(ii) the scope of the current research is limited to the derivation of an
integrated method. Specifically, the research scope is confined to case-study
demonstrations of the method as opposed to its validation in the field. The
research is thus focused on establishing the viability and capability of the
method as opposed to validating its efficacy for ensuring design artifacts of
superior usability and functionality.] Again, it does not necessarily imply

that the research would be affected adversely. The reasons are as follows.

Firstly, a superior design artifact could be expected by improving the uptake
of human factors inputs. Such improvements are supported by the

integrated method via its orderly and inter-related design processes.

1 Direct validation of method efficacy would require exhaustive field studies that involve
controlling for design team composition and interactions; the competence of individual designers;
characteristics of the design problem; etc. These controls demand resources that could not be
accommodated by the present research, i.e. the project resources and time-frame are already taxed
heavily by method derivation and demonstration concerns. Thus, method validation had to be

deferred to future research.

136

Secondly, by recruiting established research and design practices to the
construction of an integrated method, it would be reasonable to expect that
the method would support the specification of better design artefacts (see
Chapter Three, Sub-section 3.2). Further implications of these constraints
are discussed in Chapter Twelve;

(iii) the scope of the current research (and hence the integrated method) is
limited to primary human factors design concerns. Thus, some design
concerns will be referenced but not addressed in detail, e.g. organisational
and job design; training and personnel selection; and late evaluation (already
well-established). As dictated by the project time-frame, the research
priority is a breadth-wise integration of human factors and JSD (spanning
requirements definition and display design), followed by a depth-wise
account of primary human factors design concerns;

(iv) the human factors component of the integrated method (i.e. the
structured human factors method) should be targeted at a human factors
designer with a working knowledge of JSD. This constraint satisfied the

requirements of the research sponsor and is consistent with (iii) above.

In the following sub-sections, general research considerations for human factors

integration with SADMs (comprising the scope, requirements and plan of research)

are instantiated for the present research concerning the JSD method.

6.2. An Overview of the Jackson System Development Method

JSD involves designing the technical aspects of software systems2 based on an

event model. Thus, the method is well suited for designing real-time systems
(Renold, 1989).

JSD comprises three main stages, namely Modelling, Network and Implementation

Stages (although the original version of JSD is presented in six stages, other

2 Although JSD does not include specialised techniques such as physical database design and

human factors, it highlights where they should be accommodated in the framework of the method.

137

methodological characteristics remain essentially unchanged). Each of these stages
are defined by explicit design activities and products to guide the user of the

method. The scope of the stages are as follows :

(a) Modelling Stage : the main purpose of this stage is to capture the subject
matter of the target system. Thus, an abstract model of the users' world is
defined using a set of entities and their actions. A JSD entity must exist in
the real world and is either a person, organisation, or object that performs
and/or suffers a relevant sequence of actions. A JSD action is an atomic
event in the real world (with specific start- and end-points), about which the
system must produce or use information. The time ordering of actions of
each entity is described using one or more structured diagrams (see Figure
6-1). Each model process communicates with its real world process via
inputs associated with its actions. The model is thus realised in the computer
as a set of sequential processes. Since model processes define the range of
functions that a system can support, they are differentiated from function
processes which are concerned only with the production of system outputs
(see (b) below);

(b) Network Stage : this stage is concerned with the functional definition of
the target system. Specifically, function processes (comprising input sub-
systems, information processes and interactive functions) are specified and
connected by information flows to model processes defined in the preceding
stage. Thus, a network of concurrent function and model processes is
derived. The timing of their information flows and outputs, and linkages
with external world processes are also defined. Figure 6-2 shows a
schematic representation of JSD specifications. At this juncture, it is
pertinent to note that in JSD, design specification concerns are separated
from implementation concerns (see (c) below);

(c) Implementation Stage : the purpose of this stage is to transform JSD
specifications into sequential programs that may be executed more
efficiently by the target hardware. For instance, its concerns include the
scheduling of processes, and data storage and access. Specifically, a set of

one or more processes are grouped and delegated to a physical or virtual

138

processor. This transformation of processes would not affect the external

behaviour of the system. In other words, the rules of transformation ensure

that JSD specifications are preserved during implementation (see Zave,

1984; Renold, 1989). In summary, the characteristics of JSD

implementation are as follows :

(1) it is a process that is well regulated (see Zave, 1984) and

mechanistic to the extent that most of its transformations could be

automated (Renold, 1989). Thus, human factors input during JSD
implementation is limited; 3

(2) it is different from other instances of implementation since it

involves a transformation of the specification with respect to the

targeted hardware, and not the physical construction of the system.

Figure 6-2 : A Schematic Representation of JSD Specifications

(Renold, 1989)

system inputs

Input
Processes
System actions .
I v ‘correct actions
Interactive Model Real World
Functions Processes
Information
Functions

> system outputs

3 Specifically, human factors inputs are confined to the specification of additional user feedback

requirements (e.g. when a particular JSD implementation results in longer than expected transient

response time), and an assessment of implications associated with batch and on-line

implementation options (e.g. relating user task requirements to computer information updates).

139

Since software realisation is beyond the scope of legitimate human
factors concerns, JSD implementation would not be addressed by the

present research, i.e. the research focus is on design specification.

In summary, JSD involves understanding the problem domain before the
specification of a design solution. Thus, it emphasises the derivation of a real world
model before functional specification, i.e. to define respectively what the system is
about before deciding what the system has to do. In other words, system modelling
is separated from functional definition. Similarly, design specification is separated
from implementation, i.e. what the system has to do is decoupled from how it may
be achieved.

This account completes a brief overview of JSD. For a more complete description
of the method, the reader is referred to Jackson (1983) and Cameron (1989).

6.3. Identifying the Human Factors Design Support Required by the
Jackson System Development Method

Presently, the list of general human factors deficiencies of existing SADMs reported
by Anderson (1988) is considered in the context of JSD.

Anderson's observations generally apply to JSD with the following exceptions :

(a) point 4 (Table 6-1) does not apply to JSD since it has been shown to be
compatible with object-oriented design approaches (see sub-section 6.1);

(b) point 5 (Table 6-1) may not be entirely true since it was reported that the
basic constructs of the JSD structured diagram notation are easily
assimilated by users (see sub-section 6.1). However, the use of prototyping
should be encouraged for other reasons (see later);

(c) point 6 (Table 6-1) interacts with two demands of a SADM; namely in-
depth analysis and specification before implementation; and comprehensive
documentation of stage-wise design products. Firstly, it may be argued that

the former requirement would reduce the time available for design iterations.

140

However, this disadvantage should be offset against benefits that accrue
from a thorough design analysis phase, e.g. faster convergence to a design
solution (see Chapter Two, Sub-section 2.2). Secondly, the emphasis on
comprehensive design documentation may encourage a reluctance towards
design modifications and iterations. The assertion is based on observations
made during the initial introduction of SADMs. With the emergence of
CASE tools (e.g. PDF™ and SpeedBuilder™ for the JSD method) the

assertion no longer applies.

Table 6-1 : Human Factors Deficiencies of Existing Structured
Analysis and Design Methods (after Anderson, 1988)

1. SADMs may not provide procedures for eliciting the operational requirements of the
system, e.g. information on users roles, tasks, etc.

2.SADMs may not support function allocation between user and computer. The tendency
is to computerise functions that can be automated and leave the remainder to the user.

3. SADMs provide no indication of how the coherence of specifications (e.g.
appropriateness of proposed computerised functions) and their implementation may be
assessed with respect to the user's task.

4. Some SADMs do not support object-oriented user interface design.

5. The notation of SADMs may be too difficult. Thus, in the absence of prototyping,
user feedback elicitation may be supported poorly.

6. SADMs may not encourage iterative design.
7. The scope of SADMs does not adequately address the human-computer dialogue.

8. Physical dialogue design is addressed poorly by SADMs, e.g. there is no reference to
style kits and screen design is left to common sense.

Granted these exceptions, human factors deficiencies of the JSD method may be
inferred from the remainder of Anderson's list and the human factors design review
reported in Chapter Four. Thus, it was concluded that JSD is essentially deficient in

two areas of human factors design, namely requirements and task analysis; and user

141

interface design. Similar conclusions were also reported by Finkelstein and Potts
(1985); McNeile (1986); Carver, Clenshaw et al (1987); Carver and Cameron
(1987); Carver (1988); Sutcliffe (1988b, 1989); Renold (1989); and Sutcliffe and
Wang (1991).

These deficiencies of JSD thus define the scope of human factors design that should
be addressed by the present research.# A suitable structured human factors
method may then be developed for integration with JSD. The requirements

corresponding to the present research scope is described in the next sub-section.

6.4. Research Requirements for Human Factors Integration with the

Jackson System Development Method

It was stated in earlier Chapters that the scope of the present research comprises the
integration of human factors design with a chosen SADM. Thus, human factors
integration would involve an extension of the design scope of the SADM, e.g. to
encompass user interface design. The undertaking should be contrasted against

attempts at enhancing the practice of the SADM.

Consequently, in the context of JSD, the present research is not concerned with
making JSD more usable (e.g. by enhancing existing JSD procedures for deriving
model and function processes’), but with extending JSD to include human
factors design concerns. Thus, a structured human factors method is developed and
integrated with the JSD method. Specifically, the deficiencies of JSD are rectified
by incorporating requirements analysis, task analysis and user interface design in
the method. The importance of these rectifications are highlighted aptly by the

4 As stated in sub-section 6.1, some human factors concerns would be excluded from the present
research scope due to project constraints, e.g. training and personnel selection.

5 Efforts in this direction have been made by Carver, Clenshaw et al (1987) (see Chapter Five);
and Renold (1989).

142

following statements :

"Interfaces cannot be developed as ‘add-on’ parts of an interactive system, with their
development carried out in isolation from the development of the rest of the application
system. Thus, an important concept......... is a wholistic approach to interactive system
development. Such an approach provides a comprehensive methodology for software
design, emphasizing interface development as an integral and equal part of the
process........ A wholistic system development enlarges the definition of a ‘system’ to
include both humans and computers......... existing approaches to interface
design......... are often ad hoc, unstructured and without cohesion......... results in user
interface specifications which appear to comprise random, unconnected messages and

displays, and user actions."
Hartson and Hix (1988)

..... it is important to see this task (interface design) in the wider context of system

”

development -- it cannot take place successfully in a vacuum.......

Newman (1988)

To this end, it was stated earlier that the structured human factors method should

satisfy the following requirements :

(a) it should facilitate the design of a superior design artifact. In the case of a
structured method, a superior design artifact is ensured by encouraging an
orderly design process via a set of well defined design deliverables. Thus,
this requirement is subsumed by requirement (b) below;

(b) it should support the needs of human factors designers for user interface
description and specification. Its human factors design concerns should also
be sufficiently explicit to inform software engineers and users. These
requirements entail the specification of appropriate stage-wise design scope,
process and notation for the method. A review of corresponding

requirements implicated by these methodological concerns follows.

Firstly, the design scope of the structured human factors method should meet the

following requirements :
(a) it should account for human factors design concerns during system

143

specification, i.e. appropriate consideration of environment, device, task,
and user characteristics. The manner in which such concerns are addressed
during system design should be examined to identify stage-wise
intersections between the scope of human factors design and the JSD
method (see Chapter 4). Design inter-dependencies are similarly identified
to support the specification of cdntact points and information exchanges;

(b) it should compensate for the incompleteness of current human factors
knowledge, e.g. by emphasising prototyping and user testing as necessary
activities of the method. Thus, prototyping may be necessary to validate
design assumptions, etc. As the structured method involves the derivation
of stage-wise design products, prototyping and user testing activities could

be undertaken at various stages of design.

Secondly, the design process of the structured human factors method should meet

the following requirements :

(a) it should uphold design principles embedded in JSD, namely modelling
before functional design, and the separation of design concerns, e.g.
separating specification from implementation. These principles may be
exemplified by setting requirements analysis and task modelling before
function allocation, and the definition of separate streams for Human
Factors and Software Engineering design;

(b) it should facilitate early and continued human factors involvement
throughout system design, i.e. the stages of the method should support the
derivation of a functional and usable design;

(c) it should support various design scenarios, e.g. variant design, novel
design and the computerisation of manual systems;

(d) its procedures need to be comprehensive enough for application by
human factors designers with a working knowledge of JSD. However, they
should not be too rigid that design creativity is stifled. Appropriate existing
design techniques should also be recruited.

Thirdly, the design notation of the structured human factors method should meet

144

the following requirements :

(a) it should be sufficiently powerful to describe the subject matter and
rationale of each design stage. In this respect, Frohlich and Luff (1989)
suggested that the information to be described during conceptual design
should include the following :

(i) the design problem as revealed by requirements and task analysis;
(i) promising design solutions;
(iii) the implications of each solution with respect to the user's model

of the system.

(b) its documentation schemes should adequately record stage-wise design
outputs entailed by the method. The records should support an assessment
of alternative design solutions;

(c) it should recruit existing JSD notations as much as possible. In addition,
although existing notations may be extended or modified for human factors
use, the change should be minimal. In this way, the benefits of a common

notation may be realised.
The research agenda is thus determined by these methodological requirements.
Work activities implicated by the agenda are reported in Chapter Seven.
6.5. An Instantiation of the General Research Plan for Integrating

Human Factors with the Jackson System Development Method

In Chapter Three and the preceding sub-section, the requirements for human factors
integration with SADMs were defined, namely :

(a) the stage-wise design scope and process of the SADM and structured

human factors method should be inter-woven appropriately;

(b) obligatory design inter-dependencies between inter-disciplinary design

145

streams should be specified;
(c) existing SADM notations should be exploited for describing human

factors design products.

It follows from these requirements that appropriate consideration should be given to
the characteristics of the chosen SADM during the construction of a structured
human factors method. Research activities entailed by these requirements are
presently exemplified for the JSD method.

At a high level, the development and integration of a structured human factors
method with JSD may be conceptualised as comprising the following sequential

activities® :

(a) define a set of design stages and products for a structured human factors
method that augments the deficiencies of the JSD method (identified in sub-
section 6.3). The scope of human factors support is thus constrained;

(b1) define stage-wise design processes and procedures for deriving
products of successive design stages specified in (a) above.

(b2) extend JSD notations to include the description of human factors
design products specified in (a) above. Since structured design, by
definition, implies design derivation and description via a set of stage-wise
processes and products respectively, the outputs of (a), (bl) and (b2)
constitute a structured human factors method (henceforth referred to as
JSD*(HE));

(c) define obligatory contact points between JSD*(HF) and JSD methods;
i.e. design inter-dependencies are specified. The two component methods
are thus integrated. The JSD and integrated methods are henceforth referred
to respectively as JSD* and JSD*(SE) (to indicate that additional design
inter-dependencies with JSD*(HF) have been introduced to existing JSD).

At this juncture, specific research constraints may be introduced (e.g. to match

case-study tests appropriately to available resources for research), and the activities

6 Including iterations within (a) to (c) as necessary.

146

are then operationalised into a research plan. For instance, it can be seen from
Figure 6-3 that the current research plan essentially comprises cycles of method
specification followed by implementation in case-study tests. A more detailed

account of the plan follows.

As indicated in (a) to (b2) above, the research is initiated by the specification of a
preliminary version of the JSD*(HF) method. The method may be constructed by
assessing the stage-wise scope, process and notation of the JSD method to
determine the human factors design support required (see sub-section 6.3). The
assessment should also expose the potential for recruiting particular aspects of the
method, e.g. exploiting JSD structured diagram notation for task description (see
Chapter Five, sub-section 5.3.2). On the basis of the assessments, a preliminary
version of the JSD*(HF) method (and hence an early version of JSD*) may be
specified in two ways. Firstly, a version may be constructed independently from
existing human factors methods. The efficacy of the derived JSD*(HF) method in
complementing the JSD method may then be validated in the field.

Secondly, existing human factors methods and design practices may be surveyed
and then recruited to the construction of a JSD*(HF) method. This approach offers
greater assurances that the resulting method would support the specification of a
superior design artefact, i.e. substantiated conceptions (in the form of established
methods and design practices) is more likely to have conceptual and ecological
validity.7 Since the approach builds upon existing knowledge, the following
additional benefits may accrue :

(a) quicker convergence to an acceptable JSD*(HF) method. Thus, less
iterative testing of method versions is necessary. The early derivation of a
JSD*(HF) method would permit more case-study tests to be undertaken

7 This assertion should be tempered by other factors, e.g. the composition and abilities of
design team members. In other words, it is acknowledged that a method alone cannot guarantee
superior design. Thus, the efficacy of a method needs to be validated in the field regardless of the
research approach adopted.

147

Figure 6-3 :
Human Factors Integration with the JSD Method

Assess HF Support
Required by JSD '

An Instantiation of the General Research

Plan for

Small case-
Study Tests

Need More
Information ?

Review Design
Literature

Formulate Preliminary
Version of JSD*(HF) Method

* apply SI1, S*

Test JSD*(HF) Method by
Backwards Engineering

<

S*

apply

ﬁ

—

\ & AN

v

Case-Study Tests on Stage-
Wise Scope and Process

Case-Study Test on Stage-
Wise Notations

Se Acceptable ?
NO

Acceptable ?

Re-formulate Stage-Wise
Scope and Process

apply S1, S2

Cycles ?
NO

v N apply S*

Re-formulate Stage-Wise
Notation

Backwards Engineering

YES
Forwards Engineering

Formalise Design
Inter-Dependencies
Between JSD*(SE)

and JSD*(HF) Methods

Test JISD*

Method by
Forwards

Engineering

Note

S*, S1 & S2 are different research strategies.

Repeat
Forwards Engineering Required on JSD*
Test 7 Method ?

S*: Super-ordinate strategy of 'specify followed by implement or test'.
S1: Strategy of 'backwards before forwards engineering'.

S2: Strategy of 'test using case-studies of increasing size and complexity’.

148

within the project time-frame. Consequently, the derived method is expected
to be more robust;

(b) positive transfer of learning in respect of the JSD*(HF) method since
users of existing human factors methods would already be familiar with the
parts recruited from the latter.

For these reasons, the second research approach is adopted as shown in Figure 6-3.

An account of the approach follows.

It was observed in sub-section 6.3 that user interface design is not included
explicitly in the JSD method, and should hence be supported by the JSD*(HF)
method that is to be developed. Thus, sequential research activities for integrating
human factors with the JSD method would comprise the following :

(a) a literature search of existing user interface design techniques;

(b) assessment and recruitment of promising design techniques in (a) above
(with modifications and extensions as necessary to meet the requirements of
a structured method) to support the construction of a structured user
interface design technique for the JSD*(HF) method;

(c) assessment and exploitation of JSD notations (with modifications and
extensions as necessary) for describing stage-wise products of structured
user interface design in the JSD*(HF) method.

The above sequence of activities is repeated for all areas of human factors design
support required by the JSD method, e.g. task analysis. A reasonably complete
version of the JSD*(HF) method is thus derived incrementally and subjected to
case-study tests. Specifically, parallel case-study design tests are conducted to
assess the utility and capability of the following methodological characteristics of
the JSD*(HF) method :

(a) notations and documentation schemes for describing stage-wise human

factors design products;

(b) design processes for supporting the derivation and transformation of

149

stage-wise human factors design products. By adopting simple case-study
systems (i.e. systems with well defined start- and end-points) for initial
design tests, 'missing' design stages may be backwards engineered (see

later), e.g. to ensure that JSD*(HF) design transformations are manageable.

In this way, progressively improved and detailed versions of the JSD*(HF)
method are constructed and tested iteratively on further case-study systems. When a
satisfactory version of the JSD*(HF) method is derived, forwards engineering tests
may be applied. Following an acceptable outcome of the tests, the integration of
JSD*(HF) and JSD methods is then made explicit as follows :

(a) stage-wise concerns of the JSD*(HF) method are inter-woven with
appropriate design stages of the JSD method;

(b) obligatory design inter-dcpendcncie58 between JSD*(HF) and
JSD*(SE) methods are specified, e.g. obligatory information exchanges.

Thus, a preliminary version of the JSD* method is derived. The relationship
between Software Engineering and Human Factors design entailed by the JSD*
method is then subjected to further iterations of forwards engineering tests.
Questions of scale are also addressed at this stage of the research by using larger
case-study systems in the design tests. An acceptable JSD* method is thus derived.

At this juncture, case-study assessments that support method development should
be elaborated. Generally, assessments on the adequacy of a method comprise

subjective judgements in respect of the following :

(a) its support for design derivation, i.e. whether the stage-wise scope and

process of the method represent manageable steps for design specification.

8 Situation-specific and informal exchanges between design stages of the component methods
need not be described explicitly, i.e. only obligatory contacts points should be made explicit. This
assertion is consistent with the requirement that a method should be generally applicable across

design domains and project circumstances.

150

Specifically, the assessment should determine whether :

(1) the scope of the proposed method is reasonably complete. For
instance, its design support should span requirements to specification;

(ii) activities within and between design stages are manageably and
sensibly organised to support design reasoning. Specifically, design
perspectives which vary with the system design cycle should be
supported adequately by the stage-wise scope and process of the
proposed method, i.e. assessment of the products and procedures of
the method; the coherence of their grouping into design stages, and the

sequencing of the stages.

(b) its support for design description, specification and communication, i.e.
whether the proposed notations and documentation schemes are sufficiently
specific and comprehensive to facilitate inter-designer and designer-user

discussions. In particular, the proposed notations should be :

(i) sufficiently powerful to support the description of both intermediate
and final human factors design products;

(ii) sufficiently specific to support unambiguous human factors design
specification.

Similarly, the proposed documentation schemes should ensure an adequate
record of major design decisions and rationale for all stage-wise design
products of the method.

(c) its support for design co-ordination and management between JSD*(HF)
and JSD*(SE) components of the JSD* method, i.e. whether specified

design inter-dependencies are adequate to ensure efficient design.
On the basis of these assessments, appropriate upgrades to a particular version of

the method may be inferred. Thus, progressively refined versions of the method are
derived, culminating in an acceptable version of the JSD* method.

151

To address systematically the above concerns during the construction of JSD*(HF)
and JSD* methods, particular research strategies were suggested in Chapter Three
(sub-section 3.3). Presently, three research strategies applied during the integration
of human factors with the JSD method are described.

The super-ordinate strategy (S*) comprises the iteration of method specification
followed by its implementation in case-study tests. The version of JSD*(HF) is
upgraded between successive specification-and-implementation cycles (see Figure

6-3). Interactions between this and other strategies are described later.

A second research strategy (sub-ordinate to S*) is backwards engineering? before
forwards engineering (S1). The application of this strategy is shown schematically
in Figure 6-3. Essentially, the strategy involves specifying the derivative design
capabilities of a method via a sequence comprising backwards and forwards
engineering processes (see Chapter Three, sub-section 3.3). Thus, the research is
focused initially on backwards engineering the stage-wise products, processes and
notations of the JSD*(HF) method.

Following the derivation of a preliminary version of the method, its notations and
design processes may be developed concurrently if desired (see Figure 6-3). For
instance, notational development could begin with an assessment of the capability
of existing JSD notations for describing stage-wise design products entailed by the
JSD*(HF) method. Identified notational deficiencies may be rectified by recruiting
suitable notations from existing human factors methods. In particular, the notations
of methods that have already been ported to the construction of the JSD*(HF)
method should be examined and extended if necessary. To ascertain whether the
deficiencies observed previously have been rectified, the descriptive capability of
the notations is re-assessed using the same case-study system. Following a positive

assessment, further notational tests on other case-study

9 Reverse or backwards engineering is used widely as a design recovery technique to decipher the
design process for a finished product, i.e. to derive a post-hoc understanding of how a particular
artefact is designed. The backwards engineered design process is then tested under forwards

engineering ('normal’ design) to assess its ‘goodness of fit' (see Chikofsky and Cross II, 1990).
152

systems may then be introduced.

A parallel iteration of similar specification-and-assessment procedures applies for
developing the design process of the JSD*(HF) method. When a reasonable
version of the method is derived, forwards engineering tests may then be applied to
assess its capability for supporting design derivation.

It should be noted, at this juncture, that strategy S1 is facilitated by a further
strategy (namely strategy S2). The latter strategy involves testing various versions
of the JSD*(HF) method using case-study systems of increasing size and
complexity. In other words, strategy S2 imposes a range of test demands on
successive versions of the method derived using strategy S1. For instance, small
and simple case-study systems would be prescribed by strategy S2 at earlier stages
of JSD*(HF) development; and on initial application of forward engineering tests
on JSD*(HF) and JSD* methods. These systems would be suitable test-beds
because :

(a) at early stages of JSD*(HF) development, the well defined design start-
point (design requirements) and end-point (design specification) of such
systems would facilitate the construction of a preliminary version of the
method. Specifically, the scope, process and notation of intervening design
stages may be backwards engineered more easily;

(b) during the initial application of forward engineering tests, simple
systems permit the scale and cbmplexity of the case-study domain to be
decoupled from the concerns of method development. In this way, the
complexities of the research may be managed better, e.g. method tests using
case-study systems of greater size and complexity are introduced only after
an acceptable version of the method is derived.

Thus, strategy S2 generally facilitates method development by separating issues
concerning method development from those concerning its capability for supporting
various design scenarios. The strategy involves addressing the latter set of issues

incrementally at major stages of method development, e.g. when moving from

153

backwards to forwards engineering tests and from JSD*(HF) to JSD*.

In summary, the scope of strategy S1 includes the derivation and testing of various
versions of the JSD*(HF) method. Initial versions of the method are generally
constructed using backwards engineering. Forwards engineering tests are then
introduced when a satisfactory version of the method is derived. Strategy S2
supports strategy S1 by prescribing simple case-study systems as test-beds during
the initial stages of method development. The use of larger and more complex case-
study systems are deferred until a satisfactory version of the method is derived.
Progressively advanced versions of the method are thus specified and tested
cyclically in accordance with the super-ordinate strategy, namely S*. The latter
strategy prescribes iterative cycles of method specification followed by their
implementation in case-study tests. On deriving an acceptable JSD*(HF) method,
design inter-dependencies with the JSD*(SE) method are then made explicit to
complete the integration of Human Factors and Software Engineering methods. The
resulting product constitutes the first version of the integrated method, i.e. JSD*.
Further forwards engineering tests are then applied on the integrated method in
accordance with strategy S1. During this phase of JSD* development, strategies S2
and S* are applied as before. Progressively advanced versions of the JSD* method
are thus generated and assessed, culminating in an acceptable version of the
method.

The above account completes an instantiation of the general research plan (proposed
in Chapter Three) with respect to the integration of human factors with the JSD
method. Subsequently, the instantiated research plan was implemented to support
the specification of JSD*(HF) and JSD* methods. The milestones of the

implemented plan are reviewed in the following chapter.

154

Chapter Seven : Research Highlights in
Integrating Human Factors with the Jackson
System Development Method

"Knowledge advances by steps, and not by leaps.”
Lord Macaulay, 1828, Edinburgh Review.

This chapter provides a historical account of the research activities undertaken for
the purpose of specifying and subsequently integrating a structured human factors
method with the JSD method. Since the project is extensive (43 reports were
written -- see Part VII for a list of working documents), it would be inappropriate
here for a complete account of the research to be reported. Consequently, an
appropriate selection leading to the final product of the research (i.e. the JSD*

method) is now presented.

7.1. An Overview of the Research into Human Factors Integration
with the Jackson System Development Method

Figure 7-1 summarises the activities of the present research. These activities derive
from the research plan described in Sub-section 6.5 (Chapter Six). It can be seen
from the Figure that following the specification of preliminary JSD*(HF) and JSD*
conceptions, three sets of research requirements (see Chapter Six) were addressed,

namely the specification of :

(a) stage-wise notational and documentation schemes;

(b) stage-wise scope, process and procedures;

(c) design inter-dependencies between JSD*(SE) and JSD*(HF)
components of the JSD* method.

These requirements were investigated over several research cycles involving
various case-study applications (see Table 7-1). Table 7-2 is a chronological profile

of the significant developments and reports of the research. A review of highlights

155

that shaped the research follows.

Figure 7-1

A Summary of Research Activities for Human Factors

Integration with the Jackson System Development Method

Assess HF
design support
required by JSD

Specify preliminary
conceptions of
JSD*(HF) and JSD*
1

Notations & Documentation Schemes = NDS
Scope, Process & Procedures = SPP

Design Inter-Dependencies = DID

Human Factors = HF

Recruit NDSs

Specify NDS of
from JSD & pecty

JSD*(HF)

Test NDS of
JSD*(HF) using
case-studies

| Select and plan
j case-study tests

Notation and
documentation
requirements

Refine NDS of
JSD*(HF)

Specify SPP of

Recruit SPPs |
from existing |

*(HF)
ISD HF methods |

Test SPP of Select and plan
case-study tests

Refine SPP of

JSD*(HF) method

Intersect SPPs of
JSD*(SE) and
%

Specify DIDs

between JSD*(SE) ;

and JSD*(HF)

Specify
JSD* method

156

inter-dependency
requirements

Examine SPP
of JSD*(SE)

Refine
JSD* method

Test JSD*
method using
case-studies

7.1.1. A Review of Activities for Specifying Stage-wise Design
Notations and Documentation Schemes of the JSD*(HF) Method

The first set of research requirements involved specifying and testing notations and

documentation schemes for the JSD*(HF) method. These requirements were

decoupled initially from those concerning the scope, process and procedures of a

method. Such a research scheme was supported by the recruitment of existing JSD

notations. In addition, the research scheme was facilitated by an early specification

of preliminary JSD*(HF) and JSD* conceptions, which was supported in turn by

the well reported human factors design requirements of the JSD method (see

Chapter Five, Sub-section 5.3). Consequently, the notational concerns at this stage

Table 7-1 :

Profile of Case-Study Applications Used in the Research

Xear

1987-1988

1988-1989

1989-1990

Case-Study _Applicati

MacDraw™ (Macintosh-based)
DisplayWrite™ (PC-based)

MacDraw™

Automatic Teller Machine

Library Management System

London Transport Ticketing Machine
WriteNow™ menus

IKBS Troubleshooting System

Digital Network Management System Simulator
Digital Network Management System
Recreation Facility Booking System

MicroSoft Disk Operating System™

Recreation Facility Booking System
Digital Network Management System
Home Energy Management System Prototype

Note : Applications highlighted in italics were case-studies used extensively for method

development. Other applications were recruited selectively to progress parts of
the method.

157

Table 7-2 :

Profile of Research Developments and Reports

Year
1987-1988

1988-1989

1989-1990

Research Developments ~ Yorking Document No,

** Setting project aims and objectives.
* * Brief review of Software Engineering
methods.
* * Initial examination of JSD structured
diagram notation and design process.
* * Initial study of existing human factors
contributions to user interface design.
** Defining methodological integration
and design terminologies.
* * Tnitial framework for achieving
methodological integration.
** Generating an initial conception of
human factors integration with JSD.
** Specifying case-study plans for the
research.
* * Initial work on the Digital Network
Management case-study.
** Specifying JSD* terminology,
stage-wise scope, process and notation.
** (Generating a detailed conception
of JSD*.
** Testing JSD* using the Recreation
Facility Booking System case-study.
* * Further recruitment of human factors
design techniques to JSD*.
** Specifying the first version of the
JSD* method.
** Specifying research plans for the
Digital Network Management case-study.
** Testing and generating successive
versions of the JSD* method.

158

WDs 1, 2.
WDs 3, 4.

WDs 5, 6, 7, 8.

WDs 9, 10, 12, 13.

WD 11.

WD 14.

WDs 15, 17,19, 20.

WDs 16,18, 22, 25.

WD 21.

WDs 23, 24,26, 27.

WD 28.

WD 29.

WDs 30, 31, 32.

WDs 33, 34.

WD 35.

WDs 36, 37A, 37B,

384, 38B,39A, 39B,
40A.

Note : Research milestones and major project reports are highlighted in
italics.

of the research comprise the following :

(a) substantiating reports on the utility of JSD structured diagram notation
for human factors description (Chapter Five, Sub-section 5.3). In
particular, a range of JSD notations were tested on their capability for
describing tasks (at both conceptual and interaction levels -- see Table 7-3)
and screen objects (e.g. the behaviour of menus and windows). Case-study
applications used for these tests comprise parts of the following :
MacDraw™ (Macintosh-based); a Library Management System; an IKBS
Troubleshooter (Poltrock et al, 1986); and Automatic Teller Machines
(various versions). The tests indicated JSD structured diagram notation to
be particularly suitable for describing time-ordered events and object-
oriented information. The results thus confirmed earlier reports on the utility
of JSD modelling notation (comprising entity and action lists and structured
diagram notation). In contrast, the recruitment of its network diagram
notation could not be supported unequivocally. A detailed account of these
research concerns may be found in Lim (1987; 1988d; 1988e);

Table 7-3 :

Information Description Capability of Existing JSD

Notations

Information ~ [SD Entity/Action ISD Structured JSD Network

T Li Di Notati Di Notasi

Semantic X X X
(e.g. names and (e.g. names and (e.g. entity
descriptions of descriptions of nodes relationships)
objects and actions) and sub-nodes)

Syntactic Debatable X
(e.g. definition (e.g. JSD structured
of attributes ?) diagram constructs)

Lexical X X
(e.g. atomic (e.g. leaves of JSD
actions) structured diagrams)

159

(b) justifying the choice of JSD structured diagram notation by
demonstrating its capability for human factors description to be at least
equivalent to other established notations. Thus, comparisons were made
with grammar-based notations (e.g. BNF (Reisner, 1977); TAG (Payne and
Green, 1986)); networks (e;g. GTN (Kieras and Polson, 1985));
flowcharts (e.g. Drury, 1983) and tree hierarchies (e.g. HTA (Annett and
Duncan, 1967). Sample descriptions (e.g. DisplayWrite™ tasks) published
by the preceding authors were re-described using JSD structured diagram
notation. The objective was to demonstrate that the latter notation is capable
of describing the same information with at least the same specificity and
'elegance’ (e.g. conciseness, modifiability, learnability). In addition,
reported weaknesses of the notations were noted. The results of these

comparisons were favourable (see Walsh, 1987a and b).

Following the decision to use the JSD structured diagram notation, the research
focus shifted onto the scope, process and procedures of a method. In other words,
subsequent notational developments were contingent on the identification of
additional requirements to support the design task, e.g. the description of
intermediate design representations to support reasoning. Similarly, documentation
schemes were developed to ensure a comprehensive record of design decisions and
design rationale. Thus, notational and documentation concerns pervaded the course

of the research. Notable developments in respect of these concerns are as follows :

(a) the inclusion of a hierarchy construct in JSD structured diagram
notation. The construct represents a more elegant way of describing non-
sequential events, since it replaces the need to use a combination of iteration
and selection constructs for such descriptions (see Annex A; Lim, 1988e,
1989b). Thus, the hierarchy construct represents a useful addition to
support the use of the notation for task description;

(b) the relaxation of description rules associated with JSD structured
diagram notation (Lim, 1988e¢). Specifically, rules which were intended
originally to ensure the direct executability of JSD specifications were

relaxed to accommodate the 'fuzziness' of human factors descriptions, for

160

instance the rule :

(i) 'described actions should be atomic' is interpreted less stringently
to imply that the atomicity of actions is dictated by the purpose of the
description. Thus, ‘chunking' of sub-tasks may be accommodated;

(ii) 'described actions should have detectable start and end points' is
not always upheld. Although the rule may be satisfied in most
instances, where overt actions are described, compliance with respect
to cognitive processes can not be assured. Thus, its application is

relaxed.

(c) an extended application of JSD structured diagram notation to include the
following design descriptions :

(1) spatial layout and composition of screen objects (Lim, 1989b). The
objective of using JSD structured diagram notation for such
descriptions was to capture the information in machine readable form.
This undertaking constituted an opportunistic attempt (as opposed to a
formal research goal) to exploit the capabilities of the structured
diagram notation. Unfortunately, following case-study description
tests (Recreation Facility Booking System and Digital Network
Management System Simulator), it was concluded that extensions to
notational interpretation, required to widen its applicability, would
constitute non-trivial modifications to the notation. Since these
modifications might have resulted in negative transfer to JSD analysts,
the attempt was abandoned in favour of a simple pictorial description
(which provides essentially the same information);

(ii) behaviour and changes in appearance of screen objects. Since the
JSD structured diagram notation is particularly suitable for describing
objects, only minor extensions were necessary to link the behaviour of
screen objects to changes in their appearance. Such descriptions are
effected by assigning unique identifiers to object actions so that they

may be linked to pictorial descriptions of appearance changes (see

161

Figure 7-2 :

Figure 7-2);

(iii) screen transitions. The transitions correspond to the dynamic
presentation of functional supports, and error and feedback messages
to the user. The description (termed the Dialogue and Inter-Task
Screen Actuation Description (DITaSAD)) is linked to screen layout
diagrams and message index tables (Lim, 1989d, 1990d, 1990e). Its
purpose is to contextualise major screen presentations to the progress

of the user's task.

Using JSD Structured Diagrams to Link Screen Object

Behaviours to Corresponding Changes in their Appearance

Screen
object (OBJ)
T / 1\
[I 1 A B C
0 0 0
User action User action User action K ‘ \
A body B body C body
| l
[1 | | 1 | | @ @ .

A, B and C are permissible selections of user actions Changes in appearance of object
on an object named OBJ. OBJ corresponding to actions A, B
and C.

(d) a wider recruitment of existing JSD notations, in particular its network

diagram notation. Specifically, the potential of the notation for describing

information exchanges between system entities was investigated, e.g. the

control of information flows, such as its direction of flow and timing. To

this end, the notation was considered for the following descriptions :

(i) a conceptual representation of information exchanges between the
human, computer and other real world entities, e.g. whether particular
information flows and updates are continuous, periodic, or only
effected on request;

(ii) the nature of information exchanges between users in the

162

organisation. Such descriptions would be useful when socio-technical
considerations are addressed in system development;
(iii) the display of screen objects, e.g. whether particular functional

objects are always presented.

Following case-study tests (Recreation Facility Booking System and Digital
Network Management System Simulator), it was concluded that substantial
investigations would be required to use the notation for the above
descriptions. Although the potential benefits of such recruitment were
acknowledged, their investigations would have entailed a re-allocation of
project resources and corresponding changes in the research scope. Thus,
the investigations could not be supported, since other research commitments
assumed greater priority. Consequently, further research in this direction is
deferred to follow-up projects;

(e) the investigation and subsequent recruitment of other (non-JSD)

notations and documentation schemes, namely :

(1) network-type diagrams which were used to describe relational
information such as composition and taxonomic relationships among
objects. In particular, the diagram is used to describe design concepts
in a representation termed the Domain of Design Discourse (DoDD)
description (Lim, 1989d, 1990a). The description is intended as a
means for eliciting and communicating the boundaries of the design
problem (see Valusek, 1988);

(ii) circuit-type diagrams which were used to describe interaction task
pathways and activation schedules of screen objects (Lim, 1989b,
1989d). However, the diagram was dropped for two reasons. Firstly,
the notation was found to be unduly cumbersome to generate and to
update during a case-study test involving the Recreation Facility
Booking System. Secondly, its description of sequential events is
insufficiently specific, whenever feedback loops occur. Thus, circuit-
type diagrams were replaced with a combination of JSD structured

diagrams and pictorial screen layout diagrams. The latter set of

163

diagrams was used to describe screen transitions corresponding to the
presentation of major functional supports for the users' task, and error
and feedback messages;

(iii) pictorial screen layout diagrams which were used to describe the
location, grouping and appearance of screen objects. The screen
diagrams are labelled such that their sequential and inheritance
relationships are identifiable (see Lim, 1990d);

(iv) object appearance diagrams which were used to describe changes
in screen object appearance resulting from corresponding changes in
state, e.g. following permissible actions on the object (see Figure 7-2;
Lim, 1990d);

(v) information tables which provide textual descriptions to support :
JSD structured diagram descriptions; pictorial screen layout diagrams;
object appearance diagrams; and network-type diagrams. For instance,
the tables may be used to document the decisions and rationale

underlying a particular design (see Chapters Nine to Eleven).

This account completes a profile of the research highlights associated with the
development of stage-wise notations and documentation schemes for the method.
Case-study illustrations of the final set of JSD*(HF) notations and documentation
schemes are presented later in Part IV.

7.1.2. A Review of Activities for Specifying Stage-wise Design
Scope and Processes of the JSD*(HF) Method

In Sub-section 7.1, it was proposed that preliminary JSD*(HF) and JSD*
conceptions may be specified to meet design support requirements particular to the
JSD method (also see Chapter Five, Sub-section 5.3). Since the notation for the
JSD*(HF) method was constrained largely to the use of existing JSD notations, a
greater proportion of the research effort spent on generating JSD*(HF) conceptions
was directed at specifying appropriate stage-wise design scope and processes for
the method. The research emphasis also resulted from the implicit and largely

incomplete conceptualisation of human factors design. Thus, a number of

164

preliminary JSD*(HF) and JSD* conceptions were derived as shown in Figures 7-
3 and 7-4.

On the basis of these preliminary conceptions, the methods were then elaborated via
appropriate recruitment and extensions of existing human factors techniques. To
support the recruitment of existing methods, a general conception of structured
human factors design was derived (Chapter Four) and intersected with preliminary
JSD*(HF) conceptions. Thus, pertinent aspects of the general design conception
were recruited (with some backwards engineering and 'brain-storming') to develop
more detailed conceptions of the JSD*(HF) method. A survey of relevant human
factors techniques was then initiated. The scope of the survey included system-sub-
system definition (which addresses design concerns at the organisational level),
user characterisation, task analysis and design, user interface design, performance
specification, and function allocation. Although the survey was comprehensive, it
was not feasible to undertake an in-depth study of all human factors design
concerns in view of the limited research time-frame. Thus, later studies focused
directly on addressing design support deficiencies of the JSD method. The final
scope of the survey is shown in Figure 7-5 (this may be contrasted with Figure 4-
5). An account of the activities and conceptual developments at this stage of the

research follows.

The conception shown in Figure 7-5 was detailed further by 'brain-storming' and

literature reviews on the following :

(a) general design studies, e.g. Jones (1973); Coyne (1988); Rouse and
Boff (eds., 1987); Design Studies (Design Research Society Journal,
Butterworh Scientific Ltd.); etc. The review afforded an understanding of
design tasks and the implications of methodological support, e.g. the impact
of methods on design practices (see Part V), and how methods are used by
designers (see Part IV on the resulting need for flexibility in a method);

(b) general concepts on human factors design, e.g. the use of metaphors in
user interface design. The literature reviewed included texts and papers by
Card, Moran and Newell (1983), Rouse and Boff (eds., 1987); Rasmussen
(1986), Shneiderman (1987); Helander (ed., 1988); Hutchins (1987);

165

Figure 7-3 : Initial JSD* and JSD*(HF) Conceptions

TaSk 1988a
elicitation
Task
description
Task
analysis
Specify
Changes? interface
requirements
Technical JSD model and Specify
concerns network stages interface _ Metaphor
identification
elements (IEs)
Specify behaviour
of IEs
Real World Walsh, 1988
Users' Statement of
Needs and Requirements
VAN A
SAMPcopir® g
Task Descrintion 1111ig Identifies
d Task Analysis B li
JSD Model
Generic Interface
Style .
J Usesy Interface JSD Functions BaSis for
H Metaphor
Model of User e
User Interf
Application

Conception in Figure 7-4

166

An initial attempt at specifying
JSD*(HF) and JSD* conceptions
based on observed design support
deficiencies in the JSD method.
The focus of the conception was
on :

(a) incorporating outputs of task
analysis into JSD design;

(b) ensuring user interface design
and metaphor identification (if
any) is based on outputs of task
analysis;

(c) specifying two contact points
between human factors design
and the JSD method;

(d) specifying appropriate design
roles. Specifically, user interface
design should be undertaken by
human factors designers, while
technical aspects of system
specification should continue

as the domain of JSD analysts.

This JSD*(HF) and JSD* conception
was derived by a co-worker at about
the same time as the one above.

The focus of the conception was on :

(a) ensuring task analysis is
constrained by user requirements

(if well defined);

(b) incorporating outputs from task
analysis into user interface design;
(c) deriving an appropriate expression
of the user interface based on a model
of the user and the target task;

(d) identifying an appropriate user
interface style and metaphor
identification (if any) based on task
analysis;

(e) specifying a contact point
between human factors design and
the JSD method;

(f) specifying appropriate design roles.
Specifically, user interface design
should be undertaken by human factors
designers, while technical aspects of
system specification should continue
as the domain of JSD analysts.

Conception in Figure 7-3

Figure 7-4 :

A Product-Oriented Conception of JSD*

Real World

Statement of

Requirements

Z

SIS I SIS SIS SISy

AN

IS IS SSTSS LD

7//////.’t////¢
7 JSD Model 7
9/ ’//////‘////A

{//////////////
% JISD

User Interface
8 Specification

JSD %
Implementation

N\

Application

Human factors product

edd/,

2772 1SD products

: Product of requirements analysis

Combined JSD and human

factors product

The two JSD* and JSD*(HF) conceptions shown in Figure 7-3 were combined. Notable

changes comprise the following :

(a) the user model is subsumed by the task model;
(b) human factors and JSD design products are distinguished explicitly;
(c) a composite task model is introduced to address different levels of task design and

description.

167

Conception A in Figure 7-7

Figure 7-5 : Scope of the Review of Current Concerns of Human
Factors Design

Training
projection

System)

Organisation &
pzn;ft?nn‘fnce management
inition

aspects

Function - User
allocation characterisation
\
\\
y v
Y
_/

Sub-system
integration

System
evaluation §

Note :

Bold outlined boxes represent design concerns that are addressed by the structured HF method.
Incomplete coverage by the method is represented by boxes partially outlined in bold.

168

Moran (1981); etc. The objective of the review was to establish a suitable
knowledge base to support the specification of appropriate stage-wise
design scope and processes for the JSD*(HF) method;

(c) requirements elicitation and task analysis techniques. Following a
preliminary review of several task analysis techniques, a set of promising
candidates were selected for detailed study. The set included :

(i) Hierarchical Task Analysis (Annett and Duncan (1967) among
other reports);

(i) Task Analysis for Knowledge Descriptions (Johnson et al (1984)
among other reports);

(iii) Knowledge Analysis of Tasks (Keane and Johnson (1987) among
other reports);

(iv) Hierarchical Planning (Sebillote, 1988);

(v) GOMS (Card et al (1983) among other reports).

For detailed accounts of these reviews, the reader is referred to Silcock
(1989), Coles and Lim (1989), and Silcock and Lim (1989). It should be
noted that the review of task analysis techniques also included function
allocation techniques, e.g. reports by Price (1985) and Clegg et al (1989).

In general, the review indicated that existing task analysis techniques are
poorly structured. Specifically, their procedures are frequently incomplete
or poorly described; their scope is too narrow (e.g. the applicability of a
technique may be limited to evaluation or training only), or too specific for
wider application (e.g. GOMS). In addition, some task analysis techniques
were still being developed at the time of the review. Nevertheless, the
review supported the development of an extant systems task analysis
technique for the JSD*(HF) method. For instance, general task analysis
concepts and procedures were recruited, e.g. to support target system
design, current system information may be abstracted to reveal its logical
design (see Johnson and Johnson, 1988) and generified to derive a

generalised description;

169

(d) models of human-computer dialogue and user interface design methods.
Both linguistic and non-linguistic models of human-computer dialogue were
reviewed. The former model is exemplified by CLG, while non-linguistic
models comprise dialogue cell (Borufka et al, 1982); interaction event
(Benbasat and Wand, 1984); architectural abstraction models (e.g. Coutaz,
1985, 1989).

An initial review indicated that human factors design is not supported
equally well by these models. For instance, architectural models do not
appear to consider user needs at all. In this regard, Hartson and Hix (1988)
reported that linguistic models are most suitable for incorporating human
factors design (see Table 7-4). Thus, linguistic models and their design
methods were studied in greater detail. The first linguistic model was
proposed by Foley and Wallace in 1974. Since then variants on the basic
theme followed, namely linguistic models comprising varying numbers of
semantic, syntactic and lexical levels, e.g. Moran (1981), Buxton (1983).
Although linguistic models constitute a good scheme for describing
human-computer dialogue, their emphasis on a rigid top-down description
has been found to be inappropriate for supporting user interface
specification (Sharratt, 1987; 1988). In response to these problems,
modifications of the model have been proposed, e.g. Frohlich and Luff
(1989) suggested that semantic and syntactic design should be undertaken
simultaneously (see also Preece et al, 1987).

Following comparisons between methods based on the linguistic models
(e.g. CLG and Foley's user interface design method) and early conceptions
of the JSD*(HF) method (see Lim 1989c; Tables 7-5 and 7-6), it was
concluded that the latter did not require an explicit incorporation of a
linguistic model. Instead, the model's function may be embodied in object
oriented descriptions (see Chapter Six, Sub-section 6.1, point (d)). The

latter were chosen for the following reasons :

(i) object-oriented descriptions are compatible with JSD*(SE)
descriptions generated at the JSD Model Stage;

170

Table 7-4 : Scope of Description of Various Models of Human-

Computer Dialogue (after Hartson and Hix, 1988)

7 ix's List of ‘Essential’ Addressed by Methods
User Interface Design Concerns Basedon :
(a) the use of task analysis to specify a structural Linguistic Models

description and representation of the interface, i.e.
user interface design is driven by task-oriented
models (see Kieras and Polson, 1985).

(b) the use of structural models to capture the Linguistic Models
general process of human-computer communication, Architectural

i.e. describing the structure of inputs and outputs.)

Dialogue objects and their relationships are thus Abstraction Models (?)
identified and the domain defined.

(c) the use of interface models to represent particular Linguistic Models
instances of human-computer interaction, i.e. Architectural Abstraction
specifying the form, content and sequencing for parts Models

of a user interface. Thus, a device-oriented definition is Dialog Cell Model
derived. Interaction Event Model

Table 7-§ : Comparison of User Interface Design Concerns of CLG
(Moran, 1981) and the JSD*(HF) Method

User Interface Desien C. . ling Desion C by Desi

Addressed by CLG. Stages of the JSD*(HF) Method (Approximate)

Conceptual component Extant Systems System Analysis to System and
User Task Model Stages.

Communication component Interaction Task Model and Interface Model Stages.

Physical component Display Design Stage.

171

Table 7-6 : Comparison of User Interface Design Concerns of Foley
and van Dam's Method (1982) and the JSD*(HF) Method

Foley’s User Interface Design Method JSD*(HF) Design Method

(1) Specifying the Interaction Concept (1) Extant Systems System Analysis to
Stage -- define : Composite Task Model Stages :

(a) set of all objects in the system oy (2) ISD object/entity lists

(b) relationship between objects @~ (b) Domain of Design Discourse

(c) object properties @ (c) JSD object/entity lists

(d) permissible operations on objects e (d) JSD structured diagram descriptions
Shortcomings (after Frohlich and Luff, 1989) : Handled by :

(a) recognition of composite and meta-objects <~ (a) domain of design discourse desccription

(b) differentiation of action types, e.g. -~ (b) constructs of JSD structured diagram

specifying local and global actions. notation, e.g. common actions across entity
structures may be considered global.

(2) Specifying the Interaction Semantics (2) System and User Task Model (SUTaM) to

Stage -- define : Display Design (DD) Stages :

(a) function name ~43..gp= (a) SUTaM sub-nodes and JSD function
names (?)

(b) action on objects «4§dpn- (b) SUTaM descriptions

(c) definition of both system and user *@.ngp- (c) SUTaM descriptions

oriented operations

(d) parameters of operations oFnde (d) JSD action list

(e) results of operations <y (€) JSD functions and DD descriptions

() errors <afg~gp (f) JSD input sub-system and DD descriptions

(g) feedback messages s§—Pr (g) JSD input sub-system and DD descriptions

(h) performance measures &§nfp (h) statement of user needs table

(3) Specifying the Interaction Syntax Geipe (3) System and User Task Model (SUTaM) to

Stage -- define : Display Design (DD) Stages :

(a) sequencing of inputs and outputs (I/0s) ~e#....i (@) SUTaM and Interaction Task Model (ITM)
descriptions

(b) specification of input and output tokens. “¢§-#» (b) ITM and Interface Model (IM) descriptions

(4) Specifying the Interaction Lexicon @G- (4) TTM to Display Design (DD) Stages :

Stage -- define :

(a) mouse movements and key presses <~~~ (a) ITM descriptions

(b) screen layouts oo (b) DD descriptions

Shortcomings (after Frohlich and Luff, 1989) : Handled by :

(a) outputs would be described better by *@-—3#- (2) DD descriptions and JSD*(HF) descriptions
scenario diagrams in general

172

(ii) object-oriented descriptions are independent of their
implementation, since such information is concealed within object
representations. The descriptions can thus accommodate context-free
representations of specific interface features, e.g. the behaviour of
windows;

(iii) the strong hierarchical inheritance of object-oriented descriptions
helps to ensure consistency;

(iv) the class concept of object-oriented descriptions facilitates easy
implementation of variant designs. Thus, design re-usability and

prototyping is supported.

Nevertheless, a system-oriented design perspective should be maintained as
information on temporal sequences (e.g. intermediate execution steps) is
obscured inherently by object-oriented views (Hartson and Hix, 1988).
Thus, the characteristics of user interface objects and actions should relate to

tasks that users are expected to perform.

(e) classes of human factors models and their potential contributions to

system design. The review sought to uncover :

(i) the nature, type and expression of human factors models. Many
papers were reviewed including those by Clowes (1988), Farooq and
Dominick (1988), Johnson (in press), Long (1986, 1987), Nielson
(1987), Norman (1983), Simon (1988), Whitefield (1987), Young
(1983), etc. The review identified a profusion of human factors
models and considerable confusion in their interpretation (Long,
1987). Attempts to resolve this state of affairs via definitions,
classifications and taxonomies (e.g. explicit specification of who is
doing the modelling and what is being modelled (see Whitefield,
1987)) have successfully clarified the nature and type of human
factors models. However, the current representation of models (e.g.
'models of the user) is either left implicit and poorly described, or too

theoretical and complex for practical application.10 Thus, it was

173

concluded that system and task models constitute more promising
recruits to the JSD*(HF) method. Nevertheless, by adopting a user-
oriented approach an implicit user model may be subsumed by
particular characteristics of system and task models;

(ii) how human factors models were used in design. The review
indicated that research into human factors models was still in its early
stages (see Footnote 10). Thus, few case-study applications had been
reported and the assumed user models tended to be described poorly
(see van der Veer et al, 1988; Guest, 1988). The review also indicated
that human factors models were used primarily as explanatory aids in
diagnostic evaluation, as opposed to predictive aids to support design
generation!! (see Whitefield, 1990);

(iii) how human factors models are transformed between stages of the
system design cycle. In this respect, current definitions, taxonomies
and classifications were generally concerned with categorising
existing human factors models (which may not cover system design
needs). Such classifications do not adequately support the application
of human factors models. In particular, no information is provided on
how particular models may be recruited to support design at each stage
of the design cycle. Although attempts were made to identify the
protagonist of human factors models (e.g. designer's models, user’s
models, etc.), the subject matter addressed by the models was not
intersected explicitly with specific or stage-wise design concerns.
Thus, the recruitment of human factors models is usually confined to
the late evaluation stage, e.g. to check the designer's interpretation
against the user's conceptual model (see also (ii) above on the primary
use of human factors models as explanatory aids). Consequently, to
facilitate earlier recruitment (e.g. during design specification), human
factors models should be set explicitly against specific stages of the
system design cycle (or embedded in a structured method). Figure 7-6
shows the result of such an attempt (see Lim (1989a) for further

10 The simation is probably a result of the incomplete human factors knowledge in this area,

11 With the possible exception of task models.
174

UNFOL

b5 G b

a
oy

BupAy 1S 3..8s

175

3

[\S)
(o]

eshon
N

175

&I «
to I3

13 4.8>1
Ak g SU

details). The conception later supported the positing of an extant
systems analysis technique and a user interface design process for the

JSD*(HF) method (see Figure 1-1b).

In summary, the review revealed that the contributions of human factors
models to system design is confined largely to late evaluation rather than to
design specification. In addition, it indicated system and task models to be
more promising recruits to the JSD*(HF) method, e.g. to support system
design at the organisational level (e.g. socio-technical considerations) and

interactive work system level (e.g. 'system image') respectively.

(f) case-study applications of human factors design techniques (human
factors design 'practice'). The review included reports by Finkelstein and
Finkelstein (1983), Smith et al (1982), Young (1988), Clowes (1986),
Eason (1988), Farooq and Dom inick (1988), Guest (1982), Hammond et al
(1983), Moran (1981), Norman (1986), Newman (1988), Foley et al
(1984), Frohlich and Luff (1989), etc. The techniques reported were
compared with proposed conceptions of the JSD*(HF) method (see Table
7-7). Promising techniques were recruited and incorporated into successive
conceptions. For a detailed account of these developments, the reader is

referred to Lim (1989a, b).

In summary, a 'suitable' JSD*(HF) conception was derived on the basis of insights
derived from literature reviews. Various case-studies were then introduced to
demonstrate its application and to support an intensive phase of conception
specification and test. Further literature reviews were conducted to support the
rectification of observed inadequacies in each JSD*(HF) conception. Thus,
progressively developed conceptions were derived with respect to the requirements
of a structured method. Notable developments in this research phase include the

following:

(1) conceptualisation of user requirements as comprising the specification of

conditional statements pertaining to the task, device and environment (with

176

respect to the target user group);

(2) adoption of a user-task centered approach for system design. In this
approach, design commences with a characterisation of the target user group
and its current task performance on the extant system (denoted as 'System
X' in Figure 7-7a). The information derived is compared with requirements
that motivated the design of a new system. On this basis, appropriate extant
task abstractions may then be recruited to advance the design via the
synthesis of a conceptual task for the target system (denoted as 'System Y’
in Figure 7-7a). These design concepts comprise an early version of the
extant systems approach (see Lim, 1988d). Further decomposition of the
conceptual task may then be undertaken to generate the user task model; 12
(3) definition of an interaction task model to characterise inputs and outputs
for a particular user interface design. The model is to be derived on the basis
of conceptual and on-line task descriptions (corresponding to the composite

Table 7-7 : Comparison of Newman's (1988) Conception of User
Interface Design 'Practice' and the JSD*(HF) Method

Interface Design Practice JSD* (HF) Method

(1) User Modelling Stage: <}~ (1) Extant Systems System Analysis
specification of a mixture of user and Statement of User Needs Stages :
requirements, task knowledge and a A user model is subsumed by the
design product similar to the domain characteristics of task performance,
of design discourse description i.e. task models are derived for a
advocated by the JSD*(HF) method. particular user group.

(2) The User Interface Style Design <@~ (2) Interface Model and Display
Stage addresses concems of : Design Stages :

(a) constraints imposed by style -- extension and modification of

(b) suitability of particular styles chosen characteristics of the adopted
(c) representation of style user interface environment (if any).
{(d) extension and modification of styles

12 Note that the user task model was initially proposed as a description of on-line tasks only.
On-line and off-line tasks remain undifferentiated until later in the research. Only then were the

tasks described separately and re-named system and user task models respectively.
177

and system task models respectively), and the user interface environment or
style (if any),

(4) propositions on how a suitable user interface environment or style could
be selected using an extant systems analysis approach;

(5) conceptualisation of a set of 'basic elements' for describing a user
interface design (see Figure 7-8);

(6) more explicit specification of the stage-wise design scope and processes

Figure 7-7a : Further JSD* Conceptions I

Generalised
i Task Model

[XB(u), UB(x)]

User Interface
Constraints or
Environment

Statement of
User Needs &
Requirements 1 User Task

Model :
JSD*(SE) [UB (y)]

5

Interface Model:

Conception in Figure 7-4

Real World

terface

User In
Specification

[IBu<->y)]

Conception B

Following literature reviews, the JSD*(HF) conception in Figure 7-4 was detailed further. Four developments may
be noted :

(a) an expansion of the task model to include generalised task model descriptions;

(b) further developments of the extant systems system analysis approach. Specifically, intermediate JSD*(HF) design
products have been demarcated for both the extant system (System X) and target system (System Y);

(c) the introduction of separate descriptions of user and computer behaviours, corresponding to the derivation of a user
task model and interface model descriptions respectively;

(d) the recognition of an earlier design cycle where an appropriate user interface environment (if any) may be assessed
and adopted. This preceding design cycle is represented by boxes with oblique lines (see Figure).

178

Conception in Figure 7-7a

Figure 7-7b : Further JSD* Conceptions II

Generalised
Task Model |
X: GTM (x)

Generalised
Task Model
Y: Environment

Interaction

Real World

Implementation

{ Evaluation [.

Following further literature reviews and initial case-study tests, Conception A was developed further. Four developments
may be noted :

(a) a stage-oriented representation of the conception (as opposed to the previous product-oriented representation);
(b) the separation of on-line and off-line user task components. User interface design is advanced primarily via the on-line task;

(c) the addition of an interaction level description of the user's task. This description corresponds to interface model
descriptions of the computer behaviour;

(d) the distinction between explicit system requirements and implicit user needs. This distinction prompted the addition of a
specific stage to summarise implicit user needs that have been elicited.

of the JSD*(HF) method. These characteristics are expressed respectively
as a set of design products and procedures of the method. The proposed
methodological developments were then tested in design case-studies
involving three systems, namely the Digital Network Management System
Simulator, Recreation Facility Booking System and Disk Operating
System.™ Since these case-study systems represent various types of user
interface designs (namely WIMP (which includes form-fill, menu and direct
manipulation characteristics) and command-line user interfaces (Lim,

1989b)), a range of tests on the descriptive capability of JSD*(HF)

179

Figure 7-9

Conception C

notations was thus afforded;
(7) compilation of a glossary of definitions and terms to support potential
users of the JSD*(HF) and JSD* methods (see Part VII).

These developments culminated in the derivation of an 'acceptable’ version of the
JSD*(HF) method. Explicit integration with the JSD method was then attempted.
These research concerns are described in the next sub-section.

Figure 7-8 : 'Basic Elements' for Describing a User Interface Design

Design of user's conceptual task (including domain semantics)

v

(—User Interface Design \
Interactive task
determines :
Screen <4 -
& compositions Object
(including Tepresentations
| groupings) (lnclm_hng Object behaviours
R groupings) (including appearance

changes, links with
other objects, etc.)

@ Screen transitions,
to present feedback
messages and functions in
support of the user's task.

7.1.3. A Review of Research Activities for Specifying Inter-
Dependencies between Design Streams of the JSD* Method

The final phase of the research is concerned with specifying-and-testing various

versions of the JSD* method. Thus, it is initiated by the integration of an

180

'acceptable’ version of the JSD*(HF) method with the JSD method. Integration
entails further examination of the JSD method so that design inter-dependencies
may be located against appropriate stages of the JSD*(HF) method. Obligatory
contact points between Software Engineering and Human Factors design streams
were thus specified. The identification of these contact points was reasonably

straightforward for the following reasons :

(a) the JSD*(HF) method was tailored specifically to an essentially
unchanged JSD method. Thus, high level design intersections would have
been addressed during the construction of the JSD*(HF) method;

(b) both JSD*(HF) and JSD methods were structured into explicitly defined
design stages. Consequently, their design scope and processes (and hence

information needs) could be intersected unambiguously.

The first attempt at integrating the methods was made following case-study tests
using the Digital Network Management System Simulator. Design inter-
dependencies between the two streams of the JSD* method were inferred by post-
hoc comparisons of JSD and JSD*(HF) specifications of the case-study system
(see Lim, 1989b). Thus, a version of the JSD* method that locates these design
inter-dependencies explicitly was generated (see Figure 7-9a).

A breadth-wise test on a second case-study (namely the Recreation Facility Booking
System) was then undertaken to verify the design inter-dependencies identified
previously. To this end, both design streams of the JSD* method were undertaken
in parallel and their design products were compared at these obligatory contact
points. However, actual meetings between software engineers and human factors
designers were considered unnecessary since the objective of the test was to verify
expected and actual intersections in design information at inter-dependency points
of the method. In other words, the forwards engineering test was concerned
primarily with determining what information should be exchanged at which
contact point, so that design convergence across the two JSD* streams may be

ensured. Thus, a post-hoc comparison of design products from the two design

181

Conception B, Figure 7-7

Figure 7-9a : Early Versions of the JSD* Method I

{JSD*(HF) Synthesis Phase
S RSRRRS

Model [STM]
User Interface

Statement of :
> ~ En t
Requirements [UI\E]ronmen

I

=
S
=
=
3]
a2

Functions

Specification

GIIIIIIII 71171107
% Conception C

(Lim, 1990a) %

A

Proposed Locations of JSD*(SE)
= and JSD*(HF) Contact

Intensive case-study tests were undertaken at this stage of the research. Findings from these tests supported further

developments of the method, e.g. specification of later stages of the method. The following method developments should
be noted :

(a) the Task Description Stage is now developed fully and re-named the Extant Systems System Analysis Stage;

(b) a clearer distinction between on-line and off-line components of the user's task was made. The on-line component was
then re-named the 'system task model'. The 'user task model' is thus modified to comprise only the off-line component;
(c) procedures for the Interaction Task Model and Interface Model Stages were enhanced. In addition, the design procedures
and products of the Display Design Stage were specified;

(d) design inter-dependencies between JSD*(HF) and JSD*(SE) streams were specified explicitly. Requisite information
exchanges between the design streams were identified, e.g. intermediate design products and information to be shared;

(e) a clearer presentation of the method was considered, e.g. design activities of the JSD*(HF) method were organised into
different design phases; the method scope was defined more tightly, e.g. a clearer location of 'secondary’ design activities
such as the selection of a suitable user interface environment, and wider concerns of requirements specification.

182

Conception D

streams would be adequate (see Lim, 1989b).13

The pertinence of the proposed contact points was thus determined by assessing the
design support afforded by sharing information at each of these points, e.g. how
human factors design could benefit from accessing specifications of the input sub-
system generated by software engineers and vice versa (e.g. how task descriptions
generated by human factors (see Part IV) could define the context for specifying
JSD functions. Minor modifications of the JSD*(HF) method instigated by these
considerations were later implemented and tested in a second cycle using the
Recreation Facility Booking System. For these tests, post-hoc comparisons of
stage-wise JSD*(SE) and JSD*(HF) design products were repeated as before (see
Lim, 1989d).

Succeeding versions of the JSD* method (see Figure 7-9a and b) were thus
assessed repeatedly until an 'acceptable’ version was derived. A larger case-study
system, namely the Digital Network Management System, was then introduced to
impose more demanding tests on the method. To this end, parallel test cycles were
undertaken using the trouble-shooting and security modules of the case-study
system (see Lim, 1990b, c, d, e; Silcock and Lim, 1990b; Silcock, 1990a, b). In
contrast to preceding tests (see above), full application of the JSD* method was
planned, i.e. both design streams of the method should be undertaken including the
obligatory contact points. The objective of the tests was to demonstrate the
JSD*(HF) method and to ascertain the appropriateness of contact points proposed
for the JSD* method. Unfortunately, the tests could not be realised fully due to time
constraints and excessive manpower demands from the sponsors of the research.
Consequently, complete application of the method was discontinued following the
first contact point, i.e. at the Composite Task Model Stage (see Part IV). Thus,
case-study tests for assessing the appropriateness of proposed contacts points

reverted subsequently to previous test scenarios, i.c. a

13 The test scenario minimised resource commitments by the research sponsors with respect to
their role as software engineers in the case-study. Potential delays to the research was thus

minimised.

183

post-hoc comparison of JSD*(SE) and JSD*(HF) specifications. In addition, the
case-study specifications generated by human factors designers and software
engineers were not integrated explicitly for JSD implementation (although a user

interface design prototype was constructed).14 As a consequence, the final version

Figure 7-9b : Early Versions of the JSD* Method II

Extant Systems Generalised

Task Model
X [GIM X]

Generalised
Task Model
Y [GTM Y}

Statement Composite
of User Task Model
Needs [SUN]

System Task | User Task
Model [STM] | Model [UTM]

Statement of User Interfa onTe) (ot o)
— = Environment
Requirements [[311‘},3‘][0

[SoRe]

Interaction
Task Model

Display

Design [DD]

Interface
Model [IM]

Specification

Conception C, Figure 7-9a
Real World

User Interface
Specifications

Final Conception, Figure 8-1

y///////////////////////

. % Conception D

7 (Lim, 1990b)
“

%
IS,

Proposed Locations of JSD*(SE) and
JSD*(HF) Contact

Intensive case-study testing was continued. Lessons learnt from these tests enhanced the method as follows :

(a) closer links were established between the Statement of User Needs and Composite Task Model Stages;

(b) the interaction task model was adopted as the basis for specifying interface model and display design descriptions;
(c) design inter-dependencies between JSD*(HF) and JSD*(SE) streams were made more explicit;

(d) human factors descriptions comprising the specification of a user interface design were defined explicitly.

14 Despite these set-backs, the results of case-study tests on the JSD*(HF) method would remain
valid (see also Chapter Twelve).

184

of the JSD* method (as opposed to the JSD*(HF) method -- see Footnote 14 and
Figure 8-1) was not tested as comprehensively as would be desired (see Part V).15
Nevertheless, overall indications from the case-study tests were considered

positive.

The main product of the research may now be described. Since the existing JSD
method (also referred to as the JSD*(SE) method to account for additional design
inter-dependencies with the JSD*(HF) method) remains essentially unchanged, the
account is focused on the JSD*(HF) method. In addition, an account of the
JSD*(SE) method is unnecessary since its design inter-dependencies would be
accommodated in a description of the JSD*(HF) method. However, an overview of
the JSD* method is included to contextualise design contributions attributed to the
stage-wise design scope, process and notation of the JSD*(HF) method. To
illustrate the method, case-study examples are drawn from the security module of

the Digital Network Management System.16

15 This limitation is being addressed in a follow-up project commissioned by the research
SpOnSors.

16 This case-study module was selected because it is smaller than the trouble-shooting module
and is thus more convenient for method illustration. It should be noted that original descriptions

for the case-study have been revised and simplified to suit the purposes of the illustration.

185

PART IV :

A Structured Human Factors Method for the
Jackson System Development Method

186

CONTENTS

Chapter Eight : An Overview of the JSD*(HF) Method............ 188
8.1. JSD*(HF), JSD*(SE) and JSD* Methods.....ccccevucrvniinncrnnennn. 188
8.2. General Characteristics of the JSD*(HF) Method......cccccccvveeee. 190
8.3. Hierarchical Description of Work Systems and
the JSD*(HF) Method.......cccoiuiiienrniiecincnnceceieceiencenenes 194
8.4. Format for Presenting the JSD*(HF) Method......ccccetveinivnnnas 195
8.5. Notes on the Choice and Scope of the Case-Study Illustration......197
Chapter Nine : The Information Elicitation and Analysis
Phase of the JSD*(HF) Method........ccccoueeerieeieriecneccecreceeccarencenees 198
9.1. Extant Systems System Analysis (ESSA) Stage.....cceceucrnenennnns 198
9.2. Generalised Task Model (GTM) Stage......cccccveeverecenrerecnnnnns 229

Chapter Ten : The Design Synthesis Phase of the

JSD*(HF) Method.........couniiiiniiiiiiiiiiiieiiieeeneieeiernsiereensensnennens 239
10.1. Statement of User Needs (SUN) Stage.......cccoveeersirrrcrscvsnnens 239
10.2. Composite Task Model (CTM) Stage.....ccceeeeeereerererenvenanannes 247
10.3. System and User Task Model (SUTaM) Stage........cccceeueennnuee. 262

Chapter Eleven : The Design Specification Phase of the

JSD*(HF) Method.......ccouovniinieniinieiiiiiiiieieeieeineereeneetenesnssesncnnsns 273
11.1. Interaction Task Model (ITM) Stage.......ccccrrrrerereveveceerseneeens 273
11.2. Interface Model (IM) and Display Design (DD) Stages............... 281

187

Chapter Eight : An Overview of the JSD*(HF)
Method

"In the land of the blind, even the one-eyed man is king.”
bottom-line argument for the method? John Long, 1990.

"Good order is the foundation of all good things.”
Edmund Burke, 1790.

The objective of the present overview is to establish a conceptual foundation for a
detailed account of the JSD*(HF) method. The latter account comprises a stage-
wise description of the method and its relationship with the JSD*(SE) method (see

later chapters).

8.1 JSD*(HF), JSD*(SE) and JSD* Methods

JSD*(HF) is one of two component structured methods that constitute the JSD*
method (see Figure 8-1).1 It is the human factors component of JSD* developed
specifically for integration with an essentially unchanged JSD method. Henceforth,
the latter method will be referred to as the JSD*(SE) method since additional inter-
dependencies with the JSD*(HF) method have been specified to support
collaborative design. These inter-dependencies constitute obligatory contact points
at which design information is shared and agreed between designers working in the
parallel streams of the JSD* method (inter-dependencies are indicated in Figure 8-1
by boxes outlined in bold). Once agreed, the information becomes binding since it
constitutes the basis for later design extensions. Thus, any violation of the agreed
design basis should be communicated to designers working in the other stream of
the JSD* method. In this way, a common design focus and scope may be ensured

for SE and HF design to proceed in parallel.

1 Figure 8-1 shows that the JSD*(HF) method comprises the focus of the research. For this
reason, its design stages are shown in greater detail relative to the JSD*(SE) method. Actual
differences in complexity between the methods are not represented in the Figure.

188

Figure 8-1 : Locating the JSD*(HF) Method within the JSD* Method

Information Elicitation and Analysis Phase Design Synthesis Phase

Generalised Task Model

Other Contributions sl FUIIlfitsl:)ns

----- S SO DA A S

Extant Systems
System Analysis

R

Statement of User Needs

Composite Task Model

System and User Task Model
System Task Model | | User Task Model

User Interface Specification
Interaction Task Model

v

Interface Model| | Display Design

Implementation

n = Points of SE and HF contact Design Specification Phase

=] = Design phases of the JSD*(HF) method

In addition to design inter-dependency points, other meeting points may be defined
in a given application of the JSD* method. Such meetings are usually dictated by
situation- or organisation-specific factors, e.g. meetings instigated by ad hoc
factors such as the close proximity of design team members; information quality at
project inception; particular local requirements; etc. Thus, to ensure general
applicability of the method only obligatory design inter-dependencies between the
streams are emphasised. In other words, contact points which are not fundamental
for advancing the design are considered discretionary (i.e. not a requirements of the
method) and are accommodated only when necessary. The objective is to ensure
that JSD* is not over-specified so ensuring its general applicability and flexibility
(although it should be adequately specified to meet the requirements of a structured
method). For instance, it should be sufficiently flexible to accommodate adaptations
in its application. An example of flexibility in the method may be illustrated by the
Extant Systems System Analysis Stage where the depth of extant systems analysis

189

is specified as a 'bottom-line' requirement, i.e. the derivation of a current task
description is obligatory while other design products are derived only if the
designer considers them necessary. These methodological concerns are discussed at

length in Chapters Nine and Twelve.

8.2 General Characteristics of the JSD*(HF) Method

Generally, the focus of the JSD*(HF) method is on complementing the design
specification stages of the JSD*(SE) method. Such a focus is appropriate because :

(1) literature surveys indicate that current HF contributions to system
development are well established at later stages of the design cycle, e.g. HF
evaluation during design implementation. In contrast, HF contributions to
design specification are inadequate and implicit. Since the recruitment of HF
contributions is traditionally late, the discovery of such design errors is also
delayed. As a result, the required modifications are costly and difficult to
implement (see Chapter One). Thus, greater emphasis should be placed on
ensuring HF contributions to design specification;

(2) JSD*(SE) implementation activities comprise mechanistic
transformations which do not alter design specifications defined at earlier
stages of the JSD* method. In other words, the external behaviour of
JSD*(SE) specifications is maintained if the transformations comply with
implementation rules of the method (Zave, 1984). Thus, HF contributions
at JSD*(SE) implementation stages would be minimal if appropriate HF
inputs have been incorporated during design specification. In particular, HF

contributions at design implementation would be confined to the following :

(1) designing additional feedback cues for users if longer than expected
transient response times result from a particular JSD*(SE)
implementation (e.g. a feedback cue such as the Macintosh wrist-watch
icon may be provided). This design scenario may arise if hardware
specifications (e.g. processing capabilities) can not be met

subsequently due to budgetary constraints (e.g. the number of

190

processors available is lower than expected), or unforeseen hardware
limitations;

(ii) validating the fidelity of JSD*(SE) implementation. The proposed
transformation of JSD*(SE) specifications may be evaluated by
conducting user tests on either a design prototype or the final artefact;
(iii) ensuring appropriate design modifications (and design iteration as

necessary) following evaluations in (ii) above.

For these reasons, a participative followed by consultative HF role is envisaged at
JSD* design specification and implementation stages respectively. In respect of the
latter, existing evaluation methods and practices may be recruited to support the
method. An overview of the JSD*(HF) method follows.

The JSD*(HF) method is structured into three phases, each of which comprises a
number of design stages (see Figure 8-1). The scope of the design phases is as

follows :

(i) the Information Elicitation and Analysis Phase is concerned with user
requirements capture and task analysis. Its design stages comprise the
Extant Systems System Analysis and Generalised Task Model Stages;

(ii) the Design Synthesis Phase addresses the derivation of a conceptual
design of the target system. Its design stages comprise the Statement of
User Needs, Composite Task Model and System and User Task Model
Stages;

(iii) the Design Specification Phase is focused on functional and user-
interface design. The remaining three stages of the JSSD*(HF) method, i.e.
Interaction Task Model, Interface Model and Display Design Stages, belong
to this phase.

A detailed account of the JSD*(HF) method is presented in later chapters. It
suffices to say at present that salient characteristics of the method include the

following :

(1) its stages comprise coherent groupings of design processes which

191

transform inputs to desired outputs. In most cases, the output or outputs of
a design stage constitute input or inputs to a succeeding stage. Wider
relationships may also apply for a number of stages, e.g. design output(s)
of one stage may feed into several succeeding design stages. Such instances
are indicated explicitly when the stages are described in detail later;

(2) its stages are defined explicitly with respect to their scope, process and
notation. Thus, each design stage is characterised by a set of design
products, procedures and documentation schemes;

(3) its stage-wise design products are explicitly defined. Thus, prototyping
is encouraged to accommodate the incompleteness of current HF knowledge
(see also (4) and (5) below). To this end, prototypes may be constructed at
each stage of the method to exemplify proposed designs. Consequently,
early and continuous evaluation is encouraged throughout the system design
cycle. However, as with any structured method, the JSD*(HF) method may
be incompatible with the design approach entailed by rapid prototyping. In
particular, a structured method involves a phase of design analysis and
documentation prior to the specification of a 'first-best-guess' solution
(which may then be prototyped). Such a design phase is excluded in a rapid
prototyping approach;

(4) its methodological structure upholds accepted design principles such as :

(i) the delaying of design commitments (Thimbleby, 1990), e.g. by
ensuring that detailed design is preceded by an adequate conceptual
design; _
(ii) the conduct of early design evaluation either analytically by the
designer or empirically using a prototype;

(iii) the conduct of iterative design;

(iv) the conduct of incremental or modular design development. This
design scenario may be pursued in both streams of the JSD* method

following the specification of a conceptual design;

(5) its well defined stage-wise scope, process and notation provide a basis
for configuring and recruiting alternative means of HF input, e.g.

guidelines, computer-based tools and prototyping. For instance, its well

192

defined stage-wise scope facilitates the identification of appropriate design
guidelines for recruitment throughout the design cycle. Similarly, its well
defined stage-wise scope, process and notation provide a basis for
developing computer-based tools to support design specification. Finally,
prototyping is encouraged at each stage of the method since its design
products are all defined explicitly (see (3) above);

(6) its notation is essentially an adapted version of the structured diagram
notation of the JSD*(SE) method (see Annex A and Figure 6-1). The
notation was recruited following a series of assessments which indicated its
suitability for describing HF design products (Walsh, 1987a; Lim, 1988e;
Carver, 1988). The structured diagrams are supported by tables which
provide a detailed textual description;

(7) its methodological configuration is tailored specifically to the JSD*(SE)
method since the latter is left essentially unchanged. In particular, design
inter-dependencies between the JSD*(SE) and JSD*(HF) methods are
defined to support collaborative design. Assimilation of the JSD*(HF)
method by software engineers may also be facilitated since familiar
reference points within the JSD*(SE) method are highlighted by the design
inter-dependencies. Thus, a positive transfer of knowledge is supported; 2
(8) its procedures are targeted at a HF designer with a basic understanding
of the JSD*(SE) method. Experience in the latter method over and above
this general requirement may enable a more effective realisation of the JSD*
method. However, it should be noted that a particular design team
composition is not implied by the JSD* method. The only implication of the
method is that HF, SE and domain expertise should be represented. Thus,
later references to design teams working in respective streams of the JSD*
method, are for explanatory purposes only. While design teams may be the
case on most occasions, the undertaking of both method streams by a single
designer should not be precluded,;

(9) its approach to design specification is best characterised as a user-task

2 Maintaining an unchanged JSD*(SE) stream was a requirement set down by the sponsors of
this research (see acknowledgements and Chapter Six).

193

oriented approach.3 During design, a user model is realised in terms of
particular task execution and performance characteristics;

(10) its focus is primarily on design specification rather than on design
implementation and evaluation. The bias is intended to redress the imbalance
arising from the traditionally late recruitment of human factors contributions

to system development.

The above account completes an overview of the JSD*(HF) method. A detailed
description of the method is presented in Chapters Nine to Eleven.

8.3 Hierarchical Description of Work Systems and the JSD*(HF)
Method

Large human-computer systems usually involve a co-ordinated network of
interactive sub-systems, e.g. tactical planning and control modules of defence
systems on board an aircraft carrier. In such cases, the method should be applied in

two steps as follows :

(i) conceptual design at the organisation level is first defined in the first two
phases of the method, i.e. the Information Elicitation and Analysis, and
Design Synthesis Phases. Following a conceptual definition of the system
purpose, sub-systems may be identified. Formal socio-technical
interactions4 among the sub-systems (e.g. work relationships and
information exchanges) are then described using a mixture of data flow and
network diagrams (used in SSADM and SASD, and JSD respectively). The
descriptions derived at these phases of the JSD*(HF) method complements
similar information derived by JSD*(SE) designers;

(ii) lower level requirements, conceptual and functional design of each sub-

system may then be specified. To this end, the first two phases of the

3 See Fleishman and Quaintance (1984) for alternative perspectives on human task performance.
4 Although informal work relationships are difficult to uncover, they should be addressed during
design when appropriate.

194

method are repeated to define each sub-system more specifically. Design
specifications for the sub-system is then derived by a complete application
of the method. The process is repeated until design specifications for all

sub-systems are derived.

Since JSD*(HF) activities at the organisation level are repeated at the sub-system
level, the method may be exemplified completely by a description of the latter (see

later chapters).

8.4 Format for Presenting the JSD*(HF) Method

In accordance with the definition of a structured method, the JSD*(HF) method is
presented in terms of its stage-wise design scope, process and notation. In

particular :

(i) the scope of each of its stages is described in terms of the design
products to be derived. To illustrate the products, examples are selected
from a case-study undertaken during method development, namely a Digital
Data Network Management System;

(ii) its design process is characterised at two levels of description, namely
at inter-stage and intra-stage levels. The former comprises a stage-to-stage
description of the method while the latter entails the definition of sub-
processes and procedures for each of its design stages (targeted at a HF
designer with a basic understanding of JSD). Intra-stage level processes and
procedures are described using. a block diagram (see Figure 8-2) and text
respectively. Rules of thumb (i.e. semi-formal notes) to support method
application are also included where appropriate;

(iii) the notation (including documentation formats) for describing human
factors design products is defined for each of its stages. Illustrations of such
description schemes are provided using examples selected from the case-

study cited in (i) above.

To facilitate method assimilation, the above presentation format is supported by the

195

following :

(a) an overview of each stage is provided for readers who are generally
interested in the method;

(b) a detailed account of the design stage follows the overview in (a) above.
Design products, procedures and notations of the stage are described and
illustrated using case-study examples. Thus, a deeper understanding may be
derived by readers who may be interested in applying the method.

In summary, the presentation format permits selective reading of Chapters Nine to

Eleven corresponding to the level of method exposure desired by the reader.

Figure 8-2 : Block Diagram Summary of Each Design Stage of the
JSD*(HF) Method

Stage A comprises sub-processes B and C.

” II>> IH>

P(x) > Input P (of X) feeds into all sub-processes of
Stage A.
Q) Input Q (of X) feeds into sub-process B only.

IH

196

8.5. Notes on the Choice and Scope of the Case-Study Illustration

Many case-studies were undertaken in the course of the research. However, the
final case-study (concerning the design of a network management system) is most
suitable for illustrating the JSD*(HF) method.> Since the scope of the system is
rather large (relative to resources available to the project), only the trouble-shooting
and security modules were addressed during method development. Of the two
modules, a sub-set of the design descriptions for the security module is used to

illustrate the method. This sub-set is selected to meet the following requirements :

(a) it should adequately illustrate the stage-wise design scope and notation
of the method. This requirement includes a comprehensive illustration of the
the products and documentation schemes of each design stage;

(b) it should adequately exemplify design transformations between stages of
the method. This requirement implies that case-study examples should
illustrate a coherent and traceable thread of design advancements across the

stages of the method.

In other words, the objective of the case-study is to expose the procedural human
factors knowledge embedded within the JSD*(HF) method. However, the
recruitment and application of declarative human factors knowledge are excluded
from the scope of the case-study illustration since they fall outside the remit of the
present research. Nevertheless, such instances are highlighted in the illustrations

when appropriate.

Against this background, a detailed account of the JSD*(HF) method is presently

described.

5 The assertion stems from the strategies for case-study tests on the method (see Chapter Six).
In particular, the strategies require that the final case-study be a non-trivial system so that a more
complete test of the method is afforded. Thus, the final case-study is most suitable for illustrating
the method.

197

Chapter Nine : The Information Elicitation and
Analysis Phase of the JSD*(HF) Method

"Really we create nothing. We merely plagiarise nature."
Jean Baitaillon.

“Engineering attempts 1o fully constrain its outputs.....Engineering investigates
successful designs and adopts those ‘means’ that it finds generalisable.”
Jim Carter.

This chapter presents a stage-wise account of the Information Elicitation and
Analysis Phase of the JSD*(HF) method. The two stages of this phase, namely the
Extant Systems System Analysis and Generalised Task Model Stages, are described
in the order by which design is advanced (see Figure on the following page). The
stages are concerned with the generation and analysis of background information
that would later support the derivation of a design solution. Intermediate processes
and products for each stage of the method are described in the format proposed in
Chapter 8. Specifically, each stage of the method is expanded graphically as a block
diagram containing one or more sub-processes. The stage-wise processes transform
inputs into a number of intermediate design products. Case-study examples of these
design products and processes are provided where appropriate. In addition, design
relationships between the JSD*(HF) and JSD*(SE) method are highlighted.

9.1. Extant Systems System Analysis (ESSA) Stage

Summary

The main objective of the ESSA Stage is to generate background design information
that will assist target system design. In analysing extant systems, the HF designer
may be interested in characterising current user needs and problems; existing task
allocation between the human and device; existing user interface design features and
rationale; etc. The information is described by a number of ESSA Stage products,

each providing a different perspective on the design, e.g. user-task design, user

198

interface design, etc. (see later and Annex D). These products constitute the data
base that supports target system design at later stages of the method (see Figure
below -- the ESSA Stage is highlighted in black).

Information Elicitation and Analysis Phase Design Synthesis Phase

System Analysis

Generalised Task Model Statement of User Needs

Composite Task Model

Other Contributions e——{i- Furlﬁt;fns

System and User Task Mode
System Task Model | | User Task Model

User Interface Specification

Interaction Task Model

v

Interface Model | | Display Design

= Points of SE and HF contact Design Specification Phase

= Design phases of the JSD*(HF) method

Two aspects of extant systems analysis should be noted. Firstly, extant systems '
include both the current system (i.e. the system currently in use in the client
organization) and related systems (i.e. similar systems in use in other sections of
the client organisation or elsewhere). The objective of including related systems in
the initial analysis (as opposed to studying only the current system) is to avoid
'tunnel vision' at an early stage of system design. It is expected that analyses of
extant designs would provide valuable insights about appropriate and inappropriate
design features with respect to the target system, i.e. extant designs are assessed on
their potential for recruitment to the target system. In practice, extensive analysis of
the current system and a number of extant systems may be involved (see below).

Thus, a broader perspective is derived to support wider consideration of alternative

199

designs. In addition, information derived from extant systems analysis may indicate
possible transfer of learning by current system users (both positive and negative

transfer). These concerns are addressed later at the Generalised Task Model Stage.

Secondly, it should be emphasised that the detail to which extant systems are
analysed depends on the circumstances of the design project, e.g. the resources
available; the designer's familiarity with the system domain; etc. Indeed, the study
of a related system need not be undertaken physically if the designer is able to draw
on past experience of related systems. In other words, the extent of such analyses
should be decided by the designer in each instance. Where limited extant systems
analysis is undertaken, the designer is required to note the information source and

rationale of all products leading to a target system design.

A brief account of the design processes and products of this stage follows (see
Figure 9-1. The reader is referred to Chapter 8 for an explanation of the
representation scheme). Italics will be used to highlight the design processes shown

in the Figure.

An initial statement of requirements that describes key target system characteristics
is collated from the client's brief, contractual documents, etc. On the basis of such
a statement, relevant extant systems may be identified at the ESSA Stage. Thus,
appropriate current, related, and partially related systems are selected for analysis.
Using 'off-the-shelf' techniques such as interviews, unobtrusive observations, etc.,
pertinent information on these systems may then be elicited from various sources,

e.g. end-user groups, existing job descriptions, user manuals, etc.

Structured diagram descriptions of two primary products are derived for each extant
system analysed. First, a Task Description for the extant system (TD(ext)) is
derived by decomposing tasks into sub-tasks. In most cases, a single task
description would have to be collated from information elicited from diverse
sources, e.g. protocols with different task performers, etc. To achieve this
objective, a basic set of generic descriptors or 'building blocks' (e.g. objects and
actions that are common across the information sources) needs to be defined. Thus,

generification procedures suggested by Johnson and Johnson (1987); and

200

Figure 9-1 : Block Diagram Summary of the Extant Systems System
Analysis (ESSA) Stage

Extant Systems System Extant System(s)
Analysis [ESSA] (ic. EPS, ERS, ECS)
SR - Information Sources;
oRe —> e.g. end-users, manuals, etc.
Generify and I
— TDEex) < Re-Describe | 47
I— —{ Abstract > GTM(ext)
—— GTM'(ext) < Compare | I GTM(y) (from
| and Scope GTM Stage)
Analyse and
> Decompose > Riext)
Evaluate, |
———— Ri(ext) € Selectand |«g—]
I Arbitrate
> GTM"(ext) —#> To later
JSD*(HF)
design stages
~
KEY : STM(ext) and UTM(ext) A
ITM (ext)
EXT = {ECS, ERS, EPS})
IM(ext) and UIE(ext) R'(ext) & R(ext)
R(ext),
R'(ext) DD(ext)
SUN(ext)
DoDD(ext
_ e Y,
DD = Display Design ITM = Interaction Task Model
DoDD = Domain of Design Discourse R = JSD*(HF) design products
ECS = Extant Current System SoRe = Statement of Requirements
EPS = Extant Partial System STM = System Task Model
ERS = Extant Related System SUN = Statement of User Needs
(ext) = extant system (EXT) descriptions TD = Task Description
EXT = Extant Systems UIE = User Interface Environment
GTM = Generalised Task Model UTM = User Task Model

IM = Interface Model

201

Johnson, Johnson and Russell (1988), have been recruited to support the
JSD*(HF) method. Similarly, to support later design analysis and synthesis an
appropriate level of task description needs be derived. Thus, the method includes
conditions which state that task decomposition should be terminated only when the
description derived :

(a) is generally understood among designers and end-users. In particular,
tasks should be decomposed to a level that facilitates unambiguous
identification with pre-specified system goals;

(b) is commensurate with the criticality, frequency and centrality of the task
(see Johnson and Johnson, 1987);

(c) supports unambiguous identification of performance shaping factors
(PSFs);

(d) supports the identification of training requirements and criteria, e.g. the
attainment of satisfactory Probability of failure x Cost (or P x C) values
(Duncan, 1974).

Second, a Generalised Task Model for the Extant System (GTM(ext)) is abstracted
from the Task Description (TD(ext)). The objective is to remove device dependent
details to facilitate later comparisons between extant and target system designs.
Although the level of abstraction should be sufficiently high to reveal the logic
underlying the system task, the resulting description need not be homogenous. For
instance, the level of abstraction may be deliberately lower for particular parts of the
description to preserve information on design features of interest in later stages.
Thus, the generalised task model supports HF analysis of extant system designs

vis-a-vis requirements of the target system.

Apart from the above products, other ESSA Stage products may be derived
depending on individual project circumstances. For instance, the full complement
(comprising products of all subsequent stages of the method -- the set is represented
generally as R(ext) in Figure 9-1) may be derived in cases where the extant and
target systems are highly similar (as in variant design). However, it is unlikely that
all extant system information will be relevant to target system design although
extant systems are selected on the basis of common domain or task characteristics.

Thus, an appropriate scope of analysis is identified by comparing GTM(ext) with

202

the Generalised Task Model of the Target System (i.e. GTM(y) -- see later). A
relevant sub-set of GTM(ext) (denoted as GTM'(ext) in Figure 9-1) is thus
identified. Both TD(ext) and GTM'(ext) support the generation of further ESSA
Stage products as appropriate. For instance, TD(ext) and GTM'(ext) may be
analysed further to identify relevant R(ext) descriptions. Lower level

decompositions such as STM(ext) and ITM(ext) may then be collated.

Generally, the R(ext) descriptions derived are evaluated to identify potential
candidates for recruitment during target system design. The candidate set is denoted
as R'(ext) descriptions in Figure 9-1. Since R'(ext) descriptions relate to a sub-set
of GTM'(ext), pertinent parts of the latter are collated to derive a GTM"(ext)
description for each of the extant systems analysed. The set of GTM"(ext)
descriptions are then carried forward to the next stage (the Generalised Task Model
Stage) where compatible aspects may be synthesised on the basis of the statement
of requirements and GTM(y). Thus, an overall GTM(x) description is derived.6
Similarly, other R'(ext) descriptions feed later stages of the method where
corresponding JSD*(HF) descriptions of the target system are derived, e.g.
SUN(ext) descriptions support the derivation of SUN(y) descriptions at the
Statement of User Needs Stage, etc. In other words, ESSA Stage information is
processed into products whose scope and format are similar to corresponding
products derived at later JSD*(HF) stages (see Figure 9-1). For instance, the
information is processed into descriptions comprising JSD* structured diagrams,
semantic nets, pictorial diagrams and tables. Uptake of ESSA Stage products is
thus facilitated.

Since ESSA Stage analysis may appear to address 'variant' design only,” it is
pertinent to emphasise that the method is not limited to such designs. On the
contrary, together with the Generalised and Composite Task Model Stages, 'novel'

design is also supported (see later).

6 JSD*(HF) descriptions with an '(x)' suffix denote products synthesised from parts of extant
system descriptions (denoted by an ‘(ext)’ suffix). Similarly, design descriptions with a (y)' suffix
denote JSD*(HF) products associated with the target system.

7 Note that most system designs currently involve variant design (see Rouse and Boff, 1987).

203

A more detailed account of the ESSA Stage, appropriate for potential users of the

method, follows.

Detailed Account

ESSA Stage activities may be grouped into three categories, namely :

(a) Identification of extant systems for analysis
(b) Elicitation of task information

(c) Derivation of ESSA Stage products

A review of the design activities and their procedures follows. Case-study examples

of ESSA Stage products are also included as appropriate.

(a) Identification of Extant Systems for Analysis

The first step in the method is to characterise the purpose of the target system (this
step is undertaken together with JSD*(SE) analysts). Thus, information pertaining
to the subject matter and requirements of the system is extracted from the client's
brief, e.g. target system tasks, hardware requirements, desirable current system
characteristics and perceived future needs. Other information sources such as
feasibility reports, informal and contractual documents, transcripts of protocols

with stake-holders, etc., may also be consulted.

The information elicited is summarised to generate an initial statement of
requirements. The statement should be sufficiently detailed to define the scope of
target system design. In particular, it should identify key characteristics of the target
system such as the domain of application (e.g. Network Management),
technological constraints (e.g. a command-line user interface), end-user

characteristics (e.g. novices), etc.

Target system characteristics thus identified are grouped into one or more sets of

204

‘concrete’ and 'abstract' characteristics which are of particular interest to the HF
analyst. '‘Concrete' sets map onto extant systems that operate in the same domain as
the target system, i.e. 'variants' of the target system. 'Abstract’ sets, on the other
hand, map onto systems operating in different or partially similar domains. These
systems may be compared conceptually with the target system to support 'novel'
design (as opposed to 'variant' design). However, the analysis of such systems
would not generate the same wealth of information since its relation to the target

system is more distant than 'concretely’ related systems.

On the basis of these sets, suitable extant systems may be identified for analysis. In

particular, three categories of extant systems may be identified, namely :

(1) the 'extant current system' in use in the client organisation, i.e. the
system to be replaced by the target system. Aside from domain similarity,
device characteristics of the current system may or may not be related to the
target system. For instance, a weak relationship would be expected in
computerising manual systems. It should be noted that the current system is
especially important from a HF viewpoint as transfer effects (both positive
and negative) attributed to current expectations and experiences of installed
users would have to be addressed during target system design;

(2) 'extant related systems' whose domain of application is similar to the
target system. This category includes systems in use in other sections of the
same organisation or elsewhere;

(3) 'extant partial systems' which share sub-tasks similar to those intended
for the target system, but whose domains of application are largely

different or unrelated.

The relationship between extant and target systems is summarised in Figure 9-2.

At a minimum, it is recommended that the extant current system should be
analysed to support a better conceptualisation of the target system. A number of
extant related and partial systems may then be analysed (in that order) to augment
the design data base. It should be emphasised that the selection and analysis of

extant systems is iterative, e.g. the analyst may decide to analyse other extant

205

systems during the course of the ESSA and other JSD*(HF) stages (see
Generalised Task Model Stage later). The procedures for selecting appropriate

extant systems for analysis are summarised below.

Figure 9-2 : Extant System Categories Assumed by the JSD*(HF)
Method

System Category | Organisation Status Domain Status
Extant Current System Client Same or very similar to target system
Extant Related System Client or Other Similar to target system
Extant Partial System Client or Other Similarities only at sub-task level

Procedures for selecting extant systems

1. Consult the statement of requirements and other sources (such as transcripts of interviews
With task performers, system manuals, etc.) for information on key target system
characteristics such as the following :

(a) the domain of application

(b) technological constraints

(¢) client-specified task constraints

(d) system performance criteria

(e) user characteristics

(f) environmental factors

These characteristics are then used to identify extant systems for analysis.

2. Abstract and generalise key target system characteristics. In particular, identify salient
features of the domain of application and task. Appropriate characteristics of the extant
current system may also be incorporated.

3. From the generalised set, particular sub-sets may then be selected. Generic categories
of extant systems are thus defined, i.e. extant systems which fall within the categories
represent potential candidates for analysis. Such generic categories need not include all
characteristics of the target system. However, the criteria for selecting a particular set
should be made explicit. These criteria are largely situation-specific, e.g. they are
determined by particular information requirements, e.g. on critical or problematic
aspects of the target task (see (4) below).

4. Select and record a list of extant systems for analysis. The number of extant systems
selected is influenced by situational factors such as :
(a) target task characteristics, e.g. task criticality, frequency and difficulty;
(b) resources available for analysis, e.g. availability of current system personnel for
interview; time constraints; elc.
(c) target domain characteristics, e.g. similarities with the current system; well- or ill-
defined system; designer familiarity with the domain; etc.

206

(b) Elicitation of Task Information

Having selected a number of extant systems, relevant design information is elicited
to support HF analysis and later generation of ESSA Stage products. Information
elicitation is facilitated by a number of 'off-the shelf techniques such as interviews,
observational studies, concurrent and retrospective protocols, critical incident
analysis, questionnaires, literature survey, etc. These techniques will not be
described since they should be familiar to target users of the method. As an
example, procedures for task performer interviews (which would be conducted in
most cases) are described overleaf.8 The reader is referred to Diaper (1989a, b)
for an account of other elicitation techniques. Suffice it to say that an elicitation

technique that meets the requirements of the analysis should be selected.

(c) Derivation of ESSA Stage Products

ESSA Stage products? that may be derived following extant systems analysis

comprise the following :

(1) Extant Task Description (TD(ext)) : a device-dependent description of
the user's task for an extant (ext) system;

(2) Extant Generalised Task Model (GTM(ext)) : a 'device-independent’
description of the user's task for an extant (ext) system;

(3) Extant System Task Model (STM(ext)) and User Task Model
(UTM(ext)) : device-independent descriptions of the user's on-line (i.e.
computer supported) and off-line (i.e. manual) tasks for an extant (ext)
system;

(4) Extant Interaction Task Model (ITM(ext)) : a description of device-level

interactions currently required to perform the on-line task;

8 Part of these interview procedures are attributed to Silcock who joined the RARDE project (on
which the PhD is based) in its final year. Guided by the present author (the project leader),
Silcock’s contributions (cited as appropriate) comprise a review of task analysis and elicitation
methods, and part specification of secondary design activities of the JSD*(HF) method.

9 Acronyms for these product will be used henceforth.

207

Procedures for task performer interviews

1. Conduct interviews. To facilitate information elicitation :
(a) use graphical representations during the interview. For example, pertinent design
information may be uncovered by asking task performers to describe the task with
respect to graphical representations of the device. The elicited descriptions may also
be represented graphically and presented later to task performers for confirmation. The
graphical notation used would depend on the information being described, e.g. tree
diagrams may be used for describing organisational structure, while JSD structured
diagrams, tree diagrams and flowcharts may be appropriate for task description.
(b) use ‘how’ and ‘why’ questions during the interview. Previous research suggests
that answers to ‘why’ and ‘how’ questions are usually related to superordinate and
subordinate goals respectively. The use of such questions may facilitate subsequent
construction of task "hierarchies’ from interview transcripts.

2. For each task performer, transcribe audio and visual records of the interview (if any).

3. Analyse the interview transcripts. Design information that supports the generation of
ESSA Stage products is extracted from the transcripts as follows :
(a) pertinent phrases in the transcripts should be highlighted and summarised;
(b) answers to 'how’ and ‘why’ questions are examined to extract the structure of the task;
(c) relations between domain objects should be noted, e.g. composite objects, task
groupings, etc. The information may be used to define the domain of the target system;
(d) statements describing user needs, problems and possible solutions should be noted.
Such information supports the derivation of an enhanced statement of requirements.

4. Re-describe the information using notations of corresponding stage-wise products of the
JSD*(HF) method. The objective is to facilitate later transformation of the information
into the scope and format of later JSD*(HF) design products.

(5) Extant Interface Model (IM(ext)) : a description of the appearance and
behaviours of bespoke objects of the extant user interface, including variant
objects of the chosen in-house style or user interface environment (if any);
(6) Extant Display Design (DD(ext)) descriptions : of static and dynamic
characteristics of extant displays (including dialogue and error messages),
e.g. screen composition, layout and actuation with respect to the user's task;
(7) Extant Domain of Design Discourse (DoDD(ext)) : a semantic net
description of the application domain of an extant system;

(8) Extant Statement of User Needs (SUN(ext)) : a summary of user

problems and needs for an extant system.

These products support later assessments for recruiting particular extant designs to

the target system. To this end, extant system descriptions are processed into the

208

scope and format of corresponding products derived at later stages of the method.
In other words, extant and target system descriptions10 are 'mirror images' of one
another, e.g. ITM(ext) and ITM(y); STM(ext) and STM(y); etc. The uptake of
extant system descriptions at later design stages is thus facilitated. It should be
noted, however, that in many cases the full complement of ESSA Stage products
need not be derived. In particular, ESSA Stage analysis may be terminated
following the derivation of a GTM(ext) description if the information captured is
considered sufficient for target system design. Thus, a HF designer should assess
whether the derivation of a wider range of ESSA Stage products would benefit

target system design.!1

A selective review of ESSA Stage products follows. A complete case-study
illustration of the products is unnecessary since extant system descriptions are
'mirrored’ by target system descriptions. Thus, the reader should refer to either
Chapters Ten and Eleven for case-study illustrations of target system descriptions,

or to Annex D for a more extensive account of ESSA Stage products.

(1) Extant Task Description (TD(ext))

TD(ext) is a device-dependent description of the user's task. Its level of
decomposition is determined by the purpose of the analysis. For instance, a low
level description (e.g. to the keystroke level) may be derived for an extant current
system (i.e. a system that operates in the same domain as the target system)
designed using the same user interface environment (if any). Alternatively, a higher
level description of TD(ext) may be derived when extant systems less closely
related to the target system domain are analysed, e.g. extant related systems. In
such cases, the description needs to support comparisons between the conceptual

designs of extant systems and target system requirements.

10 SD*(HF) products corresponding to the target system are denoted by the following scheme :
<JSD*(HF) stage name> <(y)>, e.g. GTM(y).

11 Thys, the rationale for deriving a particular range of ESSA Stage products should be
documented.

209

TD(ext) is described using JSD* Structured Diagram Notation (see Annex A). The
description is supported by an information table that provides a textual account of

important task design features.

Procedures for deriving a TD(ext) description are summarised below.

Proced for_deriving TD(ext)

1. Take as input information that has been elicited from task performers, manuals, etc.
Identify the super-ordinate task (and task goal), and decompose them into sub-tasks
(and sub-goals). Note the sequence, frequency and conditions that control the
execution of each set of sub-tasks (these will be represented in TD(ext) using JSD*
structured diagram notation). The objective is to derive a comprehensive description
of task components to support subsequent task analysis and design.

2. Continue the decomposition until a satisfactory level of description is derived. The
point at which decomposition is terminated will depend on the purpose of the
analysis. For example, if target system design involves re-designing the extant current
system using similar technology, then it may be informative to continue task
decomposition to the keystroke level. In contrast, if target system design is instigated
by the use of substitute technology such a level of decomposition would not be
warranted. At a minimum, sub-tasks of the TD(ext) description should detail how
superordinate task goals may be fulfilled, e.g. it should describe start- and end-points
of major tasks and define pre-requisites for the fulfilment of set goals.

3. Analyse task performance from a HF perspective. Particular attention should be given to:
(a) user problems and needs as well as positive extant design features that may
contribute later to target system design;

(b) the rationale underlying extant designs. The information would support later
assessments of the efficacy of existing design features.

4. Record the derived information using JSD* structured diagrams and include textual
comments in an accompanying table as necessary. Note that :
(a) the table structure may vary according to the needs of the structured diagram. In
most cases, it should include a column each for elaborating boxes of a structured
diagram and for noting HF comments on particular task design features;
(b) table items should be recorded in the sequence by which structured diagrams are
read, i.e. from top to bottom and then from left to right;
(c) complete elaboration of all boxes of a structured diagram in the accompanying
table is unnecessary since the objective is to clarify complicated parts of the diagram
and not exhaustive documentation. In particular, the selective elaboration of structured
diagram boxes is intended to balance the requirements for adequate documentation and
economy of effort (limited project resources).

210

Generification and TD(ext)

On most occasions, task descriptions for an extant current system would be elicited
from various information sources. To derive a single TD(ext) description,
generification techniques have to be applied to identify and remove subjective

variation across descriptions elicited from each of the sources.

Generification may be considered a special instance of abstraction (see Annex B).
Its main purpose is to identify a superordinate classification (generic descriptor) for
a set of two or more entities based on shared attributes. Thus, generification may be
applied to extract a single TD(ext) description from a set of related extant tasks. In
particular, subjective variation across individual task descriptions are removed by
defining a generic descriptor for task elements that share common attributes. Details

of the generification procedure are described below (Silcock and Lim, 1990a).12

Proced ; ifyi ' task_descripti

1. Collate a list of all objects and actions from the information elicited.
2. Reduce the set by listing each object and action once and once only.

3. Associate all similar terms using one of the following techniques :
Technique 1; The designer associates a particular term with other similar terms
iteratively by expressing the original task description in terms of an alternative object
or action. If the alternative description is considered ‘adequate’, then the terms may be
considered sinilar.

Technique 2. Task performers are asked to sort object and action cards into different
groups on the basis of task relevant criteria.

4. (Subjectively) assign a common or generic label to each group of ‘like’ terms.

5. Validate the generic description derived by asking task performers to assign a generic
label (from (4) above) to each item in the original list of objects and actions. If a
specific item can not be located satisfactorily, task performers are free to supply an
alternative label. Thus, suitable generic entities are identified iteratively.

6. Giving due consideration to the original information, construct a generic task
description using generic entities where appropriate.

7. Validate the generic task description with task performers by comparing the generic
description with the account elicited from task performers.

12 See Footnote 8.

211

ase- Ilustration of TD(ext

Two extant systems were analysed in the network security management case-study,
namely an extant related system in use at University College London and an extant
partial system represented by the PC security application, MacPassword.™ The
target system comprises a hypothetical system to be implemented at the Royal
Armament Research and Development Establishment (simulated client). It should be
noted that the extant current system was not analysed owing to military security

and the unavailability of security staff at the client organisation for interview.

More needs to be said about the extant systems selected for analysis. The network
security management system at University College London was selected because it
shares the same domain as the target system. Thus, information derived from its
analysis may support the generation of a conceptual design for the target system.
For instance, security management tasks in both systems comprise accessing the
computer followed by the detection, identification and response to security
breaches. Similarly, MacPassword™ is selected as its domain (i.e. personal
computer security management) is partially related to network security
management. Its selection for analysis was motivated by the potential recruitment of

its low level design features to the target system.

Examples of the TD(ext) descriptions derived for the extant system at University
College London Computer Centre (TD(UCLCC)) and the MacPassword™
application (TD(MPASS)) are shown in Figures 9-3 and 9-4 respectively.

Information tables for each of these descriptions are also shown.

To illustrate how extant system analysis may contribute to target system design,
part of the security management task is examined. Specifically, the task concerns
the identification and response to failed log-on events arising from illegal or
incorrect password inputs. These events are important since they may signal
attempted access by a hacker. In this respect, the TD(UCLCC) description indicates
that the extant system did not provide a facility to alert the network manager to such
events. Thus, these security breaches can only be uncovered by manually searching

through volumes of computer logs or network user reports. To rectify these design

212

SI01R 30113 35anbas JoLd 3pod S1010 018
- 11oq pioxy 19431 plo%ay [9A3] pl0%3y oL plonssed uotBOyTIuapL
0 0 0 iast ploosy “posey
[} L} L] _ _ —
| 1
PIMIIP $SI00R uoTIR[oIA JO TONE[OIA JO uone[ota Jo 94 AMNoI Suryory uoge[olA jo uonejoia jo uotg[oia jo
UOTIEISYIO M\ a1mp pioooy 9umn pIoy AMyEU P00y vy syodar 1950 AP pa053yY SWN P10y | | amyeu paoxy -
0 0
1] I] T) A [} |
1 1
uotjesuoyine uonesuoyne 1s9nboi [2a0] tor uu%%o 1edaqn 1eSay
30 S53008 39 HesHogine Sme) STUE)
o P o T i oy | o ™S o M
I T I 1
1 | |
YD smels kpoq sSuns 32342 SmEIs plomssed uonealuapt
uoyesuoyIRY PUEWIDOD 15 103euey ey oy
\25 ¢ s93ed wo anunuop) = J | _] I “]
J0pI0 AUB U1 1283 JO Q) = * Foatd a1
somonbag = uoyesLOYINY 0%y
wonwpag = 0, _ _ I
_ : S]oquuAs A soxog)
OonaL

I 33eq - ((DDTDN)AL) 3u3) sndwo) uopuo 330 ANsisaluf) je JudmaZeue)y AJINIAG YI0M)IN Joj uondiidsaq ysey, : ¢-6 3ndiy

213

uonesyguapt
uod-g p10o9y

uonedso|
uod-g pioo9y

UONESNUIPI
pod-(q proooy

uoneso]
uod-(piooay

2

3

 S—

4)

¢ 98ed uo onupuo) = ---

I9pI0 Aue Ul yoed JO SUQ) = *
spreyop uod sqrerap uod((y) aouambag = | |
(§) omog uoneuns(J uonR[RS = 0,
: SjoquuAs iM saxog
2 ? \)
P yoealq
&poq M“Mu&mou 30 samgeu huww umwwm B
o ysTqusg P
_ “
oummn || e || oo | SR ||
2esn [eunouqe a3esn oBaIq pI00Y 3ep p1003Y swn pi033y p1003Yy ploosy
Lilstive) [BWIOU WIYUO)
* °__) 3)))
T l I
J— oFusn Jnowd s[relap uoneoynuapt| |s[elsp [eumnuIs)
a8esn yIomaN oMo Yooy yoreag Uo¥RIq pIoo3Y 1o5n plodoy p1093y
[I) A A 'y
] |
UOTIBOTJLIDA £poq sfrejop 198N Woly [fed
uodar 1950} uodar proosoy suoyd 21300y
| . 1 1
]
Sunyoey
suodai 108}

T ¥8ed - ((DITONAL)
MUI) INdwo) uopuo 333110 £)SIAAIU(] IR JUSWRSRUBIN KIANIAG HIOMIIN 10j uondiidsa(ysey, : €-¢ dandiy

214

mojund
oreag
*

1

asn [eULIOUqe
1o} 3o yoouD

23ueyo
plomssed
s0lojug
*
meoa.. soousnbesuos |)Apoq o3ueqo wﬂm%%
owa.wwo._m._ 0821q 85355 pIOMSSE] wyuoy
[[20uamo20 Jo | Jeouamaoo jo| | uonBOYLUIP! uoneao] | | wonesynuapi| {uoneso; uod
POULITJUCO £poq 1sn &q| | sosn ysomtou nep arep poooy | [oum pi0oay | | uiod-g paoooy| [uod-§ p10oay | huod-(y piosey | | - paoooy
yoealg wo-B0] porred | | ououdapor [| on e
0 : sy | g 3 3 5
1] rI_IIL 1
s[retop uoneaynuap! T d [re1ap uod (@)
Yoord smeys [re10p L0 !
Joomang Sﬁu”uumwos sw“wu”m%%a Anpemuounqy | | ssn prosoy {5) 2omog uoneunsaq
—— S S 7
Apoq snye1s e unouge Apoq
goralq Jo aimgeu uoneuuojm -
uguo) suqeisg pioooy
T I I
~ 2 Hl
p 98ed uo anunuo) = -- s:_wwq”%ﬂ« oesn [puou
ey waued
TOpI0 Aue UT 4oBD JO SUQ = * L° o
gouanbeg = |, : | —
UOHEIL = . Yoouo snyers
uonxRyes = 0, [o8esn yiomioN
2 SJoquIAS i soxog !

\

¢ 38eqd -~ ((DDTDHN)AL) 3ud) Jndwo)) uopuory 333[0) Ajsiaalup) je
Judwddene]y A)Andag yiom)aN 10 uon)didsaq ysey, : €-¢ dnsiy

2979 JUNNO1
IoFemey

215

S1jJen Jiomjou
10JTUOIN

sI0jTuowr
aur] dn jo8

a8u
E.”W”_ow“_owm uoneaIuspt Eonuwsm . 3[dhd quw“u«“ uod-g [euINx?
UIden Io¥oe ="
o @roway 0 Tesn Aqesta o oMo . 8 H 31eUIpIO-0D) JomuoD WIyuo)
— 1 | I T _
|]
S[Ie1ap JUNOIOE Ioyoey Apoq 110d uod somos
I9sn 23uey) aoe1], 90INOS [RWIAIXH [B20] WIjuo))
(o] 0
I T [T
|]
110dax Apoq smess uod
[oeaiq AW uonde yoearg 30I00S JooyD
I | I
]
£poq asuodsaz
oouenbog = | | eIl
UOTIBISY] = 4,
uonres = 0,
p 9ded -- ((DOIDN)AL) 3nud) JIndwo) uopuo 333100 AysiaAlun
: S]OQUIAS UM soxog 18 JUIWISBUBIA AJLINJAG HIOMIIN 10} uonydirsy(jsey, : ¢-¢ d4n3if

216

*awn I8y} I8 pauuBLIUN ST
UOTIRISIOM 9} 9SBD UT SAUIRWILNS
Ju243-150d 1M ‘uo-3og

parre; o1 asuodsar ux papraocxd oq
Aew SULIRTR [BNSIA pUe AI0)IpnY

“Sessappe

UOTRUNSAP PUR MO MOYS
pinoys 1ndino ayy, ‘suonednuap!
108N pue STEAIUT aum (1)
‘Sassamppe

UOTIBUTISAP PUB 90IMOS ‘WD MOYS
prooys 3ndino oy L ‘uonesyIuapt
1980 o1y10ads pue suo-of payre; (1)

: Surmoryog 2t e yons [eAatnax
uonewIosul o119ads apraoid
Kews suonduny yoddns ur-up

*19112q Yse1 ap 1oddns
Kew A{I0B] [TRW-DIUONIA UY

“(ans waishs 108101 o) HAYVA

‘PeANS[EH U0 82 JUOWUOIIAUD
2IMO3S JI0W B UT AIBSSI0IU 9q

10U A2W YOAUD UONBSLIOYING 3y,

*suo-o1 [eSof[r pur parre] 20§
papraoid aq pnoys Hafe uf-uQ

*suo-3or 3oy renualod

10 sown uo-3o] Juruueos

30 yse ay) poddns 0y papraoid
2q p[NOYS SUOTOUN] JUI[-UQ
*Su0-80] Pafrey JO SI0UALMIO0
ayeorput A7ea)o pruoys s8og

‘pautoddns 2q pynoys
UOTIBOTUNLILIOD SROUOIYIUASY

“poxnbar sem

2WIYdS umdayo UoNESLIOYINE UL
‘sny.L, *aoeyd ut Sem uoTEISHIOM
) 0] SS320R 20WI 10} AN[I08]

B OS[Y "A[UAI0LJJ0S PAINSUd

2 70U teDd AIUNJAS WOOI S8
20101 10 ATBSS30U PAIAPISU0d
sem walsKs Sunjooyd ssa00 QYL

JUAAD S INJB PIISACISTD
A[eoldf) arom saydealg

*satnua Jof areredas ajouap

01 3uroeds pue suonejuapul

aury 3daoxa “yse1 sty poddns

01 paudisap 219m s30[randwoo

JO 1n0A®] pUE JUAUOD ‘2IMIONDS

91 JBY1 UOTBIIPUT OU SeMm I],

*$30[auT-J30 e Iaeurw YIomlou
2y 4q papiogar are sTreIep 1oday

(sysey

auT[-3JO Y104) Jasn A} (NIA POJLIOA
Apuanbasqns pue pep1000I a10M SAyRAIQ
Kmoas apqrssod Jo sfrere((yoress
QUT-J30) sayoea1q AJLmoas afqissod

JO 20UIPIAI 10] UOTBULIOUT paB30f uLds
ATreuorsed00 Aew 1o8eurur YI0MIoU YL

“podar josn

A Jo S[re1ap AJuIaa 03 (s1no-juud) 8oy
WISAS 2y y3noryl JuryoIess SIAJOAUT
uonoe sy, "A[ererpawut uodar oyl

Uuo 308 0} paroadxa sem Iafeurws yIomiou
Y} ‘sased ysow Uy *(uo-3of ey ue
“8-3) yoraIq A1undas e 110da1 0} 198eurW
YI0MI2U 2] 10BIUOD ABUI JIST JIOMIAU

“191ndwoo 9y £Q PAPIOOSI SBM SYIYD
3591 JO IOURID JO UOTIRIOTA "paniuurad
Sem UOTIRISHIOM Juawogeus YI0MIau

AU} 07 $53008 2I10J2q ‘SYO2YD UOTBSLIOYINE

PUR JUNOJ0R K[SWRY ‘SYO0AD 0M] Jea]0

0} pannbaz sem I98BuBI YI0MIAU UL,

Yooyd unNoI 195BURA

Sunyoey suodar xaspy

009 uoesHoyINY

30940 UNOXOY

uonendadg

wonedijdmy usisaq

UOI}BAIISq()

uondidsag

JueN

1 38ed - Qe L(DDTONAL

217

‘(Syomyau
JjowaI Jo saniqroey uo Surpuadap)

papraoid oq Aewr [TRW-OTUONIATH

*snoagejueApe oq pinom SanIIoe]

UOTIBOTUNIWIOD SNOUOIYIUASY
-9[qussod se rej se jouuosiad
9)0WAI 0) $S2008 ASED 9ARY
PInOYS 193euUBW YI0MIU YL,

"pommbar
ST UOTIBOLIIUaPI Jasn anbiup

*SunjeLIopun SAISUSIUI INOGE]
® seam 31 Jey 1deoxa ysel iyl uo
[qe[TEAR SEA UOTIRULIOJUT NI

"UOTIRULIOJUY PoIISap
Y UTeIqO 01 IMIYFIP aq Apw I

*$53001d SunstRIOWaD
pue MO[S € 3G 01 pauoday

“S[enprarput

J0 3quinu v £q pareys st
UoneInuap! Ue Ji SI38N o1j10ads
Amuapt 01 NOYJTP oq Aew]

*90INO0S S31 90BN J0USY puB ‘dum-Tear
u1 AJ1AIIOR I90BY 10919P 0] SIONUOW
aur dn 195 ABw JoFeURW SOMIU YL,

*(suoydarat Aq ouop

9q P[ROJ STy : JION) "PapIBAIO] 3q O)
UOTBULIOJUI 3y} J0J 93U LR 0} SYIOMISU
10 JO s1ageuBW SUnORIUOD JA[OAUL
pInom Sunpyelsapun oy L “Anuapt pue
UONEBOO] S JOYIBY Ay} UO UOTBULIOTUI
annboe 0S pue SSAIPPE 22IN0S AOWA
a Aynuapt o) ydwane Kew Jafeuew
JI0MI0U) YIOMIOU JOYIOUR BIA
Ylomiau 2yl 0juo pag3or sey I1axoey € J1

"Yo®a1q A} JO saouanbasuod
Ay sutuIap o3 s8of wasAs ySnoryy
oreas Aew 1ageuew YIOMIau oy],

*promssed paraquiawal AJISea 210w €
2500yd ABW IS Y} JBYI OS PAJIOJUD o
Kew 98ueyd promssed e ‘AfpaneuIny
"UaYel 3q PINOM UONOR JAYLIN]

Ou ‘Ia$n Te3a[© 03 anp ST JUAAI SN
[BULIOUQE Y JT "PALIMIO0 AJ[ENIoe Sey
YoraIq AJLINDAS © 1B UTELIIOSE O) Jasn
Y] 1983U0O 0] PBY J2FeUBW NIOMIU Y],

*(SYI0MIAU IO WOI] $$2008 Ajowal Aq
10 232700) ur wooI o1y19eds € woy
*§°9) 13x9BY 1 JO uoneoo] Ted1sAyd Ay

Iory 081,

Kpoq 1od 201008 RWINXF

saouonbasuoo
oBaIq SSISSY

Apog
SN7RIS YORAIq WLIUOD)

*S[re1ap JIomlau *yse1 sup) woddns | SIBOIPUT ABW SSIIPPE AT, “UOTIEIYTUAPI
*QUIT) PUB SUWIRY J3SN 1J10ads puR 1351 0) $53308 Asea poddns 0} paugisap a10m s3oj 19ndwod 1380 PUE JU9AI YIBaIq AJLMIIS) UO
30 10dut uo S[TEIOP 95N YI0MIBU 01 papraoxd 2q pnoys sanmioey | o 1noAe] pue Juotu0o ‘ormonns | UODBULIOJUT UO Paseq JoSBUBW YI0MIOU asn
#oys pnoys uonduny poddng TBA3LIO1 UOTBULIOJUT SUT[-UQ) | 1P TBY) UOHEOIPUI OU SeM SIAY], a1 Aq pateoo] Sem ssarppe uo-gopoyy, | [BWLOUQE 0] S30]3%0U)
uone[noadg wopeddmy ulisag uO0IIRAIISqQ) uondiisaq JweN

T 33ed -- dqeL(DDTDN)AL

218

"Po[BaAAI 9q ABLU [BNPIATPUT SUWES U

£q sdwane Suppoey ur woned Aue jey
08 W13} BuOj 3y UI SIUSAR YOS JO P02l
v anmbar Aew 103euew J10MIoU Y],

*Kressaoou

71 dn 138 oq Aewr Junodoe Judwade]dar
V "POWIaOUO0) 1351 2y FuoeIU0D I31Je
UOTROIHUSPT SN PAIDATE) AOWAX
Apuoueunad Aew 1afeuRwWw Y10MIU Y],

(pao10ju9 oq

0} sey piomssed Jo a3ueyd e 3ey) paynou
3q 10 ‘2oe[d uaxe: sey unjory Iayaym
ULITJUOD 0 PAJOBIUOD 3q JOUURD ST

) J1 *§-2) UOTIBOLTIUSPT 138N B J[QESIP
A[ue10dwd) Aew 1a8eUBW YI0MIOU Y[,

*195n U Aq suo-8oj payre;

01 osuodsar ut promssed ajerrdoidde
2I0W B JO UOTIOAAS 3y 9[qRU3 0] (q)
‘uo-3o1 eI ue 0)

panqLIIe yoraIq AILmoss e AJnoo1 o) (2)
! SOUBISWNOIND SUIMO[0]

91 T 308N B U0 93ueyD promssed

® 9010jua Apw IaZRURI YIOMIU QY],

nodar yoralq Aum

UOTBIITIUapT
135T 2A0WIY

UOTIBOYTIUAPI
138N 9[qESI]

98ueyd promssed 2010Jug

uonendddg

uonedduy wdisaqg

UOIIBAIISq()

uonpdiadsaqg

qmeN

€ 93ed -- AQeL(DITIINAL

219

Figure 9-4 :

MacPassword™ Application (TD(MPASS)) -- Page 1

Task Description for PC Security Management for the

TD(MPASS)
I 1 1 (Boxes with symbols :
Boot Log-on ‘o' = Selection
system body *' = Jteration
' ' = Sequence
l --- = Continue next page
x N
Log-on
cycle
]
[1 1
Enter Check user Outcome of
password status status check
T
I]
0 o)
Legal user Illegal user
body body
| 1
1 1 | 1 |
Securit 0 0
AC(.?CSS managenz,ent LOg—Off User's 1st and User's 3rd
security log body 2nd attempts attempt
]
I [i i |
1 1
Display error Log session Shut-down
List usage Usage status - detai
tail t
session details check message ctatls system
0 o] %
List by date List by date Status checking
and time and duration cycle
1
1 1 1 1
Search MPASS | | Scarch off-line Determine Usage
listing records usage status status

220

Figure 9-4 :

MacPassword™ Application (TD(MPASS)) -- Page 2

Task Description for PC Security Management for the

Boxes with symbols :
Usage
status ‘o' = Selection
I ‘*' = Jteration
. o -1 5 ' ' = Sequence
No security Security * = One of each in any order
breach body breach body
I]
I 1
- Note security Breach
breach detail response body
'__E__' I
1 1
0 0
Note usage Note security Illegal log-on Failed log-on
session details breach type breach breach
Hacker *
Assess breach | | Enforce password | | 4o ee ol
consequences change cycle
1
[I 1 I 1
E . Upgrade
nter breach Start password | | Note password(s)| | Guess hacker's security
session detail search used by hacker identity measures
%
Upgrade
measures

221

*STeAISIUT JRMEal 8
pue suo-30] pajre; 01 asuodsal
u sa8ueyd piomssed poddng

"spoued oum
Pal19ads I0J SIUIAS JJO PUB UO
pag3o] saoLnal 03 suonouNg

*[eAIIUL ST pAtyIaads
B urgim aesn Jandurod
UOIeas 01 UOTOUNJ Y

*s301 waIsAs Furssaooe
103 promssed anbrun suijoQ

*Ayunoos [euonippe
ap1aoxd 01 saniqoe] oreredes

*saduerd
piomssed 103 110ddns spracig

*asn-uou Jo sporzad parjroods
O TRASLROI 150MP AU} JOJ
sonioej Sutpiaoxd £q ssaooxd
yoreas aup woddns 03 paaN

*SIUAAD U0-30]

pa[rej Juump pasn piomssed
pue djep ‘oum Surg3of

10§ suondung oddns poaN

"Yoreas
e1ep Fumen[Ioey Joj pue
uoneuvoyur pagfor Sunosoxd
JO SURIUI SWOS PION

‘uo o1 19sn Fuimor|o]
STOA9] AJLMO3S Udamlaq

PP

uasq seq Ananode Junjoey
Iye Atuo jou *o°1 ‘Aprengoa1
Pa10aJa 2q pmoys saguey)

sty
01 3oL 9q Aew suo-30]

wos ‘sny [, ‘uostredwod
a3esn noddns 03 Joumo

o Aq 1doy 10u A[eULIOU

sem 9Fesn wolsAS JO pI03aI
aaIsuagaidwod pue sjeredas v

*awm Jo pouad B 12A0
POAJOAUL 219Mm SUO-FOT Auew
J1 SWOSIAQUMD W099q KB

*SINORY 0] S[QISSAVORUL
uoneuLoyur pag3o[

oyewr 03 Jueuodun Apremonred
snip sem 1y “ANAnoe

Sunyoey SwiAnuapr Jo

Ssueaw A[Uo o sem Jof oy,

*UOTIBULIOJUT
JATIISUAS AJLNDIS IIYIO pUe

*K11ATIOR J19dORY SUIMO[]0]
peSueyo aq Aewr promssed oy,

"uel
99 uay) AW UONOR AN "KIATIOR
10398y 91e21pul ABW SaNLIBMIS.LIT
[ong *pajou aIe S[TR1ap UOISSIS oY)
‘I0J PAIUNOOE 2 JOUUED SANIATIOR
98esn remonued Jj *o8esnwalsAs
uMOoLy 1sutede a5} Yooyd pue
‘saJep pue sawun Jjo-30[‘uo-3oj 1o}
9SBQRIED 91} SSI00R ISNW JOUMO 9],

*IOP[OJ WAISAS 2} Ul 9[1J
B 0] UM Sem FO] A1Lmoas ay L,

*SOJAIIS S, WIDISAS)
JO Aue JOJ SUOTIORSURI] N0 ALIBD KBTI
I9sn 9 ‘uo pagdo] 20U *1asn A

93ueyd

piomssed a010Juy

Apoq

Wwauradeurw A1LMdag

8o A1moas

§5900Y

10§ spIomssed anbrun autjacy uondunsIp 193U0NS B PN ‘s307 wo1sks 01 ss300v Aseqy | Aq porjioads sem promssed 100100y | Apoq smiess 1osn [edey
"woISAs 9moas sso7 parmboi *1omduwrod 9 Aq UONBDIJLIA
Sem UONBOYNUIPT IOSNON | 107 195N 3} AQ PaIajua s1 promssed v promssed 1ojug
*WI9ISAS a1p) $5990€ 01 19ndwod
91 100q 01 paxmbay e Jasn dYL, waIsAs 100g
uonendadg uoneddwy udisag uolIBAIISqQ uonpdiaasag JweN

I ¥3eq -- dqe], (SSVAN)A.L

222

“J00Q-91 ® SuIMO[[0}

$$9098 pareadar
10J K11[1087 N0 QWN
© apnout 10 ‘uo-30]

*3unooq-a1
£q sidwane ordnnuw 1wy

‘urege £n 01 921] Sem 1osn

*pasn (s)piomssed pue tuo-30]
paqre] ‘uo-301 159n3 pue 1oUMO
JO Swm pue ANep APNOUI PAPIOIAI
uoneuuojur oy, -3doy sem
SIUQAD SSOO0B UIMISAS JO PI0OI Y

1dwane pany 21 1915e

S[relsp
uo1ssas 801

Pa[Te] 191J8 100 YOoO'] PINOYS WISAS LI1INd3s 2y, ap ‘1omndwod 9yl unooq-01 1YY A1uo poreuruirdy) sem uoisses oyl | jdueype pIg SIS0
"Iy 2} Aq pasn piomssed
Q) PUE JUAD) JO W) PUB P
*150dsoI STUY) UT [NJosn 9q | OUl OPNJOUI ISSISIUI JO UOTIBULIOJUI
"pagdo] *UOTIEDIJTIUPT JaYOeY JO Kew pr0221 promssed vy “Linuapr UIO 30[9Y) WO SIOUILMI0
are suo-30] po[rey ul | yse) oyl 0} POPIOIDI UOTBULIOJUI s, 10308y B O} san[d njosn opiaoid yons AJnuopt 1SN Um0 yoea1q
pasn spromssed amsug Q) ISI[EMX3UO0D 0} PN Aew UOTIBWLIOJUT SWIT} PUR 1B(] 9L, "PopI03aI AIoM SUO-30] PafTe] uo-30[pafre
uonjendadg suopedjduy udisaq uoIBAIISQO wonpdriosaqg dweN

7 33eqd -- Jqe], (SSVAIN)AL

223

inadequacies, computer supports suggested by the analysis include automatic alerts
to failed log-on events and information collation functions. These suggestions were
substantiated by the TD(MPASS) description since similar requirements were
identified, i.e. computer owners need to consult computer logs for evidence of
failed log on events. In this respect, the analysis highlighted a potentially useful
design feature in MacPassword,™ namely computerised recording of passwords
used in such events. Such records may provide clues to the identity of the hacker
and may help to distinguish between illegal and incorrect password inputs, i.e.

password mis-keys may be differentiated from hacking attempts.

(b) Extant Generalised Task Model (GTM(ext))

The objective of a GTM(ext) description is to support conceptual assessments of
extant system(s) designs relative to target system requirements. To this end,
GTM(ext)s are derived for all extant systems analysed at the ESSA Stage. Extant
designs that may be ported to the target system are thus exposed.

GTM(ext) is derived by eliminating a proportion of the detail in TD(ext) that is
specific to a device. In other words, TD(ext) is a device-dependent description
while GTM(ext) tends towards device-independence. Thus, the logic underlying a
specific task is brought out by abstraction. Despite their tendency towards device-
independence, GTM(ext) descriptions should retain sufficient information about
relevant extant design features, e.g. design rationale. In particular, the level of
GTM(ext) description should not be too high that design features of interest are lost

(see rules of thumb for GTM(ext) derivation overleaf).
As with TD(ext), GTM(ext) is described using structured diagrams and an

information table. Procedures for deriving GTM(ext) descriptions are summarised

on the next page.

224

r rivi T
Starting at the top of the TD(ext) description, work through each node as follows :

1. summarise the semantics of the task (and its sub-tasks) in ‘device-independent’ terms to
reveal the underlying logic of the particular node. This process is supported by
by GTM(y) since it constitutes a ‘device-independent’ structure for the target system.
Specifically, GTM(y) and the statement of requirements provide guidance on the level
of GTM(ext) description. In general, the more similar the extant and target systems
are to one another, the more device dependent details should be retained in the
GTM(ext) description (see rules of thumb below).

2. continue abstracting each node down the TD(ext) hierarchy. This process may
become more difficult at lower levels since they are, by nature, likely to be more
device specific (e.g. task inputs and outputs). Note that GTM(ex:) descriptions should
relate to salient characteristics of the target system so that later comparisons are
facilitated.

3. record GTM(ext) descriptions using JSD* structured diagram notation, and include
additional notes in a supporting table as appropriate.

h r GT ri

1. The level of GTM(ext) description should be high enough to facilitate comparison
between extant and target systems.

2. The level of GTM(ext) description should be low enough to capture sufficient
information of interest. Thus, a completely device independent description is not
always desirable since information on the relationship between particular task
characteristics and device design would be lost.

3. A one-to-one mapping between device-dependent and device-independent descriptions is
unlikely, particularly at lower levels of description. Thus, it may not be possible to
abstract a TD(ext) node directly in ‘device independent’ terms. In such cases, it may be
necessary to combine the node with an adjacent node(s) and consider their abstraction
into one device independent term.

- Illustran GTM(ext

A case-study example of a GTM(ext) description is shown in Figure 9-5. The
Figure shows that on abstracting the description (i.e. GTM(UCLCC)) from
TD(UCLCC) :

(i) lower level details were omitted in favour of a more general description,
e.g. the 'Status illegal' sub-node and its leaves (Figure 9-3, Page 1) have
been reduced to a single 'Record violation details' leaf (Figure 9-5, Page 1);

(ii) device-specific task information was removed, e.g. the 'Search printout'

225

leaf (Figure 9-3, Page 3);
(iii) its overall task structure was largely carried over to the GTM(UCLCC)

description;

(iv) details outside the scope of target system design were excluded. Thus,

Figure 9-5 :

Generalised Task Model Description for Network

Security Management at University College London Computer Centre
(GTM(UCLCC)) -- Page 1

GTM(UCLCC)
Enter Enter Manager
identification password status check
1
r 1
o
Status Status
legal illegal
e E— I

I)|
[o] (o] o
User reports Manager . Record Workstation
hacking routine check violation details access denied

— ===
I | | !
Receive phone Record report User report ---
call from user details body verification
1
' ' r 1
Record Record user Record breach Che(;ks:e;work Netvs/:)::;:sage
terminal details details details g
1
1 1
o o
Confirm normal Confirm

-

(Boxes with symbols :
‘o' = Selection
"' = Sequence

* = One of each in any order

--- = Continue on pages 2 and 3

J

usage

abnormal usage

Record port
details body

Establish
nature of
breach

Breach
response body

v

y

Record destination
port details

Record source
port details

226

98esn |euriou
ULIyuo)

3
u“vnwuw (¢ 98ed uo onumuo) = - A
, 2oorg

_ I12pI0 AuR UT YR JO UQ = +

o oo o e] souanbeg = |,

»mwp soouanbasuod | |£poq sFueyo WNM_MM% uonew| = 4,

asuodsal 0891q $SISS -
yovaig Yoealq ssassy plomssed uunyuoy) wonpRs = 0.
I I : SjoquIAS 1M saxog
BlEp
eo____:owoﬂMu amm mm_._wwﬂ_h_ osn %om”ﬁq 1050 Y10M12U f J
o | ! auoydafa], anaLoy
I _ T I T
s|rejap s|tesap 1iod
YooY snyels smels yoearq | | sasn spomiou Ayjeunouqe Bmhwwwwm s[®1ep uod vonemsap
Jo awodmg b eclllg) 10EIU0) ploday 930S p10%Y p10%Yy
I : I 1 ’ ’ : # ’
Apoq snyers Kifeunzouqe £poq
yoealq Jo ameu UOIJEWLIOFUT
LU0 ystqersg PIORY
L 1 J
_ _
Fonijewouqe
SI9A0OUN
o Smmp o
| T T
Yooy snyels
93esn yiompeN

7 33eg - ((DDTDNNLD) d1ud) Jyndwo) uopuo 35a1j0) ANsivAmu) je
JuduRZeuRy AJLMIIS YIOMIIN J0J UONdLIdSI(J [9POJN YSBJ, PASIHEIIUL) : G- In3i]

L

asn [RULIOUQE
10} sSo] Yoau)

227

Figure 9-5

¢ Generalised Task Model Description for Network

Security Management at University College London Computer Centre
(GTM(UCLCC)) -- Page 3

Boxes with symbols : Breach
response body
‘o' = Selection
*' = Tteration I 1 1
"' = Sequence
Breach action Write breach
body report
|
1 1
Trace Change user
hacker account details
I l
1 1 1
* (o] R [0}
Hacker tracing Enforce Disable user off emove
1 password identification ected user
cycle change identification

I
[]

Monitor
network traffic

Set up line
monitors

Figure 9-5 may be considered a GTM"(UCLCC) description, i.e. a subset
of a complete GTM(UCLCC) description. In particular, the 'Check source
port status' sub-node in Figure 9-3, Page 4, was omitted since the scope of

the target system did not include connections with external networks.

A design information table was not derived in this instance since TD(UCLCC)

tables provide sufficient support for interpreting the GTM(UCLCC) description.

As for MacPassword™, a GTM(ext) description was not derived since the
TD(MPASS) description was adequate to support assessments of the potential
porting of its design features to the target system. Further case-study examples of a
wider range of ESSA Stage products (derived in specific instances) are provided in
Annex D.

228

A summary of ESSA Stage procedures is provided below.

i r r he ESSA

(i) Examine contractual documents and records of the clients’ brief.
(ii) Collate the information to derive an initial statement of requirements.
(iii) Select the current system used by the client.

(iv) Elicit and analyse user, task and general design characteristics of the current system.
The scope of elicitation and analysis should relate to the scope of the target system.

(v) Identify further extant systems for analysis if more information is desired. The
activities in step (iv) above are thus repeated.

(vi) On the basis of the information derived, generate the requisite range of ESSA Stage
products. The products actually generated depend largely on the prevailing design
scenario. However, the basic set should include the Task Description and
Generalised Task Model for each extant system analysed.

An account of design activities for the next stage of the method (i.e. the Generalised
Task Model Stage) follows.

9.2. Generalised Task Model (GTM) Stage

Summary

The second stage of the method, namely the GTM Stage, is concerned with the
generation of design descriptions to support the conceptual design of the target
system (see Figure overleaf. The present stage is indicated by a box highlighted in
bold). Specifically, device independent descriptions!3 are generated to facilitate

analytic mapping between appropriate extant design features and target system

13 The extent of abstraction to device-independence is determined by how dissimilar the
characteristics of the extant system are with respect to the target system. The level of description
should be high enough to reveal logical aspects of the task (as opposed to the device, e.g. detailed
interaction sequences). The final description should also retain sufficient information on extant
design features that may be relevant to the design of the target system.

229

Information Elicitation and Analysis Phase Design Synthesis Phase

Extant Systems
System Analysis

Statement of User Needs

Generalised Task Model

Composite Task Model

System and User Task Model

System Task Model | | User Task Model

Functions

User Interface Specification

Interaction Task Model

v

Interface Model| | Display Design

Implementation

= Points of SE and HF contact Design Specification Phase

= Design phases of the JSD*(HF) method

requirements. To this end, two products are derived, namely a generalised extant
task model (termed GTM(x)) and a generalised target task model (termed
GTM(y)). These models establish the foundation for recruiting extant system
designs and for specifying design extensions in respect of new target system tasks.
Thus, an early indication of the training required by target system users may be
inferred from GTM(x) and GTM(y) descriptions. Specifically, inferences may be
drawn from an assessment of the complexity of the GTM(y) description, and the
transfer of learning (both positive and negative) attributed to the extent of porting
from the GTM(x) description.

The generalised task models derived are carried forward to the Composite Task
Model Stage where appropriate elements are synthesized on the basis of the
statement of user needs (see later). In other words, a composite task model is
derived by synthesising compatible and complementary sub-sets of GTM(x) and
GTM(y).

230

Detailed Account

An account of the activities for deriving GTM(x) and GTM(y) descriptions follows.
As before, italics will be used to highlight the design activities shown in Figure 9-6.

Figure 9-6 : Block Diagram Summary of the Generalised Task Model
(GTM) Stage

Generalised Task Model X
GTM"(ext) ——— Synthesise > GTM(x)
Generalised Task Model Y
Analyse and
SoRe —1—P Abstract » GTM(y)

(ext) = JSD*(HF) descriptions of an extant systems (EXT)

SoRe = Statement of Requirements

(x) = JSD*(HF) descriptions of an extant system ‘composite’ (X)
(y) = JSD*(HF) descriptions of the target system (Y)

(a) Generalised Task Model of the Target System (GTM(y))

GTM(y) represents the first attempt at defining a conceptual design for the target
system. The objective of GTM(y) is to expose new and salient features of the target
system and to define the scope and structure of its tasks. Since the description
illuminates key characteristics of the target system, GTM(y) also suggests further
extant systems for analysis. Thus, GTM(y) provides the basis for initial design

development.

To derive a GTM(y) description, the initial statement of requirements is analysed

and task details are abstracted to a conceptual level. Since the statement of

231

requirements originates from the client and is beyond the control of the method,
sufficient information to support the derivation of a comprehensive GTM(y) can not
be guaranteed. Thus, on most occasions, GTM(y) must be enhanced within the
method to support the definition of a reasonably complete conceptual task for the
target system. In this respect, products of extant systems analyses such as the
conceptual task description for the current system (i.e. GTM(ext)s), could be
consulted. GTM(y) is thus extended by incorporating pertinent sub-sets of
GTM(ext) descriptions. Procedures for deriving GTM(y) are described below.

r r ivin T

1. Take as input task information described in the statement of requirements. Temporal and
conditional aspects of task execution should also be noted.

2. Summarise the task (and sub-tasks) in device independent terms to reveal the logic
underlying its design.

3. Re-express the GTM(y) description using the JSD* structured diagram notation, and
record additional notes in a supporting table.

- Lllystrati TM,

A simple case-study example of GTM(y) is shown in Figure 9-7. The description is
derived from the statement of requirements as defined by the client organisation
(simulated by the Royal Armament Research and Development Establishment). The
statement of requirements provides little information on the network manager's
task. For instance, it fails to distinguish between different types of security breach
and the actions to be taken. Thus, Figure 9-7 indicates that user access is invariably

disabled for any security breach.

To rectify such inadequacies, the HF designer may resort to extant systems analysis
to generate more detailed task information. Since security staff at the client
organisation were unavailable for interview (due to military security), the extant
current system could not be analysed. Instead, extant related and partial systems

were selected for analysis. These extant systems correspond respectively to the

232

network management system at University College London and the PC security

application, MacPassword™.

Figure 9-7 : Generalised Task Model of Network Security

Management for the Target System

GTM(y)
Security
Management
1
I L
Set security Monitor
parameters security status
T)
[1 | I 1|
Set user Enable Status s °
. tatus tatus
Set userid password user id normal abnormal
l |
[1
. Activate Security
alarm body breach action
Boxes with symbols : T pre—ee—y
‘it H 1 * ° °
o' = Selection Activate Disable Access point
"*' = Jteration alarm userid actions
' ' = Sequence ——
[+
Opcn Close

eneralised Task Model of Extan m TM(x

Following the definition of a conceptual task by GTM(y), promising sub-sets of
GTM(ext)s may be synthesised into a composite representation termed a
GTM(x).14 Thus, GTM(x) encapsulates conceptual designs of extant systems that
could potentially be ported to the target system. To this end, low level details of

extant designs corresponding to the selected set are documented.

14 Synthesis of GTM(ext)s is only necessary if more than one extant system has been analysed,
e.g. when related and current extant systems are analysed. In other words, if only the current
system is analysed, then GTM(x) = GTM(ext) = generalised task model of the extant current

system.

233

“UOTIBULIOJUT
2ATNISUAS 2Imdas 0} F-0 ‘poxnbar J1 souryoRW

1507 P9)29Jas 0} $5390¢ |1 JutqesIp Jo aiqedes oq
pInoys ameay ugisap o) ‘remorued uy “(JeUTULL) JO
150y Jotp1a) Tutod $S2008 JI0MISU AUR O} SS9008 Auap

J0 MO[[e 0} 9[qe 3q P[NOYS JoFeurW JI0OMIBU YL, | suonde wuiod $s900Y
‘poxmbar oq “Iogeuewr yIom1oUu
pmo 18eurwu YI0MI9U oY) 91} U2[E 0 ULIR[E U 9)BATIOR P[NOYS UOTIEISIOM)
Aq suonoe Juanbasqns pue ‘(suo-o] payrey *8+0) SJU2A? [euLIOUqe SunNoAlp UQ
SHO[® JO ULIOJ JBYM UO JUSI[D | -uomEISYIoMm JUSWoFeURW JI0MIaU 91 AQ Palojiuour smels
A woiy uonsagins oN 3q pnoys (Suo-301 1951 “§°9) SANIATIIR JIOMIIN A1LIM29S JOIUOI
‘pIoMssed MU B 2500YD ABW JIST O}
‘sIaorreyy | ‘UOTIOBSURX ISIY A UQ "HAYVY ‘TVD Aq paredo[e
suoumueydpe uoass Aq | st piomssed [enmur ayJ, “ouwm Aue Je (pr) UOHROLTIUADI
POMOT[0] J10RIBYD oﬁonmanﬁ 195N B 9[qRSIP IO J]qBUI JANID pue ‘promssed s1asn
suo sasudwod piomssed y ® 93URgD URD JoFRURLU JIOMIAU) ‘QOURISUI JOJ
“UOTIRISIOM
TUSURFBUBIY JIOMISU
“UOTIEISYIOM 31} 10] SAMSBAW AILMOIS
JuswaSeuR YI0MIU [eUOnIPPE J3UBLIE 0] PAAN
oy Su1ssaooe 10§ somseawr | “AILMOGS NIOMIOU UO AJRIIUD ‘Xo8euew J10MIU) AQ Paj[0NUOD sopured
Aumoos WSySTy o1 peaN SBM JUIIIO oY) JO SNO0J AT, 3q Aew s19jourered ALMIS JIOMIOU JO IXUNU ALmoas 195
uonje[ndadg uonyedr dury udisaq UOIJBAIISqQO uondursag JweN

dgqeL (HNLO

234

The procedures for deriving a GTM(x) description are given below.

P L for_deriving GTM(x)
1. Take as input GTM(ext) descriptions of various extant systems analysed at the ESSA
Stage.

2. Compare the GTM(ext) descriptions with target system requirements (a subset of
which is represented in GTM(y)). On the basis of earlier HF evaluations, identify
aspects of extant tasks that are potentially relevant to target system design. Also note
potential influences from other ESSA Stage products, i.e. consider any other (ext)
products that have been derived at the latter stage.

3. Identify sub-sets of GTM(ext) descriptions which are compatible. These sub-sets
comprise desirable extant task characteristics that may be carried over to the design
of the target system.

4. Synthesise the selected subset (i.e. GTM"(ext) descriptions) into a single representation,
ie. GTM(x).

- I rati M

An example of GTM(x) for network security management is shown in Figure 9-8.
This example was derived by synthesising the GTM(UCLCC) and TD(MPASS)
descriptions presented earlier (see Figures 9-4 and 9-5). It can be seen from Figure
9-8 that system access characteristics of MacPassword™ have been recruited
(Figure 9-8, Page 1) and synthesised with the security management tasks derived
from University College London Computer Centre (see Figure 9-8, Pages 1 to 3.
Note that Pages 2 and 3 of the Figure are the same as those of Figure 9-5). No
supporting table for the GTM(x) description was considered necessary since its
structured diagram nodes have already been detailed in corresponding TD(ext)

descriptions.

This account completes an overview of the Generalised Task Model (GTM) Stage.
Together with the ESSA Stage, design activities of the Information Elicitation and
Analysis Phase are now complete. The conceptual design solutions derived
presently are developed further in the Design Synthesis Phase. To this end, the

initial statement of requirements needs to be augmented to define an adequate set of

235

236

s[reyop pod sprejop uod
20IN0S PI0OAY UOITRUT)SOp PI00AY e
¢ pue ¢ safed uo enunuo)y = --- J
* 1 ’ IopIO Aue UT Jora JO SUQ = +
||||| souanbeg = ,,
Apoq sesuodsar yoeaiq Apoq srerop uons[es = 0,
yoeag Jo axmeu au& PIOSSY -
e S[OqUIAS 1M S9XO0
: 9
— T T _ _ i q)
1
93esn TewIouqe 9%esn
uuyuo) [euLou ULIYuoD)
o o
L —
I
snyels a3esn S[re1sp s[re1op S[Telop [eUTII)
a8esn yIomioN JIompu Yooy) UYoBRIq PIOOTY | | 395N pIOOTY piooay
1 J r » _
—
woyshs s[resp ogessow uolEdTLIaA £poq s[re1ep 105N Wolj [Ted
uMOp-10YyS uorssas o] Iowa Aeydsiq - uodar xo5) yoda1 proooy suoyd oA1000y
— I |
_ _ _] _
1dwane sidwone pug vﬂo“ﬁo uﬁudoﬂ Sunjoey
pIg 8,108) pue 1] sIssp) IoFeue iy syuodal 10s)
o o o o
l J —I_IIL
1
resamm 1e39]
sme1g snyels
o o
— .
1
¥oouo snyers promssed uoTIEdTyUSPT woysds
Iofeury Iowyg g 100g
| I 1 1]
|
I 38ed -- ((MNLD) dsoduio) wdjsg (OWLO
jueixy ue a10j uondidsaq [PPOJN NSEL, PISIBIIUIL) : §-¢ dan31y

23ueyo N

plomssed (¢ 98ed uo snupuo) = ---

» 2o0oJug
| J9pI0 AUB UT yoBd JO 9UQ = *
[~ " 4poq | |seousnbasuoo Apoq o3ueyo swaqoid oouanbas =,
asuodsal Balq SS3S promssed uonerd] =
yoealq SV pIomssed watuo)) . s
yoeaxrg uonPpPs = ,0,
: As yum

paurijuod Apoq 1esn £q | |sosn spomreu | | o M_mmvﬁoc \ SIOQUIAS YIIM s9x0g

o Joealg Mo‘mo_ pafreq suoydapa], oadLy —
I | I T
1
Yoayo smess sme1s yoeaIiq| |[Iasn yromiou S[rep s[re1ap s d sprerop uod
£ ! [Te13p 110
30 woomQ ¥oouD 1RIU0) EMWMMMA« 150 PIOOOY 501008 PL00oY :omwwwwmﬁ
1 1
Apoq smels Aifeunrouqe Apoq
yoealq JO amgeu UOTJRULIOJUT .
WHJUeD ystqeIsy prooay
— 1 1 —
enieuIouqe a8esn [eulou
SIoA0OUN uuIguoy) mojurxd
o IBewepy o ’ yoreag
— I *

ooyo snieils
a3esn YyIomioN

1

9sn [euLIOUqE
10y s3o[Yooy

J

]

T 3ded -- ((X)ILD) dysoduio)

wRISAS jJue)xy ue Joj uondrIdsd(q [PPON YSBL PISIBIIUIL : §-6 dIn31

Bjosyd aumnoIl
3eue|y

237

Figure 9-8 : Generalised Task Model Description for an Extant
System Composite (GTM(x)) -- Page 3

Boxes with symbols : Breach
response body
‘0’ = Selection
"' = Iteration I l 1
' ' = Sequence
Breach action Write breach
body report
|
| 1
Trace Change user
hacker account details
L |
1 1 1
* o Remove ©
Hacker tracing Enforce Disable user affected
cycle password identification ected user
y change identification
|
1 I |
Set up line Monitor
monitors network traffic

design criteria for synthesising generalised task model descriptions. Thus, a basis
to support subsequent design extensions is established. Such concerns constitute
the scope of the Statement of User Needs, Composite Task Model, and System and
User Task Model Stages. The design activities and products of these stages are

described in the next chapter.

238

Chapter Ten : The Design Synthesis Phase of
the JSD*(HF) Method

"To be still searching what we know not by what we know....."
Milton, 1644, Areopagitica.

"Leaving the old, both worlds at once they view,
That stand upon the threshold of the new."”
Edmund Waller, 1606-1687.

In this chapter, the stages of the Design Synthesis Phase of the method, namely the
Statement of User Needs, Composite Task Model and System and User Task
Model Stages, will be presented in the order by which design is advanced. The
account includes a description of the design products that are derived to support
target system specification. Design activities of each of the stages are described
using the format outlined in Chapter 8, i.e. each design stage is described as
comprising one or more design sub-processes which transform inputs into a
number of products. Case-study examples will be used to illustrate these products.
In addition, design inter-dependencies between stages of the JSD*(HF) and
JSD*(SE) methods are highlighted where appropriate (see Figure overleaf).

10.1. Statement of User Needs (SUN) Stage

Summar y

The Statement of User Needs Stage summarizes the conclusions of extant systems
analysis and defines user requirements for the target system. Thus, the information
collated comprises a mixture of the following : existing user needs and problems;
existing design requirements, rationale and constraints; the rationale underlying
extant design features to be ported to the target system; performance criteria and
domain semantics for the target system,; etc. Its location vis-a-vis other stages of the
method is highlighted in the Figure (overleaf) by a box outlined in bold.

239

Design Synthesis Phase

Generalised Task Model Statement of User Needs

Other Contributions ——{j- F“'E‘Sifns 44— Composite Task Model

Extant Systems
System Analysi

System Task Model | | User Task Model

Functions

User Interface Specification

Interaction Task Model

v

Display Design

Evaluation

= Points of SE and HF contact
= Design phases of the JSD*(HF) method

Three design descriptions in respect of the target system are derived at the Statement
of User Needs Stage; namely a Statement of User Needs (SUN(y)), a Domain of
Design Discourse (DoDD(y)) description and an action and object list. The primary
purpose of these products is to constrain later design decisions and extensions, e.g.
to ensure an appropriate synthesis of generalised task models at the Composite Task
Model Stage.

Detailed Account
The design activities and products of the stage are summarised in Figure 10-1. A

detailed account of the products and their derivation follows. As before, design

processes shown in the Figure are italicised in the expanded account.

240

Figure 10-1 : Block Diagram Summary of the Statement of User
Needs (SUN) Stage

Statement of User
Needs [SUN]
GTM(y) #1 Collate and
SoRe | Re-Describe > SUNG)
>
ESSA information #1 Arbitrate and # DoDD(y)
SUN'(ext) #| Synthesise .

DoDD/(ext) > »- Actions and
¢ objects lists

Inputs from late evaluation

DoDD = Domain of Design Discourse

ESSA = Extant Systems System Analysis (Stage)

(ext) = JSD*(HF) descriptions of an extant systems (EXT)
GTM = Generalised Task Model

SoRe = Statement of Requirements

(y) = JSD*(HF) descriptions of the target system (Y)

ment of T for the T

The Statement of User Needs description (SUN(y)) is derived by collating and re-
describing design information extracted from the initial statement of requirements
and products of preceding JSD*(HF) stages, e.g. GTM(y). The purpose of the
description is to establish a basis for conceptual design extension at later stages of
the method. At a minimum, SUN(y) must be detailed enough to support GTM(x)
and GTM(y) synthesis at the Composite Task Model Stage. In cases where target
system requirements have been addressed in sufficient detail by extant systems
analysis, corresponding SUN(ext) descriptions may be incorporated to derive a
more detailed SUN(y). For instance, information on specific device-level designs

intended for the target system may be included.

241

As a guide, SUN(y) should address the following :

(i) target system requirements, general design constraints and system
performance criteria;

(ii) user problems with the existing system uncovered in earlier HF
assessments;

(iii) HF design recommendations and potential solutions to the problems
described in (ii) above;

(iv) promising extant design features and the rationale underlying their

potential recruitment to the target system.

The scope of the target system is thus characterised initially by a textual description
of SUN(y). The description is shared with JSD*(SE) designers since a 'check-
point' occurs at this stage of the method (see later account on the Composite Task
Model Stage).

The procedures for deriving SUN(y) are summarised below.

r r r rivin
1. Take as input SUN(ext) descriptions and information on user problems uncovered at the
ESSA Stage.

2. Interpret user problems with extant systems in the context of the target system.

3. Referring to the initial statement of requirements, summarise and extend the statements
(e.g. by recruiting descriptions from (1) above) and propose preliminary solutions
to the problems highlighted in (1) and (2) above.

4. Summarise SUN(y) statements textually.

An extract from SUN(y) for the security management task is shown in Figure 10-2.

In this case-study, several statements from the initial statement of requirements and

242

SUN(ext) descriptions have been incorporated into SUN(y) (compare Figure 10-2
with Figures AD-1 and AD-2 (Annex D)).

Figure 10-2 : Part of SUN(y) for Network Security Management

Statement of User Needs (Target System)

1. A record of network events should be kept to support the task of following
up security breaches. The record should include the following information :

(i) date and time of log-on;

(ii) service requested and outcome of request (either offered or denied);
(iii) user source and destination addresses;

(iv) failed log-on events and the offending password(s).

2. Specific information search and retrieve functions should be provided to
facilitate access to logged information. A hard copy log may also be necessary.

3. The network management workstation should notify the manager whenever a
security breach is detected, e.g. failed log-ons and service request refusals).
Notification criteria should be context sensitive, e.g. frequency, threshold and
condition-based triggers; and alarm activation should not unduly interrupt other
network management tasks. The alarms should be sufficient to attract the
network manager's attention, e.g. both auditory and visual alarms may be used.
Security breaches which occur when the network management workstation is
unmanned (e.g. outside office hours) should be repeated on next log-on by the
network manager.

4. Communication between the network manager and users is often necessary,
e.g. when reporting and confirming a security breach. Although telephones are
effective, communication mediums that support asynchronous communication
should be provided to prevent excessive interruptions and work stress, e.g.
electronic mail.

etc.

b) Domain of Design Discourse Description for the Target System (DoDD

The Domain of Design Discourse description summarises the semantics of the target
system by identifying explicit relationships among domain entities (comprising
domain objects, major task events and processes). Thus, DoDD(y) establishes a

common conceptual scope and vocabulary that support discussions between

243

designers and end-users. For instance, target system solutions may be proposed
and interpreted in terms of common domain entities. In addition, interactions among
entities of real and representation worlds may be compared using such
descriptions. Thus, promising metaphors could be assessed for their potential
incorporation into a user interface design for the target system (see Frohlich and
Luff, 1989; Ragoczei and Himt., 1990).

A semantic net description of DoDD(y) is constructed by extracting domain
information from the initial statement of requirements. Relevant sub-sets of
DoDD(ext) descriptions may also be incorporated. To complete the semantic net
description, its nodes and relations are expanded textually in an accompanying

table.

Procedures for deriving DoDD(y) are summarised below.

r r r riving DoDD

1. Extract domain and task information from the initial statement of target system
requirements, GTM(y) and products of extant system analysis (such as DoDD(ext),
SUN(ext) and GTM(ext)). The information of interest would comprise the following :
(a) Objects. Object attributes that uniquely define a particular object should be
recorded; e.g. ‘Network User’ attributes = {user id, password};

(b) Task concepts, events and processes, such as ‘Hacker Tracing' in network security;
(c) Relations between objects and entities (both composite and taxonomic);

e.g. the ‘Network User’ entity is general to both ‘Hacker’ and ‘Legal User’ entities
since it is defined by the network status attribute ‘network access’ = {truelfalse}.

2. Collate the information as a semantic net.

Rules of thumb for DoDD(y)

1. DoDD(y) should be sufficiently rich in information to support explanations of system
tasks. It should also facilitate scenario construction.

2. DoDD(y) should not include device dependent details. The information described is
restricted to the semantics of the target system domain.

3. To finalise a DoDD(y) description, further design iterations may be necessary following
agreement (between software engineers and human factors designers) on a Functions
List for the target system (see later).

244

- 1 1 DoDD

A case-study example of a DoDD(y) description for network security management
is shown in Figure 10-3. In this instance, DoDD(y) was synthesised largely from
DoDD(ext) descriptions (compare Figure 10-3 with Figures AD-3 and AD-4
(Annex D)). Thus, pertinent sub-sets of extant system descriptions were
incorporated with domain information extracted from the initial statement of

requirements.

Action jects lis

The actions and objects list is an optional addition to a DoDD(y) description since
similar lists are derived at earlier stages of both the JSD*(HF) and JSD*(SE)
methods. Since it is an optional product, a case-study example will not be given
here (the reader may refer to Lim (1990b) for an illustration). For the present

purpose, it suffices to note the following :

(i) the focus of the list should be on the target system domain, i.e. device-
specific details should be excluded;
(ii) the list should be collated from the initial statement of requirements and

products of extant system analyses.

In conclusion, the objective of the Statement of User Needs Stage is to establish a
design basis to support and constrain the specification of an appropriate design
solution. For instance, the design basis would include conditions to be satisfied
when generalised task models are synthesised to generate a conceptual model of the

target system (see later stages of the method).

245

Figure 10-3 :

DoDD(y) for Network Security Management

Network Security Management

/a)%w\

Security parameters Network monitoring Network users Event records
D0 N\
®) (6£ ™ ®) 9 10
Network Network))
management Network oo -0 a0cacc Security breaches Safe practice
workstation access access
11y a2y a3
~a
Illegal log-on Failed log-on Service mueﬂ
| / denied
(14) (15) (16)
X
Hacker <@— (17)—— User status
1
(18)0%20) @21)
User password R *
chan Hacker Hacker Legal user
ges L
disabling tracing
DoDD(y) Table
Node Description No. Relation
Network Security | The primary concemn | (1) | To ensure authorised access to the network and its services, the
Management of network sef:unty network manager is required to allocate and update security
management 1s to parameters such as user identifications and passwords.
t hori iy I
ﬁ:::vi)r;kl:::?:l:s s(.msed (2) | Security breaches may be identified by monitoring network
access events.

(3) | Security breaches may be identified by direct liaison with
network users. For instance, users may detect and report a
security breach on a particular machine to the network manager.
Alternatively, the manager may contact the user to ascertain
whether suspicious network usage events are attributable to a
security breach.

@) | Records of network events should be kept. Relevant information
includes : source and destination addresses; passwords; user
identifications; date and time of log-ons and offs.

Security parameters | etc. ®) | etc.

246

10.2. Composite Task Model (CTM) Stage

Summary

The objective of the Composite Task Model Stage is to generate a conceptual model
of the target system. Specifically, the generalised task models derived earlier are
synthesized to generate a composite task model or a CTM(y) description. On the
basis of such a model, specific functions may be allocated to either the human or
computer. In other words, components of the composite task model are designated
specifically as on-line (i.e. those which are supported by the computer) and off-line
(i.e. manual) tasks. On-line sub-tasks may then be decomposed further and

demarcated into interactive and computer components as appropriate.

The location of the Composite Task Model Stage vis-a-vis other stages of the

method is shown in the Figure below.

1 Design Synthesis Phase

Extant Systems
System Analysis

| Generalised Task Model Statement of User Needs

Composite Task Model

System and User Task Model
System Task Model | | User Task Model

Other Contributions i F ur;ﬁzfns

User Interface Specification
Interaction Task Model

Y

....................... " Display Design

Implementation

Design Specification Phase

I = Points of SE and HF contact
= Design phases of the JSD*(HF) method

247

Two significant aspects of the Composite Task Model Stage should be highlighted,

namely :

(a) design iterations may occur between the Statement of User Needs and
Composite Task Model Stages. For instance, such design iterations may be
necessitated by modifications to either SUN(y) or CTM(y) following user
feedback. Wider design implications may also arise (see (b) below);

(b) the first design inter-dependency occurs between the Composite Task
Model and JSD Modelling Stages of the JSD*(HF) and JSD*(SE) methods
respectively (see Figure above). At this obligatory ‘contact point', software
engineers and human factors designers should meet to define the scope of
subsequent design extensions. To this end, JSD*(HF) and JSD*(SE)
design products generated thus far are discussed. In general, the
discussions should consider the following : attributes of objects and actions,
user needs and problems, notable task events, task semantics, and the
desired support of the user's task. To facilitate the discussions, an event
table that highlights major task execution steps may be derived on the basis
of the CTM(y) description (see later).15 The output of these discussions is
a list of target system functions (termed the Functions List' -- see later).
Thus, the scope of target system design is defined and subsequent design
extensions by JSD*(HF) and JSD*(SE) designers are hence constrained. In
cases where the imposed constraints can not be met satisfactorily, the
violations should be notified immediately to other members of the design
team. Appropriate design changes may then be introduced to accommodate

the violations.

A detailed account of the Composite Task Model Stage follows.

15 Event table descriptions are predominantly device independent.

248

Detailed Account

mposite Task Model of the T m

The CTM(y) description is generated in two steps (see Figure 10-4). First, the
GTM(y) description derived earlier is extended as follows :

(i) novel additions may be proposed to meet new target system
requirements;

(ii) pertinent extant system tasks may be incorporated on the basis of the
statement of requirements and user needs. Thus, an appropriate sub-set of
GTM(x) is synthesised with GTM(y)16 to generate a CTM(y) description.

Figure 10-4 : Block Diagram Summary of the Composite Task Model
(CTM) Stage

Composite Task
Model (CTM)
SUN(y) > -
SoRe - Synthesise > é’,}f&a&)
GTM(x), GTM(y) -
CTM Allocate [4H _] SUN
() < Functions |[€— SoR(eY)
. I— CTM(y)
vent .
DD
Tables @ Synthesise |_ DoDD(y)
SUN(y)
DoDD = Domain of Design Discourse description
GTM = Generalised Task Model
SoRe = Statement of Requirements SUN = Statement of User Needs

(x) = JSD*(HF) descriptions of an extant system ‘composite’ (X)
(y) = JSD*(HF) description of the target system (Y)

16 The rationale for porting extant design features should be documented so that explicit links
may be established with design criteria defined at the Statement of User Needs Stage.

249

Second, by applying relevant human factors expertise and declarative design
guidelines, functions are allocated appropriately to the human and computer
components of the system. To this end, on-line and off-line tasks are designated by
working through each component of the initial CTM(y) description systematically.
The scope of the target computer system is thus characterised by on-line
components of the CTM(y) description. On the basis of the description, discussions
with software engineers may then proceed as per the design inter-dependency
requirements of this stage. Following the discussions, the CTM(y) description is

updated as appropriate.

Procedures for deriving CTM(y) are detailed below.

P I for_deriving CTM(y)
1. On the basis of GTM(y), the initial statement of requirements and SUN(y) identify
appropriate GTM(x) components for incorporation. In particular, GTM(x) and GTM(y)
descriptions should be compared to identify and remove (or modify) conflicting designs.
On a similar basis, consider novel additions to GTM(y) as appropriate. Thus, a
structured diagram description of CTM(y) is synthesised at a predominantly device
independent level.

2. Record the underlying design rationale and decisions in an information table. The
structured diagram description of CTM(y) is thus augmented.

3. On the basis of earlier HF evaluation of extant system tasks, the initial statement of
requirements and SUN(y), allocate functions appropriately between the human and
computer. Specifically, components (‘leaves’) of CTM(y) are designated into on-line
or off-line tasks. The designations are differentiated by drawing envelopes around
off-line tasks. CTM(y) may have to be decomposed further to ensure an appropriate
level of description. To this end, ESSA Stage products may be consulted again as
necessary. Continue this process until a satisfactory CTM(y) description is derived.

- I rati M

A case-study example of a CTM(y) description is shown in Figure 10-5 for part of
the network security management task. It may be observed from the Figure that an
envelope around the structured diagram leaves of CTM(y) indicates off-line tasks.

Conversely, on-line tasks correspond to leaves which have no envelope.

250

For a more specific illustration, consider the occurrence of a failed log-on event (see
Figure 10-5 under Failed log-on by user body’). On detecting the event, user
access is disabled and the network manager is alerted to its occurrence by the
computer. The manager is then required to access information logged by the
computer to determine the user involved and the cause of the event, e.g. whether
the event is due to mis-typing a password or actual attempts at hacking. These
tasks, namely access disabling and information gathering are designated as on-line
tasks. The manager may also contact the user to verify a particular inference and
thus decide whether the disabled user identification should be restored. In the
context of the case-study, user contact is unsupported by the computer, i.e. it is an
off-line task. Accordingly, the 'Telephone network user' box has a surrounding

envelope in Figure 10-5.

To illustrate the extent to which products of extant systems analysis have proved
useful for supporting target system design, CTM(y) should be compared with
preceding GTM(y) and GTM(x) descriptions (see Figures 10-5, 9-7 and 9-8
respectively). For instance, it may be observed that extant system responses to
failed log-on events (as described by GTM(x)) have been ported to the target
system (as described by CTM(y)). In particular, both systems involve gathering
information on the event and contacting the user to clarify the circumstances of the
event. A password change may then be enforced if appropriate. Similarly, specific
target system requirements (as described by GTM(y)) have also been incorporated
into the CTM(y) description, e.g. automatic security monitoring, and user

identification enabling and disabling by the network management workstation.

An information table to support the structured diagram description of CTM(y) is
shown in Table 10-2. Thus, lower level details are documented, e.g. the rationale
underlying particular characteristics of CTM(y). Such documentation would
support stage-wise evaluation, iterative design, and post-implementation design

maintenance.

251

s[rejop uod

stresep 110d uorjeuTISIp
20.M0S P100Y piooay
L T
1
Apoq asuodsaz yoraIq Apoq sqrelop
yoearg Jo amyeu 1od p10ooy .
ystiqesg

98ssn [euuouqge

a8esn [euuou

\l

N\

€ pue 7 soed uo onunuo) = ---

I9pI0 Aue ur yoea Jo duQ = +
douonbeg = |,
uonwyes = 0,

: S[OquIAS PIm soxog y

)

ULIuo)) uIuoy
o o
L — J
3 S[re1op S{reiop S[telep [eutuULd)
sngels a8esn
UONEBISYIOA JUoWdSeue YIOMION = MIAN 23esn yzomiaN | | szomsau yooyH HoRRIq piood o5 picody piosoy
. I 4 L
1 1
waisks s[rejsp a3essowr uonesIJIIsA Apoq s[re1ap Iasn wog [[es
umop-mnys UoIsSsas wO\— Jo1ro %u—@ﬂﬁ— - yodaz 1350 uodar p102ay auoyd 2A1209Yy
I _ L I— |
1
1dwalre sidwene pug Apoq o[Suryoey
PIE sJas() pue 1T S J9s() Liumoes MIAIN suoder 1as()
o o o o
T I 1
1 1
Tedaqq [e39]
smels smelg
o o
1 —
1
¥oouo sniels piomssed UoTIBOIJIIUSPL walsAs
Iofeurpy Jug Iouyg 100g
[I I T
1
. (OWLD
1 98ed -- jududdeUBIy AJLINDIS NIOMPN J0) (A)INLD : S-0T 2an3dyf

252

Pt Iasn Pl Iosn
ptiasn J[qeug 108
s[qeuy
*
I —_
Apoq p1 1osn piomssed a3ueyd 9[0ko
31qeug MU voWWwwMa PLIasn MmN
%*
I —- | —’
Apoq piomssed Apoq p1 13sn
1950 MAU 139G MU RS
[—
I

Apoq saousnbasuoo | | Apoq junosor surejqoxd
asuodsax Yoralq SSOSSY Jo81 QMEEU WUNO2oE Iasn

yoearg uIgue)

— ! -
1 :
POULITJUOD »vmx# 1950 AQ | & 10sn y10MIoU uu%ﬂ%ﬁu:
o Uoward Mo Of pafteq suoydsfo], fypses

L

aWoINo YO8yd
stels yoeaIg

1SN JI0MI3U
1081U0))

pt 19sn
s[qeug

o

Kpoq
sne)s 1oe

UIIyuo)

r

\

¢ ofed o onunuo) =

2ouonbag
uonea]
uondvpRs =

)

10pI0 AUe Ul yoes Jo suQ = *

N
.O.

: SJoquIAS PIM saxog

uONEISYIOA JUSWITBUBRIA HOMION = MIAN

Nooyo smes
98esn YIomloN

[
S[rejop s[relap 110d
oFesn puuou| | Areunouqe ptissn stre1ep 1od uoneuISap
wiyuo) p10%3y [t} 90In0s pIovoy piooay
o
_))) 3
S |
Apogq
Ma[e Jo aImeu pI 10sn yoeaiq
wnamsd | | “hiooey oqesiq | | rumoos wory
L L — 1 | i |
Apoq 11ope
Lumoas
MAN

7 93ed -- JUdWIGBUBIN AJLINDAG NJIOMIIN 10} (A)ALLD : S-0T 2anSig

253

98ueyo
priasn Pl Iosn pt Iosn prissn ptlasn o1jJen YIomiou s10jTuowr pt Iasn
MU IS vwwuﬁwwu% a[qeuy 128 oAowIY a[qesiq IOJTUON autf dn 13§ d1qeuy
I T — I]
Ill—l rl'_ll._ 1
Apoq promssed Kpoq pt 10sn Apoq pt Jasn 9[oho
135N M3U 10§ MU o5 PIO dAoway 3uroen 1oey
*
L I T
_ |
Apoq Junoooe 1oyoey
Iosn a3uey) QoBI],
T 1
I
1odax Lpoq
yoealq Aup | | vonoe yoearg
souonbag =,
UONBIN = 4, _III_.!IL
Apo
: SjoquIAs gim soxog uﬁmv%ma
yovarg

¢ a8ed -- juowdSeuRy AIINdIS MIOMIN 10§ (A)JALLD : S-0T 2anSig

254

‘(Apoom

*8'9) owm 1940 AUATUSAUOD PIMIIAAI oq U
ued (s1sn Sunoeuod *8-3) suonoe Surpueisin
“UOTIBULIOJUI PUNOIZYOe(JUBAI[I pUE SIoqUINU
UOTEOYNUOPI JOSh PO[qESTP ATJUSLIND JO PI0ST

& 1A papraoxd 9q pmoys JoSeuru YI0MIU 9y T,

*K1essa00u Auanbag st smels yoearq

£ILN59S JO UONBULILJUOD Iasn uIs A[ojenbape
panoddos st s1esn pue 1ofeueur y1omiau

Y1 U2IMIA(310BIU0D Jerp Jueuodur ST 3]

"sindur usom12q ur popraoid 9q PINOYs JOeqpady
rewnutw *8+9 ‘sxoxoey [enuaod 03 oourlsIsse
[EWTUIW I9Jj0 prnoys sampadoid uo-3o

*pauLIguOS 9q 10U Ued Inq pardadsns st Funjoey uoym
*3'0 ‘Josn € uo oFueyo piomssed e souoJuo Aewr JoSeuey FIOMIOU YT,

*padIoue 9q OsTe Aewr 23ueyd promssed v “pajqeud 9q

PIDOYS UONIROYNUIPI 135N Y1 IOYIAYM O} SB 9pell 2q UL} UeD UOISIP
V "JU9AS 3) JOJ UOSBAI 31 YSI[qRISS O3 PIWIIOUOD JISN 9Y) 19BIU0D
Uyl ISNUW JOSeurtl JIOMIQU SiL], "PAUIIOUOD UCHBILTIUSPI JoSN Y}

Jo SurqesIp onewome ur JNSI A[qELIBAUT [[IM JUSA? UI[E AILUMIAS

*POUSTIqels? 9q Al JUAAD 191 AILMOS oY)

JO osned oy ‘Aem SIY U] “91qISSI00€ A[ISBI 9q P[NOYS JoquINu JOBIU0D
PUE UOTIEIYTIUIPI XISN SB YONS S[TEIOpP JISh ‘SN["POUIIOUOD JIS)
Sunnsuods £q suepe L1umoes dn 40707 Isnw JoTeuewr JI0MIoU YT,

-podar fyrmoes 19sn € JO
1d19921 93 10 “JudA? UO-FO] PA[TEY B JO 2OUSLMOD0 I} JO UOTIEISYIOM
) £q pouaTe 2q Aew JoFeURW JI0MIDU 9 *20UR)SUI 1O, "pAudsaid
are suonouny jusurdSeurw AILMOOS JI0MIOU ‘SSIO0B UONBISYION UQ

“UOMEBISIOM
JusoFeuRW YIOMIOU o SS9008 0 pIomssed pue roquunu
uonedyNUSpI e AJ10ads AN1901109 03 parmbei st 1a5eurw J1I0MIOU YT,

93ueyd piomssed oaojug

Kpoq 1asn £q uo-3of papreg

BJEP IS JIOMIOU QALY

1e391 sme1g

Y99y snye)s 103euey

sjmwwmwo) usisaqg

uondiidsaq

JweN

dqlqe L (HINLD

255

(b) Event Tables

An event table is an optional product of the Composite Task Model Stage since it
does not contribute directly towards design advancement within the JSD*(HF)
method. Specifically, its purpose is to facilitate discussions between software
engineers and human factors designers. To this end, inter-dependent design
information from earlier JSD*(HF) products is collated to generate an event table
for the target system. In particular, major task events described by CTM(y),
DoDD(y) and SUN(y) descriptions (and extant system contributions to these

descriptions) are summarised.

Procedures for deriving an event table are summarised below.

ro r r rivin ven

1. Take CTM(y), DoDD(y) and SUN(y) as inputs. If necessary, refer to extant system(s)
descriptions and the initial statement of requirements.

2. Identify major events such as sub-task completion and significant real world changes.
Note the objects and actions affected by the event.

3. Collate the information in a table.

- Hlustration of an Event Tab

A case-study example of part of an event table for network security management is
shown in Table 10-3. The table and other JSD*(HF) products (as appropriate) are
shared with software engineers during discussions at this inter-dependency point. A

more detailed account of inter-dependent design activities follows.

256

Sassaippe

92IN0S pue UONRUTSIP --
owp uo-3o -- *sj[nsa1 sny)
siduone Jo roqumu -- 1dwane yoearq LA1mosos vy *promssed 10/pue Iaquinu
JIoqUINU UOHEdNIUSP! Josn -- UOTIEOYNUAPI pifeAur ue syndur Jasn JI0MION uo-30] pofred
‘promssed juanms
§,JoSN SOJEpI[eAUl *yoeaIq L1Lmsos B SuIMO[[0]
Io3euew JHOMPN -- JoqQUINU UOTIEDTJTIUD! Josn -- JOST B U0 PI0IoJud oq Aewr d3ueyd promssed y 28ueyd piomsseq
) SSQIppE 20Mos -- ‘Sauryoew
Pag30] v1A Ioxoey S908N $95S2Ippe ATepowEur -- JO JoquINu B SS0I0e SuIden) SAJOAUL ABJN *yoealq
1o8euew YIoMIaN - ssaIppe uo-5o| -- AILmdas JO SSAIpPE 20MOs 91e00] 0 dpew sydweny IoYoBY 9%RI],
sum uo-goy -- *sotu)
*S30[JI0MI2U SINSLBOD poruap jsonbar 301AS - uo-3oj rensnun *3-3 ‘KA 1JBY JO SOUIPIAD
Iofeuew YIOMION -- uo-3oj payrey -- JOJ POUTUIEX? ST SIUJAD JIOMIOU JO PIOSAI Y | prooar juoas y1omiau)nsuo)
[oBaIq JO 2mjeu --
pei] JOQUINU UOTBOLTIUAPT Jasn --
woy [Ted auoyd soA1a001 SSoIppe Josn -- -ooerd
JoSeuew YIOMIAN -- Jjep pue swig uo-3of -- U9YE) SBY YoeaIq AILMNOoS SNBIIPUL 13ST JIOMION yoraIq AILMDAS SIYTIOU IS}
saoue)suy sINQLINY Lrewmng MEYNG |

juomaSeuely A)INJAS YIOM)IN I0J dqeL JUIAY

¢ €01 dIqelL

257

Inter-Dependencies between the JSD Modelling Stage (JSD*(SE) M and th
Composite Task Model Stage (JSD*(HF) Method)

Generally, a common design scope should be agreed between JSD*(HF) and
JSD*(SE) designers at each inter-dependency point, and carried forward through
succeeding stages of the JSD* method. Strict adherence to a common scope ensures

that subsequent extensions of the target system design are convergent.17

To define a common design scope, intersecting JSD*(HF) and JSD*(SE) design
concerns and information (i.e. design inter-dependencies) should be identified for
discussion. The identification of such intersections is facilitated by the explicit
products generated at corresponding stages of the two component methods. Thus,
the stage-wise design scope of the methods is examined to identify potential design
inter-dependencies. In this way, the first inter-dependency was determined to occur
between the JSD Modelling and Composite Task Model Stages of the JSD*(SE)
and JSD*(HF) methods respectively. A more detailed discussion of the inference

follows.

By definition, the JSD Model (a JSD*(SE) product) describes the purpose and
subject matter of the system. Thus, the model focuses on what is to be performed
by the system rather than on how work goals may be achieved. Consequently, the
design perspectives entailed by JSD modelling and task analysis are different. In
particular, user tasks are excluded from the scope of a JSD model. For instance, the
JSD Model for a library system is concerned with describing permissible actions on
a book rather than a librarian's tasks. Since the actions suffered by a book
correspond largely to those initiated by a librarian, potential overlaps between
JSD*(SE) and JSD*(HF) methods at this design stage would comprise a set of
common domain entities and their actions, e.g. 'shelve' a 'book'. However, in
addressing user's tasks and potential user interface design concerns, information
about the user and 'representation’ world assumed by the current system may also

be noted by human factors designers. In contrast, JSD analysts are concerned only

17 Strict adherence to inter-dependency requirements ensures efficient design management by
obviating unnecessary design iterations.

258

with modelling real world entities. In adopting a minimalist perspective, it may be
inferred that the inter-dependent information pool would be dictated by the needs of
JSD*(SE) analysts. Thus, JSD*(HF) designers should take account of the
information set assumed by JSD*(SE) analysts at this inter-dependency point.
However, the converse may not apply. Consequently, at a minimum, the
information embedded in the JSD Model should be shared and agreed. The inter-
dependent information pool may then be broadened by considering design
information requirements of the Functions Stage, and System and User Task Model
Stage of the JSD*(SE) and JSD*(HF) methods respectively.

On the basis of such considerations, JSD*(SE) and JSD*(HF) designers should

share and agree the following design products at this inter-dependency point :

(i) DoDD(y) : the semantics of the target system are described by this
JSD*(HF) product. Thus, it would support the derivation of a JSD model;
(ii) Event table : notable events are listed in the table to characterise the
target system scope. The derivation of a JSD model would be supported by
such a table;

(iii) SUN(y) : user needs at various levels of description are addressed by
this JSD*(HF) product. As such, SUN(y) provides a means of assessing
the scope of a particular JSD model with respect to the functions that it
should be capable of supporting. In this way, alternative target system
boundaries may be investigated,;

(iv) Object and action list : the list characterises the domain of the target

system and identifies ancillary devices associated with the system. Thus, it
supports the derivation of a JSD model;

(v) CTM(y) : a conceptual design of the target system is established by this
JSD*(HF) product. In particular, on-line and off-line tasks are demarcated
explicitly in a CTM(y) description. Thus, it provides a means of assessing
the scope of a particular JSD model with respect to the functions that it
should be capable of supporting. In this way, alternative target system
boundaries may be investigated;

(vi) JSD model : this JSD*(SE) product provides a software engineer's

view of the target system scope. Thus, it complements JSD*(HF) products

259

described in (i), (iii) and (v) above.

Figure 10-6 is a graphical summary of the above JSD*(SE) and JSD*(HF)
products that may be shared at this design inter-dependency point.

Figure 10-6 : Design Products Exchanged between JSD*(SE) and
JSD*(HF) Methods at the First Inter-Dependency Point

JSD Model

CTM(y)
DoDD(y)
SUN(y)
Event table
Actions and
objects list

\

FUNCTIONS LIST

CTM = Composite Task Model

DoDD = Domain of Design Discourse description

JSD = Jackson System Development

JSD*(HF) = Human Factors component of the JSD* method
JSD*(SE) = Software Engineering component of the JSD* method
SUN = Statement of User Needs

(y) = JSD*(HF) descriptions of the target system (Y)

(c) Functions List

Following discussions and agreement on the scope of the target system, a
Functions List is drawn up collaboratively by JSD*(SE) and JSD*(HF) designers.
The list summarises the initiating trigger, end result and performance characteristics
of task support functions in a tabular format. At this stage, detailed computer
functions are usually excluded. On the basis of the Functions List, software

engineers and human factors designers may work independently until the next inter-

260

dependency point (discussed later). It should be emphasised, however, that all

designers should be notified of any deviation from the Functions List as soon as

they arise.

ti a Functi

Li

A case-study example of part of a Functions List for network security management
is shown in Table 10-4.

Table 10-4 : Part of a Functions List for Network Security
Management18
Function Trigger End result Performance
Show network | On network manager's | Displays information for the named
user activity request for network user over the time period
information on the t1-t2 : log-on time, source address,
activity of a named physical location, destination
network user over a address, log-off time, failed log-on
specified time period. | event at time t.
Alert security | Occurrence of a failed | Auditory and visual alert to failed Within 10
breach : log-on event. log-on event giving time of seconds of the
failed log-on occurrence, network user failed log-on
identification, access point and event.
physical location.
Record failed | Occurrence of a failed | Record (for previous two months)
log-on events | log-on event. of failed log-on events giving time
of occurrence, user identification,
access point and physical location.
Enforce a On network manager's | On the next log-on, the named
password request to enforce a network user will be asked to
specific network user. | ¢ffecta password change will
automatically disable the user
identification.

18 Table 104 is a modified version of a table drawn up by the JSD consultant on the RARDE
project (see acknowledgements). The Table limits the extent of RARDE's commitment to the
case-study by restricting the scope of JSD*(SE) products to be derived (not described since they are
outside the scope of the thesis). ‘

261

10.3. System and User Task Model (SUTaM) Stage

Summary

Having agreed a common design scope with software engineers, human factors
designers may then proceed independently to the System and User Task Model
Stage where high level target system functions are specified. The location of the
stage vis-a-vis other JSD*(HF) stages is shown in the Figure below.

Information Elicitation and Analysis Phase Design Synthesis Phase

Extant Systems d Generalised Task Model

Statement of User Needs

Composite Task Model

System and User Task Model
System Task Model | | User Task Model

User Interface Specification
Interaction Task Model

v

Display Design

Other Contributions —’ F u?ﬁts':ms

Specification

Functions

Design Specification Phase

= Points of SE and HF contact
= Design phases of the JSD*(HF) method

At the present stage, on-line and off-line tasks of the composite task model
(designated previously) are decomposed further to generate system and user task
models respectively. An account of these models follows. A system task model is
essentially a high level description of the human-computer interaction cycles
required to achieve on-line task goals. In contrast, a user task model comprises a

summary description of manual tasks. Although, functional design is pursued

262

primarily by decomposing the human-computer interaction cycles of the system task
model, the user task model may also be decomposed further to support workload
assessments during job design. It should be noted that during the decomposition of
these models, appropriate sub-sets of corresponding extant system descriptions
(i.e. STM(x) and UTM(x)) may also be incorporated. To this end, appropriate
extant system features are identified by comparing GTM(x) and CTM(y) with
respect to the design criteria defined by SUN(y). In particular, relevant STM(x) and
UTM(x) sub-sets are determined by identifying specific contributions from GTM(x)
to CTM(y).

A further concern at this stage of the JSD*(HF) method involves its design inter-
dependencies with the Functions Stage of the JSD*(SE) method. Since functional
decomposition is actively pursued by both JSD*(HF) and JSD*(SE) designers at
these design stages, the Functions List derived at the previous inter-dependency
point would not be specific enough. Thus, further inter-dependencies should be
identified to constrain the design extensions to be undertaken presently. In addition,
close contact between the designers should be maintained to ensure convergent and
efficient design. If close contact can not be achieved, additional design iterations
may be necessary when JSD*(SE) and JSD*HF) specifications are integrated. The

result is thus inefficient design management.

A more detailed description of the design products and procedures of this stage

follows.

Detailed Accoun

(a) System Task Model of the Target System (STM(y))

STM(y) is derived by decomposing on-line task components of CTM(y). During
decomposition, due consideration should be given to the design criteria defined at
the Statement of User Needs Stage. Thus, the human-computer interaction cycles
required for achieving on-line task goals are defined at a high level. These cycles of
STM(y) are described by designating its structured diagram leaves into sets of H

263

(Human) and C (Computer) leaves.

In general, an STM(y) description is derived to support user interface design at the
Design Specification Phase of the method. The design support is achieved as

follows :

(i) H (Human) leaves of STM(y) may be decomposed further to derive a
lower level description of the human-computer interaction required by the
on-line task. Such a decomposition is undertaken at the Interaction Task
Model Stage where a product, termed ITM(y), is derived (see later). A
foundation for specifying required inputs by the computer user is thus
established;

(ii) C (Computer) leaves of STM(y) may suggest potential user interface
objects for the target system. At the Interface Model Stage, the objects are
specified in detail as a set IM(y) descriptions (see later). Thus, a foundation
for specifying the following is established :

(1) the behaviour of user interface objects following user input and/or
state changes of real and representation world entities;
(2) the appearance of user interface objects and the content of

computer messages.

(b) User Task Model of the Target System (UTM(y))

Although off-line tasks do not contribute directly to computer system design (being
manual tasks), they should still be considered since their characteristics may have
implications for user interface design. For instance, information flows between on-
line and off-line tasks may influence the content, format and presentation of
computer displays. Consequently, a target user task model (also referred to as
UTM(y)) is derived by collating and decomposing (if necessary) off-line
components of CTM(y). On the basis of the design criteria defined at the Statement
of User Needs Stage, appropriate sub-sets of UTM(x) may also be identified for
incorporation. Thus, a structured diagram description of UTM(y) is derived. If

264

necessary, further information may also be documented in a supporting table.

Figure 10-7 summarises the above activities at this stage of the JSD*(HF) method.

Figure 10-7 : Block Diagram Summary of the System and User Task
Model (SUTaM) Stage

System and User Task
Model (SUTaM)
CTM(y) > Decompose
- STM(y)
STM(ext) —] —& UTM(y)
UTM(ext) —{ Synthesise
SUN(®)

CTM = Composite Task Model

(ext) = JSD*(HF) descriptions of extant systems (EXT)

SUN = Statement of User Needs STM = System Task Model
UTM = User Task Model

(y) = JSD*(HF) descriptions of the target system (Y)

The procedures for deriving STM(y) and UTM(y) are described overleaf.

- Llustrati TM,

A case-study example of STM(y) for network security management is shown in
Figure 10-8. It can be seen that in deriving STM(y), on-line task components of
CTM(y) (see Figure 10-5) have been decomposed and assigned appropriately to
human and computer entities of the work system. For instance, the 'Enter user id
and password body' sub-node (Figure 10-8 (Page 1), upper-middle part) has been
decomposed into network manager (NMgr) inputs and workstation (NMW)
prompts. In certain instances, complete separation of the interactive task into H

(Human) and C (Computer) leaves may not be necessary (refer to the procedures

265

for this stage for more information). A case-study example of such an instance is
the 'Access user data' leaf which is described as a joint network manager and

workstation task (NMgr-NMW) (Figure 10-8 (Page 3), upper left-hand corner).

P I for_deriving STM(3) | UTM(y) descripti

1. STM(y) and UTM(y) descriptions are constructed respectively by decomposing on-line
and off-line task components of the CTM(y) description. During decomposition, the
structure of the CTM(y) description should be maintained as far as is possible to
facilitate cross-referencing between STM(y) and UTM(y) descriptions.

2. The STM(y) description should identify Human inputs (H) and Computer outputs (C)
required to perform the on-line task. Maintain a ‘device independent’ description as far
as possible.

3. Describe STM(y) and UTM(y) using JSD* structured diagrams, and note pertinent
design information textually in an accompanying table.

Rules of thumb for deriving STM(y) and UTM(y) descripti

1. Significant off-line tasks may be highlighted within an STM(y) description if desired.
In such instances, the tasks should be indicated as a structured diagram sub-node and
not decomposed further. In this way, cross-referencing between STM(y) and UTM(y)
may be supported better. In addition, a more coherent description of the overall task
is afforded since the CTM(y) structure is propagated more completely in the STM(y)
description.

2. In some cases, STM(y) description may be terminated with a ‘H-C’ sub-node (rather
than distinct H and C leaves). For instance, actions associated with the chosen user
interface environment need not be described at the lower level since they are outside
the remit of later JSD*(HF) design stages. Alternatively, a H-C sub-node may be
used where intervening interactive transitions may be assumed as understood. For
instance, the sequence comprising "H: activate function’ --> ‘C: refresh screen on user
input’ --> 'C: carry-out function’, may be described equally well by ‘"H-C: carry out
Junction'. The H input required may then be detailed later in the ITM(y) description if
necessary. In this way, the STM(y) description would be less cluttered.

Design Inter-dependencies between the JSD Functions_Stage and the System and

User Task Model Stage of the JSD*(SE) and JSD*(HF) Methods

A second design inter-dependency occurs between the System and User Task
Model Stage and the JSD Functions Stage of the JSD*(HF) and JSD*(SE) methods
respectively. This inter-dependency point is extremely important since it addresses

the definition and extension of target system functions, e.g. appropriate computer

266

AAN S[TB}op UOISSIS ofessour Jom12
HHopaS 307: MIAN Aerdsiq : MIAN Z oSed uo anumuo) = ---
FMIAN aouonbag = |,
L “ J _ uonodPs = |0,
1dwente sidwene pug : SfoquAs M saxog
P3¢ s1es() pu® 1s] S,J950)
o o
1 |
]
B3t IEE) promssed SN ndur I8N PLIBNN ndur 33N
sel§ sme1g nduy : BN ydwold : MIAN induy : ISWN duord : MINN
o o
L] | 1 1]
1 1
Yooy Apoq piomssed MIAN
snyels 1odeuey pue p1 Iajuyg j00¢ : 1SN

Jo3eueq JIOMION = ISNN
UOTIBISYIOA JUSWASRUBIA JIOMION = MIAN

L

(ONLS

1 38eq -- judwddeuBly A)INdIS YJIOMIPN 10} (A)JALLS JO 3Ied : §-0f dIn3iq

267

s[rejap pr 1950 s[re1op s[rejap uod
P! Iosn dqeuy uotoR PI Iasn Anreuuouqe pI0oaY : MIAN uod ao1nos uoneunsap priosn ULIe[® 91BALIOY
: MIN-BNN apwe(: BN P10y : MIAN PIORY : MIAN | | P10%oy : MIAN | | 19estd : MIAN * MIAN
I I 4 L 4 4 i T
1] 1
o Mww.—no? 998sn [runou yodal o[uodai yope =o:.MﬂMm¢S asuodsai
. o . uyuo) peay : BN | | Ae1dsia: MIAN ‘plocy us[e [enmu]
1 1| | -] | 1
| 1 1
Yoayo snjels H9[E JOo 9Ijeu Kpoq yoeaiq
93esn yIomioN ysiqeisy A1LmMoas ATy
I I T
]
e j Apoq e Suryory
(umoys 10u) pue Aimoes MIAIN suodar Jesn
¢ so8ed uo onunuo) = --- ° _ ° ,
|
I9PIO AUB Ul YIBd JO 9UQ = +
Qouonbog = 12891
S=.. 1o3euRpy JOMION = SN
uonRps = 0 STIElS
ARRS = .0, UOTIRISYIOM JudwoSeury JIOMION = MIAIN
: SJoquIAS Yim saxog

\-

7 3ded -- JwuRdeuey AJINdAS JI0MPN J0j (A)JALLS Jo 3ied : §-0F 2andij

268

P! Iasn s[qeug 23ueyo promssed promssed uopoe omSEM pI Josn o[qeuy pI19sn 198
! MIAN- o010y : MU 2§ pIomsse . -8 . 13
. AN MINN : MAN-BIAN op1oq : BN MIWN-ISAN MINN-BBAN
_ [I 1| I |
1]
Apoq Apoq a8ueyd 91240
P! Jasn a[qeuy piomsseq Pl 1asn MaN
*x
1 |
_ |
Apoq promssed Apoq pt Iasn
JOSn MU 12§ MU P
I |
]
swojqoIrd
Apoq 1unoooe JUNOdde 195N @
1asn a3uey) x
- ~N wiguo) 1 BN
(umoys j0u) § 28ed uo enunuo) = --- I]
UOTIBIRN = 4, — - — — :
OOEOH—,—UOW = POULITJUOD Apoq Iosn Aq Jasn suoydaa], h@m”.—%ﬂmwoo
uond9des = 0, . yoro1g Mo-ms parteq : 18NN . BEZ-&E%
: SJOQUIAS ylm saxog [] I]
N\ Y, _ [
WOIINO0 YI3Yd smjels yoealq Jasn JIomjou
snye1s yoearg ¥oayD : ISNN 10810
I08eue YJOMION = ISWN | I]
UoONBISYIO M Judwaeuey JIOMION = MIAIN]
Apoq
STEIS JIOR
€ 3deq -- jJudwddeUBIy AIJLINXAS NIOMPN 10§ (A)ALS JO Jaed : 8-0F dIn3iyg 0

STM(y) Table

Name Description Design Comments

NMW : Prompt The network management It is important that input

NMegr input workstation prompts the network prompts by the network
manager to input a NMgr management workstation should
identification number and password. offer minimal assistance to
These inputs are subsequently verified | those unfamiliar with the
by the network management log-on procedure.
workstation before NMgr access is
enabled.

Alert security The network management Alerts should be signalled in real

breach body workstation may alert the network time, and should be sufficient to
manager to security breaches capture the network manager's
including failed log-ons. The network | attention following log-on.
management workstation can also Alerts in response to events
indicate that a security breach report | occurring when the network
has been sent by a network user management workstation is
(messaging via the network). unmanned should be signalled to

the network manager on next
log-on.

Change user Imposed account changes are enforced

account body automatically by the network
management workstation.

functions are identified to support the user's task; the configurations of JSD
functions are decided; etc. Thus, design constraints imposed at the previous inter-
dependency point would not be adequate to ensure convergent JSD*(HF) and
JSD*(SE) design extensions at this stage. Consequently, further design constraints
should be defined.

Figure 10-9 summarises the products that should be shared and agreed between
JSD*(HF) and JSD*(SE) designers at this design inter-dependency. The Figure

describes the following scenario :

(1) JSD*(HF) designers are expected to contribute a STM(y) description of
function sequences required for achieving on-line target system tasks. The
sequences are described as a set of high level human-computer interaction
cycles;

(2) JSD*(SE) designers are expected to contribute descriptions of the : JSD

270

Figure 10-9 : Design Products Exchanged between JSD*(SE)
and JSD*(HF) Methods at the Second Inter-Dependency Point

JSD functions
Input and output
data streams

Input subsystem

Functions

STM(y)

JSD = Jackson System Development

JSD*(SE) = Software Engineering component of the JSD* method
JSD*(HF) = Human Factors component of the JSD* method

STM = System Task Model

(y) = JSD*(HF) descriptions of the target system (Y)

function and model processes; JSD input sub-system;19 and JSD input and

output data streams.
These contributions will now be explained further :

(a) JSD functions : since the configuration of JSD functions should support
the user's task, pertinent user-related information that has been uncovered
by JSD*(HF) designers should be considered by JSD*(SE) analysts at this
inter-dependency point. In particular, STM(y), DoDD(y), SUN(y) and
CTM(y) descriptions20 would provide JSD*(SE) analysts with a better
view of user needs, problems and task requirements. Thus, a more

appropriate set of JSD functions may be specified;

19 Input sub-system specifications contribute to the design of error and feedback messages at later
stages of the JSD*(HF) method.

20 Although it was optional to share the last three JSD*(HF) products at the first inter-
dependency point (to pre-empt design information required at the Functions Stage of the JSD*(SE)
method), it is obligatory that consensus on these products is reached between JSD*(SE) and
JSD*(HF) designers at the present inter-dependency point. Thus, convergence may be ensured
between JSD*(HF) and JSD*(SE) design specifications.

271

(b) System timing : such JSD*(SE) decisions would require a good
understanding of user task needs. For instance, decisions concerning the
timing and frequency of computer updates of a customer's account should
relate to the information required by the user's task, e.g. the cashier would
require account updates every minute to enforce withdrawal limits, while the
bank clerk would only require daily updates to verify interest computations.
To support such decisions, JSD*(HF) design descriptions (namely
STM(y), UTM(y), DoDD(y), SUN(y) and CTM(y)) should be consulted
for relevant user task information;

(c) JSD data flows : since JSD input and output information streams
implicate exchanges across the user interface, they should be discussed with
JSD*(HF) designers (information flows between JSD model and function
processes are excluded). It is expected that JSD*(HF) designers could then
contribute to these JSD*(SE) specifications by sequencing the information
streams appropriately with respect to the user's interactive task;

(d) JSD input sub-system : JSD*(SE) specifications of the input sub-system
include error categories (e.g. simple errors and false inputs) and context
filters. The specifications should be discussed with JSD*(HF) designers
since they intersect later human factors specifications of error and feedback

messages.

In addition to establishing a consensus on the above JSD* products, close contact
should be maintained between JSD*(HF) and JSD*(SE) designers at this inter-
dependency point. Thus, new design extensions should be communicated between

designers as soon as they are developed sufficiently.

The above account completes a stage-wise review of the Design Synthesis Phase of
the JSD*(HF) method.

At this juncture, a conceptual target system design would have been specified
sufficiently for user interface design to proceed. The latter is addressed at the

Design Specification Phase in three stages, namely the Interaction Task Model,

Interface Model and Display Design Stages. A account of these stages follows.

272

Chapter Eleven : The Design Specification
Phase of the JSD*(HF) Method

“The end of our foundation is the knowledge of causes, and the secret motions
of things; and the enlarging of the bounds of human Empire, to the
effecting of all things possible.”
Francis Bacon,, 1627, New Atlantis.

Following the conceptual design of the target system, user interface specification
commences in the Design Specification Phase of the JSD*(HF) method. Presently,
the three stages that comprise this phase, namely the Interaction Task Model,
Interface Model and Display Design Stages, are presented in the sequence
performed during design (i.e. in the above-mentioned order). As before, design
activities and products of the stages are summarised using a block diagram. Case-

study examples are also provided where appropriate.

11.1. Interaction Task Model (ITM) Stage

Summary

Having defined the on-line task conceptually in terms of human-computer
interaction cycles of an STM(y) description, the cycles may be decomposed further
at the Interaction Task Model Stage. A product, termed an interaction task model (or
ITM(y)), is derived. The location of this stage vis-a-vis other stages of the
JSD*(HF) method is shown in the Figure overleaf.

ITM(y) is essentially a description of the device level interactions required to
achieve user task goals using the target computer system. It is described in terms of
object and action primitives of the chosen user interface environment (if any) and
basic keystrokes of the designated hardware. To support subsequent specification
of error recovery schemes, feedback messages and screen displays, low level

actions of ITM(y) are also grouped into coherent interaction 'units’. In this respect,

273

it is essential that an appropriate level of ITM(y) description is derived. To this end,
design iterations with later JSD*(HF) stages may be expected.

Information Elicitation and Analysis Phase Design Synthesis Phase

M Generalised Task Model

Statement of User Needs

Other Contributions ===~ F“'I'fits'?"s ‘

Composite Task Model

Specification System and User Task Model

System Task Model | | User Task Model

Functions

User Interface Specification

Interaction Task Model

Interface Model | | Display Design

= Points of SE and HF contact Design Specification Phase

= Design phases of the JSD*(HF) method

Detailed Account

Since the Interaction Task Model Stage follows the System and User Task Model
Stage, STM(y) comprises its primary input. Specifically, H leaves of STM(y) (i.e.
on-line user actions) are decomposed further to derive a device dependent
description comprising object and action primitives of the chosen user-interface
environment (if any) and basic keystrokes of the designated hardware. To ensure
the derivation of a consistent ITM(y) description, earlier JSD*(HF) products,
namely SUN(y) and DoDD(y), should also be considered during STM(y)
decomposition. In addition, relevant aspects of the current user interface
environment (if any) and an appropriate sub-set of ITM'(ext) (extant system
description derived at the Extant Systems System Analysis Stage) may be

synthesised iteratively with an initial ITM(y) description (see Figure 11-1). Thus,

274

an ITM(y) description sufficient to support later JSD*(HF) design stages (namely
the Interface Model and Display Design Stages) is derived. It is essential that the
final ITM(y) description should be at a level understood generally by design team

members.

Figure 11-1 : Block Diagram Summary of the Interaction Task Model
(ITM) Stage

Interaction Task Model
DoDD(y) (ITM)
SUN
® STM(y) ™t Decompose
SoRe — ITM(y)
UEG) UIE(ext)
ITM(ext) 1 Synthesise
DoDD = Domain of Design Discourse
(ext) = JSD*(HF) description of extant systems (EXT)
SoRe = Enhanced Statement of Requirements STM = System Task Model
SUN = Statement of User Needs UIE = User Interface Environment

(y) = JSD*(HF) description of the target system (Y)

On deriving a satisfactory description of ITM(y), screen 'boundaries’ may be
designated at appropriate intervals between groups of structured diagram leaves (see
case-study example later). In other words, appropriate start- and end-points of
interactive task units are demarcated on the ITM(y) description. For each designated
‘boundary’, unique numbers (e.g. ‘bubble’ S1 in Figure 11-2) are assigned to
support cross-referencing between ITM(y) and products of the Interface Model and
Display Design Stages. Explicit links are thus established between the error-free
task description of ITM(y), and static and dynamic descriptions of screen
presentation specified at these stages. In this way, the actuation of particular screens
(of defined composition and layout) is set appropriately against the user task context
(see later). Thus, the presentation context for computer support functions, and error

and help messages is defined.

275

Procedures for deriving ITM(y) are described below.

P I for_deriving ITM(y)
1. Select H and H-C leaves of the STM(y) description for further decomposition.

2. Decompose each H leaf (or H-C leaf) 1o a level that is easily understood by design team
members. To ensure a consistent design description, the following should be considered
during decomposition :

(a) characteristics of the extant and chosen target user interface environment (if any), e.g.
when naming newly specified actions of ITM(y);

(b) extant interaction task model (ITM(ext)) as appropriate;

(c) DoDD(y), SUN(y), and enhanced statement of requirements for the target system.

3. Note specific design features of ITM(y) to be considered later when products of the
Interface Model and Display Design Stages are derived, i.e. IM(y) and DD(y).

4. Describe ITM(y) using JSD* structured diagram notation and note additional information
in an accompanying table.

5. Re-work CTM(y), STM(y) and UTM(y) as necessary. To this end, iterations with
preceding design stages may be necessary. In some cases, wider changes may involve
modifying the original system task allocation. Thus, close contact with JSD*(SE)
analysts should be maintained, i.e. changes should be communicated between designers
as they arise so that HF and SE design converge efficiently.

6. On deriving a satisfactory description of ITM(y), work through sections of the structured
diagram systematically as per the constructs of the notation. Specifically, screen
boundaries are demarcated on the ITM(y) description by identifying coherent groups of
interactive task units in the STM(y) description. Assign alpha-numeric identifiers to each
boundary so that inter-linkages may be established later between ITM(y) and products of
the Design Display Stage, e.g. Pictorial Screen Layouts (refer to the procedures of the
Design Display Stage for an account of the indexing scheme used for this purpose).
Continue the process for the entire ITM(y) description.

Rules of thumb for deriving ITM(y)

1. It is vital to derive a satisfactory description of ITM(y) before the Interface Model and
Display Design Stages are undertaken.

2. Several versions of ITM(y) may be necessary before a satisfactory description is derived. In
other words, ITM(y) derivation may involve decomposing STM(y) in two or more steps.
For instance, ITM(y) may be described initially in terms of input primitives of the chosen
user interface environment (if any). Following the derivation of a set of IM(y) descriptions
and Pictorial Screen Layouts at later stages of the method, the initial version of ITM(y)
may then be decomposed further to detail inputs associated with bespoke user interface
design features. Iterations with later design stages may also be necessary.

3. Sub-nodes of STM(y) at two levels (or more) from the bottom of the structured diagram
description are likely to remain unchanged, i.e. in most instances, they would be carried
over to the ITM(y) description.

4. To ensure unique sub-node labels in a structured diagram description, it may be necessary to
modify sub-node names that have been carried forward from the STM(y) to the ITM(y)
description (see (3) above). The original and new names should be semantically similar so
that relationships between STM(y) and ITM(y) descriptions remain clearly identifiable.

276

In conclusion, the objectives of the Interaction Task Model Stage are three-fold :

(a) to describe the device level interactions that a user is expected to perform
using the target computer system;

(b) to establish a foundation for advancing design at later stages of the
method; and

(c) to specify a reference framework that inter-links design products derived
at the Design Specification Phase of the method.

- lllustrati ITM,

A case-study example of ITM(y) for network security management is shown in
Figure 11-2. This description of ITM(y) was derived following several iterations
with later stages of the method (refer to the procedures of the Interface Model and
Display Design Stages for further information). Thus, user inputs required for
accomplishing on-line task goals were specified at a lower level of description.
Note that a supporting information table was not derived on this occasion since the

structured diagram provided a sufficiently clear description of ITM(y).

It was indicated earlier that ITM(y) is derived by decomposing H leaves of STM(y)
(i.e. human actions) in terms of input primitives of the chosen user interface
environment. For the present case-study, HyperCard™ was used to simulate the
implementation environment.2! Thus, the 'Access user data' action of STM(y)
(Figure 10-8 -- Page 3) was decomposed to derive an ITM(y) description that
includes HyperCard™ primitives such as 'button’ objects and 'button click' actions

(see Figure 11-2 -- Page 1).

Figure 11-2 illustrates another characteristic of an ITM(y) description, namely the
demarcation of screen boundaries and numbering scheme, e.g. S1, S2, etc.
Presently, a case-study example of how such screen demarcations may be linked to

pictorial screen layouts is described for Screens 3A and 3B (corresponding to

21 HyperCard™ was chosen because it is a tool commonly used for prototyping WIMP-type user
interface designs.

277

L uoung IsT| Iasn
MOYs, 19998

sn eep uonnq Jqeu2 W)l nuIwW woy oureu |§ UONNQ JSI[losn
suoydaa], JOSN SS90y uyuos, yor) | | ,21qeus, 199[08 Iasn, 1099 MOYS, 199[3§
3WOo3IN0 JooYo smels 135 jHomou Pt Iosn uonoe pr EIEp P! apIse
smyess yoearqg | | Yo®RAIQ YYD 180D slqeug Jasn aproe(] 125N $5300Y mopuim Feiq
(o]
I) —] — I —1 _|_.||.—
1 |
Apoq o38sn d
[euIou £poq uonoe uodaz
omacmgnwh%ws . Wuo)) MODUIA Uy Uofe peay
L Jd _|_||L
1
. }29Yd snyels 119[e JO aImeu
UQI0S 9NFOeIp ,ULuU0)), © A[oweu 28850 YIOMION wStqmsy
‘Ud10S © JO SoUBISUI JR[NOTUEd = D)
URIS = § ! T
Io8euey JI0MION = IT =
o oo Apoq uaye Sunyoey 10Mmssed
uoneISYIoOMN Lunoas MmN spodar 198y ISAN ndug
JUAWRSeUBIN JIOMION = MIAN o o
—— ———
smels Apoq piomssed MIAN
(umoys j0u) ¢ pue g sa8ed uo snunuo) = --- 1SN TeS] Ppue pt Ijuy 100g
ouenbag = |,
uonxo[es = 0, L T 1 1
: SJOquIAS YitM soxog (OW.LI

I 93eq -- JudwddeURy AJIINAS FI0MIIN J0J (A)ALLI JOo Med

: T-I1 2an3iy

278

279

JUO— skay sKkoy
& A suownu-eydpe suswnu-eydje
» Ssaxdaq » Ssaideq
& uonnq s1qeus w31 nusw plomssed Iosn PRY S&m uonng ,91qeud wan nuaw Ppiissn prey ndur
ULIJU0d, Y1) 2IqEUd, 19938 mou Jnduy EMMMM WLIJuoo, Y1) SIqEUD, 159198 mou ynduj PI Iosn 109]9§
L J | . | L J L]
1 L | 1
Apoq pt promssed a3ueyo promssed prissn pt Iosn
Josn 9[qeuy MU G oprQg o[qeuyg s
L]
[1 T I .|
1 1
£poq £poq s3ueyo a1oho
p1 Josn o]qeuy pIomsseg Pl IoSR MoN
*
L
[_ _
£poq piomssed £poq pt Iosn
I9STL M3 19§ M3U 19§
L |
|
4 N\ £poq wnooor swapqord junoooe
(umoys 10u) ¢ 98ed uo SNUIUO) = --- Iasn afuey) Iasn WIYUOD)
souanbeg = ,, r T
aouonbeg =, , 1
uono9es = ,0, . peuLTjuo> Apoq 1asn £q
US919S onJo[eIp Wuo)), B A[oweu yoeaIg uo-3of payreq
: SJOQUIAS (M sox0g ‘TRI0S B JO 0UBISUI JRMOTIE] = D) o o
g / URWS =§ ‘ I !

2WOdINO0 2D
smyess yoearg

7 9ded -- JUdWATBUBIA AIINDIS YIOM)IN 10 (A)NLI Jo Med : Z-11 2an3iyg

'‘bubbles' labelled S3A and S3B in Figure 11-2 -- Page 1). Screen 3A describes a
scenario where the network management workstation is unmanned. In this case, the
workstation is required to automatically monitor security breach events and user
reports, and then display the number and classes of incidences on the next log-on

by the network manager (see Figure 11-3).

Figure 11-3 : Pictorial Screen Layout of Screen 3A

File Edit Ulew Special Window

S E———————— NM Database &=———F

)

Sec/Pd

Alert Summary ===

From 22/04/90 at 17.30
To 23/04/90 at 09.30

Host/user report(s): 0
Failed logon attempt(s): 1
ailed password change(s): 0

Screen 3B describes an alternative scenario for which security breach events and
user reports occur when the workstation is manned (see Figure 11-4). In this
instance, the workstation is required to alert the manager (immediately in certain
circumstances) that a security event has occurred in the background of an ongoing

interactive session.

Wider links between ITM(y) and other products of the Interface Model and Display
Design Stages are addressed later in this chapter.

280

Figure 11-4 : Pictorial Screen Layout of Screen 3B

& File Edit View Special Window

I E———— NMDatabase ==—"~——-7[F

Sec/IN Sec/Pd

I E=——nlert

Date: 22/04/90 Time: 01.30

<alert type>

Having specified the device-level inputs required of the user, the composition,
layout and behaviour of screen displays may now be considered. These design

concerns are described in the next sub-section.

11.2. Interface Model (IM) and Display Design (DD) Stages

Summary

To ensure coherent design specification, the remaining stages of the method
(namely the Interface Model and Display Design Stages) are undertaken iteratively.

For this reason, they are described together in this sub-section.

The objective of the Interface Model Stage is to specify the behaviour and
appearance of screen objects in relation to user inputs and state changes of

representation and real world entities. Thus, object modelling, command syntax and

281

icon design comprise the design concerns of the stage.
The objectives of the Display Design Stage are as follows :

(a) to specify the content and layout of display screens;
(b) to compile a glossary of screen objects; and

(c) to define the contexts for presenting error and feedback messages, and

computer support functions.

The locations of the above stages vis-a-vis other stages of the JSD*(HF) method
are shown in the Figure below.

Extant Systems
System Analysis

{ Generalised Task Model

Statement of User Needs

Other Contributions —f»- Functions <

Composite Task Model
List

System and User Task Model
System Task Model | | User Task Model

Specification

Functions

User Interface Specification

Interaction Task Model

Interface Model} | Display Design

§ = Points of SE and HF contact Design Specification Phase

= Design phases of the JSD*(HF) method

As shown in the Figure, STM(y) and ITM(y) comprise primary inputs to the
stages. In addition, appropriate consideration should be given to the input sub-

system specifications derived earlier by JSD*(SE) analysts, and relevant sub-sets of

282

extant design descriptions, namely DD(ext) and IM(ext) descriptions (Note :
appropriate sub-sets of the latter descriptions comprise those which are consistent
with parts of the GTM(x) description that have been incorporated into CTM(y)). On
the basis of the preceding products, suitable display designs are specified at the
Interface Model and Display Design Stages of the method. Specifically, the
preceding products constitute design requirements and constraints to be satisfied by
a particular user interface design, e.g. specific screen compositions and behaviours.

Thus, prototyping and user tests are particularly important at these design stages.

In summary, the set of descriptions derived at the Design Specification Phase of the
method constitute HF specifications of the user interface. Subsequently, the
descriptions are discussed and synthesised with JSD*(SE) specifications. Design
implementation is then undertaken following the original JSD method.

A detailed account of interface model and display design descriptions follows.

Detailed Account
a) Interface Model Specifications for the Tar tem

At the Interface Model Stage, a set of specifications (termed IM(y)) is derived to
describe the behaviour and appearance of screen objects. Two categories of objects
are described, namely bespoke objects and variant objects of the chosen user
interface environment (if any). In most cases, generic objects of the chosen
environment are not described since the design team would be conversant with their

characteristics.

IM(y) descriptions are derived by decomposing C leaves of the STM(y)
description, i.e. computer actions. The decomposition should satisfy the conditions
prescribed by JSD*(HF) products that have been derived earlier, such as DoDD(y),
SUN(y) and the enhanced statement of target system requirements. On this basis,

283

the designer may consider the following :

(1) adopting a 'global' concept to structure the user interface, e.g. the
application of an appropriate user interface metaphor;

(2) porting IM(ext) descriptions that are consistent with parts of the GTM(x)
description that have previously been recruited to the target system;

(3) selecting an appropriate user interface environment or house-style;

(4) introducing bespoke design extensions.

A set of IM(y) descriptions is thus derived and documented using
structured and pictorial diagrams. The rationale relating to the above design
decisions should also be documented as appropriate. These descriptions
are then carried forward to support screen specification at the Display
Design Stage. In particular, explicit relationships among IM(y), ITM(y),
and screen composition and actuation are specified using an indexing
scheme involving screen and object identifiers (e.g. name and appearance).
Case-study examples of IM(y) descriptions are presented later.

b) Displav Design Specifications for the Target System (DD

A set of JSD*(HF) products, collectively referred to as DD(y), is derived at the
Display Design Stage. DD(y) descriptions address the following concerns of user

interface specification :

(1) 'static’ description of screen displays. Specifically, the composition and
layout of information, error, feedback and help screens are specified
pictorially. The descriptions (termed Pictorial Screen Layouts or PSL(y))
are supported by a Dictionary of Objects (DO(y)), and a Dialogue and Error
Message Table (DET(y));

(11) 'dynamic’ description of screen displays. Specifically, the context for
actuating display screens to present computer task support functions and
messages is specified. The structured diagram description derived is termed
a Dialogue and Inter-Task Screen Actuation Description or DITaSAD(y).

284

The above JSD*(HF) products are now described in more detail.

Pictorial Screen Layout (PSL(y)) diagrams describe the content, appearance,
location and grouping of information and functional screen objects. Explicit
relationships among PSL(y), ITM(y), DITaSAD(y) and IM(y) descriptions are
specified using an indexing scheme involving screen and object identifiers (e.g.
name and appearance). Thus, the static and dynamic descriptions of a screen design

are inter-linked as follows :

(i) PSL(y) descriptions are linked with IM(y) descriptions at the objects
level. Specifically, static PSL(y) descriptions are complemented by dynamic
IM(y) descriptions of screen objects, €.g. their individual behaviours and
their relationships with other objects (objects may reside in the same display
screen (intra-screen object-object relationships) or different display screens
(inter-screen object-object relationships);

(ii) PSL(y) descriptions are linked with DITaSAD(y) at the screen level.
Specifically, static PSL(y) descriptions are complemented by dynamic
DITaSAD(y) descriptions of display screens, e.g. their actuation contexts
and triggers.

It should be noted that the objective of a PSL(y) description is not the specification
of all possible display screens. For instance, the description of screen scrolling and
refresh is excluded. Instead, the objective of a PSL(y) description is to specify the
display screens associated with potential user errors and interactive task contexts.
Thus, PSL(y) is inter-linked with DET(y), ITM(y) and DITaSAD(y).

PSL(y) descriptions are generally supported by DO(y) descriptions which provide
further information on the objects comprising each display screen, e.g. salient
characteristics such as inter-screen triggers and permissible user actions. In
addition, PSL(y) descriptions of error, feedback and help message screens are
supported further by a message index or DET(y) table (refer to its account on the
following page).

It should be noted that PSL(y) descriptions may be composed directly using a

285

computer-based protofyping tool. In this way, voluminous paper-based
documentation and laborious scale drawings or dimensioned screen diagrams (see
Figure 11-5) may be obviated.22 Although PSL(y) and DET(y) descriptions are
thus supplanted, IM(y), DITaSAD(y) and DO(y) descriptions should still be
documented as required by the method. Case-study examples of PSL(y)

descriptions are presented later.

Figure 11-5 : Dimensioned Pictorial Screen Layout of Screen 3A

[E===""lert summary = 4

From 22/04/90 at 17.30
To 23/04/90 at 09.30

Host/user report(s): 0
Failed logon attempt(s): 1
Failed password change(s): 0

All fonts size 12 Geneva

The Dialogue and Error Message Table (DET(y)) is essentially an index of
message identifiers and contents. As indicated previously, the identifiers comprise
part of a scheme for describing explicit links between PSL(y) and DITaSAD(y).
Specifically, the contexts and triggers for presenting particular display screens are

22 Other benefits of using a prototyping tool may include directly executable specifications and
animation of proposed designs.

286

defined with respect to the status of interactive task performance. Links between
DET(y) and PSL(y) descriptions of the content and layout of screen messages are
similarly established by assigning unique message and screen identifiers (refer to
the earlier account of PSL(y) descriptions). A case-study example of DET(y) is

presented later.

Finally, the Display and Inter-Task Screen Actuation Description (DITaSAD(y))
sets screen actuations against the interactive task context. In other words, it
specifies the points at which particular computer messages and functions are
presented in support of the user's on-line task (refer to earlier accounts of PSL(y)
and DET(y) descriptions). It should be noted that the objective of a DITaSAD(y)
description is not the specification of all possible screen actuations. For instance,
the description of screen scrolling and refresh is excluded. Instead, the objective of
DITaSAD(y) is to set major screen actuations against the status of interactive task
performance. In other words, it relates the actuation of display screens (described
by PSL(y)) to users' interaction difficulties and errors (described by DET(y)), and
to transitions between coherent interactive task units (described by ITM(y)). Thus,
DITaSAD(y) is inter-linked with PSL(y), DET(y) and ITM(y). A case-study
example of a structured diagram description of DITaSAD(y) is presented later.

Figure 11-6 summarises the activities and products of the design stages described

above.

287

Figure 11-6 : Block Diagram Summary of the Interface Model (IM)
and Display Design (DD) Stages

Interface Model [IM]
DoDDG) 71— 1iMy) — ;
SUN@y) +—1— S%((’;)) > &Rgzﬁ;g‘;
SoRe ’ T —» IM(y) —
UIE'(ext) — L Svathesi
IM(ext) yntiesise
>
Display Design [DD] ¢
ITM
—— PSL(y) Re-Express <-—E UIE(())"))
—— DET(y) <«@¢—] PSL'(ext)
—— DITaSAD(y) X DET (ext)
Synthesise |- DITaSAD'(ext)
JSD*(SE) input
sub-system specifications

DET = Dialogue and Error Message Table

DITaSAD = Dialogue and Inter-Task Screen Actuation Description
DoDD = Domain of Design Discourse

(ext) = JSD*(HF) descriptions of extant systems (EXT)
ITM = Interaction Task Model

PSL = Pictorial Screen Layout

SoRe = Enhanced Statement of Requirements

STM = System Task Model

SUN = Statement of User Needs

UIE = User Interface Environment

(y) = JSD*(HF) descriptions of the target system (Y)

Procedures for deriving IM(y) and DD(y) descriptions are presented on the

following two pages.

288

Proced for_deriving IM(y)_and DD(y)

1. Do not begin specifying IM(y) and DD(y) until ITM(y) is sufficiently decomposed into
input level primitives. However, complete decomposition of ITM(y) is not necessary
prior to the Interface Model and Display Design Stages (see (8) below).

2. On the basis of screen demarcations on ITM(y), a human factors designer may apply either
3(a) or (b). The choice would depend on prevailing design circumstances such as how
familiar the designer is with the chosen user interface environment (if any), and how
well defined the chosen environment is. PSL(y) and IM(y) descriptions are thus derived
incrementally with due references to ITM(y). Note that iterations among the Interaction
Task Model, Interface Model and Display Design Stages may instigate changes to design
descriptions derived earlier. The process is continued iteratively until the entire ITM(y)
description has been considered.

3(a). For each demarcated screen in ITM(y), specify IM(y) descriptions of screen objects. On
the basis of these IM(y) descriptions, compose appropriate PSL(y) diagrams. Repeat the
process as indicated in (2) above until the entire ITM(y) description has been considered.

3(b). For each demarcated screen in ITM(y), compose an initial PSL(y) diagram. Specify an
IM(y) description for each object in the diagram. The result is a set of structured diagram
descriptions and a tabular dictionary of objects for each PSL(y) diagram. Thus, IM(y) and
PSL(y) descriptions are derived iteratively. The process is repeated as indicated in (2)
above until the entire ITM(y) description has been considered.

4. When deriving PSL(y) diagrams, note when and how each display screen is to be actuated
and the objects involved in effecting the actuation. Specifically, make notes on how
each screen is triggered and consumed. Such notes would support the later construction
of a DITaSAD(y) description (see (9) below).

5. To facilitate reference, each PSL(y) diagram should be collated with IM(y) descriptions
(including object dictionary tables) of its constituent objects. Note that lower level
descriptions of IM(y) may be specified. For instance, HyperCard™ tye program scripts
may be specified if structured diagram descriptions are sufficiently detailed. In addition,
within and between screen object-object relationships may be described and linked with
PSL(y) diagrams by assigning a unique identifier to each object. Thus, the level at
which IM(y) may be described is flexible, and depends largely on the training of the
human factors designer.

6. During the derivation of IM(y) and PSL(y) descriptions, H-C leaves of STM(y) (which
have been carried forward to ITM(y)) may suggest ‘generic’ computer support functions,
e.g. standard functions of text and graphics editors. In such instances, design features of
relevant off-the-shelf packages (which constitute extant partial systems) may be
examined to identify potential extant objects and functions for recruitment to target
system design. To this end, the selected objects and functions should be consistent with
ITM(y). In addition, they should be re-named and modified (as appropriate) in accordance
with the semantics defined by DoDD(y). Such considerations may instigate modifications
to their behaviours and representations.

7. Since ITM(y) describes error-free performance only, potential user errors should now be
considered. These concerns are addressed by DITaSAD(y) and DET{(y) descriptions. To
derive these descriptions, potential user errors are identifled by examining each PSL(y)
diagram. In addition, various error scenarios should be investigated analytically in
accordance with IM(y), ITM(y) and the input sub-system specification generated by
JSD*(SE) designers. Thus, potential deviations from the ‘ideal’ sequence prescribed by
ITM(y) are uncovered. In thefirst instance, re-design to rectify anticipated user errors and
difficulties is considered. If a satisfactory solution can not be found, appropriate error

289

Procedures for deriving IM(y) and DD(y) (con't) :

and help messages should be composed to support the user. Thus, a DET(y) table is
derived and linked to the ITM(y) description. For each message item in the table, a
PSL(y) diagram is composed and labelled in accordance with the rules below. To facilitate
reference, the present set of PSL(y) diagrams is collated with the set of PSL(y) and IM(y)
descriptions that had been derived earlier.

8. When PSL(y), IM(y) and DET(y) descriptions have been defined satisfactorily, a further
design iteration may be undertaken (as appropriate) to finalise’ the decomposition of
ITM(y) to a device-level description. Thus, ITM(y) may be described in terms of specific
actions of bespoke screen objects that have now been defined by IM(y) and PSL(y).

9. Having 'finalised’ the descriptions in (8) above, the dynamics of screen presentation is then
specified. To this end, preceding JSD*(HF) products (namely ITM(y) and IM(y)) and notes
made in (4) above are consulted. Thus, a structured diagram description of DITaSAD(y) is
derived to summarise how each PSL(y) screen is ‘triggered’ and ‘consumed’ with respect to
the user interactions prescribed by ITM(y).

Rules of thumb for deriving IM(y) and DD(y)
1. The constitutents of each PSL(y) screen should be described further in a supporting table
termed an objects dictionary. In this way, detailed object behaviours may be highlighted.

2. Whenever possible, each PSL(y) screen should be uniquely and sequentially named in
accordance with the order of presentation as described by DITaSAD(y).

3. The names of PSL(y) screens should also indicate their relationship (as appropriate), e.g.
parentage. Thus, Screens 3.1 and 3.1A are both children of Screen 3, and Screen 3.1 and
3.1A are mutually exclusive selections of screens to be presented.

4. The appearance and name of each object should be propagated consistently across screens.
Instances of an object class may be assigned a composite name comprising a root name
and a unique identifier. Such information should be noted in the objects dictionary.

5. IM(y) descriptions need not be derived for generic objects of the chosen user interface
environment.

6. Error and dialogue message screens should be denoted by a composite name comprising a
root name followed by ‘.5’ and a unique message identifier linked to DET(y) and
DITaSAD(y), e.g. 'Screen 1.5 -- em3". The name reads ‘error screen 1.5 with message
number 3 (contents shown in DEI(y) table) may be triggered following Screen 1." An
alternative scheme is to name error and confirmation screens respectively using a 'E’ or
‘C’ letter followed by a root name and message identifier as before. Note that a 5’ is not
used in this case, and the name ‘Screen E(1)1 -- em3’ should be read as before. However,
the name also indicates that message em3 is displayed using a variant of a generic error
screen template called Screen E(1). Specifically, only the <message content> of Screen
E(1) is varied,

7. DITaSAD(y) may be specified in two or more steps to facilitate its derivation. In particular,
the designer may exclude error considerations from an initial DITaSAD(y) specification,
i.e. screen actuations corresponding directly to ITM(y) are described first. Error scenarios
are then introduced to complete the description of DITaSAD(y).

8. Structured diagram leaves of a DITaSAD(y) description largely comprise ‘consume screen’
boxes. Thus, in deriving a DITaSAD(y) description, intervening action leaves of the
ITM(y) description that do not result in a screen actuation are removed (since DITaSAD(y)
(and PSL(y) descriptions) is concerned largely with major screen actuations). Nevertheless,
the super-ordinate structure of ITM(y) should still be carried forward.

290

- Illustrati IM DD

A case-study illustration of products derived at the Interface Model and Display
Design Stages follows. In particular, case-study examples are described to highlight
inter-linkages among the products of these stages. To this end, the case-study
scenario introduced in preceding accounts of earlier JSD*(HF) products (i.e. a
'failed log-on' event) is used again for the present illustration. It may be pertinent to
note that the following account describes JSD*(HF) specifications of a user
interface design (a set comprising IM(y), DITaSAD(y), DET(y) and PSL(y)

descriptions).

(a) Dialogue and Screen Actuation Description (DITaSAD(y)

Figure 11-7 shows part of a DITaSAD(y) that describes target system responses to
a failed log-on event. Specifically, it describes the on-line component of the
network manager's task in terms of a succession of major screen actuations, e.g.
Screens 4B, 5B-1, etc. An information table is not derived in this instance since the

structured diagram description of DITaSAD(y) is self explanatory.

Target system responses to a failed log-on event may be conceptualised as
comprising two component streams, namely human and computer responses to the
event. The streams are described by ITM(y) and DITaSAD(y) descriptions
respectively (see Figure 11-2 (Page 1) and Figure 11-7). By specifying linkages
between the streams, screen actuations (comprising the sequence : 'Screen 4B' -->
either 'Screen El-em3’ or 'Screen 5B-1' --> etc.) are contextualised against the on-
line tasks to be performed by a network manager (comprising the sequence : 'show
user list' --> select user name' --> etc.). The inter-links are summarised in the
diagram overleaf. For complete user interface specification, the above descriptions
are complemented further by IM(y), PSL(y) and DET(y) descriptions. An account
of these JSD*(HF) descriptions follows.

291

Network manager : on-line tasks following a failed log-on event

to enable user

Network management workstation : screen actuations following a failed log-on event

(b) Pictorial Screen Layout (PSL(y)), Interface Model (IM(y)) and Dialogue and
Error Message Tabl ET

Following an alert to a failed log-on event (see Figures 11-3 and 11-4), it was
indicated earlier that a series of screens is presented to the network manager.
JSD*(HF) descriptions of the design of these screens and their constituents are
illustrated below. The descriptions are collated into sets that reflect the sequence of

screen presentation.

Having been alerted to a failed log-on event, the network manager is required to
access the computer database so that further information may be gathered on the
user involved. To this end, the manager double-clicks the security icon in Screen
3C (not shown since it is similar to Screens 3A and 3B -- see Figures 11-3 and 11-
4 respectively) to activate the application for network security management. The
input triggers Screen 4B, and a menu offering a selection of three actions, namely
'‘Search Connection', 'Show User List' and 'Show Access Points', is thus
presented to the network manager (see Figure 11-8).23 To indicate the desired

selection, the manager mouse-clicks one of the three radio buttons followed by the

23 To support the PSL(y) description of a screen, further information on its constituents is
tabulated in an Objects Dictionary, e.g. the PSL(y) description of Screen 4B is supported by Table
11-1. In addition, the behaviour of individual screen objects is expanded in an IM(y) description,
e.g. the IM(y) description in Figure 11-9 describes radio button objects in Screen 4B.

292

Figure 11-7 :

Part of DITaSAD(y) for Network Security Management

Boxes with symbols :
DITaSAD(y) .
'0' = Selection
'" = Sequence
[1 1 --- = Continue on pages 2 to 4 (not shown)
Enter id and Legal NMgr
password body status
i
1 1
o o
User reports NMW security
hacking alert body
|
1 1
Establish Network usage
nature of alert status check
o o
Confirm
Confirm alert status
normal usage body
|
1 1
Access Enable
user id user id
|
1 1 I
Select 'show Select 'user Consume
user list' button name' item Screen C2
| 1
1 1 | 1
o (] (] (o]
Radio button Complete Name item Complete
not selected Screen 4B input not selected Screen 5B-1
input
|
—— I .] I
Consume Consume Consume Consume Consume Consume
Screen E1-em3 Screen 4B Screen 4B Screen El-em4] | Screen 5B-1 Screen 5B-1

El, C2 = Particular instances of a screen, namely an ‘Error’ and ‘Confirm’ dialogue screen.

em = error

message

NMW = Network Management Workstation
NMgr = Network Manager

S = Screen

293

'Select’ button (see Figures 11-8 and 11-9). If either of these inputs is omitted, an
error message screen, namely Screen E1-em3, is activated (see Figure 11-10 for a
description of the generic error screen template named Screen E1, and Table 11-3

for the content of error message 3 (or em3)).24

Figure 11-8 : Pictorial Screen Layout of Screen 4B

Macintosh

User
Interface

Environment

................

Security Actio

Selection Menu

@ Search Connections

@ Show User List

@ Show Access Points

24 1n other words, error message 3 or em3 shares the same screen design as other error messages,
namely Screen El. Specifically, the screen layout is the same for these messages, i.e. the only
difference is the content of their error messages.

294

Table 11-1 :

Objects Dictionary -- Screen 4B

selection, one of the following screens is
activated :

-- Search Connections : Screen 5A-1;
-- Show User List : Screen 5B-1; and
-- Show Access Points : Screen 5C-1.

Screen Object Description Design Attributes
File (menu bar) | Offers 'Open’ and 'Quit' menu items. 'Open’ Behaviour as per standard
allows the network manager to open host and Macintosh menu items.
user reports. 'Quit’ allows the manager to quit
the security application.
Security Action | Allows the network manager to select an
Selection Menu | appropriate action, namely 'Search Connections'
(for details of network connections), ‘Show User
List' (for a list of network users), and 'Show
Access Points' (for a list of Access points).
Radio buttons Allows the network manager to select an action | Behaviour as per standard
from the menu above. HyperCard radio buttons.
Select button On activation, this button activates the next Behaviour as per standard
screen. Depending on the network manager's HyperCard buttons.

Figure 11-9 :

IM(y) Description of Radio Buttons in Screen 4B

Generic radio
button of
Screen 4B

|
1 |
On 'Select’
button click,
activate 7?

On menu button
click, highlight
button

where :

77 = Screen 5A-1 if the menu button clicked is 'Search Connections'.
77 = Screen 5B-1 if the menu button clicked is 'Show User List'.
77 = Screen 5C-1 if the menu bqtton clicked is 'Show Access Points'.

295

Figure 11-10 :

Table 11-2 :

<error message>

Pictorial Screen Layout of Screen E1

Objects Dictionary -- Screen E1

Screen object Description Design Attributes

Dialogue box | The dialogue box is activated in response to a user | Behaviour as per standard
input error. An error message is displayed in the Macintosh dialogue boxes.
box (see DET(y)).

OK button Allows the network manager to acknowledge the Behaviour as per standard
message and return to the previous screen. HyperCard button.

Table 11-3 : Part of DET(y) for the Target Network Security

Management System

Message no.

Message

eml
em?2

em3

emd4

etc.

or Pending’ radio button.

button.

BEFORE clicking the 'Show' button.
etc.

Sorry, your log-on inputs are incorrect. Your session will be terminated.
Please indicate a host and/or user report action by selecting either the 'Delete’

Please indicate the required security action by selecting a radio button from
the 'Security Action Selection Menu'. Do this BEFORE clicking the 'Select’

Please select a user name from the user name display window. Do this

296

If the inputs for Screen 4B have been made correctly, Screen 5B-1 is presented (see
Figure 11-11). Using this screen, the network manager may specify what network
user information should be collated and displayed as lists. For instance, the
manager may request a list of user identifications that have been disabled
temporarily. Following an examination of the list, the manager may access further
information on a particular user by mouse-clicking the desired user name item in the
'User Name Display' window (inside the 'User List' window -- see Figure 11-11).
Screen 5B-2 (Figure 11-15) is thus activated to display personal and usage
information on the selected user. Having assessed the information displayed in the
"User Details' window, the manager may decide to contact the user to uncover
possible causes of the failed log-on event. An appropriate action is then taken. For
instance, the manager may decide to restore the user account via the 'Enable’
command in the menu bar (see Figure 11-15). On detecting such a request, the
network management workstation will seek final confirmation from the manager by
activating Screen C2 (Figure 11-16). Although Screen C2 may be considered a
redundant confirmation step, it was included to make the interaction cycle more
consistent with punitive actions that may be imposed by the manager. Specifically,
interaction consistency is maintained since '‘Disable User' and 'Mark User' actions

both require positive confirmation from the manager.

The above products of the Design Specification Phase constitutes the set of human
factors specifications of a user interface design.25 Following discussions with
software engineers,26 JSD*(HF) and JSD*(SE) specifications are integrated and

25 1t may be pertinent to add that JSD*(HF) products derived between the Generalised Task Model
and Interaction Task Model Stages (inclusive), could contribute to the design of training
programmes and user manuals.

26 The final integration of JSD*(HF) and JSD*(SE) specifications should be led by software
engineers. This recommendation is consistent with the current training of human factors designers
and their present role in system design.

297

then implemented as per the original JSD method.27 Late evaluation activities
would usually follow. These activities will not be reviewed here since they are
already well established and are thus excluded from the present research.28 If
necessary, the reader should refer to Long and Whitefield (1986) for information on

late evaluation techniques.

27 Design implementation was not considered in as much detail as design specification because
the transformations entailed by JSD implementation is a well regulated and mechanistic process. In
addition, the external behaviour of a JSD specification is not altered by JSD implementation (see
Zave, 1984). Furthermore, it is anticipated that human factors input at this stage would be
confined largely to the specification of additional feedback displays to account for cases where a
longer than expected transient response time results from a particular JSD implementation.

28 The exclusion of late evaluation is consistent with the objective of the present research,
namely to address the ‘too-little-too-late’ problem of human factors input to system design. As
such, the JSD*(HF) method is concerned primarily with early and continuous human factors
involvement in system development. In other words, the research emphasis is on defining
processes and descriptions for design analysis and specification rather than design

implementation and evaluation.

298

S$}uiod $$932y mouys @

1s1140sn moys (@)

su01}99UU0) Yl48as @

MU UO0I}09[a§

Aeydsip

a8yjo [] uo-Boj paney [X

: siasn pejqus|p uum_ou@

aweu
19S[)

fijuo siasn pajiow }39|3s @ -

S3I1AWQ
HSN31J

s19sh ||B }39]8s @

181] 488)

1-9S udd1d§ -- wieadeig INoLe] uNIIS [BLI0PIJ : [I-IT danSiy

299

Table 11-4 :

Objects Dictionary -- Screen 5B-1

Screen object

Description

Design Attributes

User list Used to specify particular name lists | Activated by selecting 'Show User List'

window to be displayed (e.g. to display alist | from the 'Security Action Selection
of disabled user names only). Menu' (see Screen 4B for further details).

Radio buttons | Used to specify which user names Behaviour as per standard HyperCard
should be listed in the user name buttons. Default display is to list all
display window. Possible listings are | user names in the user name display.
all users, marked users only, and Selecting a radio button should blank
disabled users only (this includes two | out the name display, and when the
sub-lists (checkboxes in Screen 5B-1)). | 'Show' button is clicked, the specified

user name list should be displayed.
User name Used to display user names. Activated | Default display is to list all user names
display by clicking the user list radio buttons | in alphabetical order. A user name item

(see above) followed by the 'Show'
button.

may then be selected (causing it to be
highlighted) to display further user
information in the 'User Details' window
(see Screen 5B-2).

Show button

Used to trigger the display of user
names following the selection of a
particular user list radio button (see
above).

Behaviour as per standard HyperCard
buttons.

Security Action
Selection Menu

Details as described previously for
Screen 4B.

Figure 11-12 :

Display' Window -- Screen 5B-1

IM(y) Description of Item(s)

in the 'User Name

User Name
Display item

|

On selection
highlight item

Activate
Screen 5B-2

300

Figure 11-13 : IM(y) Description of a 'Generic' Radio Button in the
'User List' Window -- Screen 5B-1

Generic radio

button of
Screen 5B-1

On 'Show' button

On selection click, list ?? in
highlight button user names display
window

where :
77 = complete user name list if the radio button selected is 'Select all users'.
7?7 = marked user name list if the radio button selected is 'Select marked users only'.
7?7 = complete disabled user name list if the radio button selected is 'Select disabled
users' and either none or both checkboxes are selected.
77 = disabled failed log-on user name list if both 'Select disabled users' radio button and
"Failed log-on' checkbox are selected.
7?7 = remaining disabled user name list if both 'Select disabled users' radio button and

'Other’ checkbox are selected.

301

Figure 11-14 :

5B-1

IM(y) Description of the 'Show' Button -- Screen

Show button
(User List)
|
1 1 1
On selection Specify Show Activate User
highlight parameters body Details window

Radio button UI;? Name
: isplay
selection body .
selection
i]
o o Sel Sel
Activate Select Activate Select . elect elect u set
All...Users Marked...Only Disabled Users name in
radio button radio button body window
|
1 1
Activate Select Select
Disabled Users elec
radio button checkbox
*
Check box
selection body

302

o

Select Failed
Log-on checkbox

o)

Select Other
checkbox

S1Ul0d $$923Yy mMoys @

1s1143sn moys (@)

SuUO01}33UU0Y) Yiieas @

nuaj uol)lrajas

gaJe SplJodal Jas 'OI9PISN SpIomssed ‘Y14 a 06/L/41

(0¢'g0) uoboj jebajyy pajsadsns 06/1/01
sluawwon uonoy aleq

<Snjeis juaunodo> :snjeis

<sjdwaye jo "ou> :sjdwaye “xep
<0d ISB] JO a1ep> :0d ISE]

paJe SjuaWWOod LQEZ AU._O;meQV :pilomssed
] <dnoib aoimes> 16 8o1Al8g
18 <p| 19sN> :pi 1as()
06/2/22 Iiun pa8joeluod 8q jouue) <alweu J19sn> :awWeN

pode smej}s 1asq

| speyag 49sn |

i8yjo _H_ uo-6oj pajey X E
J/

: siasn pajqes|p -um_mn@)

Aejdsip
aweu

fijuo siasn pa) HOeW 19sN

m d abu
s19s plomssac ahusul SITANG

a|qesiqg HSN31J

ajqeuj

p4033J4]1nJ

7-4S UG -- weadelq INoLe | UNIG [BLIOPIJ : ST-IT dandiy

303

*SWIAI Jeq NUSW YSONORN prepuels xod se
INOtAeYag "UOMS[IP JOJ PAIS[SS ST MOPUIM STreIxT
Jos[), Y} UT WA PIOAI Y JANJe A[UO J[qB[TBAY

"MopuIs STl
J9S(),) WOIJ PIOOA, B QA0 0] IoFeurul JI0MIou 9yl AQ Pasn ST PUBTILIOD STY,

PIOOAI IND)

g USRI0§ 33§

MU\ UORI[IS
uondy AIundeg

*PAPIOII OSTE ST JUIAS Y} UL

pasn paomssed 9y, “Ju9A u0-50] pIfe] B SuIMOTI0]
PIIqesIp 9q Aewl P1 1SN *3°9 ‘UONOSS SIUSUWILIOD

S} UT PAIESIPUL [TOS ST LOSEaI oY) ‘UONEISHOM
JuowaSeuew Ypomiou o3 £q pesodun seam uonoe
oanmund oy J1 “WaN p30331) Sunyp £q paAowi
9q Aew reuwr oy L, "pI0o21 3osn o) ut sreadde

« Ue ‘pasoduur st uonoe 1osn J1ew e J “(Jrew

10 95ueyd promssed ‘2[qesIp JMPIS *9°T) UOOE
aanmund yoeo Suimoryoy patepdn ore sp1059y (198,
Jopun) Jeq NUSW 9} WOIJ pI03Y IND), 19938 pue
W SYI WO YOT[O IS JaFeuew YIOMIOU Y ‘PIOdAI

-uonisodur J19y) JOJ UOSBII 9Y) PUB PI Josn € uo pasodur
suonoe aannmd oy1 uo 1day ST p10221 [BOLIOISTY B ‘SNY] “UOTIUSNIE JOSO[D
10j sp1 xosn snowdidsns WIySy 0) JoTeuew yromiou o AQ pasn ST (,,) e

‘uaye) Sem uone sanIund oY) uSyM 9pEW <SIUDWIWOD S JoFeuew YI0MIou> (1)

“(+) AreW 10 (Dd) 23uey) promssed () 2AqESTP IOYID ST YoIym <uonde> (1)
‘<uonoe 1se] JO Mep> (1)

: Suimorrog ap sasudwod PAPIOIAI UOIBULIOFUT
YL (1D udaIdg 2as) pakerdsip osye st uonse sanwund Yy} uo xJeurw JI0MIU
o) AQ dpeWl SJUSUILLIOY) “UOTIBISHYIOM Jusudeurul JI0MIaU JO JoFeuew YIOMIau

B 919[9p O "PANPS J0U INq PAIYIP 2q UBD SPIOAY 9y £q pt 1980 € U0 pasoduur suonoe sanmund Jo p10331 € SAB[dSIp MOpUIM SIY], | eore spiooal xos()
*JoSeurur YI0MIU A} AQ PANPO q
‘spoyy | KB AU} pue ‘UMOYS e S[TEIOP 1SN AU} 19AUSYM PAKEISTp oIe SaI0u YL PIOY | eare sjuowwod
ndur 1x91 ysoyuroey prepuess rod se moraeyag | 3X9) SHP ul 1osn remonred o1 uo saou oxew Kew (IFNN) JoFewreur pomiau ay, IBINN
‘UOTIBISHIOM JUdWASeuBw JIOMIU oY)
Aq panps 9q AJuO Ued S[TEISP JISN “BAIE SJUSWWOD
(IBIAN) IoSeuew y1om1ou o1 JO uondaoxs oy I "wres8erp (KYTSd oYl Ul umoys Se ore USAIS S[relo(| eare smeis Jos)
‘paferdstp st mopum Lepdstp *(*019 “pI Josn 9[qeuD “03ueyd piomssed ‘xosn yrewr) xasn oy uo pesodur oq usp mOpuIM
QUIBU JOSN M} UT PAIIIJAS JOSN Oy} UO UOHBULIOjU] | Aew SUONJE KIIMIAS “JASN FIOMIU PIIIIRS © uo uoneuwrojul skejdsip mopurm oy, STre1op IS
‘T-€S USROS 39S | MOpUIM IST] J3S()

saInquy udisaq

uondirdsaq

193[qo uwaardg

(1 98ed) 7-4S wIPIG -- Lieuwondiq s1RIqO

¢ S°I1 3IqelL

304

Table 11-5 :

Objects Dictionary -- Screen 5B-2 (Page 2)

Screen object

Description

Design Attributes

Enable This command is used to enable a | Available only when the ‘User Details’

(previously disabled) user id. window is displayed (i.c. after a user name
item has been selected). Activates Screen
C2. Behaviour as per standard Macintosh
menu bar items.

Disable This command is used to disable a | Available only when the 'User Details'
user id. Comments on the action window is displayed (i.e. after a user name
should be recorded (see Screen C1 item has been selected). Activates Screen
for more information). C1. Behaviour as per standard Macintosh

menu bar items.

Change This command is used to enforce a | Available only when the ‘User Details’

password password change on a user id. window is displayed (i.e. after a user name
Comments on the action should be | item has been selected). Activates Screen
recorded (see Screen C1 for more C1. Behaviour as per standard Macintosh
information). menu bar items.

Mark This command is used to ‘'mark'a | Available only when the ‘User Details'

user id to highlight suspicious
activities. Comments on the
action should be recorded (see
Screen C1 for more information).

window is displayed (i.e. after a user name
item has been selected). Activates Screen
C1. Behaviour as per standard Macintosh
menu bar items.

Figure 11-16 :

Enable :

Pictorial Screen Layout of Screen C2

<user name>

305

Table 11-6 : Objects Dictionary -- Screen C2

Screen object

Description

Design Attributes

Dialogue box The dialogue box displays the user id, | The dialogue box displays the
and confirm and cancel options after an | enable action and the user name in
‘Enable’ action is selected. In contrast | question. Behaviour as per standard
with Screen C1, comments on this Macintosh dialogue boxes.
action are not recorded.

OK and Cancel | Used to confirm or cancel an Enable' | Behaviour as per standard

buttons action. HyperCard button.

The above account completes a review of the entire JSD*(HF) method.

In conclusion, the method contributes to system development as follows :

(a) as a structured human factors method, it specifies explicitly the scope,

process and notation of human factors contributions to the entire system

development cycle;

(b) as part of an integrated Human Factors and Software Engineering
method (namely JSD¥*) ;

(i) it supports timely and contextually relevant human factors input to

system design;

(ii) it facilitates an explicit accommodation of human factors design

needs by the overall system design agenda;

(iii) it defines clearer roles and design relationships between human

factors designers and software engineers.

Consequently, a more effective uptake of human factors contributions may be

expected from the application of the method.

306

PART V :

Synopsis of the Research

307

CONTENTS

Chapter Twelve : An Assessment of the Present Work
and Opportunities for Follow-up Research........c...ccccoveiuiiiniainnen. 309

12.1. An Assessment of the Human Factors Design Scope
Addressed by the Research............ccviiiniiiiiiiiiiinnnniiiinin 310
12.2. An Assessment of the Research Scope and Activities

for Developing a Structured Human Factors Method................. 313
12.3. An Assessment of the JSD*(HF) Method.........ccccccueneerennnnnne. 319
12.4. Wider Extensions of the Research..........ccccccciiiiiiiininnnnnnnee. 330
12.5. Concluding SUmMMATY....cccceuieiiiienreirniierieniireeensiecensncesnes 335

308

Chapter Twelve : An Assessment of the
Present Work and Opportunities for Follow-Up
Research

"The old order changeth, yielding place to new.....
Lord Tennyson, 1809-1892.

"The meaning of things lies not in the things themselves
but in our attitude towards them."
Antoine de Saint-Exupéry

Since this chapter concludes the thesis, its scope includes the following :

(a) assessing the human factors design scope addressed by the research. For
instance, was an appropriate set of concerns addressed ?

(b) assessing the formulation and implementation of research plans and
activities. For instance, were appropriate case-study systems and tests used
during method development and demonstration ?

(c) assessing the research product. For instance, were research requirements
satisfied fully by the proposed method, and what were its limitations 7

(d) identifying the possibilities for further extensions of the method. For
instance, a wider scope of human factors integration with the JSD method
may be considered in (a), (b) and (c) above;

(e) identifying further research to support methodological integration as a
means of incorporating human factors into system development. For
instance, computer-based tools may be developed to support the integrated
method, and declarative human factors knowledge may be identified for

application at various stages of the method.

An account of the above considerations follows.

309

12.1. An Assessment of the Human Factors Design Scope Addressed
by the Research

It was observed in earlier chapters that the research scope is potentially very wide.
Thus, a scope commensurate with the project resources had to be defined. After
careful consideration, a concise and coherent set of human factors design concerns
was identified (see Figure 7-5, Chapter Seven). However, the research undertaking
was still extensive and an in-depth study of all human factors design concerns was
not feasible. Thus, compromises had to be made to balance appropriately a breadth-
first and depth-first coverage of the set of design concerns. Specifically, only 'key'
human factors concerns were addressed in detailed. Such concerns were selected on

the basis of the following criteria :

(i) the current state of human factors knowledge with respect to the
particular design concern. Specifically, design concerns which are well
established and supported are assigned a lower research priority, e.g. late
human factors evaluation;

(ii) the human factors design support required by the SADM chosen for
integration. Thus, the requirements of the JSD method were accommodated
preferentially by the present research (see Chapter Six);

(iii) the research resources required to address the particular design concern.
Generally, to avoid jeopardising other research requirements design
concerns which require extensive resources were not studied in detail;

(iv) the potential alleviation of existing problems of human factors input that
would be gained from a better accommodation of the particular design
concern. Thus, the criterion pre-disposes the research towards addressing
design concems at earlier stages of system development;

(v) the potential improvement of the quality of the final artefact that would
be gained from a better accommodation of the particular design concern.
This criterion was not applied in isolation since it is difficult to attribute
specific improvements in artefact usability and functionality to individual

design concems. Thus, the criterion was used only to support (i) above.

Bearing the above criteria in mind, the scope of design concerns addressed by the

310

present research (namely user requirements specification, task analysis and user

interface design -- see Chapter Six) may now be assessed.

First, an in-depth study of user requirements specification was excluded from the
research.! Instead, its component concerns, namely user requirements elicitation,

analysis and specification, were addressed by the present research as follows :

(i) existing 'off-the-shelf’ requirements elicitation techniques were recruited
to the method since they were already well developed. To support the

recruitment, the following pre-requisites were met :

(a) the requirements elicitation stage was located explicitly vis-a-vis
other stages of the method;

(b) the subject matter and scope of requirements elicitation were
defined, e.g. extant current and related systems;

(c) the design products to be derived were specified (see (iii) below);

(d) a relevant set of requirements elicitation techniques was identified.

(ii) requirements analysis was incorporated with task analysis since their
design concerns overlap to a large extent. Thus, a number of existing task
analysis techniques were recruited and incorporated into the ESSA and
GTM Stages. Nevertheless, the method could benefit from a wider survey
of knowledge engineering literature since more advanced requirements
analysis techniques may be uncovered for recruitment, e.g. repertory grid
and cluster analyses. Such surveys could be pursued in a follow-up
research project;

(iii) requirements specification products were specified as comprising a
statement of user needs table, a domain of design discourse description, and
a performance specification table (i.e. products of the SUN Stage).
Although case-study tests showed that design specification was supported
by these products, detailed examinations of other notational schemes for

1 The scope of user requirements specification is extensive. Thus, the resources required for an

in-depth study could only be accommodated by a separate research project.

311

describing the domain of design discourse and for specifying system
performance were not undertaken. Thus, further investigations of alternative

notations may benefit the method.

To summarise, resource limitations precluded an in-depth study of user
requirements specification. Instead, a comprehensive breadth-wise study was
undertaken to identify well established and appropriate techniques for incorporation
into the JSD*(HF) method. In this way, potentially serious limitations were
obviated.

Second, the scope, process and notation of task analysis and user interface design
were defined more completely and explicitly by the present research. Notable

improvements over previous conceptions include the following :

(i) a structured technique for task analysis, termed extant systems analysis,
was specified (see Chapter Nine). It should be emphasised that novel and
variant design are both supported by the technique since task synthesis is
addressed by the Generalised and Composite Task Model Stages. General

advantages of the technique comprise the following :

(a) it encourages a wider consideration of alternative designs since it
emphasises the analysis of extant systems as opposed to analysing
only the current or existing system. Thus, 'blinkered' design may be
avoided;

(b) its stage-wise procedures, inputs and products are defined
explicitly to better support design;

(c) wider design concerns such as transfer of learning, training
projections, definition of system performance and semantics, are also

highlighted at appropriate stages of the method.

(ii) the contribution of task analysis to user interface design was exemplified
completely and explicitly. In particular, to support display design extant
system analysis should be followed by the derivation of system and user

task models, and an interaction task model. Thus, a more complete

312

conception of human factors support for system design was advanced;

(iii) human factors contributions to user interface design specification were
defined explicitly. In particular, human factors specifications were defined
as comprising an interaction task model, and a set of interface model and
display design descriptions;

(iv) a structured human factors method was developed to provide early and
continuous support for system design. In other words, the scope of the
method extends across requirements specification to user interface design.
Thus, a comprehensive set of human factors products, procedures and

notations was specified to support each stage of system design.

To conclude, the main product of the research, namely the JSD*(HF) method, is
concerned predominantly with providing procedural support for human factors
involvement throughout system design. Thus, it follows that subsequent research
projects should identify the declarative human factors knowledge (e.g. design
guidelines) that may be recruited at each stage of the method. Alternatively, follow-
up projects may be concerned with specifying computer-based tools to support
effective application of the method, e.g. CASE- and IPSE-type tools. Such research

extensions are detailed in Sub-section 12.4.

12,2, An Assessment of the Research Scope and Activities for

Developing a Structured Human Factors Method

Generally, research activities were largely implemented as planned, e.g. literature
surveys; case-study selection, planning and familiarisation; specification and
implementation of research strategies; specification and test of method conceptions;
etc. In addition, collaborative tests of the JSD* method were co-ordinated
satisfactorily except for tests involving design inter-dependencies of the method
(see Sub-section 12.3). A detailed assessment of how key concerns of method

development were addressed is discussed below.

(i) case-studies -- it was clear at project inception that the number of case-

study tests would be limited by the resources available for the present

313

research. Thus, considerable care was devoted to the planning and selection
of appropriate case-study systems and method tests. For instance, the
representativeness of selected case-study systems (of its class and of system
design in general) and subsequent implications for the extrapolation and
generalisation of test results across system classes and design scenarios,
were considered at research start-up. These considerations were necessary
since they support later assessment of the capability of the JSD*(HF)
method, e.g. the types of systems that may be developed using the method.
Thus, it was inferred initially that both real-time and data-processing
systems should be included in case-study tests of the method. However, it
became clear later that such concerns were not directly relevant for the

following reasons :

(a) the capability of the integrated method is determined by the
capabilities of its component methods;

(b) the structured human factors method was developed with respect
to a SADM. Since the SADM chosen for integration was left
essentially unchanged, the capability of the integrated method would
be limited by the capability of the SADM. In particular, the types of
systems that may be accommodated by the integrated method are
determined largely by the way design specifications are described and
transformed by the chosen SADM. For instance, since JSD is an
appropriate method for specifying real-time systems, JSD* (the
integrated method) is expected to be similarly suitable. This
expectation follows because JSD structured diagram notation is
adopted by the structured human factors method and its design
specifications are finally implemented following the JSD method.

Thus, system types were not considered further by the present research.
Instead, the following criteria for selecting case-study systems were

considered during method specification and test :

(a) system size and complexity (small to large systems, well and ill

defined systems);

314

(b) domain of application, e.g. Recreation Booking System and
Digital Network Security Management System;

(c) design scenarios, e.g. variant and new/novel design (represented
by the case-study design context and the familiarity of the designer
with the case-study domain); 2

(d) user interface styles, e.g. WIMP and command-line interfaces (see
Lim, 1989b).

Since the number of case-studies and method tests that could be conducted
were limited, case-study systems that support the co-variation of these
criteria were selected. Research strategies were then applied to manage
method specification and test, and to relate the latter to the selection of case-
study systems. Thus, appropriate case-study systems were identified to
support each stage of method development; e.g. small and well-defined
case-study systems to support the application of a backwards before
forwards engineering strategy applied during the early stages of method
development;

(ii) scope of case-study tests of the JSD*(HF) method -- generally, the
objective of the case-study tests was to demonstrate the capability of the
method for providing human factors support throughout the system design
cycle. In contrast, the tests were not concerned with validating the efficacy
of the method for ensuring superior design artefacts. This restriction of the
tests was necessary because the extensive field tests required for method
validation could not be accommodated by the resources available to the
present research (without incurring inappropriate sacrifices to other aspects
of the work). Instead, concerns involving the validity of the JSD*(HF)

method were addressed during method development as follows :

(a) by developing the JSD*(HF) method in accordance with the

2 1t is unclear what constitutes 'movel design'. A satisfactory definition was not found in the

literature. Thus, novel design was conceptualised as comprising a process involving an ill-defined

design scenario, and the derivation of a new design product (extensions of existing designs were

included, e.g. computerisation of a manual system),

315

requirements of a SADM. In particular, the explicit and well defined
characteristics of SADMs were emulated by the JSD*(HF) method.
Thus, the JSD*(HF) method, in common with all SADMs, assumes
that a systematic and orderly design process would support better the
derivation of a superior design artefact; 3

(b) by exploiting established human factors methods and practices.
Thus, the validity of the JSD*(HF) method is supported since it
recruits and builds on existing human factors knowledge;

(c) by simulating Human Factors and Software Engineering
contributions explicitly during case-study tests of the method. In this
way, pertinent human factors support and design inter-dependencies
were identified;

(d) by targeting a specific user of the JSD*(HF) method.# Explicit
requirements were then identified and satisfied during method
development, e.g. the scope and level of proceduralisation required by
the method user;

(e) by testing proposed method conceptions iteratively using more
than one case-study system. Thus, the JSD*(HF) method was derived
only after several specification-and-test cycles and case-study systems;
(f) by targeting the official version of the JSD method. Thus, pertinent
human factors support and design inter-dependencies were identified
and accommodated by the JSD*(HF) method.

A more detailed account of the measures taken to address validity concerns

3 It should be noted that a method alone cannot guarantee a superior design artefact.

4 Specifically, the method is targeted at human factors designers with a working knowledge of

the JSD method. During method development, the method user was simulated by a member of the

RARDE project team. Since her knowledge of the JSD method was greater than most human

factors designers, care was taken to constrain her application of such expertise. The role of a

method user was later assumed (implicitly) by another team member when the original simulator

went on extended leave. Since the second simulator had to learn the method from scratch in a short

time (having joined the project at mid term), his experiences were indicative of the usability of the

method (see Sub-section 12.3).

316

may be found in Sub-sections 3.3 and 6.5 (Chapters Three and Six
respectively). It suffices to say here that the above measures were
implemented satisfactorily during the development of the JSD*(HF)
method.

Since direct validation of the JSD*(HF) method was not undertaken, it
follows that future research should focus on testing the method in the field.
The acceptability and efficacy of the method may thus be assessed.

Assessments of interest would include the following :

(a) social implications of introducing the method, e.g. impact on
existing design team relationships and practices; impact on work
practices of individual designers (both JSD analysts and human
factors designers);

(b) 'real world' benefits that would be gained by applying the method,

e.g. cost-benefit analysis.

The results of such studies would help to identify methodological
enhancements required to improve uptake of the method;

(iii) nature of case-study tests of the JSD*(HF) method -- generally, case-
study tests could be configured to assess the functionality and usability of

the method. An account of each of these assessments follows.

First, functionality assessments comprise determination of the design
support provided by the method. In the context of a structured method, such
assessments entail an examination of how well the design task (e.g. design
management, reasoning, documentation, etc.) is supported by the stage-
wise design scope, process and notation of a method. In the case of an
integrated Software Engineering and Human Factors method (of which the
JSD* method is an instance), the assessment should include an examination
of the design inter-dependencies required by the method. For instance, the
specified design inter-dependencies should be assessed on how appropriate

and complete they are for supporting collaborative design.

317

Generally, functionality assessments constitute a basic part of the present
research. Thus, case-study assessments were completed as planned with
one exception, namely tests on the design inter-dependencies of the method
were not implemented satisfactorily (a result of the difficulties in co-
ordinating case-study tests involving the sponsors of the research).
Nevertheless, the implications for the JSD*(HF) method were not serious
(see Chapter Seven, Sub-section 7.1.3). Thus, functionality assessments of
the JSD* and JSD*(HF) methods were generally positive. A more detailed
account of the assessments is presented in Sub-section 12.3 where the
JSD*(HF) method is discussed.

Second, usability assessments comprise determination of the cost incurred
in applying the JSD*(HF) method. An extended assessment may include
opportunity costs to account for benefits foregone by method application,
or benefits that would be gained if alternative design approaches were
applied, e.g. rapid prototyping. Thus, usability assessment involves a cost-
benefit analysis of the utility of the method, e.g. benefits of method
application are compared with efforts expended in learning the method
(learnability), with having to change current work practices (acceptability),
etc. Such assessments are indicative of the method's capacity for
accommodating different users,> design scenarios and project
characteristics, i.e. an indication of the flexibility and tailorability of the
method. Since these method characteristics comprise important determinants
of its uptake, they were accommodated appropriately during method
development, e.g. existing methods were recruited to maximise positive
transfer of learning; the chosen SADM was maintained largely unchanged; a
flexible level of extant system analysis was specified; the method was
characterised at different levels of description to support varying degrees of
method application; etc. Unfortunately, an overall usability assessment of
the method could not be supported due to the limited resources available to
the present research. However, an informal assessment of the learnability of

the method was afforded when a new researcher joined the project at mid-

5TheJ SD*(HF) method is targeted at a particular method user (see Footnote 4).

318

term (see Footnote 4). The assessment is discussed in the next sub-section.

In summary, the scope of the research comprises the development of the JSD*(HF)
method and case-study assessments of its functionality. By constraining
appropriately the scope of method development and assessment, the research
activities were largely completed as planned. Thus, key research concerns were
addressed and a 'reasonably valid' JSD*(HF) method was developed. A detailed

account of an assessment of the method is discussed below.

12.3. An Assessment of the JSD*(HF) Method

In Part IV, a structured human factors method, termed the JSD*(HF) method, was

described explicitly as follows :

(a) its stage-wise design scope was defined explicitly as comprising a
set of products;

(b) its stage-wise design process was defined explicitly as comprising
a set of procedures, rules of thumb and design inter-dependencies;

(c) its stage-wise design notation was defined explicitly as comprising

a set of documentation schemes.

On the basis of these methodological characteristics, the JSD*(HF) and JSD
methods were integrated to generate the JSD* method.

In general, case-study assessments of the JSD*(HF) method indicated that the
requirements of structured integration were largely satisfied. Case-study
assessments were directed only at the JSD*(HF) method and its design inter-
dependencies, since the JSD method is essentially unchanged. These assessments

are presently reviewed.

The JSD*(HF) method may be assessed on the following :

(I) its solution to current problems of human factors input into system

319

development. For instance, to what extent does the method alleviate existing
problems of human factors input, and what are its limitations ?

(II) its potential in relation to other human factors methods, i.e. a
comparative assessment involving existing human factors methods. For
instance, how does the JSD*(HF) method compare with existing (non-
structured) human factors methods ?

(IIT) its potential in relation to other integrated methods, i.e. a comparative
assessment involving existing integrated methods. For instance, how well
is the JSD*(HF) method integrated with JSD, and how does it compare
with other integrated methods; e.g. those methods proposed by Sutcliffe
and Wang (1991), Blyth and Hakiel (1989), etc. ?

(IV) its methodological characteristics in relation to the requirements of a
SADM. For instance, are the stage-wise scope, process and notation of the
method defined adequately for a structured method ?

It should be noted that the above assessments may intersect one another, i.e. they
are not mutually exclusive. For instance, assessment (III) is a composite of
assessments (I), (IT) and (IV) above. A more detailed account of the assessments

follows.

First, the assessments in (I) above follows from the arguments for structured
integration of Human Factors and Software Engineering methods described in
Chapter Two, e.g. the 'too-little-too-late' problem of human factors input;
encroachment of resources for human factors design due to poor project planning or
its exclusion from the design agenda; etc. Generally, case-study assessments
indicated the method to be promising. In particular, its structured characteristics and
complete coverage of the design cycle provide an explicit address of human factors
contributions to system development. On this basis, inter-dependencies between
Human Factors and Software Engineering design were specified to ensure human
factors inputs that are timely and contextually relevant. Thus, the uptake of human

factors contributions may be enhanced by methodological integration.

The utility of the method was also supported by post-hoc observations of a user

interface design specified using rapid prototyping. In particular, some of the design

320

pitfalls arising from specific inadequacies of a rapid prototyping approach, could
have been avoided if the JSD*(HF) method had been applied (see Lim, 1991).
These assertions were illustrated by demonstrating how the user interface would
have been designed using the JSD*(HF) method. However, it should be
emphasised that since controlled studies were not undertaken such evidence is at
best circumstantial. Consequently, controlled studies and field trials should assume

priority in a follow-up research project.

Second, the assessments in (II) are related to the arguments that a structured human
factors method is a pre-requisite for integration with SADMs (see Chapter Three).
Specifically, it was observed that existing human factors methods provide only
incomplete and implicit coverage of the system design cycle. By definition, such
inadequacies would be addressed directly by the characteristics of a structured
method. This requirement was satisfied by the JSD*(HF) method (see Chapter
Seven). In particular, the method addresses explicitly system design concerns
spanning user requirements to display design. Thus, its scope, process and notation
extend significantly the design support provided by existing human factors
methods. Other benefits that would be gained from its integration with JSD were

discussed in (I) above.

Third, the assessments in (IIT) may be related to the review and critique of previous
reports of human factors integration with SADMs (see Chapter Five). Specifically,
the JSD*(HF) method may be assessed comparatively in terms of its
methodological configuration and design support. Such a comparison was made in

respect of the following assessments :

(a) to what extent were inadequacies of other integrated methods addressed
by the JSD*(HF) method ?

(b) to what extent was the design support provided by other integrated
methods matched or exceeded by the JSD*(HF) method ?

Since the JSD*(HF) method was only developed recently, an extended survey of
method users was not possible. Thus, as an interim assessment, the integrated

methods reviewed in Chapter Five were compared and rated by the present author.

321

The subjective scores for these methods are shown in Table 12-1. An inspection of
the scores reveals that the JSD*(HF) method was rated highly. The outcome was

expected for the following reasons :

(a) the development of the JSD*(HF) method benefited from preceding
attempts at methodological integration. For instance, by building on the
knowledge generated in preceding attempts, similar pitfalls were avoided in
the present research, e.g. the need to define specific human factors inputs
and products for each stage of the method;

(b) some preceding attempts were not concerned specifically with the
development of a structured human factors method;

(c) some preceding attempts were not concerned specifically with the
integration of human factors with SADMs;

(d) some preceding attempts were incidental or comprise only a part of other
commercial work. Thus, resources for method development were rather
limited. In contrast, seven person-years were allocated for the development
of the JSD*(HF) method;

(e) some preceding attempts recruited earlier outputs of the present
research, e.g. Sutcliffe and Wang (1991); Blyth and Hakiel (1989). Since
then, these outputs have been developed further or superseded.

Fourth, it was stated in Sub-section 12.2 that the assessments in (IV) are concerned
with functionality and usability assessments of the method. A detailed account of

these assessments follows.

Generally, functionality assessments address the following :

(a) the design scope of the method. For instance, to what extent is the
scope of human factors design addressed by the stages and products of the
JSD*(HF) method ?

(b) the design process of the method. For instance, how logically
sequenced, manageable and complete are the design stages of the JISD*(HF)
method ? Are the design procedures of the method sufficiently explicit and
complete to support design specification by the targeted user of the method ?

322

(155q) 9 @—————— (1510m) |

A A7 AVAY

*Ioyuny pare3nsaAur
3q puoys suonesywads (IS[pue 510198 UewY JO BoRedauY

A4

(Yozeasaz juasaid)

eur ‘uonenuelsqns Joyumy armbax suoneorywads Kouspuadop ¢ [e 18 wry
-0t uBaq “AYBn wow pagwads aq P[RoS sSMI [eUOTIFION “Iayumy v 9 d § s £ ast
papuaIXa aq PINOD SUISOUOD USTSop sIowe) usumy yo ssaooud pue adoog
‘poyour
£3010%] UBWINY Yl puv (JS[UIMIaq sepuspuadop-1ayut uisap Jo (8861) 10A1E
uonesywads s1enbepeu] “areuoner uSsap pue sonUBWIS UTRWOp ‘8°9 ‘@. ‘é‘ .‘ Q 4 q q . 19 IoATE-
‘passarppe j0u alam §1onpold £I010€) UBENY IIYIO JO UOTIBIUSWNIOP € € 9 ¥ (4 [4 (4 (Ls6r) e ast
pue uonduosap 3101dx9 ‘1aa0mol ‘uonidudsap Yse} 10§ UONEIOU
dS(JO 9sn poon) ‘SWIdUOD UFISIP £10308) UBWMY JO IZRIIA0D PIATWT]
‘poutyap (1661 ut pouodas poyraw ST JO UOTSIOA PIOUEYUS Y UO Poseq JUSWSSIASY)
10U d19M SILUSPUIdIP-12juT USSP ‘IOAIMO] "UOTIEION TOWIWOD (1661) T 19 aymomg
® JO 95n SAISUSIXY “Paywads 10U azam sampaoaid uBisaq -poyrew | K7 7 N <7 A4 7 7 (q puw v886[) aPIINS
£1010€] UBWNY 9 JO uonkiou pue ssaooxd ‘spnpoid aswm-a8e1s oy ¥ € 9 € [4 14 14 ast
Jo uonduosap pue uogruysp enbopeuy [nyssaconsun sem [N Jo 95N
‘POYIOW $I0108] (‘poyiouwt 9 Jo sioyine Yy £Q SUME paenUeIsqnsun A[23Ie] UO pIseq JUIUSSISSY)
usumy o1 pue IWQVSS SunesSaur e idwone sjenbopeuy urensoun (0661) ® 19 4T
st sampacoxd noys Jo £oenbope oty 1nq Apusnbag pasn aram sISTPIYD _— .
“potpous sowej weumy oy jo 1wed [reus v ATuo swnsnyy sodwess | 2N N R I =l S v A I ol I B361) 132 e e
PAysTIqQny “poterisuowap j10u sum sonbruyos) esey Jo Anpiqenns navss
ayJ, ‘sonbruyoay siopey uewmy BunSTXS UO IOUEIAI IAISUSIXF
‘pardwione 10U SBM POYIAW SIOWE] URWIY Y pue (JSVS JO uoneISauy
oydyy ‘ss8wis uBisap 1938] 10§ BUD{w] A[a13A98 Asam UOTESIEINPISOId (6861) 19DFH pue WAl '(q
pue uondLIosop POYISJA ‘POYISW $10198] UBWNY Y} JO UONRKSAYT Nq m........ ﬁ......... Nq m@ & 7 P w0661) AIE P (90w
ae[dwioou] *pajensuouwIop jou sem sanbruyoay asa Jo AmqeEims € 2 asvs
ay], ‘sonbruyda) s1010ey URWINY SUNSTXD UO SOUET[AL SAISUIIXG
sa1ouapuadaq | uoloIoN
(28v42ay) -somu] uSisaq | wownwop uonuvioN | somparoidd | ssa304d adoag : g suopmy
Smawmo 24098 woumpy Jo uoyp.8s
w480 H uDa3a5u]

spoyIap fo uoiro4Saruy

POYI12 Y $4019D,] uDUME] Jo SSUPa.MIINS

SPOYIdJAl pIjeadajuy JayjQ Jsuredy ,qSl Surredwo))

¢ I-71 3IqeL

323

(c) the design notation of the method. For instance, to what degree are
requirements for comprehensive and specific human factors design
descriptions supported by the stage-wise notations and documentation
schemes of the method ? Are the notations and descriptions of the method
adequately powerful and comprehensive to support effective communication
among human factors designers, software engineers and end-users ?

(d) the design inter-dependencies of the method. For instance, are
intersecting design concerns identified correctly and completely ? Are design
inter-dependencies specified adequately to support effective and efficient
collaboration between JSD*(HF) and JSD*(SE) design, i.e. to ensure

design convergence without fortuitous iterations ?

In general, case-study results in respect of these assessments of the method were
positive. However, the results for assessment (d) should be considered
provisionally positive since they were inferred largely from post-hoc inspections of
design descriptions derived by applying the JSD*(HF) and JSD*(SE) methods (see
Chapter Seven). In particular, design inter-dependencies should be specified when
the design information to be used-is common to both methods, and when
intersections are found between Human Factors and Software Engineering design

descriptions.

The assessments also highlighted potential areas for follow-up research, namely :

(a) design inter-dependencies of the method. It was noted Sub-sections
7.1.3 and 12.2 (Chapters Seven and Twelve respectively) that case-study
tests on design inter-dependencies of the method were not realised
completely. In particular, 'real time' co-ordination between JSD*(HF) and
JSD*(SE) design did not materialise during the case-study tests (see Sub-
section 12.2). Thus, case-study assessments of JSD*(HF) design inter-
dependencies were based largely on post-hoc comparisons of JSD*(HF)
and JSD*(SE) design descriptions. As a result, more specific design inter-
dependencies could not be defined to ensure a tighter synchronisation of
information exchanges between JSD*(HF) and JSD*(SE) stages. Thus,

follow-up research projects should repeat case-study tests involving 'real

324

time' co-ordination between JSD*(HF) and JSD*(SE) design.6 Further
areas of investigation concerning design inter-dependencies of the method

are reviewed below.

First, an area of study not pursued in the present research concerns the
determination of more explicit relationships between JSD*(HF) and
JSD*(SE) design products. For instance, it is presently unclear how
JSD*(HF) products may be influenced by specific specifications of the
JSD*(SE) Functions Stage, e.g. types of data stream merges; time grain
markers; etc. Such relationships should be identified so that appropriate
design inter-dependencies may be specified. Thus, the large and unwieldy
design transformations at the Functions Stage (see Finkelstein and Potts,

1985) may be supported better.

Second, the effectiveness of the Functions List in ensuring design
convergence should be determined. Thus, the current definition of the
Functions List may be enhanced, e.g. a clearer specification of its scope and
derivation procedures. Alternatively, further design inter-dependencies may
be specified to provide better support for parallel design development by
JSD*(HF) and JSD*(SE) designers (see next paragraph).

Third, the potential of performing early stages of JSD*(HF) design in
parallel with JSD*(SE) Model and Function Stages should be examined
further. Presently, a conservative application of the method would comprise

a sequential performance of the stages as follows :

(1) JSD*(HF) design stages prior to the Composite Task Model Stage
are performed to completion;

(2) JSD*(HF) design is suspended at the Composite Task Model
Stage;

(3) JISD*(SE) Model and Function Stages are performed to

6 Such a follow-up project has been commissioned by RARDE (sponsors of the present

research).

325

completion;
(4) JSD*(HF) and JSD*(SE) design is resumed in parallel.

In this way, a converging JSD*(HF) and JSD*(SE) design may be ensured
with greater confidence (thus the design is efficiently managed). However,
such a conservative application of the method would incur costs that may be
unacceptable. For instance, human factors input to the functional definition
of the target system would be delayed. As a result, an appropriate
accommodation of its contributions may be hampered by constraints
imposed by preceding JSD*(SE) design products. Alternatively, the
efficiency promised by conservative method application would be eroded by
additional iterative cycles required to accommodate late human factors input.
Strictly sequential application may also complicate design management
across system development projects. For instance, to avoid leaving human
factors resources 'idle' at particular stages of the design cycle, a number of
design projects may be inter-leaved. This work practice would be stressful
if a larger number of projects are involved. In addition, design continuity
would be disrupted. To resolve such issues, the design inter-dependencies
of the method would have to be examined further to determine the extent to
which early JSD*(HF) and JSD(SE) stages may be undertaken in parallel.

(b) final integration of JSD*(HF) and JSD*(SE) design specifications.
Presently, the method requires the following :

(1) JSD*(HF) specifications of the user interface should be discussed
with JSD*(SE) analysts;

(2) JSD*(HF) and JSD*(SE) specifications are integrated and then
implemented by JSD*(SE) analysts. In other words, the analysts are
required to generate an overall set of specifications so that JSD

implementation rules may be applied.

To this end, explicit relationships between JSD*(SE) and JSD*(HF)
specifications have to be established. The task is supported by the following
rules of thumb (recruited to the method from Carver and Cameron, 1987,

326

and Carver, Clenshaw et al, 1987) :

(1) active user interface objects should be linked communicatively
with JSD*(SE) model and function processes;

(2) one or more user actions at the user interface may comprise one
input to JSD*(SE) function processes, i.c. the relationship comprises
a many-to-one mapping;

(3) one or more on-line task actions of the user may correspond to one
action of the JSD*(SE) model, i.e. the relationship comprises a many-
to-one mapping;

(4) user interface message and display objects should be linked

communicatively with JSD*(SE) information functions.

Note that these rules of thumb may intersect (i.e. are not mutually
exclusive). In particular, the scope of rules (1) and (2) intersects with rules

(4) and (3) respectively.

On the basis of these rules, high level relationships between JSD*(SE) and
JSD*(HF) specifications were inferred, namely rules (2) and (3) above
relate JSD*(SE) specifications to ITM(y) specifications; 7 while rules (1)
and (4) relate JSD*(SE) specifications to IM(y) and DD(y) specifications.
Since the participation of the research sponsors in collaborative case-study
tests did not include the delivery of complete JSD*(SE) specifications and
the final integration of JSD*(SE) and JSD*(HF) specifications, lower level
relationships between the two sets of specifications could not be
investigated. For instance, it is presently unclear how ITM(y) actions may
be related and linked to JSD*(SE) model and function processes.
Consequently, follow-up research projects should include case-study tests
involving the comparison and integration of complete JSD*(SE) and
JSD*(HF) design specifications. Such studies would be instrumental in

7 The rules also relate JSD*(SE) specifications to STM(y), an intermediate design description

excluded from the final set of JSD*(HF) user interface specifications.

327

enhancing the JSD* method as follows :

(1) by uncovering more explicit requirements for JSD*(SE) and
JSD*(HF) collaboration, additional and/or better procedures may be
specified (if necessary) to enhance the support provided by the JSD*
method; '

(2) by extending the scope of JSD*(SE) and JSD*(HF) collaboration
(hence the scope of the JSD* method) to include the JSD
implementation stage, human factors support may be broadened to
include the translation of JSD*(HF) specifications into executable
code (see also (c) below);

(3) by understanding the processes involved in the final integration of
JSD*(HF) and JSD*(SE) specifications, CASE-type tools may be
developed to support the JSD* method;

(4) by understanding the implications of late design modifications,
consequential changes to JSD*(HF) and JSD*(SE) descriptions and
specifications may be managed better. In addition, by providing
explicit methodological support to facilitate a wider consideration of
JSD*(HF) and JSD*(SE) information, it may be expected that
proposed design modifications would be more appropriate. Thus,
future studies should consider tracing the effects of design
modifications on stage-wise products of the JSD*(HF) and JSD*(SE)

methods.

(c) implementation of integrated JSD* specifications. Presently, human
factors support for JSD* implementation relates largely to the transient
response times of the target system. In particular, unacceptably long
response times would either require an alternative JSD implementation, or
additional feedback cues to the user. Since JSD implementation was outside
the remit of the present research, it was not addressed in detail. As such, it
follows that future studies should investigate the possibility of providing

more extensive human factors support for JSD implementation.

The above review completes an account on the functionality assessment of the

328

JSD*(HF) method.

As regards usability assessments of the method, none were originally planned for
the present research. However, an opportunity for an informal assessment was
exploited when a new research team member joined the project at mid-term. An
informal assessment of the learnability of the method was thus afforded. Since the
new member assimilated the method within a short period of time, it was concluded
provisionally that its learnability was good. A more intensive assessment would be
necessary to affirm this conclusion. Such assessments should be undertaken in a
follow-up research project. Another usability assessment involves a cost-benefit
analysis of method application. In this respect, it may be expected that resources for
design analysis and documentation would increase.8 However, this increase does
not necessarily imply an overall increase in the total resource cost. In particular, a
higher expenditure of resources on design analysis and documentation may be off-
set by subsequent savings due to greater efficiency in design planning,
management, specification and maintenance (i.e. arguments that support the
application of SADMs in general). More cannot be said at present since the
collection of quantitative data is not yet possible (the method having only just been
developed). Thus, to support stronger claims concerning the usability of the
method, further research would be required. In particular, field studies could be

conducted to examine the following :

(1) the 'real world' performance of the JSD*(HF) and JSD* methods. For
instance, how well do JSD*(SE) and JSD*(HF) designers collaborate under
‘real’ design situations ? Other related questions would include : how well
does the method support design team interaction; how much disruption to
current design practice would result from introducing the JSD* method; to
what extent would design creativity be constrained by the methods; etc. ?

(2) the cost-benefit profile of the JSD*(HF) and JSD* methods. To this
end, both qualitative and quantitative data should be gathered from case-
study applications of the methods, e.g. to what degree do the methods affect

8 In respect of design documentation, the increase in resource costs could be reduced considerably

by computer-based tool support.

329

system development resources and schedules; to what extent does the
JSD*(HF) method facilitate the generation of superior design artefacts; what
problems are commonly faced by users of the methods; etc. ? Appropriate
measures may then be taken to enhance the JSD*(HF) method and support
its subsequent introduction. Thus, the uptake of the JSD*(HF) method may
be improved.

The above account completes an overall assessment of the JSD*(HF) method.

12.4. Wider Extensions of the Research

This sub-section is concerned with how the framework of the JSD*(HF) method
may be exploited for specifying wider human factors support for system
development. To this end, potential extensions of the method may be inferred from
Figure 12-1. Specifically, the Figure shows that the design support provided by the
JSD*(HF) method is predominantly procedural. Thus, it follows that the scope of
the method may be extended to include declarative human factors knowledge. In
addition, both types of human factors support may be delivered using computer-
based tools. These extensions of the method will now be discussed further.

The incorporation of declarative human factors knowledge into the JSD*(HF)
method

The incorporation of declarative human factors knowledge essentially implies an
extension of the current user base of the JSD*(HF) method. For instance, the
method user base may be extended to include designers who are not human factors
experts, e.g. software engineers with some knowledge of human factors (see
Figure 12-1, lower left-hand side). To attain this goal, the following objectives

would have to be achieved :

(1) explicit links would have to be identified between JSD*(HF) stages and

modular human factors design 'topics’, e.g. organisational design; socio-

330

Figure 12-1 : Locating the JSD*(HF) Method within a Range of

Human Factors Support for System Development

§ Human Factors Support for
: System Development

Declarative Human

Human Factors
Design Topics

Procedural Human F Knowled x
actors Knowledge
Factors Knowledge & Expressions of
Declarative
Human Factors
Design Support,
S Database of Declarative s-’! .. handbooks.
Human Factors Design Human Factors Knowledge
Techniques and Methods
Methodological
Human Factors E:;i-less(i)o(r)l?c
Principles of Procedural
Human Factors g:man gactor:t
A sign Su
Notation iDesign Inter- Guidelines o
Human Factors
Standards

Manual Delivery,
e.g. by Human
Factors Consultants

Automated Delivery,
e.g. Computer-Based

Tools

7 N\

Human factors design support currently provided by the JSD*(HF) Both procedural and

method. General characteristics of the method are as follows : declarative human factors
design support should be

(a) system design is advanced essentially via separate Human Factors and provided if method users

Software Engineering design streams (attributed partially to the are not trained specifically

requirement to maintain an unchanged JSD method); in Human Factors.

(b) human factors design support is embedded in a collaborative method.
In particular, the stage-wise scope, process and notation of the JSD*(HF)
and JSD*(SE) methods are linked by specific design inter-dependencies.
Thus, context and timing of inter-disciplinary design inputs are defined;
(c) the scope of human factors design support provided by the method is
predominantly procedural;

(d) the targeted method user is a human factors designer with a working
knowledge of the JSD method.

331

technical design; job design; training design; personnel selection;
workstation design; environment and workplace design; etc. In other
words, the design 'topics’ have to be set specifically against the stage-wise
context defined by the JSD*(HF) method. Thus, appropriate 'repositories’
of declarative human factors knowledge may be collated to support each
stage of system development as described in (3) below;

(2) design procedures of the JSD*(HF) method would have to be specified
at a lower level of description. Thus, a wider user base would be
accommodated by the method;

(3) a more comprehensive set of human factors concepts, techniques and
reference materials would have to be collated to support method application
by a wider range of designers. A prospective set would include the

following :

(a) concepts and techniques for human factors design -- requirements
analysis and specification techniques (see Life 1991; Checkland,
1981); socio-technical design techniques (e.g. the Effective Technical
and Human Implementation of Computer Systems (ETHICS) method
developed by Mumford and Weir, 1979); organisational and
participative design techniques (see Eason, 1987; Eason and Cullen,
1988); late evaluation techniques (see Long and Whitefield, 1986);

(b) reference materials for human factors design -- extracts from
human factors design handbooks, guidelines, standards and
principles, e.g. Smith and Mosier (1984); Helander (1988).

Thus, such an extension of the present research would entail intensive

literature surveys to augment each stage of the JSD*(HF) method.

332

The development of computer-based tools to support the JSD*(HF) and JSD*
methods

Three types of computer-based tools may be developed to support the design tasks
entailed by the application of the JSD* and JSD*(HF) methods,? namely CSCW-
(Computer Supported Co-operative Work), IPSE- (Integrated Project Support
Environment) and CASE- (Computer Aided Software Engineering) type tools.
Presently, the potential for computer-based tool support for each of the methods is

discussed.

First, IPSE- and CSCW-type computer-based tools may be developed to facilitate
collaborative design management as defined by the JSD* method. For instance, the

following computer-based tools may be considered :

(1) CSCW-type tools may be developed to facilitate information exchanges
between JSD*(HF) and JSD*(SE) designers, e.g. automatic despatch of
information associated with design inter-dependencies of the method. Thus,
by despatching design information as soon as it becomes available, such
computer-based functions could improve design collaboration;

(2) IPSE-type tools may be developed to support the management of
JSD*(HF) and JSD*(SE) design, e.g. overall project planning and tracking
of collaborative design advancements. In addition, adherence to the design
process of the JSD* method may be enforced by the tool via appropriate
inter-locks across JSD*(HF) and JSD*(SE) design streams. For instance,
the tool may be designed to block the documentation of JSD Model
specifications (JSD*(SE) stream) until products of the Composite Task
Model Stage (JSD*(HF) stream) have been specified. Design inter-
dependencies may be supported similarly by the tool.

9 Note that IPSE and CASE tools for the JSD*(SE) method are already available, e.g. MacPDF
(Macintosh-based Program Development Facility developed by RARDE); PDF™ (Program
Development Facility) and SpeedBuilder™ (both developed by Michael Jackson Systems Limited,
now Learmont and Burchett Management Systems Limited). For this reason, the development of

computer-based tools for the JSD*(SE) method is excluded from the present account.

333

Second, computer-based tools for the JSD*(HF) method should provide CASE-
and IPSE-type design support. For instance, the following computer-based tools

may be considered :

(1) IPSE-type tools may be developed to support the management of
JSD*(HF) design, e.g. project planning and tracking to chart the completion
of JSD*(HF) deliverables against planned schedules. In addition, adherence
to the design process of the JSD*(HF) method may be enforced by the tool
via appropriate inter-locks among its design stages. For instance, the tool
may be designed to block the documentation of display designs until a
composite task model has been specified. To this end, a simple design may
be to implement a 'signing-off’ scheme for the designer to indicate the
satisfactory completion of each JSD*(HF) product. The tool may then
counter-check the input by searching through entry fields designated for the
documentation of JSD*(HF) products. If all entry fields have been
completed, the tool may then release the inter-locks to permit the
documentation of later JSD*(HF) design products. Thus, conceptual task
description may be encouraged prior to interaction level specification;

(2) CASE-type tools may be developed to support JSD*(HF) design
specification. In particular, the following functional supports should be

considered :

(i) text and graphics editors to facilitate design documentation;

(ii) consistency checkers to ensure appropriate application of
notational constructs, and the consistent propagation of structured
diagram descriptions of products across succeeding stages of the
JSD*(HF) method;

(iii) simulators to investigate the performance of alternative designs,
e.g. MicroSaint™ tools such as MicroSaint Human Operator
Simulator (MS HOS)™, and HARDMAN III™ Manpower and
Personnel Integration (MANPRINT) toolset (see Dahl et al, 1991a, b);
(iv) prototypers and animators to demonstrate promising designs

during feedback elicitation and analysis.

334

In conclusion, it should be emphasised that the JSD* and JSD*(HF) methods have
been developed sufficiently to support the specification of computer-based tools. 10
Pending further extensions of the JSD*(HF) method, computer-based tools may
also be developed to support the application of declarative human factors
knowledge (see Perlman, 1988).

12.5. Concluding Summary

The primary assertion of the thesis is that current problems of human factors input
to system development would be alleviated by integrating Human Factors and
Software Engineering methods throughout the system design cycle. It was also
argued that methodological integration would be facilitated by the explicitly defined
characteristics of SADMs. In particular, the well defined stage-wise scope, process
and notation of such methods would facilitate the identification of intersecting

Human Factors and Software Engineering design concerns.

To develop these assertions and arguments further, a research plan and a set of
strategies for achieving methodological integration were specified. In particular, the
plan and strategies address the development and subsequent integration of a

structured human factors method with a particular SADM.

Methodological integration was achieved in two sequential specification-and-test
phases comprising a number of case-study iterations and design scenarios.

Specifically, the sequential phases involve the following :

(a) the development of a structured human factors method to complement
the SADM chosen for integration. Method development was pursued in two
modules. The first module addresses the scope and process of the method,
while the second was concerned with its notation. Thus, a structured human

factors method was developed iteratively;

10 However, the development of CASE-type tools to generate code automatically from JSD*(HF)

design descriptions will require tighter specifications of its notational rules.

335

(b) an explicit specification of design inter-dependencies between the
structured human factors method and the SADM. Thus, the methods were
integrated and operationalised to support timely and contextually relevant
human factors input throughout the system design cycle. In this way, a

more effective uptake of human factors contributions may accrue.

The research plan was then instantiated for the JSD method. Thus, human factors
design deficiencies of the JSD method were identified and design support
requirements to be satisfied by the structured human factors method were defined.
On this basis, the JSD*(HF) method was developed and its design stages inter-
woven appropriately with the JSD method. Specific design inter-dependencies were
also defined between the JSD*(HF) and JSD methods. To account for the design
inter-dependencies, the JSD method was re-named the JSD*(SE) method.
Throughout method development, case-study assessments were conducted.
Following several iterations involving various case-study systems and design
scenarios, a promising integrated method, termed the JSD* method, was derived.

The method constitutes the primary product of the present research.

To conclude, the foundation established by the present work would support two
directions of future research. First, the method has been developed sufficiently to
support field trials.!1 In particular, such studies of 'real world' application of the
method could uncover information that would contribute significantly to later
enhancements of the JSD*(HF) method (and by implication the JSD* method).12

11 gych a follow-up project has been commissioned by the sponsors of the present research. The
objective of the follow-up project is to test the method further using a larger and more complex
case-study system, namely a military command, control and communications system. At a
minimum, the project will repeat the case-study tests described in this thesis and address a similar
set of methodological issues, e.g. effects of system scale-up; efficacy of its support for design
specification; appropriateness of its design inter-dependencies; etc.

12 A5 with any design method, the JSD*(HF) and JSD* methods are expected to 'evolve' with its
application in the field. For instance, SSADM and JSD have both undergone several updates as

part of their maturation process.

336

Second, the explicitly defined stage-wise scope, process and notation of the
JSD*(HF) method could be used to support complementary forms of human factors
input, e.g. design principles, guidelines and computer-based tools. In other words,
its broad and explicit methodological characteristics constitute a definition of the
system design context. Thus, the human factors support required at each stage of
system development may be identified. On this basis, appropriate human factors
principles, guidelines and computer-based tools may be recruited or developed to
support the system design cycle. These concerns may be pursued further in a

follow-up research project.

337

PART VI :

References

338

Akscyn, R. M., and McCracken, D. L., (1984), ZOG and the USS CARL
VINCENT : Lessons in System Development. In : B. Shackel (ed.),
Proceedings of the First IFIP Conference on Human-Computer Interaction
(Interact '84), Vol. 2, pp. 303-308, London, Elsevier Science Publishers,
North-Holland.

Alexander, H., (1987), Executable Specifications as an Aid to Dialogue Design.
In: H. J. Bullinger and B. Shackel (eds.), Proceedings of the Second IFIP
Conference on Human-Computer Interaction (Interact '87), pp. 739-744,
London, Elsevier Science Publishers, North-Holland.

Alvey Human Interface Committee Report, (1987), Human Interface Issues in the
IT'86 Programme, pg. 15, 27, 32, 33 and 34, July 1987.

Alvey Man-Machine Interface Workshop, (1984), User Interface Design and
Design Methods, Coventry, pg. 20, 27, 28, 37, 41 and 89, February 1984.

Alvey Man-Machine Interface Project 143, (1988), User Skill Task Match
Methodology, Final Report, April 1988.

Anderson, J. M., (1988), The Integration of HCI Principles in Structured System
Design Principles. In : Proceedings of Milcomp'88, Militarv Computers.
Graphics and Software, September 1988, London.

Annett, J. and Duncan, K. D., (1967), Task Analysis and Training Design.
Occupational Psychology, 41, pp. 211-221.

Benbasat, 1. and Wand, 1. (1984), A Structured Approach to Designing Human-
Computer Dialogues, In : International Journal of Man-Machine Studies,
Vol. 21, pp 105-126, Academic Press Inc., London.

Benyon, D. and Skidmore, S., (1987), Towards a Tool Kit for the Systems
Analyst, The Computer Journal, Vol. 30, No. 1, 1987, pp. 2-7,
Cambridge University Press.

Berns, T. A. R., (1984), The Integration of Ergonomics into Design, Behaviour
and Information Technology, Vol. 3, pp. 277-284, London : Taylor
Francis.

Birchenough, A. and Cameron, J. R., (1989), JSD and Object-Oriented Design,
In : J. R. Cameron, JSP and JSD : The Jackson Approach to Software
Development, Second Edition, pp. 293-304, IEEE Computer Society Press.

Blyth, R. C. and Hakiel, S. R., (1988), A Methodology for Man-Machine Interface
Design, Internal Plessey Research Report 72/88/R467C, Roke Manor.

Blyth, R. C. and Hakiel, S. R., (1989), A User Interface Design Methodology and
the Implication for Structured Systems Design Methods. In : Proceedings
of the IEE Third International Conference on Command, Control,
Communications and Management Information Systems, Bournemouth,

Boar, B. H., (1984), Application Prototyping : A Requirements Definition Strategy
for the 80's, New York : John Wiley and Sons Inc., 1984.

339

B6hm, B. W., (1976), Software Engineering, IEEE Transactions on Computing,
December 1976, pp. 1226-1241.

B6hm, B. W., (1981), Software Engineering Economics, Prentice-Hall,
Englewood Cliffs, New Jersey, 1981.

B6hm, B. W., (1984), Software Life-Cycle Factors, In : C. R. Vick and C. V.
Ramamoorthy (eds.), Handbook of Software Engineering, New York : van
Nostrand Reinhold Co., 1984.

Boldyreff, C., (1986), Using Jackson Structured Programming to Describe
Syntax, Computing Not k Software, March 26 1986.

Borufka, H. G., Kuhlmann, H. W. and ten Hagen, P. J. W., (1982), Dialogue
Cells : A Method for Defining Interactions, In : JEEE Computer Graphics
and Applications, July, pp 25-33.

Bott, M. F., (1988), Systems Analysis and Design Methods and Integrated
Development Environments : The State of the Art and the Future. In E. D.
Megaw (ed.), Contemporary Ergonomics 1988, 'Ergonomics Giving
Quality to Life', Proceedings of the Ergonomics Society 1988 Annual
Conference, pp. 164-170, London: Taylor Francis.

BS 6719: 1986, Specifying User Requirements for a Computer-Based System,
British Standards Institute.

Bury, K. F., (1984), The Iterative Development of Usable Computer Interfaces.
In : B. Shackel (ed.), Proceedings of the First IFIP Conference on Human-

ter Interaction (Interact '84). Vol. 2, pp. 343-348, London, Elsevier
Science Publishers, North-Holland.

Butler, K., Bennett, J., Polson, P., and Karat, J., (1989), Report on the
Workshop on Analytical Models, SIGCHI Bulletin, Vol. 20, No. 4, April
1989, pp. 63-77.

Buxton, W., (1983), Lexical Considerations of Input Structures, In : ACM_
SIGGRAPH Computer Graphics, 17, pp 31-37.

Buxton, W., Lamb, M. R., Sherman, D. and Smith, K. C., (1983), Towards a
Comprehensive UIMS, Computer Graphics, Vol. 17, No. 3, July 1983,
pp. 35-42.

Cameron, J. R., (1987), Mapping JSD Network Specifications into ADA, ADA_
User, Vol. 8, Supplement, pp. 591-599, ADA Language U.K. Ltd.
Cameron, J. R., (1989), JSP and JSD : The Jackson Approach to Software

Development, Second Edition, [EEE Computer Society Press.

Card, S. K., Moran, T. P. & Newell, A., (1983), The Psychology of Human-
Computer Interaction, Hillsdale, N.J. : Lawrence Erlbaum Associates.

Carroll, J. M. and Campbell, R. L., (1986), Softening Up Hard Science : Reply to
Newell and Card, Human Computer Interaction, 1986, Vol. 2, No. 3, pp.
227-250, Lawrence Erlbaum Associates, Publishers, Hillsdale, New
Jersey.

340

Carver, M. K., (1988), Practical Experience of Specifying the Human-Computer
Interface Using JSD. In : E. D. Megaw (ed.), Contemporary Ergonomics,
Proceedings of the Ergonomics Society's 1 Annual Conference,
Manchester, pp. 177-182, London : Taylor Francis.

Carver, M. K. and Cameron, J., (1987), The Jackson System Development
Method : A Framework for the Specification of the Human-Computer
Interface. Unpublished Internal Report of Michael Jackson Limited, 1987.

Carver, M. K., Clenshaw, D. C., Myles, D. J. L. and P. J. Barber, (1987), Final
Report on the Use of JSD in the Design of an ADP System to Provide
Support to the Corps All Sources Cell, Internal RARDE Report.

CCTA (Draft) Report, (1988), User System Interaction Strategy Scoping Study.
CCTA Office Systems Branch, June 1988.

Chapanis, A., (1965), On the Allocation of Functions between Men and Machines,
Occupational Psychology, 39, pp. 1-11, 1965.

Chapanis, A. and Budurka, W. J., (1990), Specifying Human-Computer Interface
Requirements, Behaviour and Information Technology, Vol. 9, No. 6, pp.
479-492, London : Taylor Francis.

Checkland, P., (1981), Systems Thinking and Systems Practice, Chichester, John
Wiley Publishers.

Chikofsky, E. J. and Cross II, J. H., (1990), Reverse Engineering and Design
Recovery : A Taxonomy, IEEE Software, Vol. 7, No. 7, pp. 13-17,
January 1990, IEEE Computer Society Press.

Clark, I. A., and Howard, S., (1988), Facading a Medical Application for
Usability and Utility. In : Proceedings of the APL Conference, University
of Kent, September 1988.

Clegg, C., Ravden, S., Corbett, M. and Johnson, G., (1989), Allocating
Functions in Computer Integrated Manufacturing : A Review and a New
Method, Behaviour and Information Technology, 1989, Vol. 8, No. 3, pp.
175-190, London : Taylor Francis.

Clowes, L., (1986), Methodology for Designing Adaptive User Interfaces, Alvey
MMI/006 AID Project Final Report aid/2.41/concept/s0111.3.

Clowes, L., (1988), Models of Users in System Design, Alvey User Modelling
SIG Workshop Handout, Cosner's House, 6-7 June 1988.

Coles, S. and Lim, K. Y., (1989), Towards a Task Analysis Method for JSD*:
The Usefulness of Generification Procedures, RARDE Project Internal

Working Document Number 30.

Coutaz, J., (1985), Abstractions for User Interface Design, In : JEEE Computer,
18, 21-34.

Coutaz, J., (1989), UIMS : Promises, Failures and Trends, In : People and
Computer IV, Sutcliffe, A. and Macaulay, L. (eds.), Proceedings of the
Fifth Conference of the BCS HCI SIG (HCI'89), pp. 71-84, Nottingham,
Cambridge University Press.

341

Coyne, R., (1988), Logic Models of Design, Pitman Publishing London.

Crinnion, J., (1989), A Role for Prototyping in Information Systems Design
Methodology, Design Studies, Vol. 10, No. 3, July 1989, pp. 144-150,
Butterworth Scientific Ltd, London.

Dahl, S., Laughery, K. R. and Hood, L., (1991a), Integrating Task Network and

Anthropometric Models, In ed. E. Lovesey, Pr i h
Ergonomics Society's 1991 Annual Conference, pp. 151-156, London:
Taylor Francis.

Dahl, S., Laughery, K. R. and Hood, L., (1991b), HARDMAN III MANPRINT
Tools, Special Workshop at the Ergonomics Society's 1991 Annual
Conference, Southampton, April 1991.

Damodaran, L., (1988), DIADEM, Ergonomics Society Workshop on SSADM and
Task Analysis, May 1988.

Damodaran, L., Ip, K. and Beck, M., (1988), Integrating Human Factors
Principles into Structured Design Methodology : A Case-Study in the UK
Civil Service. In : H. J. Bullinger et al (eds.), Information Technology for
Organisational Systems, Elsevier Science Publishers, pp. 235-241, North
Holland.

Diaper, D., (1989a), Task Analysis for Human-Computer Interaction, Ellis
Horwood Books in Information Technology, John Wiley and Sons.

Diaper, D., (1989b), Knowledge Elicitation : Principles, Techniques and
Applications, Ellis Horwood Books in Expert Systems, John Wiley and
Sons.

Dowell, J., and Long, J. B., (1989), Towards a Conception for an Engineering
Discipline of Human Factors. In : P. Barber and J. Laws (eds.),
Ergonomics (Special I on "Methodological Issues in Cognitive
Ergonomics"”, Vol. 32, No. 11, pp. 1513-1536, London: Taylor Francis.

Drury, C. G., (1983), Task Analysis Methods in Industry, In : Applied
Ergonomics, 14, 1, pp. 19-28.

Duncan, K., (1974), Analysis Techniques in Training Design, In Edwards, B. and
Lees, F. P., The Human Operator in Process Control, London: Taylor and
Francis. |

Eason, K. D., (1987), Methods of Planning the Electronic Workplace, Behaviour
and Information Technology, Vol. 6, No. 3, pp. 229-238, London : Taylor
Francis.

Eason, K. D., (1988), Information Technology and Organizational Change,
London : Taylor & Francis.

Eason, K. D. and Cullen, J., (1988), Human Factors Contributions in the Context
of L.T. System Design and Implementation. In : H. J. Bullinger et al (eds.),

Information Technology for Organisational Systems, pp. 811-816, Elsevier
Science Publishers, North-Holland.

342

Esgate, A., Whitefield, A. and Life, A., (1990), Developing Usability Integration
Principles for the Design of IBCN Systems, In : G. van der Veer, et al
(eds.), Proceedings of the Fifth European Conference on nitiv
Ergonomics, Urbino (Italy), September 1990, pp. 359-374, Golem Press.

ESPRIT 385, (1989), In : E. D. Megaw (ed.), Contemporary Ergonomics.
Proceedings of the Ergonomics Society's 1989 Annual Conference,
Reading, pp. 82-131, London : Taylor Francis.

ESPRIT 385, (1990), In : D. Diaper et al (eds.), Proceedings of the Third TFIP_
Conference on Human-Computer Interaction (Interact '90), pp. 371-382,
Cambridge, Elsevier Science Publishers, North-Holland.

Essink, L. J. B., (1988), A Conceptual Framework fro Information Systems
Development Methodologies. In : H. J. Bullinger et al (eds.), Information
Technology for Organisational Systems, pp. 354-362, Elsevier Science
Publishers, North-Holland.

Féhnrich, K., Fauser, A. and Heller, N., (1984), The Extent of Introduction of
Electronic Machinery in the Office. Consolidated Report, Dublin : European
Foundation for the Improvement of Living and Working Conditions, 1984.

Farooq, M. U. and Dominick, D., (1988), A Survey of Formal Tools And Models
For Developing User Interfaces, In : International Journal of Man-Machine
Studies Vol. 29, pp. 479-496, Academic Press Inc., London.

Finkelstein L. and Finkelstein, A., (1983), Design Aids, In : Fehrenbach, P. (ed.),
Towards a Prototype Interface Design Tool, Alvey Project MMI1/142, Final
Report.

Finkelstein, A. and Potts, C., (1985), Evaluation of Existing Requirements
Extraction Strategies, FOREST Report R1.

Fitter, M. and Green, T. R. G., (1979), When Do Diagrams Make Good Computer
Languages ? International Journal of Man-Machine Studies, Vol. 11, pp.
235-261, 1979, Academic Press Inc., London.

Fitts, P. M., (1962), Functions of Men in Complex Systems, Aerospace
Engineering, Vol. 21 (1), pp. 34-39, 1962.

Fitzgerald, G., (1988), Information Systems Development for Changing
Environments : Flexibility Analysis. In : H. J. Bullinger et al (eds.),
Information Technology for Organisational Systems, pp. 587-592, Elsevier
Science Publishers, North-Holland.

Fleishman, E. A. and Quaintance, M. K., (1984), Taxonomies of Human.
Performance, Academic Press Inc., 1984.

Foley, J. D. and van Dam, A., (1982), Fundamentals of Interactive Computer
Graphics. Englewood Cliffs, NJ : Prentice-Hall.

Foley, J. D. and Wallace, V. L., (1974), The Art of Natural Graphic Man-Machine
Conversation, In : Proceedings of the IEEE, 63, pp 462-471.

343

Foley, J. D., Wallace, V. L. and Chan, P., (1984), The Human Factors of
Computer Graphics Techniques, In : IEEE Computer Graphics and
Applications, 4, pp. 13-47.

Fox, J. M., (1982), Software and its Development. Englewood Cliffs, New
Jersey: Prentice-Hall Inc., 1982.

Frohlich, D. M. and Luff, P., (1989), Some Lessons From an Exercise in
Specification, Human-Computer Interaction, 1989, Vol. 4, pp. 121-
147, Lawrence Erlbaum Associates, Publishers, Hillsdale, New Jersey.

Galliers, R. D., (1984), An Approach to Information Needs Analysis. In : B.

Shackel (ed.), Proceedings of the First IFIP Conference on Human-
Computer Interaction (Interact '84), Vol. 1, pp. 409-418, London, Elsevier
Science Publishers, North-Holland.

Gillett, P. E. and Northam, D. J., (1990), Matching Warships and Sailors. In:
Proceedings of the Symposium on Human Factors in Warships and Naval
Systems, Westminster, November 1990, pp. 84-98.

Glasson, B. C., (1984), Guidelines for User Participation in the System
Development Process. In : B.Shackel (ed.), Proceedings of the First IFIP
Conference on Human-Computer Interaction (Interact '84). Vol. 1, pp.
284-298, London, Elsevier Science Publishers, North-Holland.

Gould, J. D., (1988), How to Design Usable Systems. In : M. Helander (ed.),
Handbook of Human Computer Interaction, pp. 757-790, Elsevier Science
Publishers, North Holland, 1988.

Gould, J. D., and Lewis, C., (1983), Designing for Usability -- Key Principles
and What Designers Think. In: eedings of CHI'83 Human Factors in
Computing Systems, Boston, December 1983, pp. 50-53, ACM, New
York.

Grandjean, E., (1984), Forward, Ergodesign '84, Behaviour and Information
Technology, Vol. 3, pp. 261-262, London : Taylor Francis.

Grandjean, E., (1988), Fitting the Task to the Man : An Ergonomic Approach, 4th
edition. London : Taylor & Francis.

Grgnbék, K., (1989), Rapid Prototyping with Fourth Generation Systems -- An
Empirical Study, Office : Technology and People, 5:2, 1989, pp. 105-125,
Elsevier Science Publishers Ltd, England.

Grudin, J., Ehrlich, S. F. and Shriner, R., (1987), Positioning Human Factors in
the User Interface Development Chain. In : CHI + GI 1987, pp. 125-131,
ACM Press.

Guest, S. P., (1982), Software Tools for Dialogue Design, In : International
Journal of Man-Machine Studies, Vol. 14, pp. 263-385, Academic Press
Inc., London.

Guest, S., (1988), Human Factors in Telematic Systems, Alvey HI Club, User
Modelling SIG Workshop Handout on "User's Models of Systems", 29
March'88.

344

Hakiel, S. R. and Blyth, R. C., (1990a), Keeping the Human in Context, In : E.
Lovesey (ed.), Contempor Ergonomics 1 'Ergonomi
Annual Conference, Leeds, 3-6 April, pp. 123-128, Taylor and Francis.

Hakiel, S. R. and Blyth, R. C., (1990b), Keeping the Human in Context,

ntem Ergonomics 1 "Ergonomi in for
'90s', Presentation OHPs, Leeds, 3-6 April.

Hammond, N., Jorgensen, A., MacLean, A., Barnard, P. and Long, J. B. (1983),
Design Practice and Interface Usability : Evidence from Interviews with
Designers, In : Proceedings of the CHI'83 Conference, pp. 40-44, ACM
Press.

Hares, J., (1987), Methods for a Longer Life, Computer News/Databases, pg. 18,
6 August, 1987.

Hartson, H. R. and Hix, D., (1988), Human-Computer Interface Development :
Concepts and Systems for its Management. In Proceedings of Tutorial
Sessions, CHI '88, New York: ACM Press.

Hartson, H. R. and Hix, D., (1989), Towards Empirically Derived Methodologies
and Tools for Human-Computer Interface Development, International
Journal of Man-Machine Studies, Vol. 31, pp. 477-494, Academic Press.

Haubner, P. J., (1990), Ergonomics in Industrial Product Design, Ergonomics,
1990, Vol. 33, No. 4, 477-485, London : Taylor Francis.

Hekmatpour, S. and Ince, D. C., (1987), Evolutionary Prototyping and the Human
Computer Interface, In : H. J. Bullinger and B. Shackel (eds.),
Pr i f n P feren H -
Interaction (Interact '87), pp. 479-484, London, Elsevier Science
Publishers, North-Holland.

Helander, M., (1988), Handbook of Human Computer Interaction, Elsevier
Science Publishers, North Holland.

Hewett, J. and Durham, T., (1987), Computer-Aided Software Engineering:
Commercial Strategies, Ovum Ltd.

Hirsch, R. S., (1984), VDTs and the Human Factors Community: Tipping the
Iceberg, Human Factors Society Bulletin, Vol. 27, No. 6, pp. 1-3.

Hirschheim, R., (1985), Office Automation : A Social and Organisational
Perspective. Chichester : Wiley, 1985.

Hutchins, E., (1987), Metaphors for Interface Design, Internal Technical Report,
Institute of Cognitive Science, University of California, San Diego.

Ip, W. K., Damodaran, L., Olphert, C. W. and Maguire, M. C., (1990), The Use
of Task Allocation Charts in System Design : A Critical Appraisal. In : D.
Diaper et al (eds.), Proceedings of the Third IFIP Conference on Human-
Computer Interaction (INTERACT '90), pp. 289-294, Elsevier Science
Publishers, North-Holland.

345

Innocent, P. R., (1982), Towards Self-Adaptive Interface Systems,
International Journal of Man-Machine Studies, 16(3), April 1982, pp. 287-
299, Academic Press Inc., London.

ISO/TC/159/SC4/WGS N84, Criteria for the Evaluation of Software -- Software
Quality Characteristics. ISO Standards Working Papers.

Jackson, M. A, (1983), System Development, Englewood Cliffs New Jersey :
Prentice-Hall International.

Jensen, R. W. and Tonies, C. C. (eds.), (1979), Software Engineering,
Englewood Cliffs, New Jersey : Prentice-Hall Inc., 1979.

Johnson, P, (In Press), Models in Human Computer Interaction, In : Human
Factors for Interactive Systems, Chapter Five.

Johnson, P., Diaper, D. and Long, J. B., (1984), Tasks, Skill and Knowledge;
Task Analysis for Knowledge Based Descriptions. In : B. Shackel (ed.),
(Interact '84), Vol. 1, pp. 23-28, London, Elsevier Science Publishers,
North-Holland.

Johnson, P. and Johnson, H., (1987), Generification : A Process of Identifying
Generic Properties of Tasks within a given Domain. Queen Mary College
Report to ICL, No. 2, 1987.

Johnson, P. and Johnson, H., (1988), Knowledge Analysis of Tasks : Theory,
Method, and Suggestions for Application to System Design. Internal
Technical Report, Queen Mary College, University of London.

Johnson, P., Johnson, H. and Russell, F., (1988), Collecting and Generalising
Knowledge Descriptions from Task Analysis Data, ICL Technical Journal.

Jones, J. C., (1973), Design Methods : Seeds of Human Futures, Wiley Inter-
Science, pp. 123-133, John Wiley and Sons Ltd., London.

Keane, M. and Johnson, P., (1987), Preliminary Analysis for Design, In : Diaper,

D. and Winder, R. (eds)., Proceedings of the BCS HCI SG Conference,

HCT'87 - People and Computers III, pp. 133-146, Exeter 7-11 September,
Cambridge University Press.

Keller, R., (1987), Expert System Technology, Yourdon Press, Englewood Cliffs,
New Jersey, 1987. ,

Kieras, D. and Polson, P. G., (1985), An Approach to the Formal Analysis of
User Complexity, In : International Journal of Man-Machine Studies, Vol.
22, pp. 365-394, Academic Press Inc., London.

Klein, G. A. and Brezovic, (1986), Design Engineers and the Design Process :
Decision Strategies and Human Factors Literature. In : Proceedings of the
Human Factors Society -- 30th Annual Meeting, 1986, pp. 771-775.

Klein, L. and Newman, W., (1987), Quality Assurance Aspects of IT'86. In :
Alvey Human Interface Club, Report of Open Meeting, Strand, London, 13
October 1987, pp. 41-66.

346

Kloster, G. V. and Tischer, K., (1984), Man-Machine Interface Design Process.
In : B. Shackel (ed.), ings of the Fi n n Human-
Computer Interaction (Interact '84), Vol. 2, pp. 236-241, London, Elsevier
Science Publishers, North-Holland.

Life, A., (1991), A Structured Analysis and Design Method for User Requirements
Specification, Ergonomics Unit, University College London, JCI Research
Proposal. |

Lim, K. Y., (1986), Display Structure and Memory Location Task Performance.
MSc (Ergonomics) Dissertation, University of London.

Lim, K. Y., (1987), An Assessment of the Macdraw Application Package, RARDE
Project Internal Working Document Number 9.

Lim, K. Y., (1988a), Task Strategies, Metaphors and the Integration of Interface
Design into JSD, RARDE Project Internal Working Document Number 15.

Lim, K. Y., (1988b), Essential Considerations for Interfacing Task Analysis and
Task Modelling with JSD Modelling, RARDE Project Internal Working
Document Number 17.

Lim, K. Y., (1988c), On Reasoning about the Project and DDN Case-Study
Proposals, RARDE Project Internal Working Document Number 18.

Lim, K. Y., (1988d), On Reasoning about User Interface Design using Extended
JSD in Conjunction with an Extant Systems System Analysis Approach,
RARDE Project Internal Working Document Number 19.

Lim, K. Y., (1988¢), Some Considerations on Notational Requirements for Task
and Interface Information Capture : Towards the Conception of a JSD*
Notation, RARDE Project Internal Working Document Number 23.

Lim, K. Y., (1989a), A Perspective on HCI Model Classes and their Life-Cycle
with respect to the System Design Process : Providing a Rational Basis for
the Current Conception of JSD*, RARDE Project Internal Working
Document Number 26.

Lim, K. Y., (1989b), Case-Study Illustrations of a Conception of Structured
Interface Design within JSD*, RARDE Project Internal Working Document
Number 27.

Lim, K. Y., (1989c), Towards a JSD* Method -- A Review of the Research Scope,
Requirements and Constraints; and the Proceduralisation of the JSD* User
Interface Design Process, RARDE Project Internal Working Document
Number 28.

Lim, K.Y, (1989d), A Preliminary Conception of the Stage-wise Process of User
Interface Design Within JSD* : A Case-Study Instantiation Using the
University College London Recreational Facility Booking System (UCL
RFBS), RARDE Project Internal Working Document Number 29.

Lim, K. Y., (1990a), An Overview of the First Pass Version of the J SD*(HF)
Method, RARDE Project Internal Working Document Number 33.

347

Lim, K. Y., (1990b), JSD*(HF) Deliverables Corresponding to the First
Conjunction with the JSD*(SE) Design Stream -- Outputs of the CTM and
SUN Stages for the Trouble-Shooting Module of the DDN NMS Case-
Study, RARDE Project Internal Working Document Number 37A.

Lim, K. Y., (1990c), The DDN NMS Case-Study -- Documenting Outputs of the
ESSA and GTM Stages for the Trouble-Shooting Module and Associated
Refinements Suggested for the JSD*(HF) Method, RARDE Project Internal
Working Document Number 38A.

Lim, K. Y., (1990d), The DDN NMS Case-Study -- Documenting Outputs of the
CTM and Post-CTM Stages for the Trouble-Shooting Module and
Associated Refinements Suggested for the JSD*(HF) Method, RARDE
Project Internal Working Document Number 39A.

Lim, K. Y., (1990¢), JSD*(HF) Specifications of the User Interface for the DDN
NMS Case-Study (Trouble-Shooting Module), RARDE Project Internal
Working Document Number 40A.

Lim, K. Y., (1991), An Energy Management System for the Home : Human
Factors Evaluation of the SmallTalk Prototype, London HCI Centre Report,
LHC/9013/REP1, January 1991.

Lim, K. Y., Long, J. B. and Silcock, N., (1992), Integrating Human Factors
with the Jackson System Development Method : An Hlustrated Overview,

In : Barber, P. and Laws, J. (eds.), Ergonomics Special Issue on
Methodological Issues in Cognitive Ergonomics III, Vol 34, Taylor &

Francis London.

Long, J. A. and Neale, I. M., (1989), Validating and Testing in KBS -- A Case-
Study. In : Proceedings of the Second International Conference on
Industrial and Engineering Applications of Artificial Intelligence and Expert
Systems, Tennessee, U.S.A., June 1989.

Long, J. B., (1986), Use and Abuse of Models : HI and IKBS Perspectives, In :
Conference Record of the Alvey Conference, University of Sussex, 1-4
July 1986, pp. 40-41.

Long, J. B., (1987), A Framework for User Models, In : E. D. Megaw (ed.),
Contemporary Ergonomics - Pr ings of the Ergonomics Society 1987
Annual Conference, pp. 245-250, Swansea, 6-10 April, Taylor & Francis.

Long, J. B. and Dowell, J., (1989), Conceptions of the Discipline of HCI : Craft,
Applied Science, and Engineering. In : A. Sutcliffe and L. Macaulay (eds.),
People and Computers V, Pr ings of the Fifi nference of
British Computer Soci - racti iali
Nottingham, September 1989, pp. 9-34, Cambridge University Press.

Long, J. B. and Whitefield, A. D., (1986), Evaluating Interactive Systems,
HCT'86 Tutorial, York, September 1986.

Lucas, H. C., (1975), Why Information Systems Fail, Columbia University Press,
New York, 1975.

t]

348

Lundell, J. and Notess, M., (1991), Human Factors in Software Development :
Models, Techniques, and Outcomes, In : P. Robertson, G. M. Olson, and
J. S. Olson (eds.), Proceedings of the CHI'9]1 Conference, New Orleans,
May 1991, pp. 145-152, ACM Press, New York.

Maddison, R. N., (1983), Information System Methodologies, In : P. A. Samet
(ed.), BCS Monographs in Informatics, Wiley Heyden.

Maguire, M., (1982), An Evaluation of Published Recommendations on the Design
of Man-Computer Dialogues, International Journal of Man-Machine
Studies, Vol. 16, No. 3, pp. 237-261, Academic Press Inc., London.

Mantei, M., (1986), Techniques for Incorporating Human Factors in the Software
Life-Cycle. In : Proceedings of STA-III Conference : Structured
Techniques in the Eighties ; Practice and Prospect, Chicago, June 1986.

Mantei, M., and Teorey, T. J., (1988), Cost/Benefit Analysis for Incorporating
Human Factors in the Software Life-Cycle, Computing Practices,
Communications of the ACM, Vol. 31, No. 4, pp. 428-439, April 1988.

Marshall, C. R., (1984), System ABC : A Case-Study in the Design and Evaluation
of a Human-Computer Dialog. In : B. Shackel (ed.), Proceedings of the
First IFIP Conference on Human-Computer Interaction (Interact ‘84), Vol.
1, pp. 419-423, London, Elsevier Science Publishers, North-Holland.

McClleland, I, (1990), Marketing Ergonomics to Industrial Engineers,
Ergonomics, 1990, Vol. 33, No. 4, pp. 391-398, London : Taylor Francis.

McKeen, J. D., (1983), Successful Development Strategies for Business
Application Systems, Management Information Systems Quarterly,
September 1983, pp. 47-65.

McKenzie, J., (1988), Guidelines and Principles of Interface Design. In : N.
Heaton and M. Sinclair (eds.), State of the Art Report 15:8, "Designing
End-User Interfaces", pp. 73-84, England: Pergamon Infotech Limited.

McNeile, A. T., (1986), Jackson System Development. In : T. W. Olle et al
(eds.), Information Systems Design Methodologies : Improving the
Practice, pp. 225-246, Elsevier Science Publishers, North Holland.

Meister, D., (1984), A Catalogue of Ergonomic Design Methods. In Proceedings
of the International Conference on Occupational Ergonomics, pp. 17-25.

Moraal, J. and Kragt, H., (1990), Macro-Ergonomic Design : The Need for
Empirical Research Evidence, Ergonomics, 1990, Vol. 33, No. 5, pp. 605-
612, London : Taylor Francis.

Moran T. P. (1981), The Command Language Grammar : A Representation for the
User Interface of Interactive Computer Systems, In : International Journal
of Man-Machine Studies, Vol. 15, pp. 3-50, Academic Press Inc., London.

Morrison, W., (1988), Communicating with Users during Systems Development,
Information and Software Technology. June 1988, Vol. 30, No. 5, pp.
295-298, Butterworth Scientific Ltd, London.

Multi-User Computing, (1989), Automated Tools Become a Reality, pp. 20-26 &
pg. 29, January 1989.

349

Mumford, E. and Weir, M., (1979), Computer Systems in Work Design -- the
ETHICS (Effective Technical and Human Implementation of Computer
Systems), Associated Business Press London.

Nielsen, J., (1987), The Spectrum of Models in Software Ergonomics, In :
Pr in he Fi mposium Empiri ions of
Information and Software Sciences, 23-25 November 1987, Denmark.

Newman, W., (1988), User Interface Design Practice. HCI'88 Conference,
Tutorial Notes, Manchester.

Norman, D. A., (1983), Some Observations on Mental Models, In : In Stevens,
A. L. and Gentner, D. (eds.), Mental Models, Lawrence Erlbaum
Associates Publishers, Hillsdale, New Jersey.

Norman, D. A,, (1986), Cognitive Engineering, In : Norman, D. A. and Draper,
S. W. (eds.), User Centered System Design : New Perspectives on Human

Computer Interaction, pp. 31-61, Lawrence Erlbaum Associates
Publishers, Hillsdale, New Jersey.

Norman, M. A., (1988), Developments in Computing and the User Interface --
Emerging Issues in End-User Interface Design. In : N. Heaton and M.
Sinclair (eds.), State of the Art Report 15:8, "Designing End-User
Interfaces", pp. 85-96, England: Pergamon Infotech Limited.

Norris, M. T., (1985), The Application of Formal Methods in Systems Design,
British Telecom Technology Journal, Vol. 3, No. 4, October 1985, pp. 53-
59.

O'Niel, D., (1980), The Management of Software Engineering Part II : Software
Engineering Program, IBM Systems J., Vol. 19, No. 4, pp. 421-431.

Olle, T. W., (1988), An Information Systems Life-Cycle and Related Concepts. In:
H. J. Bullinger et al (eds.), Information Technology for Organisational .
Systems, pp. 553-559, Elsevier Science Publishers, North-Holland.

Payne, S. J. and Green, T. R. G., (1986), TAG : A Model of the Mental
Representation of Task Languages, Human Computer Interaction, 1986,
Vol. 2, pp. 93-133, Lawrence Erlbaum Associates, Publishers, Hillsdale,
New Jersey.

Pelly, R. C. and Crampin, T., (1990), Human Factors Today and Tomorrow in
Ship Control Centers. In : Proceedings of the Symposium on Human_

Factors in Warships and Naval Systems, Westminster, November 1990,
pp. 99-114.

Perlman, G., (1987), An Overview of SAM : A HyperText Interface to Smith and
Mosier's Guidelines for Designing User Interface Software. Tyngsboro,
MA: Wang Institute, Wang Institute Technical Report TR-87-09, 1987.

Perlman, G., (1988), Software Tools for User Interface Development. In : M.

Helander (ed.), Handbook of Human Computer Interaction, pp. 819-834,
Elsevier Science Publishers, North Holland, 1988.

350

Pikaar, R. N., Lenior, T. M. J. and Rijnsdorp, J. E., (1990), Implementation of
Ergonomics in Design Practice : Outline of an Approach and some
Discussion Points, Ergonomics, 1990, Vol. 33, No. 5, 583-587, London :
Taylor Francis.

Preece, J., Woodman, M., Ince, D. C., Griffiths, R. and Davies, G., (1987),
Towards a Structured Approach to Specifying User Interface Design, In :

H. J. Bullinger and B. Shackel (eds.), Proceedings of the Second IFIP

Conference on Human-Computer Interaction (Interact '87), pp. 415-421,
London, Elsevier Science Publishers, North-Holland.

Price, H. E., (1985), The Allocation of Functions in Systems, Human Factors,
Vol. 27, No. 1, pp. 33-45, Human Factors Society Inc., Santa Monica,
U.S.A.

Poltrock, S. E., Steiner, D. D. and Tarlton, P. N., (1986), Graphics Interfaces for

Knowledge-Based System Development, In : Proceedings of CHI'86

Conference : Human Factors in Computing Systems, pp. 9-15, ACM: New
York.

Ragoczei, S. and Hirst, G., (1990), The Meaning Triangle as a Tool for the
Acquisition of Abstract, Conceptual Knowledge, International Journal of
Man-Machine Studies, Vol. 33, pp. 505-520, Academic Press Ltd.

Rasmussen, J., (1986), Information Processing and Human-Computer Interaction :
An Approach to Cognitive Engineering, Elsevier Science North Holland.

Reisner, P., (1977), Use of Psychological Experimentation as an Aid to the
Development of a Query Language, In : JEEE Trans. in Software
Engineering, SE-3, pp. 218-229.

Rekoff Jr., M. G., (1985), On Reverse Engineering, IEEE Trans. Systems, Man,
and Cybernetics, pp. 244-252, March-April 1985.

Renold, A., (1989), Jackson System Development for Real Time Systems, In:J.
R. Cameron, JSP _and JSD : The Jackson Approach to
Development, Second Edition, pp. 235-278, IEEE Computer Society Press.

Robertson, D., (1987), Closing the Gap. In : Alvey Human Interface Club, Report
of Open Meeting, Strand, London, 13 October 1987, pp. 67-74.

Rogers, J. G. and Pegden, C. D., (1977), Formatting and Organisation of a
Human Engineering Standard, Human Factors, Vol. 19, No. 1, pp. 55-61.

Rosson, M. B., (1987), Real World Design, SIGCHI Bulletin, Vol. 19, No. 2,
October 1987, pp. 61-62.

Rouse, W. B. and Boff, K. R., (eds., 1987), System Design : Behavioural
Perspectives on Designers, Tools and Organisations, Elsevier Science
North Holland.

Rubinstein, R. and Hersh, H., (1984), The Human Factor : Designing Computer
Systems for People, Digital Press, Bedford, Massachusetts, 1984.

351

Sebillotte, S., (1988), Hierarchical Planning as a Method for Task Analysis: The
Example of Office Task Analysis, In : Behaviour and Information
Technology, Vol. 7, No. 3, 275-293, London : Taylor Francis.

Selby, C. and Long, J. B., (1991), Investigating the Ease of Use of Object-
Oriented Interfaces : Apple LISA™ vs IBM TopView™, In: E. Lovesey
(ed.), Contemporary Ergonomics 1991, 'Ergonomics -- Design for
Performance, Proceedings of the Ergonomics Society's 1991 Annual
Conference, Southampton, 16-19 April, pp. 175-182, Taylor and Francis.

Shackel, B., (1985), Ergonomics in Information Technology in Europe -- A
Review, Behaviour and Information Technology, Vol. 4, No. 4, pp.
263-287, London : Taylor Francis.

Shackel, B., (1986a), Ergonomics in Design for Usability. In : M. D. Harrison
and A. F. Monk (eds.), People and Computers : Designing for Usability,
pp. 44-64, 1986, Cambridge University Press.

Shackel, B., (1986b), IBM Makes Usability as Important as Functionality, The
Computer Journal, Vol. 29, pp. 475-476.

Sharratt, B. D., (1987), Top Down Interactive Systems Design : Some Lessons
Learnt from Using Command Language Grammar, In : Bullinger, H. J.
and Shackel, B. (eds.), Proceedings of the INTERACT ' onference on
Human-Computer Interaction, pp. 395-399, IFIP, Elsevier Science,
Holland.

Sharratt, B. D., (1988), Is CLG Usable ? SIGCHI Bulletin, April 1988, Vol. 19,
No. 4, pp. 38-39.

Shneiderman, B., (1987), Designing the User Interface : Strategies for Effective
Human-Computer Interaction, Addison-Wesley Publishing Company.

Shuttleworth, M., (1987), The Role of Application Developers, Graphics Systems
Centre, ICL Office Systems, Human Computer Co-Operation, HCC/1/15
(Issue 1), March 1987.

Silcock, N., (1989), Towards a Task Analysis Method for JSD* : An Analytical
and Procedural Review of "Hierarchical Task Analysis"; "Hierarchical
Planning"” and "GOMS", RARDE Project Internal Working Document
Number 32.

Silcock, N., (1990a), JSD*(HF) Deliverables Corresponding to the First
Conjunction with the JSD*(SE) Design Stream -- Outputs of the CTM and
SUN Stages for the Security Module of the DDN NMS Case-Study,
RARDE Project Internal Working Document Number 37B.

Silcock, N., (1990b), The DDN NMS Case-Study -- Documenting Outputs of the
ESSA and GTM Stages for the Security Module and Associated
Refinements Suggested for the JSD*(HF) Method, RARDE Project Internal
Working Document Number 38B.

352

Silcock, N. and Lim, K. Y., (1989), Towards a Task Analysis Method for JSD* :
An Analytical and Procedural Review of Task Analysis for Knowledge
Descriptions and Knowledge Analysis of Tasks, RARDE Project Internal
Working Document Number 31.

Silcock, N., and Lim, K. Y., (1990a), A First Pass Version of the Proceduralised
JSD*(HF) Method, RARDE Project Internal Working Document Number
34.

Silcock, N., and Lim, K. Y., (1990b), The DDN NMS Case-Study --
Documenting Outputs of the CTM and Post-CTM Stages for the Security
Module and Associated Refinements Suggested for the JISD*(HF) Method,
RARDE Project Internal Working Document Number 39B.

Simon, T., (1988), Towards a Rational Taxonomy of Cognitive Models in Human-
Computer Interaction, In : Jones, D. M. and Winder, R. (eds.),
Proceedings of BCS HCI SG Conference (HCI'88 -- People and
Computers IV), pp. 79-93, Manchester, September 1988, Cambridge
University Press.

Smith, D. C,; Irby, C., Kimball, R., Verblank, W. and Harslam, E., (1982),
Designing the STAR User Interface, Byte, April 1982.

Smith, S. L., (1986), Standards versus Guidelines for Designing User Interface

Software, Behaviour and Information Technology, 1986, Vol. 5, No 1,
pp. 47-61.

Smith, S. L., and Mosier, J. M., (1984), Design Guidelines for User-System
Interface Software, Hanscom Airforce Base MA, USAF Electronic Systems
Division, NTIS No. AD A154 907, Tech Rep ESD-TR-84-190, 1984.

Singleton, W., (1972), Introduction to Ergonomics, Geneva : World Health
Organisation.

Sridhar, K. T. and Hoare, C. A. R, (1985), JSD Expressed in CSP, Technical
Monograph PRG-51, Oxford University Computing Laboratory; Alsoin :
J. R. Cameron, JSP_and JSD : The Jackson Approach to Software
Development, Second Edition, pp. 334-363, IEEE Computer Society Press.

Stevens, G. C., (1983), User-Friendly Computer Systems ? A Critical Examination
of the Concept, Behaviour and Information Technology, Vol. 2, pp. 3-16,
London : Taylor Francis.

Sutcliffe, A., (1988a), Some Experiences in Integrating Specification of Human
Computer Interaction within a Structured System Development Method. In

D. M. Jones and R. Winder (eds.), Proceedings of the Fourth Conference

of the BCS HCI SIG Conference, Cambridge, pp. 145-160, Cambridge
University Press.

Sutcliffe, A., (1988b), Jackson System Development, Prentice-Hall, London.

Sutcliffe, A., (1989), Task Analysis, Systems Analysis and Design : Symbiosis or
Synthesis ?, Interacting With Computers, Vol. 1, No. 1, April 1989, pp. 6-
12, Butterworth Scientific Ltd, London.

353

Sutcliffe, A., and Wang, L., (1991), Integrating Human-Computer Interaction with
Jackson System Development, The Computer Journal, Vol. 34, No. 2,
April 1991, pp. 132-142, Cambridge University Press.

Thimbleby, H., (1987), Delaying Commitment, Internal Report of the Department
of Computing Science, University of York.

Thimbleby, H., (1990), User Interface Design, ACM Press New York : Addison-
Wesley Publishers.

Underwood, M. J., (1987), Alvey Human Interface Club Response to the IT'86
(Bide) Report : Organisation. In : Alvey Human Interface Club, Report of
Open Meeting, Strand, London, 13 October 1987, pp. 15-28.

Valusek, J. R., (1988), Adaptive Design of DSSs : A User Perspective, In :
Proceedings of the 8th International Conference on Decision Support
Systems, Boston, June 6-9, 1988, pp. 105-112.

van der Veer, G. C., Guest, S. and Hamilton, 1., (1988), On User Modelling,
In: Al li 1 TS’ f
Systems, 29 March 1988.

Waddington, R. and Johnson, P. (1989), A Family of Task Models for Interface
Design, (Draft version), To appear in Proceedings of HCT'89 Conference.

Walsh, P., (1987a), Using JSD as a Description Language, RARDE Project
Internal Working Document Number 5.

Walsh, P., (1987b), Task Analysis Methods in HCI Design, RARDE Project
Internal Working Document Number 13.

Walsh, P., (1988), Proposed Plan of Action for Network Manager Case-Study,
Internal Working Document Number 16.

Walsh, P., Lim, K. Y., Long, J. B. and Carver, M. K., (1989), JSD and the
Design of User Interface Software. In : Barber, P. and Laws, J. (eds.),
Ergonomics (Special Issue on Methodological Issues in Cognitive
Ergonomics), Vol 32, No 11, November 1989, 1483-1498, Taylor &

Francis London.

Whitefield, A., (1987), Models in Human Computer Interaction : A Classification
with Special Reference to their Uses in Design, In : Bullinger, H. J. and
Shackel, B. (eds.), Proceedings of the Second IFIP Conference on HCI -
Interact'87. pp. 57-63, University of Stuttgart, Germany, 1-4 September
1987, Elsevier Science Holland.

Whitefield, A., (1990), Human-Computer Interaction Models and their Roles in the

Design of Interactive Systems, In : Cognitive Ergonomics : Understanding,
Learning and Designing Human-Computer Interaction, pp. 7-25, Academic
Press London.

354

Whiteside, J., Jones, S., Levy, P. S., and Wixon, D., (1985), User Performance
with Command, Menu and Iconic Interfaces. In : Borman and Curtis
(eds.), Human Factors in Computing Systems II, 1985, pp. 185 - 191,
North Holland.

Wigander, K., Svensson, A., Schoug, L., Rydin, A. and Dahlgren, C., (1979),
Structured Analysis and Design of Information Systems, New York :
McGraw-Hill Inc., 1979.

Williams, J. R., (1989), Menu Design Guidelines, ISO/WD 9241-XX (Working
Draft -2), March 1989. '

Wilson, J. and Rosenberg, D., (1988), Rapid Prototyping for User Interface
Design. In : M. Helander (ed.), Handbook of Human Computer Interaction,
pp. 859-876, Elsevier Science Publishers, North Holland, 1988.

Wilson, M., Barnard, P. J. and MacLean, A., (1986), Task Analysis in Human
Computer Interaction, Report HF 122, IBM Hursley Human Factors.

Wilson, M., Duce, D. and Simpson, D., (1989), Life-Cycle in Software and
Knowledge Engineering : A Comparative Review, The Knowledge
Engineering Review, Vol. 4, No. 3, pp. 189-204, Cambridge University
Press.

Young, R. M., (1983), Surrogates and Mappings : Two Kinds of Conceptual
Models for Interactive Devices, In : In Stevens, A. L. and Gentner, D.
(eds.), Mental Models, Lawrence Erlbaum Associates Publishers, Hillsdale,
New Jersey.

Young, R. E., (1988), Interim Report on the COSMOS Project, Cosmos
Coordinator's Office, Queen Mary College, London, Report No. 45.5
EXT.

Zave, P., (1984), The Operational versus the Conventional Approach to Software
Development, Reports and Articles, Communications of the ACM,
February 1984, Vol. 27, No 2, pp. 104-118, ACM Press New York.

355

PART VII :

Appendices

356

GloSSary Of TerMS........ccoiviininiiiiiiiiieieieieneieireeenerenerssenesesasaenees 358
Index Of ADDreviations.......ciciiiiiiiiiiiiiiiiiiiiiiieienteieeeeeesneeases 361
PN 1 § 1 12D K P I 364

Annex A : JSD Structured Diagram Notation, JSD* Structured

Diagram Notation and Task Description..........cccceccereuneee. 364
Annex B : Basic Design Concepts of the JSD*(HF) Method.............. 366
Annex C: The Hierarchical Conception of Work Assumed by

the JSD*(HF) Method.......cccovviiiiiiiiiimninniiiinninninnens 370

Annex D : Detailed Account of Secondary Activities and
Products of the ESSA Stage for the Network

Security Management Case-Study.......ccceeererivrevnnnnnnnnns 374
Annex E: An Illustration of the JSD*(HF) Method
using the Recreation Facility Booking System.................. 385
Bibliography ..ot r e e e 413
A) List of Published Papers Originating from the Present Research.....413
B) Cumulative List of RARDE Project Working Documents............. 416
C) Cumulative List of PhD Working Documents..........ccccevreereeen. 420

357

Glossary of Terms

Abstraction See Annex B.
Automated task A task performed entirely by a device.

Decomposition See Annex B.

Design phase A group of design stages that addresses a common aspect of
system development. For instance, the JSD*(SE) Specification Phase
(comprising JSD Modelling and Network Stages) is concerned primarily with
design specification (as opposed to design implementation).

Design stage A group of design activities concerned with transforming
input(s) from a preceding stage(s) into its characteristic product(s).

Device independent A term used to describe a task that is not specific to a
particular device. For instance, TD(ext) is a device dependent description. In
contrast, GTM(ext) is a predominantly device independent description since
device-specific details were removed during its abstraction from a TD(ext)
description. The purpose of deriving a device independent description is to
uncover the logic underlying a design so that generalisations may be made
about its functional features. Thus, the potential porting of design features
across systems may be assessed. However, it should also be noted that a
completely device independent description is not always desired since low
level design details would be lost.

Domain objects Objects associated with the domain of application.

Extant System or EXT A general term for a class of systems comprising the
extant current system, extant partial system and extant related system.

Extant System Composite or X A 'virtual' composite system synthesised
analytically from a number of extant systems (either part or whole). Such a
system description is derived to support subsequent reasoning about the
system to be designed.

Extant Related System An existing system that shares the same domain of
application as the system to be designed, but is not used by the client

organisation, i.e. it is used by other organisations.

358

Extant Current System The existing system to be replaced by the system to
be designed, i.e. the system currently used by the client organisation.

Extant Partial System Parts of an existing system that may be relevant to
the system to be designed. For instance, its sub-tasks (and associated design
features) may be similar to those anticipated for the system to be designed. In
other words, the domains of the systems intersect partially.

Generification See Annex B.

Inter-dependencies Intersecting JSD*(HF) and JSD*(SE) design concerns.
At each inter-dependency, design information of common interest would have
to be shared, agreed and complied with throughout later stages of design.
Since the shared information is mutually binding, unavoidable violations in
one design stream must be communicated to the other. Appropriate iteration of
the design stages governed by the particular inter-dependency may then be
undertaken. Usually, design stages following the violation point would have
to be repeated. The purpose of design inter-dependencies is to ensure that the
specifications derived in parallel JSD*(HF) and JSD*(SE) streams are
convergent.

Interface objects Interactive objects that may be manipulated by a user, or

non-interactive components of an information display.

JSD* A term referring to the integrated method which comprises a structured
human factors method (termed the JSD*(HF) method) and the JSD method
(renamed the JSD*(SE) method).

JSD*(HF) The human factors component of the JSD* method.

JSD*(SE) The JSD component of the JSD* method. The JSD*(SE) method is
essentially the original JSD method extended to include design inter-
dependencies with the JISD*(HF) method.

Off-line task User's tasks that do not involve a computer.

On-line task User's tasks which involve direct interactions with a computer.

Screen objects A sub-set of user interface objects comprising information and

359

functional representations in a screen display.
Synthesis See Annex B.
System A particular configuration of human and computer entities interacting to

perform work under a specific environment.

Target System The system to be designed.
Task System activity required to achieve work goals.

360

Index of Abbreviations

C Confirm (refers to a generic screen design template for users to confirm an
input).

CTM Composite Task Model (Stage).

CTM(y) Composite task model of the target system.

DD Display Design (Stage).

DET(ext), DET(y) Dialogue and error message tables for the extant and
target systems respectively.

DITaSAD(ext), DITaSAD(y) Dialogue and inter-task screen actuation
descriptions of the extant and target systems respectively.

DoDD(ext), DoDD(y) Domain of design discourse description of the extant

and target systems respectively.

E Error (refers to a generic screen design template used to signal error messages
to the user).

ECS Extant Current System

em Error message (usually followed by a numeric suffix which identifies the
message item in the Dialogue and Error Message Table).

EPS Extant Partial System

ERS Extant Related System

ESSA Extant Systems System Analysis (Stage)

EXT Extant system

(ext) Denotes JSD*(HF) descriptions of an extant system, e.g. GTM(ext).

GTM Generalised Task Model (Stage).
GTM(x), GTM(ext), GTM(y) Generalised task model of a 'virtual' extant

system composite, an extant system and the target system respectively.

HF Human Factors

IM Interface Model (Stage)

361

IM(ext), IM(y) Interface model of the extant and target systems respectively.
ITM Interaction Task Model (Stage)
ITM(ext), ITM(y) Interaction task model of the extant and target systems

respectively.

JSD Jackson System Development (method).

JSD* An integrated method comprising the Jackson System Development
method and a structured human factors method.

JSD*(HF) Human Factors component of the JSD* method.

JSD*(SE) JSD component of the JSD* method.

MPASS MacPassword™ (a Macintosh-based software for PC security).

NMgr Network Manager.
NMS Network Management System.
NMW Network Management Workstation.

PSL(ext), PSL(y) Pictorial screen layout diagrams for the extant and target

systems respectively.

R(ext) General term used to denote a range of products derived at the Extant
Systems System Analysis Stage. Thus, STM(ext); UTM(ext); ITM(ext);
IM(ext); DoDD(ext); SUN(ext); UIE(ext) and DD(ext) are all instances of
R(ext).

S Screen (refers to a screen design. Usually followed by a alpha-numeric suffix
which identifies the pictorial screen layout diagram for a particular screen).

SE Software Engineering

STM System Task Model (Stage)

STM(ext), STM(y) System task model of the extant and target systems
respectively.

SoRe Statement of Requirements

SUN Statement of User Needs (Stage)

SUN(ext), SUN(y) Statement of user needs for the extant and target systems

362

respectively.
SUTaM System and User Task Model (Stage)

TD Task Description

TD(ext) Task description for an extant system.

UCL University College London

UCLCC University College London Computer Centre

UIE(ext), UIE(y) User interface environment of the extant and target systems
respectively.

UTM User Task Model (Stage)

UTM(ext), UTM(y) User task model of the extant and target systems

respectively.

(x) Denotes JSD*(HF) descriptions of a 'virtual' extant system composite, €.g.
GTM(x).
X Represents the 'virtual' extant system composite that is derived to support

design reasoning.

(y) Denotes JSD*(HF) descriptions of the target system, e.g. CTM(y).
Y Represents the target system or system to be designed.

363

Annexes

Annex A : JSD Structured Diagram Notation, JSD* Structured Diagram Notation
and Task Description

Generally, constructs of the JSD structured diagram notation (comprising sequence,
selection, iteration and posit-quit -- see Figure AA-1(A)) were recruited to the
JSD*(HF) method for task description. The recruitment was motivated by two

reasons, namely :

(1) design communications between JSD*(SE) and JSD*(HF) designers
would be facilitated by a common notation;
(2) the JSD structured diagram notation could support a more specific

description of tasks.

To this end, the utility of the notation was investigated by Cameron and Carver
(1987); Walsh (1987a); Lim (1988¢); and Carver (1988). Although the results were
positive, an additional construct was introduced by Lim (1988e¢) to support the
description of non-sequential hierarchies (see Figure AA-1(B) below). The
application of such a construct (termed a hierarchy construct) is demonstrated in
Figure AA-2 below. For comparison, JSD and JSD* structured diagram
descriptions is shown for a fictitious task 'T' which may be characterised as

follows :

(a) it comprises four sub-tasks, namely A, B, C and D;

(b) its sub-tasks B and C may be performed in any order, i.e. B then C, or
C then B;

(c) its sub-tasks B and C can be carried out only after A;

(d) its sub-task D can be carried out only after B and C.

An inspection of the descriptions of task T reveals that the JSD structured diagram
description is clearly unwieldy. In particular, the diagram would become

unmanageably large with a greater number of sub-tasks. Thus, the addition of a

364

hierarchy construct permits a more elegant, readable and concise task description.

Figure AA-1 : Constructs of JSD and JSD* Structured Diagram

Notation

A n f JSD Structured Dia Notation
) posit (backtracking arising
iteration Sequence selection quit from recognition difficulties)
* o ! ? * ? o
B) Additional Con, f JISD* ctured Di Notation
* hierarchy

Figure AA-2 : JSD and JSD* Structured Diagr\am Descriptions of a
Fictitious Task 'T'

Textual Description :
Task T : Do A, then B and C in any order, then D.

ISD Structured Diagram Description JSD* Structured Diagram Description
T T
1 1
= e NN S -
n
A body D A B C D
1 . 1
B first © C first 0
body body
—— ———
B C C B

365

Annex B: Basic Design Concepts of the JSD* Method

(a)_Abstraction

Abstraction is applied by the designer to derive a particular perspective of a task.
For instance, task performance requirements may be viewed either in terms of user
operations with a device, or in terms of higher level sub-task units performed to

satisfy specific system goals.

In the context of the JSD*(HF) method, abstraction is used primarily to expose the
conceptual (rather than detailed) design of a particular task. Specifically, it supports
the derivation of generalised task models of the extant and target systems, i.c.
GTM(ext) and GTM(y) respectively.

(b) Generification

Generification is a process that identifies common elements among discrete objects
so that they may be characterised as a set for a specific design context. In particular,
the common elements define a super-ordinate or 'generic' class to which all the
original objects would belong. As an example, consider objects A, B and C whose
attributes are represented by the sets {1, 2, 3, 4}, {1, 2, 3, 6,7} and {1, 2, 3, 8,
9} respectively. Thus, for a specific design context, a generic class G comprising
the intersection of their attributes, i.e. G = {1, 2, 3}, may be defined to characterise
objects A, B and C as set. It can not be over-emphasised that the selected set of

generic attributes is determined largely by the design context.

In respect of the JSD*(HF) method, generification is used in the following :

(i) the identification and selection of extant systems for analysis. In this
case, the set of generic attributes of interest corresponds to the key
characteristics of the target system. By selecting particular sub-sets of these
characteristics, one or more generic categories may be defined to guide the

selection of extant systems for analysis. For an illustration, consider the

366

generic class G from the above example. In this case, G describes a generic
set of target system characteristics of interest, and A to C characterise extant
systems selected for further analysis;

(ii) the derivation of a single Task Description (TD(ext)) from information
elicited from various sources. In other words, a generic task description is
constructed using task elements that are common across performers. Thus,
a super-ordinate description applicable across task performers is derived.
Taking the above example further, A, B and C may comprise various
accounts of a task as described by different performers. A generic task
description, considered by the group of performers to be equivalent to their
original account, may then be derived to support system design. Such a
description may be characterised by H = {1, 2, 7?7), where ?? was
considered by different task performers to be equivalent to {4}, {6, 7} and
{(8,9}.

Four other scenarios for applying generification are described in Figure

AB-1 below. A brief account of these scenarios follows.
First, generification across sub-task constituents may be applied on a task

description elicited from a task performer. In this case, generification may

be applied to remove inconsistent sub-task level descriptions. To this end, a

Figure AB-1 : Scenarios for Applying Generificationl

Scenario Generification Type
Single task performer and single task Across objects, actions and attributes
Many task performers and single task Across task performers

Single task performer and many related tasks | Across tasks

Many task performers and many related tasks | Across task performers and/or tasks

1 Note that generification across sub-tasks is possible in all scenarios.

367

generic set of attributes, actions and objects is defined, and the sub-task is

then re-described in terms of the set.

Second, generification across tasks may be applied when a task performer
describes many related tasks that share a common underlying 'logic'.
Depending on the design context, it may be useful to derive a generic

description of aspects that are common across the tasks.

Third, generification across task performers may be applied when a task is
described by many task performers. In such cases, it is necessary to derive
a single task description with which to work during design. For instance,
the descriptions of task objects and their manipulations may vary across task
performers. If it is established that the variations are not due to different task

performance strategies, they should be removed by generification.

Fourth, generification across task performers and/or tasks may be applied
when various related tasks are described by different groups of task
performers. An example of such an application was reported by Johnson,
Diaper and Long (1984) concerning training syllabus development for
groups of students who are required eventually to perform slightly different

tasks. Their motivation for applying generification is as follows :

(1) to define a common training component that satisfies task
requirements that are generic across the student groups;
(2) to define separate and distinct training components that satisfy task

requirements unique to each student group.

To this end, a generic description was derived to characterise each group of
students and their tasks. The generic descriptions were then compared to
identify common and specific knowledge requirements for performing the
tasks. Appropriate training syllabi were thus developed for each group of

students.

In conclusion, it should be noted that the selection of a particular application of

368

generification is determined by the prevailing design context.

(c) Decomposition

Task decomposition is characterised by a successive breakdown of tasks to the level
of description required to support design. In particular, task decomposition is used
in the JSD*(HF) method for the following :

(1) to derive a task description for the extant system, i.e. TD(ext);

(2) to generate detailed specifications from a conceptual design.

(d) Synthesis

Task synthesis addresses the appropriate composition and extension of sub-tasks so
that system goals are satisfied at acceptable cost. In the context of the JISD*(HF)
method, task synthesis includes the selection, extrapolation and incorporation of
suitable sub-tasks of extant systems. Consequently, task synthesis is undertaken
only after abstraction and generification. In particular, the latter processes are
applied extensively during extant systems analysis to uncover the logic of extant
designs. Thus, appropriate extant system features may be identified for recruitment

to the target system.

Task synthesis is undertaken predominantly at two stages of the JSD*(HF) method,

namely :

(a) the Generalised Task Model Stage where suitable sub-sets of individual
GTM(ext) descriptions are composed to generate a GTM(x) description;

(b) the Composite Task Model Stage where a suitable sub-set of the
GTM(x) description is composed with a GTM(y) description. The
integrated description is then extended to generate a CTM(y) description.

369

Annex C : The Hierarchical Conception of Work Assumed by the JSD*
Method

Figure AC-1 shows the hierarchical conception of work proposed by Lim (1989d)
following a review of similar attempts by Johnson et al (1988), Waddington and
Johnson (1989), Blyth and Hakiel (1989), and Dowell and Long (1989). Thus, the
JSD*(HF) method (and human-computer interaction in general) may be set against
a broader conception of the work context. In this way, user tasks, roles, jobs, etc.
may be considered appropriately during design. An account of the conception

follows :

(a) the highest level in the conception is the organisation tasked with
performing the work. As such, an organisation may be conceptualised as a
'superordinate’ system that may be decomposed into a number of sub-
systems. In other words, a job involving the performance of one or more
roles (or groups of tasks) is assigned to each sub-system. The tasks are
performed by the sub-system in accordance with a plan. Such a plan
comprises task execution procedures and strategies that determine the
application of specific procedures; |

(b) the conception is decomposed into three branches that support
complementary perspectives on a design. For instance, the object and action
branch supports specific design description, while design descriptions
based on the goal and function branches may reveal the logic underlying
particular characteristics of task performance (see Figure AC-1);

(c) procedures and strategies of the conception may apply at several levels
of description, namely at the objects and actions level; goals and sub-goals
level; tasks and sub-tasks level; and functions level. Thus, task procedures
and strategies may interact across levels of description;

(iii) roles are viewed in the conception as comprising a particular group of
functions (see Figure AC-1). In this respect, Human Factors and Software
Engineering perspectives of functions may differ slightly. In Human
Factors, a function may be considered a non-trivial unit of behaviour
(human or device) that enables the accomplishment of the system 'mission’

(Drury, 1983). Thus, a function may be allocated, as a whole, to a human

370

£3aeng Iv sampaooid Ilv ' suonoe

pue s100[qo
£3aeng Iv sampoocud I_v N yseiqus T Jseiqns I Yseigns
£3aeng Iv sampaooud I' N Jse1 zyse 1 X2 N ¥s&1 Z 358 I 581 sreo3-qns

speos

£3xeng Iv sampaooid I'

$109[Q0 pIom
[eay

I qof
7 Aels

uoneorddy

Jo urewog uonestesI0) YoM

s190[qo

oyjo) £
plIOM [EoY POy (AH)+AS[W) 4q

PIUINSSY YI0AA JO uondaduo)) [BdIYOIRIDIY YL : [-DV 2an3ij

371

or device. In contrast, Software Engineering functions tend to refer to low
level functions supported by the computer software. Nevertheless, the
differences would be reconciled if functions are considered to include tasks
that do not necessarily result in work (see (iv) below);

(iv) the conception defines work as the achievement of desired state changes
for a relevant set of real world objects. Similarly, work goals and sub-goals
may be described in terms of the initial-to-target state changes to be effected
by the system. In this respect, a system (as opposed to a computer system)
is defined as comprising a human-and-computer 'unit' working together
under a specific environment.2 A distinction should also be made between
the work the system is expected to accomplish, and the tasks performed by
the human and computer components of the system. In particular, since
work goals and tasks do not necessarily share a one-to-one relationship (see
Figure AC-1), task executions may not always produce work, i.e. they
include actions which facilitate work.

(v) the conception classifies tasks into off-line and on-line tasks. Generally,
on-line tasks involve interactions between the human and computer, while
off-line tasks are unsupported by the computer. In this context, on-line task
components may be assigned entirely to the computer, i.e. automated tasks.
Such a classification of tasks is consistent with proposals made by other
researchers. For instance, Johnson and Johnson's (1988) classification
comprises tasks which are fully, partially and unsupported by the
computer. Similarly, Sutcliffe (1988a) suggested three categories of tasks,
namely non-computerised tasks; fully computer-supported tasks; and
interactive tasks. Figure AC-2 shows a ‘consensus’ classification of tasks

and their relationship to the components of a system.

2 Note that the definition includes multiple human-and-computer 'units'.

372

Figure AC-2 : Task Classes and their Relationship to Human and

Computer Components of a System

SYSTEM

information flow

AUTOMATED
TASKS

information flow

On-line tasks = Interactive tasks + Automated tasks
System tasks = Off-line tasks + On-line tasks

373

Annex D : Detailed Account of Secondary Activities and Products of the ESSA
Stage for the Network Security Management Case-study

This annex completes the account of the ESSA Stage described in Chapter Nine. In
particular, secondary activities and products relevant to a variant design scenario are
described. Note that the extent to which such activities and products are
accommodated, depends largely on how similar the characteristics and
implementation technology are between the extant and target systems. Bearing this
point in mind, the complete range of secondary products and activities of the ESSA
Stage will now be described. Illustrations from the Network Security Management

case-study are included where appropriate.

I) Extant System Task Model (STM(ext nd Extant User Task Model
(UTM(ext)) Descriptions

To characterise conceptually the on-line task of the extant system, a description
termed an extant System Task Model (STM(ext)) is derived. Thus, the on-line task
is described in terms of human-computer interaction cycles. Since STM(ext) is a
high level description, the form of the interaction should not be specified. Such
design details are accommodated later by other ESSA Stage products (refer to later
accounts on ITM(ext), IM(ext) and DD(ext)).

A complementary description termed a User Task Model (UTM(ext)) is also derived
to document the off-line task of the extant system. Thus, off-line sub-tasks that may

be relevant to the design of the target system are collated into a single description.

The procedures for deriving STM(ext) and UTM(ext) descriptions are summarised

overleaf.

374

r r n T

1. Take GTM(ext) as input and identify on-line and off-line tasks. If more detailed
information is desired, derive a lower GTM(ext) description by consulting TD(ext). If
necessary, conduct another elicitation cycle.

2(a) To derive STM(ext), note user actions and computer responses for each on-line sub-node
of the GTM(ext) description. Thus, the H: (human) and C: (computer) leaves of the
STM(ext) description are derived.

2(b) UTM(ext) is derived by noting off-line sub-nodes of the GTM(ext) description. The
sub-nodes are then collated to derive a single description.

3. Record STM(ext) and UTM(ext) descriptions using JSD* structured diagram notation and
note additional information in a supporting table.

Rul ¢ Thumb_for deriving STM(ext) | UTM(ext
1. Where it is uninformative to describe on-line sub-tasks in terms of separate H: and C:
leaves, then combined (i.e. H-C:) nodes may be used.

2. The structure of the GTM(ext) description should be maintained in STM(y) and UTM(y)
(if possible) to facilitate cross-referencing between the descriptions. In addition, a more
coherent view of the task is afforded.

3. For the same reason as in (2) above, significant off-line should also be indicated in the
STM(ext) description. Thus, cross-referencing between STM(ext) and UTM(ext)
descriptions is supported. Similarly, off-line tasks which influence the design of the
user interface should be flagged in the STM(y) description to prompt appropriate
consideration by the designer.

(I Extant Interaction Task Model or ITM(ext) Description

ITM(ext) is a device-level description of the interactive task to be performed by the
user. It is derived by decomposing H: leaves of the STM(ext) description.

The procedures for deriving an ITM(ext) description are summarised on the next

page.

375

Pr r r_deriving ITM

1. Take each H: leaf of the STM(ext) description and note how inputs are effected via the
user interface. Consult the TD(ext) description for more information if necessary.
A further elicitation cycle should be conducted if required.

2. On the basis of the notes made in (1) above, decompose H: components of the STM(ext)
description to derive an ITM(ext) description. The description details the user inputs
required to perform the interactive task.

3. Record the ITM(ext) description using JSD* structured diagram notation and note user
problems and additional information in a supporting table.

Rule of thumb for deriving ITM(ext)
ITM(ext) components attributed to the adopted user-interface environment need not be
described since they should be familiar to design team members.

IIT) Extant Interface Model or IM(ext) Descriptions
IM(ext) descriptions address the appearance and behaviour of user interface objects
of the extant system. The descriptions are decomposed from the C: leaves of the

STM(ext) description.

Procedures for deriving IM(ext) descriptions are summarised below.

P l for_deriving_IM(ext)
1. Identify user interface objects of the extant system systematically by referring to the C:
leaves of the STM(ext) description.

2. Using JSD* structured diagram notation, record the appearance and behaviour of each
object. In addition, note object responses to user inputs described in ITM(ext).

Rule of thumb for deriving IM(ext)

User interface objects originating from the adopted user interface environment need not be
described since they should be familiar to design team members.

376

(IV) Extant Display Design or DD(ext) Descriptions

DD(ext) descriptions comprise the following set of products :

(a) an extant Dialogue and Inter-Task Screen Actuation Description or
DITaSAD(ext). The context for actuating screen displays and for triggering
dialogue and error messages is specified by this description;

(b) extant Pictorial Screen Layout or PSL(ext) descriptions. Static aspects of
screen displays, €.g. composition, layout and grouping of screen objects are
specified by these descriptions;

(c) an extant Dialogue and Error Message Table or DET(y). Screen
messages described in DITaSAD(ext) are indexed in this table.

Procedures for deriving DD(ext) descriptions are summarised below.

P I for_deriving DD(ext)

1. Take as input ITM(ext), IM(ext) and TD(ext) descriptions. Note the screen designs and
transitions in relation to major executions of the user’s task. Relate the transitions to
actions described in ITM(ext), and note the ITM(ext) leaves bounded by each screen
transition. Thus, screen transitions are mapped onto specific user tasks.

2. Assign a unique number to each screen to support cross-referencing among ITM(ext),
IM(ext) and DD(ext) descriptions.

3. For each screen, note potential user errors and the error messages displayed. In addition,
note information displays. Assign a unique identifier to each message item and
tabulate them as per the DET(ext) format.

4. Referring to notes made in (1) and (3) above, construct a DITaSAD(ext) diagram.
Conditions that should be satisfied for each screen transitions should be included in the
structured diagram and its supporting table.

5. On the basis of notes made in (1) and (3) above, document existing screen designs which
may be relevant to the design of the target system. User problems and the rationale
underlying existing designs should also be documented.

377

Extant Statement of User Needs or SUN(ex iption

Pertinent human factors observations made during extant system analysis are
summarised textually in a SUN(ext) description. Generally, extant system

information of interest would include the following :

(a) user problems with the extant design;

(b) extant design rationale, requirements and constraints;
(c) possible solutions to observed user problems;

(d) user needs not supported by the extant design.

Relevant SUN(ext) information is carried forward to the Statement of User Needs
Stage where they are synthesised with the initial statement of requirements for the
target system. The set of requirements is then extended appropriately to define a

basis for target system design.

Procedures for deriving a SUN(ext) description are summarised below.

Procedures for deriving SUN(ext)

1. Referring to key target system requirements, construct a list of general design concerns
and user needs to be investigated during extant systems analysis. The list may be
incremented subsequently to account for early observations and products of extant
systems analysis.

2. For each item on the list, note design information that is potentially relevant to the
design of the target system, e.g. existing design rationale and constraints; user
problems; etc.

3. Record suggestions on how existing problems may be obviated. The suggestions should
be interpreted in the context of the target system.

4. Collate the information following the format of a SUN(ext) description.

Case-study illustrations of SUN(ext) descriptions for the University of London

378

Computer Centre (UCLCC) and the MacPassword™ application (MPASS) are
shown in Figures AD-1 and AD-2 respectively.

An account of how SUN(ext) descriptions could support target system design
follows. The information in SUN(UCLCC) suggested that failed log-on events
should be signalled to the network manager in real time when the network
management workstation is manned. Should such events occur when the
workstation is unmanned, the manager should be alerted on next log-on. In either
case, security alerts should include pertinent information on the event to support the
manager's decision concerning an appropriate response. An example of the
information to be included was described in SUN(MPASS), namely a password-
and-time log to differentiate between password mis-types and hacking attempts.
These SUN(UCLCC) and SUN(MPASS) recommendations are thus considered
during target system design.

Figure AD-1 : Extract from the Extant Statement of User Needs for
the University College London Computer Centre (SUN(UCLCC))

Statement of User Needs (SUN(UCLCC))

1. The network manager should be alerted in real-time to failed log-on events. The alert
should adequately capture the network manager's attention (consider both visual and
auditory alarms). Should the breach occur when the network management workstation
is unmanned, the manager should be alerted on next log-on.

2. Communication between the network manager and users (and between the manager and
external networks) should be supported adequately. In particular, facilities that support
both synchronous and asynchronous communication should be provided, e.g. telephone
and electronic-mail facilities respectively.

3. Information processing functions should accompany security alerts. Thus, relevant
information may be collated to support various task contexts. In particular, the
functions should support database search and retrieval so that various logs may be
collated, e.g. logs of atypical network usage (e.g. usage outside normal working hours);
log of previous hacking activities (i.e. both failed and illegal log-ons); etc.

4. The number of successive failed log-ons should be limited to ensure a more secure
network. On reaching such a limit, a temporary 'lock out' should be enforced.

379

Figure AD-2 : Extract from the Extant Statement of User Needs for
the MacPassword™ Application (SUN(MPASS))

Statement of User Needs (SUN(MPASS))

1. The owner is required to search event logs for evidence of security breaches. To support
the task, appropriate search functions should be provided to highlight pertinent
information in the logs.

2. Password logs were found to be useful in identifying hacking activity. Thus, passwords
used in failed log-ons should be recorded.

3. Obligatory password changes should be enforced at regular intervals.

4. User access parameters should be configurable and implemented easily.

5. Secondary measures to protect event logs from hacker access should be considered since
no other record of usage activity is kept.

(VD) Extant Domain of Design Discourse or DoDD(ext) Description

DoDD(ext) is a semantic description of the extant system domain. The domain of
extant and target systems intersect to different extents depending on the type of
extant system involved. Specifically, the extent of domain intersection with the
target system decreases in the following order : extant current system, extant related

system and extant partial system.

Procedures for deriving a DoDD(ext) description are given on the following page.

-Study Illustrations of a DoDD Descripti

As before, two case-study examples of a DoDD(ext) description are shown, namely
DoDD(UCLCC) and DoDD(MPASS) (refer to Figures AD-3 and AD-4
respectively). Design information tables that accompany these descriptions are also

shown.

380

r r r_deriving DoDD
1. Identify general design concepts and real world objects manipulated by the extant system.

2. From the set in (1) above, identify a sub-set that is potentially relevant to the target
system. Define the semantics and relationships among the design concepts and objects.

3. Record the information as a semantic net, i.e. the format of a DoDD(ext) description.
Assign unique identifiers to all relations. For readability, the identifiers should be
assigned serially from left to right and top to bottom (where possible). Note additional
information on each relation in an accompanying table.

hum r rivin

1. DoDD(ext) should be sufficiently detailed to support the construction of task scenarios that
are accommodated by the extant system.

2. DoDD(ext) should not include device dependent information. The information described
should be confined to the semantics of the extant system domain.

Figure AD-3 : Domain of Design Discourse Description for the
University College London Computer Centre (DoDD(UCLCCQ))

Network Security Management

<N
10 BN ¢3)
R N
Network Manager Network
Workstation N\
y 5)
®3) @ A\
K Users
Network Manager e M
N 6)
®) e)
M Hackers
Legal users \(12)
/
o~ / \ b
User yoad (10) (11) _ Types of selcurity breach
N (13)
Identification Password N (14)
Failed log-on
Illegal log-on
|
(16)
(15)
Types of breach responses
7 I\
a7 @ag) (19)
Password)
change Trace Disable

381

yoeasq

‘uo-Soy e3ony | (41) Amoos
‘vo-3or parreg | (€1) "yoea1q L3Lmdss Jo sadA) om) are aJoy L Jo sod£1,
“HOTIEISYIOM JudwaFeuswr SHOMIOU JO/pue
*$9UOBaIq AILMIIS JTWwwod sIoey | (T1) YIOMIU Y} JO SISSN PASLIOYINBUN Ik SIORH SIOYORH
‘(od£1-stw promssed-3-0) suo-3oy poyrey rwwod Aew sxosn @3y | (11)
*(uonEedNyTIUAPI [RNUAPIJUOD B) pIomssed € ynm ponssi stzasn o v | (OD)
"UOTIBOLIUSPE JOSN € [IIM POnSSI ST 1SN 63 v | (6)
"UonEIS}IoM *UOTEISYIOM JudUIdFeuBwW JIOMIAU JO/pue
JudwoZeurW YIOMIOU PUR JI0MIOU Y} JO JISN [e39] € ST JoFeuew JIOMIPU L | (g) JIOMIOU 3y} SN O) POSLIOYINE AT OYM SIS | szosn [eSory
*uoneISyIoM Juswdfeuew
JIOMIU JO/PUR YIOMIU Y] SSIOJE 0 AJLOYINE ABY JOU S0P OYM Iasn e stIoqoey v | (1)
‘uoneIsyIom
JUoWSFeurW JIOMIOU I0/PUE JIOMIOU Y SSIOIL 0) pasuone are s1osn [efo] AluQ | (g) *SOTAIS SIT 3SN O3 YIOMIOU SYI SSI00E SIAS() s1080)
*Saur] SUI{erp pue SYIOMISU ‘S[RUTWLIT) JOYIO0
1A A1910wa1 J0 A[[B00] UO-30[Aew Oym s19sn Jo d3uer e 01 uado st oMU YL | (S) e u—
"JI0M10U 3Y) JONUOD PUE $§3008 A[a10war Aew IoFeuews oMU YL | () 150y JO Ioqunu e sasudwod Iomiau sy FIOMION
“JI0MIU 9 [ONUOD
01 108euew 9y Aq pasn wNsAs yndwod o St
‘uoneIsyIom Juswafeur JIoMmiau 9] JO Josn urewr 9y st Io8eurew jIomiau 9y, AMV A EZV UonEISHOM ucoEowNSNE SHoMION YL MIAN
oMU o JO AILmOos 9y JuLMSUD SI JSE) UTew s JOFeuew YIOMIU YL | (7)
*onuad Jndwod a Aq Aeorjioeds pares(o 2q 03 sey "UOTIEISHIOM JUSWOTeURW JHOMIoU pue | juowaTeuey
$S900B 9JOWI 958D AUR U] "SIIST JIOMIdU AQ A[S10WI PISSOOIL G 10U UBD I 0UIS NI0MIoU 9 JO 25esn pue $s3508 [eS9] SuLmsud ftmoag
‘J0UTW ST UOTIEISYIOM JudUIdSeURW JI0MISU 2y JO A1umodss o) Sutmsua Jo yserayl | (1) 10 9[qisuodsaI st 1oSeurur YI0M1OU Y], FI0MION
suone[dy ‘ON uondiIdsagg 9PON

T 38eq -- dqe], (DI 1IDN)AAOA

382

DoDD(UCLCC) Table -- Page 2

Node Description No. Relations
Failed Occurs on incorrect user (15)| Inresponse to a failed log-on by a legal user,
log-on identification or password the network manager may enforce a password
input. The occurrence change to encourage the selection of a more
terminates the session in all suitable password.
cases.
Illegal An illegal log-on occurs (16) | Appropriate actions must be taken in
log-on when a hacker successfully response to an illegal log-on.
logs onto the network and/or
network management
workstation.
Types of | Three actions may be taken (17) | The user's password may be changed.
breach in response to security
responses | breaches. (18) | Attempts may be made to trace the hacker.
(19) | The user identification may be disabled if the
user cannot be contacted to verify the status
of a security breach event.

Figure AD-4 : Domain of Design Discourse Description for the
MacPassword™ Application (DoDD(MPASS))

- Personal computer security management

)
N
Users
(1) 7|
&) (4>\(5)
Hacker

0 Guest

(6)/
' »
Security breach types - 8)

AN
9 (10

i Password
Illegal log-on Failed log-on

383

DoDD(MPASS) Table

Node Description No. Relations
Personal The personal computer (1) | Security management involves searching
comp}xter owner is responsible for logged usage information.
Sn?ca::thent managing its security. () | The objective is to ensure that personal
8 files are accessed only by the owner.
Users There are three categories of | (3) | A hacker is an unauthorised user who
users. attempts to break into the computer system.
(@) | The owner is an authorised user, responsible
for ensuring computer system security.
(5) | A guest is an authorised user who may
access files selected at the owner's discretion.
Hacker A hacker is an illegal user (6) | A hacker may be responsible for two types
who is intent on breaking of security breach : illegal log-on (9); and
into the computer system. failed log-on (10).
Owner The owner is responsible for | (7) | A failed log-on can be attributed to a
securing the computer password mis-type by the owner.
system and for taking (8) | The owner has a password to access the
actions on a security breach. computer system.
Types of There are two types of) | Anillegal log-on is a successful attempt by
security security breach. a hacker at breaking into the computer
breach system.
(10) | A failed log-on is an unsuccessful attempt
by either a hacker or the owner at accessing
the computer system.

On the basis of key target system characteristics, a relevant sub-set of the above

DoDD(ext) descriptions is selected and synthesised. The sub-set is then extended at

the Statement of User Needs Stage to generate a Domain of Design Discourse

Description for the target system.

384

Annex E : An Illustration of the JSD*(HF) Method using the Recreation Facility
Booking System (Adapted from Lim et al, 1992)3

The Recreation Facility Booking System supports two main activities, namely:

(a) it allows authorised users to make advance bookings of recreation
facilities on a first-come-first-served basis;
(b) it permits the checking of all bookings made during the current day, and

up to a week in advance.

The design scenario of the case-study is a re-design of the Recreation Facility
Booking System, i.e. a variant design scenario. The motivation for the re-design is

to provide more effective support to users.

The simplicity of the Recreation Facility Booking System is exploited presently to

illustrate the stage-wise products of the method.

The Ex ms System Analysis S

The objective of this stage is two fold:
(a) to generate background information for design, e.g. capturing details of
the current system. The information of interest includes current user needs
and problems, the current task, existing design features and rationale, etc.;
(b) to assess extant design characteristics that may potentially be recruited to

the target system.

In addition to supporting target system design, the acquired extant systems

3 The paper was written in mid-1990. A revised version was submitted for publication around
March 1991. Although the present version is a revision of the 1991 version, minor differences
with the latest version of the method (described in Chapters Nine to Eleven) were retained for

comparison.

385

information may subsequently support assessments of possible transfer of learning
by end users from the extant system to the target system (both positive and negative
transfer effects). An account of the high level processes for achieving these

objectives follows.

To initiate extant system analysis, appropriate extant systems are identified on the
basis of key target system characteristics extracted from the initial statement of
requirements (collated from the client's brief and contractual documents). Extant
design information is then elicited from various erid-user groups using 'off-the-
shelf’ elicitation techniques, e.g. structured interviews, unobtrusive observations,
etc. As a guide, an acceptable level of task description should satisfy two rules of

decomposition, namely :

(a) the resulting description should be understood by designers and end-
users;

(b) task decomposition should be terminated only when an acceptable

Probability .of failure x Cost (or P x C) criterion is reachcd (Duncan, 1974).

In most cases, the information would be elicited from various sources, e.g. from
different end-users and literature sources. Thus, a set of generic descriptors should
be derived to organise sensibly the information from these sources, i.e. 'building
blocks' that are common across the sources have to be identified. For this purpose,
the generification procedures suggested by Johnson and Johnson (1987); and
Johnson, Johnson and Russell (1988), have been adapted for the JSD*(HF)
method.# In addition, device dependent characteristics have to be removed by
abstraction to facilitate subsequent comparisons between extant and target system
designs. To this end, extant system descriptions should be abstracted to a
sufficiently high level to reveal the logic underlying their designs. However, the
level of abstraction need not be homogenous throughout the structured diagram
description. In particular, to preserve information on extant design features that are
potentially relevant to the design of the target system, the level of abstraction may

be deliberately lower for specific parts of the description.

4 See also Footnote 5.

386

s

Since the information derived from extant systems analysis contributes to
subsequent stages of the JSD*(HF) method, it is processed into products that
correspond in scope and format to products of these stages (see later). Thus, an
appropriate account of extant systems information is facilitated. Depending on the
prevailing design circumstances (e.g. in the case of variant design similarity
between extant and target systems is expected to be high), products derived at the
Extant Systems System Analysis Stage may range from the extant task description,
and generalised task model to the full JSD*(HF) complement. In other words, a full
complement of descriptions would include the system task model, user task model,
interface model, interaction task model and display design descriptions (see Figure
8-1). (Note that the extant task description is a dynamic representation of task
execution. Other products will be characterised later). In addition to the prevailing
design circumstances, the extent to which extant systems analysis is undertaken
depends largely on the designer's familiarity with the system domain, i.e. how well

defined the target system is.

Superficially, the outputs of this stage may seem to support only variant design
(which incidentally accounts for the vast majority of system development projects,
see Rouse and Boff, 1987) as opposed to ‘original' or 'novel' design. Thus, it
should be emphasised that the method is not limited to variant design. Together
with the procedures of the Generalised Task Model and Composite Task Model

Stages, 'original’ or 'novel' design is also supported (see later).

Products of extant systems analysis are documented using a combination of text,
JSD* structured diagram notation and design information tables. Figure AE-1
shows an extant task description for the case-study, described using JSD*
structured diagram notation. Further information on the nodes and leaves of the

description are expanded in an accompanying table as shown in Table AE-1.

387

surod
uasu]

Jnsuo)

Y

Arerp
j[nsuo)

o100 - 18 Joo] 010>
indug o o ndug
T I
93ueyo sum
! -
1991100 201010 gunjooq - so10K> SMWMM%v
put{ induy 199098 induy 1°S
I T * T —I
I 1 I
00 Apoq oum ai % 2d& arep % Kep
o a1 fuikerd Aioey urkerd
o A%d 1o7ug as00Yy) asooy) asooy)
1 T “ |
Apoq
Surjoog
* [ooue) 1deody
T 0 o
1Moo — 1
2Juanbas = ,joquks ou, wwn%%m Apoq ndur X0q 9010y
Junpou op = -, o as101) arediaeN
uoONDIN = 4,
uonoaas = 0, ———
! ynm xog

JUDSDIT pa1mpoM LS 3y Ul pasn uonvIoN Y1 01 K3y

2010y
induy

ursAg Supjooq Lo UOIIELIINY 3Y) rX0) uondiidsd(q Se], JueIxy

- 14V

aansig

388

Table AE-1 : Extant Task Description Table for the Recreation
Facility Booking System

Node Description and Observations Design Implications and Speculations

Booka | The user can book recreation facilities and

squash | check previous reservations.
court

The user inputs booking parameters one at | Poor design of search tasks. Should
Booking |2 time in the following sequence : day & adopt conjunction rather than

body date, facility type and playing time. Long | sequential search for day & date, and
search time requiring many search cycles. | playing time parameters.

Choose | The user may consult a diary before Provide a separate 'confirm’ step to
playing | deciding on a recreation day & date. High | permit user checking.

day & | proportion of 'quit' actions at this stage.
date The design does not allow the user to
confirm inputs before computer
implementation.

I (o

The Figure and Table will now be described in greater detail. Figure AE-1 shows
the interactive task imposed on users of the current Recreation Facility Booking
System. Essentially, users are required to select booking parameters sequentially
(i.e. day and date, time slot, recreation type) by navigating a cursor over available
parameter values. These values are matched iteratively by the user against a diary of
appointments. Problems with the current design are documented as shown in Table
AE-1. In particular, overly long trial-and-error matching was observed and
attributed to the limited amount of information that could be presented on an eight-
line LCD screen. Lessons learnt from extant systems analyses are then carried

forward to the next stage of JSD*(HF) design.

389

(IN)_The Generalised Task Model Stage

The objectives of this stage comprise the following :

(a) to generate predominantly device independent descriptionsd that
support comparative mapping and evaluation between extant design features
and target system requirements. Thus, abstracted extant task descriptions
derived in the preceding design stage are synthesised into a '‘Generalised
Task Model of the extant system or X' (termed a GTM(x) description).6
On the basis of a GTM(x) description, appropriate extant designs may be
ported to the target system;

(b) to expose new and/or salient characteristics destined for the target
system by extracting a 'Generalised Task Model of the target system or Y"
(termed a GTM(y) description) from the statement of requirements. Thus,
the scope and conceptual structure of the target system is characterised. On
the basis, extant systems (part or whole) may be identified for analysis. For
instance, GTM(y) may indicate that authorisation to use the recreation
facilities is to be controlled by booking system access. Access control
design is thus included in the extant systems survey, €.g. control by identity
cards (current system design); passwords (related system design); and

magnetic strip-cum-personal identification number (related system design).

The two generalised task models are carried forward to the Composite Task Model
Stage where desirable and compatible elements of GTM(x) are synthesised with
GTM(y) on the basis of the statement of user needs (see later). The result is a
composite task model of the target system. Note that the generalised task models

5 The extent of abstraction to device independence is determined by how dissimilar extant
system characteristics are from key target system characteristics. The selected level must be
sufficiently high to reveal semantic and logical requirements of the task (as opposed to device
dictated requirements, e.g. particular keystrokes), and still retain specific extant system information
of interest to the design of the target system.

6 Synthesis of abstracted task descriptions is only necessary if more than one extant system had
teen analysed, e.g. if both related and current systems had been analysed. If the current system is
tie only system analysed, then GTM(x) is the same as the GTM(current system).

390

could provide an early indication of the extent of training required by target system
users (corresponding to the complexity of GTM(y)), and the transfer of learning

that may arise (corresponding to the extent of porting from GTM(x)).

The products of the Generalised Task Model Stage are documented using JSD*
structured diagram notation. A case-study example will not be given since a
generalised task model is essentially similar in nature to a composite task model (an

example of which is shown in Figure AE-3).

11D _Th ment of r N

The purpose of the Statement of User Needs Stage is to augment the initial
statement of requirements in respect of user needs for the target system. Thus,
conclusions drawn from analysing extant designs are summarised with respect to
the user. Enhancements of the initial statement of requirements may comprise the

following :

(a) identification of user problems with the extant system,;

(b) a summary of the rationale, requirements and constraints underlying the
extant design. Such a summary supports a deeper analysis of user problems
and needs. In addition, it supports the identification of promising extant
designs for porting to the target system. The latter objective is thus
consistent with Newman's (1988) suggestion on maximising the re-use of
established user interface styles;

(c) a more explicit expression of design criteria (such as performance
requirements) for obviating the problems in (a), and for upgrading or

extending existing design solutions identified in (b).

The resulting JSD*(HF) description constitutes a human factors view of target

system requirements.

As an example, end-user problems and potential design solutions such as those

documented in Table AE-1 may be analysed and assessed against target system

391

requirements. Thus, it may be concluded that better search functions should be
provided on the target Recreation Facility Booking System. Alternatively, a larger
display screen may be specified as a prerequisite for faster and less onerous
selection of a suitable booking slot (a larger screen would support conjunctive
search since booking information on more than one booking parameter could be
displayed at each user-computer transaction). These user requirements are then

collated textually to generate a SUN(y) description (not shown for the case-study).

In addition to SUN(y), a second product is derived at the Statement of User Needs
Stage. The product, termed a Domain of Design Discourse or DoDD(y) description,
establishes the domain semantics required for interpreting design and task concepts
associated with the target system. For instance, the domain of the Recreation
Facility Booking System may be characterised as the assignment of temporal rights
over a recreation facility. Figure AE-2 shows how the relationship between
DoDD(y) entities may be described explicitly using a semantic net.” In this way, a
textual account of the nodes and relations of the semantic net is detailed in a separate
table (see Figure AE-2).

These two products of the Statement of User Needs Stage constitute the design
basis that subsequently supports and constrains the generation of target system
solutions. For instance, conditions for selecting and synthesising particular
generalised task model descriptions at the Composite Task Model Stage would be
defined by SUN(y) and DoDD(y).

(IV) The Composite Task Model Stage

The objective of this stage is to establish a conceptual foundation for target system
design. In particular, it defines the basis on which an appropriate functional design

may be advanced. To this end, on-line and off-line tasks8 are identified (this step

7 The notation was adopted for convenience. Alternative notations may also be suitable.
8 On-line and off-line tasks correspond to tasks which are supported and unsupported by the
computer system respectively.

392

Figure AE-2 : Domain of Design Discourse Description for the

Target Recreation Facility Booking System (DoDD(y))

recreational (1) g users No. Description
faciities
(2{\ (@) The relationship between users
A3) (€)) (1) | and recreational facilities (1) is
to | dictated by the supply and
supply and .. authorised \ 3) | demand (2) of various types of
d"‘{’d fa;‘;;‘;’ /users unauthorised recreation facilities (3).
(6) (I-,) (8) - (4) | There are two categories of users:
to | authorised users (4) and
* () | unauthorised users (5).
temporary ownership of recreational facility, i.e. .
apportionment in terms of time-slot bookings. 3?;&::‘?:3:%‘:;;}3&:?
o7 T Sigr (1)~ righs of (f) which are limited in supply (6)
» (a1 ownership 0 | and type (7). A limited supply
o (10) \ ®) | necessitates the temporal
fz:;;ixcty time assignment of ownership.
day (13) (14) (15) To assign temporal ownership,
\ (9) | one must define what constitutes:

user to | (a) atime slot (9 to 11), and
identification ~firstcome On payment (15) | (b) rights of ownership (12 to
fistserved of rent 15).

is termed task allocation) prior to a separation of the on-line task components into
interactive and solely computer tasks (this step is commonly referred to as function

allocation). These objectives are achieved as follows : |

(a) a sub-set of GTM(x) is synthesised with GTM(y). The sub-set
represents promising and compatible extant system(s) designs that satisfy
the design basis defined at the Statement of User Needs Stage. The result of
the synthesis is a preliminary composite task model of the target system
termed CTM(y). To support stage-wise evaluation, iterative design, and
post-implementation modifications and maintenance, additional notes on the
composite task model are documented as shown in Table AE-1, e.g.
insights associated with design features selected from GTM(x) and specific
design constraints described by GTM(y);

393

(b) the preliminary composite task model is decomposed further to facilitate
task allocation. Thus, a satisfactory level of description is derived iteratively
with step (c) below. Note that the decomposition should comply with the
design basis established at the Statement of User Needs Stage;

(c) on-line and off-line tasks are demarcated in the composite task model.
Off-line tasks are indicated by grey envelopes (see Figure AE-3);

(d) interactive and automated tasks (i.e. solely computer tasks) are then
decided in respect of the on-line task. The allocated functions are indicated
on the structured diagram as H: and C: actions respectively (see Figure
AE-6).

Figure AE-3 shows a CTM(y) description for the case-study. The shaded portion
describes status checks to determine whether a user is authorised to make bookings.
On positive verification, the user can then proceed to match recreation facility, day
and time preferences with available booking slots. Booking processes for both
successful and unsuccessful outcomes are thus described by CTM(y). On the basis
of such a description, an appropriate task allocation may then be decided. In the
context of the case-study, booking decisions are designated as off-line tasks since
the selection criteria are too varied among users (i.e. largely indeterminate). These

tasks are indicated by grey envelopes as shown in Figure AE-3.

Two other aspects need to be highlighted in respect of the Composite Task Model

Stage, namely :

(a) design iterations should be expected between the Statement of User
Needs and Composite Task Model Stages. For instance, any modification to
either SUN(y) or CTM(y) (e.g. arising from user feedback) would
necessitate such iterations. In some instances, wider design implications
may also be involved (see (b) overleaf). A case-study illustration follows.
During initial design, it was assumed that user problems with the current
system would be alleviated by displaying more booking information on a
larger screen. Although this solution would improve system performance,
the client may later decide on providing better computer support for

checking previous reservations. Since computer-assisted search could

394

support both the task of checking present booking availability and previous
reservations, previous design specifications concerning the provision of a
richer information display on a larger screen would be superseded. Iteration
around the Statement of User Needs, Composite Task Model, and System
and User Task Model Stages (see later) is thus required to update their
design descriptions;

(b) the first design inter-dependency between the streams of the JSD*
method occurs at the Composite Task Model Stage (see Figure AE-4). The

Figure AE-3 : Composite Task Model for the Target Recreation
Facility Booking System (CTM(y))

Expanded in text s
Key to the Notation used in the
Structured Diagram:
Box with :

1 ‘" = selection

" 3 ,
Booki = {teration
bod; & ‘no symbol’ = sequence

]
*
Booking
cycle
I
1
o . 0
Present Previous
booking body booking body
I . : !
Present * Input booking Look up
booking cycle search details booking
1
1 | 1
Input booking Check Booking
details availability outcome
|
L 1
0 o
No Confirm
booking booking

395

inter-dependency intersects the latter JSD*(HF) stage with the Modelling
Stage of the JSD*(SE) stream. At these stages, JSD*(SE) and JSD*(HF)
design concerns are expected to overlap. Thus, design information of
common interest should be shared. To this end, the information inter-
dependency should, at a minimum, be determined by information
requirements of the JSD*(SE) Modelling Stage. The minimum is set on the
basis that information captured in the JSD*(HF) stream would not be
relevant to JSD*(SE) design in its entirety. For instance, JSD*(SE)
designers would not be interested in low level user requirements at this

stage.?

Generally, products of the Composite Task Model, Statement of User
Needs and Modelling Stages would be discussed between JSD*(HF) and

Figure AE-4 : Design Inter-dependencies between Software

Engineering and Human Factors Streams of the JSD* Method

JSD*(SE) |
Stream

JSD*(HF)
2 Stream

Statement of
User Needs

Composite
Task Model

System and User Task Model

Specification

I Modea |
v System User Task
| Functions Task Model Model

v | v

9 This assertion follows because the JSD method does not explicitly address user requirements
capture and documentation. In particular, the JSD Model is not concerned with user tasks (unlike
JSD*(HF) products derived at this stage).

396

JSD*(SE) designers.10 In particular, design information on object and
action attributes, user needs and problems, system events, user task
semantics and expected user task support, is shared and discussed. The
result of the discussions is the specification of a Functions List to define
the scope of target system design. The list is essentially a tabular description
of the initiating trigger, end result and performance characteristics of

functions to be supported by the system.

Presently, the case-study example described in (a) above is taken further to illustrate
inter-dependency requirements between the JSD* design streams. In this case, the
delayed introduction of additional functional support would not affect the JSD*(SE)
model if an appropriate system scope was defined originally, i.e. actions and
attributes of the modelled entity would remain unchanged. However, the additional
functions would have to be accommodated at the Functions Stage of the JSD*(SE)
stream. Thus, the original Functions List would have to be updated to account for
the changes. In addition, a design iteration should be performed to update all
JSD*(HF) products that are affected by the changes.

Having agreed on a Functions List, on-line and off-line tasks of the CTM(y)
description are updated accordingly by JSD*(HF) designers. The description is
then decomposed further at the next stage of the method.
Th m_an Task Model
Three design concerns are addressed at this JSD*(HF) stage, namely :
(a) on-line and off-line components of CTM(y) are decomposed further to

support function allocation. Bearing in mind appropriate contributions from

extant systems analysis and the JSD*(SE) stream (see (b) and (c) below),

10 A wider scope of design discussions and information sharing is not precluded at this inter-
dependency point. Indeed, wider discussions may be undertaken to pre-empt the design information
requirements of the JSD*(SE) Functions Stage.

397

on-line components are decomposed to yield the system task model of the
target system (i.e. STM(y)). In other words, the system task model re-
describes the on-line task in terms of lower level human and computer
tasks. Functional design of the target system is then pursued via the system
task model.

Meanwhile, off-line components of the composite task model are collated
into a single description termed the user task model of the target system (i.e.
UTM(y)). In other words, the model comprises a summary of tasks that are
unsupported by the computer. In many cases, the user task model is not

decomposed further (see later).

Figure AE-5 illustrates graphically how the CTM(y) description for the
case-study is decomposed and documented using JSD* structured diagram
notation. The primary product of the decomposition, namely STM(y), is
detailed in Figure AE-6. This Figure shows that the STM(y) description
essentially comprises high level cycles of human-computer interaction, e.g.

computer prompts and user inputs.

As regards off-line tasks, it was decided that further decomposition would
not be necessary since the user interface design for the present case-study,
would not be influenced significantly by such tasks. Consequently, off-line
tasks were collated directly into a UTM(y) description (see Figure AE-5). In
other cases, UTM(y) may be decomposed further to support job design,
e.g. when both STM(y) and UTM(y) descriptions have to be assessed to

determine whether the combined workload is acceptable;

(b) suitable sub-sets of extant system descriptions (specifically STM(x) and
UTM(x)) are selected and incorporated in accordance with GTM(x) and
SUN(y). For the case-study, it was decided that two booking scenarios
from the current system would be accommodated. The scenarios

characterise the requirements of the following user groups :

(i) users whose time for recreation is tightly constrained;

398

(ii) users whose time for recreation is flexible. For such users,

booking preference is concerned only with recreation type and day.

These user characteristics should be accommodated when the recruitment
and enhancement of extant designs are considered. As an illustration,
consider the design of search-and-match functions to support recreation
booking. To accommodate the requirements of (i) above, the search
function would have to support the location of specific booking slots. Thus,
the design is required to prompt the user for a complete input of booking

Figure AE-5 : Decomposition of CTM(y) into STM(y) and UTM(y)

CTM(y) of
CTM (y) recreation
booking system
u
Initial access off-line task
action body envelope
=]
Input ID Verify ID *
Checking
cycle
T
1 1
(] o
engagements current time
UTM(y) of
STM(y) of UTM(y) re.creanon
STM(y) ,ec,gﬁon booking system
booking system =
1 Check
! [free time
Initial access %
action body $
T
I | [
C: Extend | |H : Input ﬂm D Check °© Gﬁ
welcome ready engagements
L ! 1
°! | Etectronic. °
. ectronic
Diary organiser ete.

399

00
uowked EME»& ”_8 wmﬁ.ﬂoon yooq o1 j0u
u—.—&&.m sidwoid : D uﬂ.nm&u: a1t H
I I |
_ _
3upjoog funyooq
wrnyuon
o o N
 —]
|
wono fi[1qerteas Mﬁmﬂ%oo“ bmmo&nﬁ muv
3unjoog ¥ooUd : H Bo_.*m - sum nduy : 4
T I T |
aouanbas = ,joquis ou,
Sunjooq a[npayos s[reop as -
d) Sunjooq yoreas Surjooq o[0ko Zunjooq UoONDIAN "~
00T H . Jusaly uonaaPs = ,0
Mmoys D uﬂﬂs ‘H * . WY .
I “ —] _ D ynm xog
Supjooq 3unjooq JUD4A8DI(T pamimyS Y3 Ul pasn uoupiIoN a1 01 L2y
snotaaig Juesa1g
o o
[]
1
mﬁo»o swoopem |
* upjooyg muQEO.nam D puanxg D f
oo | o] [| [oo v
Sunjoo !
Djoog ndag: g sidwoxg : 5 $59008 Tenu]
1 I T)

(A)INLLS) wdIsAS 3upjooq AJijoe,] UOBIINIY J93JB], dY) I0J [9POI YSe], WIISAS

UoNBIIII

30 (LS

waysks Juryooq

nay up papuvdxy

! 9~V dan31y

400

parameters (comprising time band, recreation type, and day of desired
booking). As for the requirements of (ii) above, the search function would
have to support the checking of booking availability by recreation type and
day.

Following the above considerations, it may be concluded that current
system designs which prompt disparate user input of recreation type and
day (i.e. one input per interaction cycle) are irrelevant to target system
design. An explanation of the conclusion follows. Disparate input was
assumed for the current system to minimise the information that has to be
displayed on each screen. The latter constraint was imposed by the client's
selection of an eight-line LCD screen. To accommodate the constraint (on
the current system) without lowering unacceptably the chances of offering
suitable booking slots to the user, booking parameters had to be organised
sequentially to support a stage-wise convergence scheme. Since the
hardware constraints no longer apply for the target system, more booking
information may be displayed on each screen to support multiple user
selections. Thus, a multi-variate search function may be introduced. In other
words, users may specify conjunctions of booking parameters to tightly
constrain the booking information retrieved by the computer. Consequently,
current system designs that support stage-wise convergence are no longer
relevant. However, other extant designs such as booking input and
confirmation prompts may still be ported to the target system (if
appropriate);

(c) design information of common interest is shared at this inter-dependency
with the Functions Stage of JSD*(SE) stream (see Figure AE-4). At this
stage, both streams of the JSD* method are concerned largely with
functional decomposition. As such, the functions list (defined at the
previous inter-dependency) would not be specific enough to ensure that a
convergent design is derived by both JSD* streams. Thus, more specific
design information has to be shared and agreed between JSD*(HF) and
JSD*(SE) designers. In particular, the design information to be shared

401

would comprise the following :

(i) JSD*(HF) design information -- STM(y) description of human-
computer interaction cycles and sequencing of functional supports;

(ii) JSD*(SE) design information -- descriptions of input and output
streams, JSD function and model processes, and the input sub-system
(contributes to the design of error and feedback messages at later
stages of the JSD*(HF) method).

Following discussions on the above design descriptions, a common pool of
information is adopted to ensure design convergence. In addition, close
contact should be maintained between JSD* streams to avoid unnecessary
design iterations when JSD*(HF) and JSD*(SE) specifications are
integrated.

For a case-study of this design inter-dependency, the reader is referred to
Section IV where an example concerning the checking of previous bookings

was described.

The scope of the System and User Task Model Stage may now be summarised. A
STM(y) description is derived to define the high level human-computer interactions
required by the on-line task. Taking due account of the design basis defined at the
Statement of User Needs Stage, device level design is then pursued via STM(y). In
this respect, pertinent characteristics of UTM(y) should also be noted (e.g.
information exchanges with STM(y)) since they could contribute to job and user
interface design, e.g. the content and format of information displays; the
requirement for speech input devices arising from off-line task demands; combined

workload assessments; etc.

(VI) The Interaction Task Model Stage

The objective of this stage is to specify the device level inputs implicated by the
interactive task. In particular, the product of this stage, namely ITM(y), is an

402

'idealised' description of the user inputs required to advance the interactive task. On
the basis of such a description, potential user errors are then considered at a later

design stage (refer to Section VIII).

ITM(y) is derived by decomposing the H: leaves of the STM(y) description
(corresponding to user actions -- see Figure AE-7). The resulting description is

expressed in terms of the following :

(a) object and action primitives of the chosen user interface environment (if
any);
(b) basic keystrokes of the designated hardware.

ITM(y) should be described at a level easily understood by design team members
and end-users. For instance, the ITM(y) description for the case-study is terminated
at the level of mouse clicks (instead of further decomposition into a mouse-down
followed by a mouse-up -- see Figure AE-8), since the Macintosh interface style

was assumed to be understood by all concerned.

As with earlier JSD*(HF) products, ITM(y) is documented using the JSD*
structured diagram notation.

To derive an appropriate level of ITM(y) description, design iterations within the
stage and across succeeding stages may be necessary. An appropriate description
is required to support later grouping of ITM(y) leaves into coherent or meaningful
sub-tasks. Each of these groups are annotated on ITM(y) as a 'bubble’ containing a
screen number, e.g. Screen 1 or S1 in Figure AE-8. The annotation constitutes part
of an overall scheme to inter-link products of the Design Specification Phase of
the JSD*(HF) method (see Figure 8-1). Specifically, the ITM(y) description is
linked with products of the Display Design Stage. Thus, user inputs are linked with
dynamic screen actuations (to present functional supports, and error and help

messages to the user -- see later) in accordance with the interactive task context.

A case-study illustration of the inter-linkages follows. An inspection of Figures

403

AE-8 and AE-11 reveals that the bubble labelled 'S2.5' (or Screen 2.5) appears in
both ITM(y) and the dialogue and inter-task screen actuation description (refer to
Section VIII for a detailed account). The appearance of Screen 2.5 across these
products implies the following scenario : an illegal input is detected by the computer
when an unauthorised user enters an invalid identification number and clicks on the
'Okay' button. Thus, screen 2.5 with error message 2 (denoted as 'Screen 2.5 --

em 2'in Figure AE-11) is displayed by the computer.

To complete the specifications for the scenario, the content of error message 2 or

em 2 is described in the message index (Figure AE-10) as 'Invalid personal i.d.'

Figure AE-7 : Deriving ITM(y) by Decomposing Human (H:) Leaves
of STM(y) on the Basis of the Domain of Design Discourse

Description and the Chosen User Interface Environment

STM(y) of
STM(y) recreation Design
booking system Discourse
I ™ Description
[I 1 +
Initial access l I | I . Chosen User

action body

I - . !
C: Prompts
user for ID

Interface

I -
U H : Input

ITM(y) of
recreation
booking system

S1, 82, §2.5 = Screen Numbers

Similarly, the design of screen 2.5 is determined by referring to another JSD*(HF)

product which describes its composition and layout pictorially (see Figure AE-12

for a description of Screen 1). Finally, the behaviours of screen components are

specified in a set of JSD*(HF) descriptions termed the interface model or IM(y)

descriptions. These descriptions are discussed in greater detail in the next Section.

Figure AE-8 :
Facility Booking System (ITM(y))

Initial access
action body

Key to the Notation used in the

UserID:N
keys input

SI, 82, 82.5 = Screen Numbers

Interaction Task Model for the Target Recreation

405

Structured Diagram:
recreation
Box with :
‘o' = selection
*' = jteration
Booking ‘no symbol’ = sequence
body - - -’ = continue next page
| (not shown)
*
Booking
cycle
(0]
Present Previous
booking booking
1
I I 1
Click Look up
'Previous’ Input ts.earch booking
button - option details
L S 6(2)a
1 1 orb
Search O
within Searc%x all
time-band bookmgs
' |
[1 1
Click Time Day, facility Click e VAT
band' button & time-band ‘Search’ Cl;‘::t:‘l !
\ enty button
sa@) | " S 52) S 4(2)
Input
values
Move Confirm
cursor box entry

(VID) The Interface Model Stage

The objective of this stage is to specify the behaviour and changes in appearance (if
any) of bespoke screen objects, e.g. object responses to user inputs and changes in
states of representation and real world entities. Screen objects originating from the
chosen user interface environment (if any) need not be described since they may be
assumed to be understood by design team members. The product of this stage is a

set of interface model descriptions or namely IM(y).

IM(y) descriptions are derived by decomposing the C: leaves (i.e. computer
actions) of STM(y) (see Figure AE-9). The decomposition should be consistent
with the context established by the domain of design discourse description.
Contextual consistency also applies when a secondary conceptual framework (such
as a user interface metaphor) and/or a particular user interface environment is
adopted, e.g. the adopted metaphor should be compatible with the system domain.
To support later assessment of such concerns, the design decisions and rationale
should be documented.

A case-study example of a structured diagram description of IM(y) is shown in
Figure AE-9. The Figure illustrates how changes in the states of an abstract screen
object OBJ (attributed to actions P and Q) may be linked to its appearance changes
(pictorial descriptions). Thus, icon design falls within the scope of the Interface
Model Stage.

IM(y) descriptions are carried forward to the Display Design Stage to support
screen composition. Links with the dialogue and inter-task screen actuation
description may also occur since action leaves of particular IM(y) descriptions
constitute triggers for screen actuations. A case-study example of such a link was
described in Section VI, i.e. a mouse click on the 'Okay’ button object was linked

to the actuation of Screen 2.5.

Presently, the products derived at the Display Design Stage are described.

406

Figure AE-9 : Deriving IM(y) by Decomposing Computer (C:)
Leaves of STM(y) on the Basis of the Domain of Design Discourse

Description and the Chosen User Interface Environment

STM(y) STM(y) of ~ Domain of
recreation Dsign
booking system Discourse

I - 55% Description
Initial access
action body

C: Extend H: Input C: Prompts H: Input
welcome user for ID D

Behaviour
of object
OBJ

Object appearance associated with

action P causing a state change.

Object appearance associated with
action Q causing a state change.

The Display Desi

At this stage, preceding JSD* design descriptions are drawn together to complete
the specification of a software user interface design. In particular, the JSD*(HF)
stream contributes IM(y) and ITM(y) descriptions, while specifications of the JSD
input sub-system and output contents of information function processes are
contributed by the JSD*(SE) stream. On the basis of these descriptions, the
following specifications are addressed :

(a) the content of error, feedback and help messages. These specifications

407

are described by a message index (Figure AE-10);

(b) the context for triggering error, feedback and help messages. These
specifications are described by a dialogue and inter-task screen actuation
description (Figure AE-11);

(c) the composition and layout of screen displays. These specifications are

described by screen layout diagrams!! (Figure AE-12). A dictionary is also

Figure AE-10 : Inter-Linkages between Products of the Display
Design Stage

Message Index Screen Layout Diagrams

Error Message Error Message

Number Content RFBS
eml Please enter personal DITaSAD(y)
identification (ID) first.
em?2 Invalid personal ID.
)
m3 Please select 'day' of N%I::al
e booking first.
4 Please select desired
em ‘facility' first. GetID
ems5 Please selc?ct 'fime from'
before activating 'search’.
etc etc. o °
: Bad Good ID
ID part
Consume
o o Screen 2
BadID NoID
Dialogue and Inter Task
c Consume Screen Actuation Description
onsume Screen 2.5 -- or the Recreation Facility
Screen 2.5 .
- em?2 em 1 Booking System

11 §creen layout diagrams may be drawn on paper (scale or dimensioned drawings) or prototyped
using a computer-based tool (e.g. Prototyper™). Although paper-based documentation of the
message index and screen layout diagrams may be superseded by such tools, it is emphasised that
the dictionary of screen objects, interface model descriptions, and the dialogue and inter-task screen
actuation description should still be documented explicitly. Thus, the requirement for
comprehensive documentation to support design evaluation and maintenance is satisfied.

408

Figure AE-11 :

Dialogue and

Inter-Task Screen Actuation

Description for the Target Recreation Facility Booking System
(DITaSAD(y))

Key to the Notation used in the Structured

Diagram:
. RFBS RFBS = Recreation
Box with : DITaSAD(y)| Facility Booking System
= selection
= iteration |
'no symbol’ = sequence REBS ¥
- - - '= continue next page (not shown) Transactions
1
I 1
o o)
Normal Restart
Set Set
1
1 I_I_I
Consume .
Screenl -- Get user Pre\flous Restart
request Actions
.......... T I
1| Presen® PS:ZZ?}:’ At *
: ction
-E‘.".’E".'f- Booking
Consume Get search
Screen 3 option
I
r
o 0
Get search Search all
time-band bookings
l_"l_l I__;'l
Consume Consume Consume Get day, facility| Consume Show
Screen 2.5 Screen 2.5 Screen 4(2) & time-band | [~ 42) requested
—em?2 creen values information
T I
Expanded in text ic [1 1 c
. Show onsume
Bad input Good input Screen 6(2)b
requested
values part values . .
information
Ch G;tin* Consume Consume
ecking Screen 5(2)| | Screen 6(2)a
Parameters
I I .]
No 0 No Facili (o) No O
Day Name 0 Facility Time-Band
Name Value
[I ——
Consume Consume Consume O|| Consume O
Screen 4.5(2) || Screen 4.5(2)|| Screen 4.5(2)| | Screen 4.5(2)
- em3 --em4 -- em5 --em6

409

included to provide a textual account of objects in each screen diagram

(Table AE-2).

The Dialogue and Inter-Task Screen Actuation Description (DITaSAD(y)) describes

how screen actuations are set against the interactive task context described by

ITM(y). In other words, it specifies when particular computer functions and

messages should be presented to support interactive task performance.12 Wider
linkages between DITaSAD(y) and other JSD*(HF) products (namely interface
model descriptions, message index and screen layout diagrams) have already been

described in Section VI.

Figure AE-12 : A Pictorial Screen Layout Description for the Target

Recreation Facility Booking System

WELCOME

to UCL's Recreation Facility

Booking System

If you are a member of this College you can use this system to
book the following facilities at the specified hourly rates:

1. Squash Courts
2. Snooker Tables

Eluit System]

Specified by Kee Yong Lim

£2.00
£250

Implemented by Dick Lloyd Thomas

[screen 1

12 The objective of DITaSAD(y) is not the description of all possible screen transitions. For

instance, transient changes in the appearances of objects (these are described by IM(y)), screen

refresh and scrolling actions, etc., are excluded from its scope.

410

Table AE-2 : Dictionary of Screen Objects for the Target Recreation
Facility Booking System (Screen 1)

Screen Object Description Design Attributes

Okay button The user clicks this button to On input, the computer displays
indicate that the welcome message §creen 2.t0 prompt the user to
and membership requirements are input an identification number,
understood.

...... etc seeeni€IC, - (o

To summarise, structured diagrams, tables and pictorial diagrams are used to
document the dialogue and inter-task screen actuation description, message index
and screen layout respectively. These products of the Display Design Stage,
together with ITM(y) and IM(y), comprise JSD*(HF) specifications of a user
interface design.13 The specifications are discussed with JSD*(SE) analysts.14
Amalgamated JSD*(HF) and JSD*(SE) specifications are then implemented in

13 The potential for wider applications of JSD*(HF) products should be noted. For instance,
products derived between the Generalised Task Model and Interaction Task Model Stages (inclusive)
could support the design of training programmes and user manuals. Specific applications of each
JSD*(HF) product have already been indicated in the paper, e.g. job design would be supported by
system and user task model descriptions. Further account of the relationships between JSD*(HF)
products and existing human factors design ‘topics' is excluded, since the main objective of the
present research is the specification of JSD*(HF) descriptions to support system design.

14 1n view of the current training of human factors designers and the notation adopted by the
method, the amalgamation of JSD*(HF) with JSD*(SE) specifications should be undertaken by
JSD analysts. The assertion is consistent with the design roles currently assumed by human factors
designers and software engineers.

411

accordance with the JSD method.15: 16 Late evaluationl? follows and 'final'

design modifications (if any) are accommodated accordingly.
The above account completes a stage-wise illustration of the JSD*(HF) method.
To conclude, the JSD*(HF) method contributes to system development as follows :

(a) it specifies an explicitly structured human factors design process. Thus,
the scope of human factors support is extended throughout the system
design cycle. In addition, a structured design conception would support
better project management since it encourages an explicit accommodation of
huyman factors by the design agenda;

(b) it identifies explicit intersections between Human Factors and Software
Engineering design analysis and specification. Thus, early, timely and

contextually relevant human factors input is facilitated.

15 Computer-based support for implementing JSD*(HF) specifications would be desirable.

16 A detailed account of human factors input to JSD implementation is excluded from the present
research. However, it may be expected that human factors input would be confined largely to the
specification of additional feedback displays to accommodate particular JSD implementations. For
instance, additional feedback would be necessary if an implementation involves longer than
expected transient response times. Wider human factors input is not envisaged because the
transformation of JSD* specifications implicated by JSD implementation, is a well regulated and
mechanistic process. In addition, the transformations, by definition, would not alter the external
behaviour implied by the specifications (see Zave, 1984).

17 1 ate evaluation was excluded from the present research for the following reasons :

(a) human factors input to late evaluation is already well established. Indeed, off-the-shelf
evaluation techniques are readily available for recruitment to the JSD*(HF) method;

(b) the primary objective of the research is to address the ‘too-little-too-late’ problem of
human factors input to system development. Thus, the focus of the research is on the
development of human factors support for garly as opposed to later stages of system
design, i.e. to support design analysis and specification, rather than design

implementation and evaluation.

412

Bibliography

(A) List of Published Papers Originating from the Present Research

Lim, K. Y. and Long, J. B,, 1992, A Method for (Recruiting) Methods :
Facilitating Human Factors Input to System Design. In : Brooks, R. (ed.),
Proceedings of the ACM Annual Conference on Human Factors in

Computing Systems (CHI'92), Monterey (USA), May 3-7, 1992, ACM.
Lim, K. Y. and Long, J. B., 1992, Computer-Based Tools for a Structured

Human Factors Method. In : Mattila, M. (ed.), Proceedings of the
International Conference on Computer-Ai Ergonomics an
(CAES'92), Tampere (Finland), May 18-20, 1992, Elsevier Science
Holland.

Lim, K. Y. and Long, J. B., 1992, Pitfalls of Rapid Prototyping : Observations on
a Commercial System Development Project. In : Lovesey, E. J. (ed.),
Contemporary Ergonomics, Proceedings of the Ergonomics Society's 1992
Conference, Aston (UK), April 7-10, 1992, Taylor and Francis.

Lim, K. Y. and Long, J. B., 1992, Rapid Prototyping, Structured Methods and
the Incorporation of Human Factors in System Design. To appear in :
MacLean, A. (ed.), The St. Petersburg International Workshop on Human
Computer Interaction, Int. Centre of Scientific and Technical Information
(Moscow), ACM SIGCHI (USA) and HFS (USA), August 4-7, 1992, St.
Petersburg).

Lim, K. Y. and Long, J. B., 1992, Instantiation of Task Analysis in
a Structured Method for User Interface Design. To appear in : Wearn, Y.
(ed.), Task Analysis in HCI Workshop, European Association for
Cognitive Ergonomics (EACE) and US National Centre for Geographic
Information and Analysis (NCGIA), Schaerding (Austria), June 9-11,
1992.

Lim, K. Y., Long, J. B. and Silcock, N., 1992, Integrating Human Factors with
System Development : An Overview of a Structured Human Factors

Method. In : Hitchins, D. K. (ed.), Proceedings of the International
Conference on Information-Decision-Action Systems in Complex

413

Organisations (IDASCQ'92), Oxford (UK), April 6-8, 1992, IEE.

Lim, K. Y., Long, J. B. and Silcock, N., 1992, Integrating Human Factors with
the Jackson System Development Method : An Illustrated Overview. In :
Barber, P. and Laws, J. (eds.), Ergonomics (Special Issue on Cognitive
Ergonomics III), 1992, 33 (12), Taylor & Francis, London.

Lim, K. Y., Silcock, N. and Long, J. B., 1991, Case-Study Illustration of a
Structured Method for User Interface Design. In : Lovesey, E.J. (ed.),
Contemporary Ergonomics. Pr ings of the Ergonomi
Conference, Southampton, April 1991, Taylor and Francis.

Lim, K. Y., Long, J. B. and Silcock, N., 1990, Motivation, Research
Management and a Conception for Structured Integration of Human Factors
with System Development Methods: An Illustration Using the Jackson
System Development Method. In : van der Veer, G et al (eds.), Proceedings
of the Fifth European Conference on Cognitive Ergonomics, Urbino (Italy),
September 3-6, 1990, 359-374, Golem Press.

Lim, K. Y., Long, J. B. and Silcock, N., 1990, Integrating Human Factors with
Structured Analysis and Design Methods: An Enhanced Conception of the
Extended Jackson System Development Method. In : Diaper, D. et al (eds.),
Proceedings of the Third IFIP Conference on HCI (Interact '90), 225-230,
Elsevier Science Publishers, North Holland.

Lim, K. Y., Long, J. B. and Silcock, N., 1990, Requirements, Research and
Strategy for Integrating Human Factors with Structured Analysis and
Design Methods: The Case of the Jackson System Development Method. In:
Lovesey, E.J. (ed.), Contemporary Ergonomics, Proceedings of the
Ergonomics Society's 1990 Conference, Leeds, April 1990, 32-38, Taylor
and Francis.

Silcock, N., Lim, K. Y. and Long, J. B,, 1991, A Structured Method for User
Interface Design. In : Queinnec, Y. and Daneillou, F. (eds.), Proceedings

f the 11th Congress of the International Ergonomics Association's 1991
Conference, Paris, July 1991, 67-68, Taylor and Francis.

Silcock, N., Lim, K. Y. and Long, J. B., 1990, Requirements and Suggestions

for a Structured Analysis and Design (Human Factors) Method to Support

the Integration of Human Factors with System Development. In : Lovesey,

E.J. (ed.), Contemporary Ergonomics. Proceedings of the Ergonomics

414

Society's 1990 Conference, Leeds, April 1990, 425-430, Taylor and
Francis.

Walsh, P, Lim, K. Y., Long, J. B. and Carver, M. K., 1989, JSD and the
Design of User Interface Software. In : Barber, P. and Laws, J. (eds.),
Ergonomics (Special Issue on Methodological Issues in Cognitive
Ergonomics), Vol 32, No 11, November 1989, 1483-1498, Taylor &
Francis London.

Walsh, P., Lim, K. Y., Long, J. B. and Carver, M. K., 1988, Integrating Human
Factors with System Development. In : Heaton, N. & Sinclair, M. (Eds.)

Designing End-User Interfaces. Oxford : Pergamon Infotech State of the
Art Reports 15:8, 1988, 111-120, Pergamon Infotech Limited England.

415

(B) Cumulative List of RARDE Project Working Documents

WD 1

WD2

WD 3

WD 4

WD 5

WD 6

WD7

WD 8

WD 9
WD 10

WD 11

WD 12

WD 13

WD 14

WD 15

WD 16

WD 17

WD 18

WD 19

Integrating Human Factors into

System Development -- The Project Proposal
Elaboration of the Aims stated

in the Project Planning Document # 1
Structured Methods and

the Design of Interactive Software

Formal Methods of Software Development

Using JSD as a Description Language

Specification of Direct Manipulation Interfaces
Description of the Macdraw

User Interface using Action Effect Rules

On Building JSD Models from

Informal User Requirements Specifications

An Assessment of the Macdraw Application Package
Applying JSD to the

Specification of Human Factors Design Issues

An Anatomy of Software Methodology

On Terminology and Design Perspectives

Task Analysis Methods in HCI Design

Some Tentative Initial Thoughts

Towards a Possible Framework for

Modelling Systematic Methods of System Development
Task Strategies, Metaphors and

the Integration of Interface Design into JSD
Proposed Plan of Action

for Network Manager Case-Study

Essential Considerations for Interfacing

Task Analysis and Task Modelling with JSD Modelling
On Reasoning about the

Project and DDN Case-Study Proposals

On Reasoning about User Interface

416

Author(s)

K. Y. Lim
P. Walsh &
K. Y. Lim
P. Walsh &
K. Y. Lim
K. Y.Lim
& P. Walsh
P. Walsh
P. Walsh

P. Walsh

P. Walsh
K. Y.Lim

P. Walsh

K. Y.Lim

K. Y. Lim

P. Walsh

J. B. Long

K. Y.Lim

P. Walsh

K. Y.Lim

K. Y.Lim

WD 20

WD 21

WD 22

WD 23

WD 24

WD 25

WD 26

WD 27

WD 28

WD 29

Design using Extended JSD in Conjunction

with an Extant System Systems Analysis Approach
The Analysis of Task Objects

Method (ATOM) : A Method of

Representing User Activities for User Interface Design
Functional Specification

for the Network Manager Workstation
Rationalization of the Project

Developments Based on the JSD*

Models Described in WD 19 and Infotech Paper 1
Some Considerations on Notational

Requirements for Task and Interface Information
Capture : Towards the Conception of a JSD* Notation
Reply To D&L's Human

Computer Interaction Engineering (HCIE)
Conception -- An Explication of the Corresponding
Definitions of Human Factors (HF) Terms

adopted by the RARDE Project and KYL's PhD Work
Explication of KYL's Conception

of the Research Activities Required for the
Derivation and Specification of the JSD* Method

A Perspective on HCI Model Classes and their Life-
Cycle w.r.t. the System Design Process : Providing
a Rational Basis for the Current Conception of JSD*
Case-Study Illustrations of a Conception

of Structured Interface Design Within JSD*
Towards a JSD* Method -- A Review

of the Research Scope, Requirements

and Constraints; and the Proceduralisation

of the JSD* User Interface Design Process

A Preliminary Conception of the

Stage-Wise Process of User Interface

Design within JSD* : A Case-Study

Instantiation using the University College London

417

K. Y.Lim

P. Walsh
P. Walsh &
K. Y.Lim

K. Y. Lim

K. Y.Lim

K. Y.Lim

K. Y.Lim

K. Y.Lim

K. Y.Lim

K. Y.Lim

WD 30

WD 31

WD 32

WD 33

WD 34

WD 35

WD 36

WD 37A

WD 37B

WD 38A

Recreation Facility Booking System (UCL RFBS)

Towards a Task Analysis Method

for Interface Design within JSD* :

The Usefulness of Generification Procedures
Towards a Task Analysis Method

for JSD* : An Analytical and Procedural
Review of Task Analysis for Knowledge
Descriptions and Knowledge Analysis of Tasks
Towards a Task Analysis

Method for JSD* : An Analytical and
Procedural Review of 'Hierarchical Task
Analysis'; 'Hierarchical Planning' and 'GOMS'
An Overview of the First Pass

Version of the JSD*(HF) Method

A First Pass Version of the

Proceduralised JSD*(HF) Method

An Appraisal of the Requirements of the
Digital Data Network Network Management
Case-Study Test -- Perspectives Corresponding
to Client Simulation and Research Constraints
Event Tables for the DDN Case-Study

JSD*(HF) Deliverables Corresponding to the First

Conjunction with the JSD*(SE) Design Stream --

Outputs of the CTM and SUN Stages for the Trouble-

Shooting Module of the DDN NMS Case-Study

JSD*(HF) Deliverables Corresponding to the First

Conjunction with the JSD*(SE) Design Stream --
Outputs of the CTM and SUN Stages for the
Security Module of the DDN NMS Case-Study
The DDN NMS Case-Study -- Documenting
Outputs of the ESSA and GTM Stages for the
Trouble-Shooting Module and Associated

Refinements Suggested for the JSD*(HF) Method

418

K. Y. Lim

S. Coles &

K. Y.Lim

N. Silcock
& K. Y.Lim

N. Silcock

K. Y. Lim
N. Silcock
& K. Y.Lim

K. Y. Lim
N. Silcock
& K. Y.Lim

K. Y.Lim

N. Silcock

K. Y.Lim

WD 38B The DDN NMS Case-Study --

Documenting Outputs of the ESSA and GTM

Stages for the Security Module and Associated

Refinements Suggested for the JSD*(HF) Method N. Silcock
WD 39A The DDN NMS Case-Study -- Documenting

Outputs of the CTM and Post-CTM Stages for

the Trouble-Shooting Module and Associated

Refinements Suggested for the JSD*(HF) Method K. Y. Lim
WD 39B The DDN NMS Case-Study --

Documenting Outputs of the CTM and Post-CTM

Stages for the Security Module and Associated N. Silcock

Refinements Suggested for the JSD*(HF) Method

& K. Y.Lim

WD 40A JSD*(HF) Specifications of the User Interface for
the DDN NMS Case-Study (Trouble-Shooting Module) K. Y. Lim

Table B-1 : Authorship Summary for RARDE Project Working
Documents
gﬁgll (r)rl;eonft T%?IRI:;:;ZH Working Document Number
Lim 2 WD 1*, 9, 11, 12, 15%, 17, 18%, 19*, 22* 23, 24, 25*,
26*, 27*, 28*, 29%, 33*, 35%, 37A*, 38A¥, 39A*, 40A*,
Lim & Walsh 1 WD 4,
Coles & Lim 1 WD 30.
Silcock & Lim 4 WD 31, 34*, 36, 39B.
Walsh & Lim 3 WD 2%, 3, 21.
Long 1 WD 14
Silcock 3 WD 32, 37B, 38B.
Walsh 8 WD §, 6, 7, 8, 10, 13, 16, 20.

Total Number of Working Documents = 43

(Major project deliverables are marked with an asterisk)

419

(C) Cumulative List of PhD Working Documents

PhD 1

PhD 2

PhD 3

PhD 4

PhD 5

Draft Proposal of a PhD Project entitled Interface Design Derivation via an
Extant System Systems Analysis Approach

Relationship between the Areas of Concerns of the PhD and RARDE
Projects -- the Overlap and Extensions

Hierarchical Description of the Structure of Overall Conduct of the PhD
Research and an Overview of the Proposed Case-Studies and
Experimental Investigations

Preliminary Impressions on Sutcliffe's Report on Extending JSD to
include Human Factors

The Design and Psychological Rationale Underlying the JSD*(HF)
Method

420

