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Abstract

Current human factors input to system development is effected through methods, 
tools and guidelines. Although the input prompts the consideration of human 
factors concerns during system design, reports have highlighted inadequacies with 
respect to the scope, granularity, format and timing of the contributions, e.g. 
Smith, 1986; Chapanis and Burdurka, 1990; Sutcliffe, 1989; etc.

The thesis argues that such problems are obviated if design needs of both Software 
Engineering and Human Factors are appropriately represented within an overall 
system design cycle. Intersecting concerns may then be identified for explicit 
accommodation by the design agenda. To derive an overall design cycle, current 
conceptions for the individual disciplines should be examined. Since these 
conceptions are expressed at a lower level as methods, an overall design cycle may 
be instantiated more specifically by integrating compatible methods from the two 
disciplines. Methodological integration is desirable as design inter-dependencies 
and roles may be defined explicitly. More effective inter-disciplinary 
communication may also accrue from the use of a common set of notations.

Methodological integration is facilitated if the design scope, process and notation of 
individual methods are well defined. Such characteristics are found in a class of 
Software Engineering methods commonly referred to as structured analysis and 
design methods. Unfortunately, the same are not currently to be found for human 
factors since its methods are generally unstructured and focus only on later design 
stages.1 Thus, a pre-requisite for integration is the derivation of a reasonably 
complete and structured human factors method. Since well developed Software 
Engineering methods already exist, it would be appropriate (for the purposes of 
methodological integration) to structure human factors methods around specific 
structured analysis and design methods. The undertaking is exemplified by the 
present research for the Jackson System Development method. In other words, the 
scope of the thesis comprises the derivation, test and integration of a structured

1 The imbalance derives from the historically late recruitment of human factors to system 
design.
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human factors method with the Jackson System Development method

In conclusion, the research contributes to the Human Factors discipline in two 
respects. Firstly, it informs the research community on how similar work with 
other structured analysis and design methods may be set up. Secondly, it offers 
designers an extended Jackson System Development method that facilitates the 

incorporation of human factors during system development.
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Preface

"We (Ergonomists) borrow and invent techniques to serve our special needs"

A. Chapanis, 1990.

To achieve the objective of developing a more effective means for human factors 

input to system design, existing problems and solutions should be examined. Such 
an examination would:

(a) highlight current problems with respect to the role of human factors in 

system design, i.e. 'who', 'what', 'when' and 'how' issues;
(b) support the formulation of promising solutions to observed problems;
(c) indicate how the specification of a solution may be facilitated.

The thesis proposes that one solution for improving human factors contributions 
throughout the design cycle is to locate its inputs against the explicit design 
framework of Software Engineering structured analysis and design methods. In 
addition, similarly structured human factors methods could be developed for 

integration with particular structured analysis and design methods. Complementary 
Software Engineering and Human Factors design roles are thus defined explicitly 

with respect to the stage-wise scope, process and notation of the integrated method.

To this end, the thesis is divided into five parts which address the following 

concerns:

Part I : Research Background — describes problems of existing approaches 

for human factors input to system development. The potential of structured 
analysis and design methods for supporting the development of a solution is 

then described. The research scope is thus defined as the development and 

subsequent integration of a structured human factors method with a 

particular Software Engineering structured analysis and design method.

17



Part II : On Human Factors Integration with Structured Analysis and

Design Methods (SADMs') -- describes general requirements and the 

research entailed by methodological integration. Specifically, a general 

research plan is proposed to exemplify how such research could be 

conducted. Lower level activities of the plan are then described, e.g. a 
survey of previous reports on human factors design conceptions and human 

factors integration with structured analysis and design methods.

Part III : On Human Factors Integration with the Jackson System 

Development Method — two chapters in this part recount how general 

requirements and considerations set out in Part II are instantiated and 
realised during the integration of human factors with the Jackson System 
Development method. For instance, characteristics of the latter method are 

examined to identify its requirements for human factors support. 
Constraints specific to this research are then introduced to condition the 

general research plan proposed in Part II. A specific plan is thus derived. 

Research milestones corresponding to the specific plan are then reviewed.

Part IV : A Structured Human Factors Method for the Jackson System 

Development Method — the main product of the research, i.e. the extended 

Jackson System Development (or JSD*) is presented. As the Software 
Engineering component of the integrated method is largely unchanged (i.e. 

the Jackson System Development method), the thesis focuses primarily on 
the human factors component of the method (namely, the structured human 
factors method). However, obligatory design inter-dependencies between 

the two components of the integrated method are highlighted.

Part V : Synopsis of the Research — three concerns characterise this part of 

the thesis, namely how the present work should be assessed; the outcome of 
these assessments; and what follow-up research may be undertaken.

Part VI : References -  this part provides an alphabetical listing of all 

references cited in the thesis.

18



Part V II: Appendices -  the appendices support the main text of the thesis. 

A list of publications and internal reports of the research is also provided.

The above structure of the thesis is summarised graphically in Figure P-l.

In conclusion, the present work contributes to the Human Factors discipline in two 
respects:

(a) it informs the academic community on how similar research may be 
conducted;

(b) it offers human factors designers an extended Jackson System 
Development method for system design.

These contributions are organised in the thesis as follows :

(1) for group (a) above, Parts I, II and V of the thesis would be directly 
relevant. Part in may also be informative.

(2) for group (b) above, Part IV provides a detailed account of the extended 
Jackson System Development method.

Kee Yong Lim. 

June 1992.
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Chapter One : Introduction

"  in the design domain we can never know enough."
Rosson, 1985.

"If at first you know where you are, and whither you are tending, you will better 
know what to do and how to do it."

Abraham Lincoln, 1809-1865.

This chapter reviews current problems of human factors input to system design. 

The research context is thus characterised. For instance, the review indicated that 
current human factors contributions are poorly timed relative to design support 
requirements that vary throughout the design cycle. Thus, the relevance, format and 

granularity of its inputs are non-optimal for effective uptake of human factors 

inputs. Promising solutions may then be proposed to address the observed 
problems.

In other words, Chapter One sets the context for Chapters Two to Five which 
considers what improvements to existing means of human factors input are 
necessary, and how such improvements could be achieved.

1.1. Current Problems of Human Factors Input to Systems Design

Recent developments in computer technology has resulted in a shift from 

mainframes to interactive personal computers, e.g. the availability and affordability 
of personal computers and the rapid diversification in computer applications. 
Today, personal computers have made significant inroads into both the workplace 

and the home. Thus, the computer user base is widened considerably. The wider 

user base, together with market forces, highlighted the importance of designing 

computer applications that are appropriate in both functionality and usability. The 

success of Macintosh computers is an example (see also Shackel, 1985 and 1986b; 

CCTA (Draft) Report, 1988, Annex 1; Shuttleworth, 1987). In addition, it was
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recognised that poor usability implies :

(a) greater training requirements which is a particularly serious problem 

with a highly mobile information technology work force;

(b) an incomplete utilisation of the software (Hirschheim, 1985; Stevens, 

1983);
(c) possible failure of the system to achieve its intended purpose 

(Underwood, 1987; Lucas, 1975);

(d) slower than anticipated uptake of information technology in the 
workplace (Fdhnrich et al, 1984; Eason and Cullen, 1988).

In short, poorly designed systems do not compete well in the market. The 
importance of user testing, and hence human factors, was thus recognised. This 

form of human factors recruitment was established and its designers were called 
upon only to evaluate the usability of a particular design (Rosson, 1987). 
Correspondingly, human factors methods gravitated towards later stages of system 
development. It appears that the need for wider human factors involvement was 
unrecognised until Software Engineering design processes were made more 
explicit. Thus, recognition may have been triggered by the following events :

(a) the advent of more powerful computers that led to the development of 
larger and more complex systems. Such developments constitute longer 
term projects with multiple design deliverables and a greater propensity to 

over-run specified deadlines;
(b) the penetration of software applications into novel domains (i.e. 
domains which are ill defined) as opposed to the direct computerisation of 

manual systems (Benyon and Skidmore, 1987; Galliers, 1984);

(c) the emergence of expert systems and artificial intelligence.

The greater demands on the system design process imposed by these events 

highlighted the following requirements :

(a) to ensure that system development is 'correctly' conducted, e.g. the
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adoption of a systematic design approach to enforce orderly design 

development, modification and post-delivery maintenance; continuous 

verification of design specifications;

(b) to ensure that a valid or 'correct' system is developed, i. e. a more 

reliable means of capturing and confirming user requirements;
(c) to increase design consistency, throughput and capability, e.g. the 
development of computer-based tools to reduce system delivery times; the 

employment of greater manpower to handle larger scale projects (i.e. 
emphasis is on design teams as opposed to individual hackers);

(d) to ensure better project management.

These design requirements may be mapped onto the following Software 
Engineering solutions:

(a) design principles and techniques, e.g. delaying design commitment, 
incremental design, rapid prototyping, software re-usability;

(b) executable specifications and high level languages, e.g. new generation 
languages (Fourth and Fifth Generation Languages);
(c) formal notations and methods, e.g. Z, Communicating Sequential 
Processes (CSP), Calculus of Communicating Systems (CSP), Vienna 

Development Method (VDM);
(d) structured analysis and design methods, e.g. Structured Systems 

Analysis and Design Method (SSADM), Jackson System Development 

(JSD) method;
(e) computer-based tools, e.g. Computer Aided Software Engineering 

(CASE), Integrated Project Support Environment (IPSE).

These solutions support software engineers in a number of ways. For instance, 

more reliable specification through proveability via formal methods; more efficient 

and effective utilisation of design resources via directly executable notations and 

computer-based tools (such as code generators and consistency checkers); better 

design management and more systematic design analysis via structured analysis and 

design methods; etc.
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These Software Engineering developments led to a more explicit definition of the 

system design process. Thus, it became apparent that human factors involvement 
only at the evaluation stage was inadequate for ensuring a satisfactory design 

outcome, e.g. an efficient design of a valid system. Specifically, effective human 

factors contributions may become inordinately difficult at this late design stage. For 
instance, the formulation of human factors contributions may be hampered by 

poorly documented design rationale and decisions. Thus, late human factors 

involvement may result in contributions which are ’too-little1, i.e. the contributions 

comprise little more than advice. Since late involvement implies that human factors 

activities do not constitute a basic part of design specification, its contributions may 

also be 'too-late', i.e. the recommendations could not be acted upon (Rosson, 
1987). For instance, actions could be thwarted because desired modifications are 
too far reaching and hence excessively difficult and expensive to implement (see 
Figure 1-1). Human factors recommendations may be too far reaching as a result of 
early errors being magnified through subsequent design stages, i.e. a progressive 
degradation of the design specification (Alvey MMI Workshop Report, 1984, pg. 

20). Alternatively, modifications may be restricted because fully developed designs

Figure 1-1 : Cost of Fixing Design Errors Relative to the System
Design Cycle1

Smaller software projectsi i

Relative cost 
for fixing errors

Larger software projects

Requirements Design Code Development Acceptance Operation
test test

 ►
Phase in which error is detected and corrected

* From B6hm (1981).
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become 'frozen' by inter-locking dependencies and are thus more resistant to 
change (Grudin et al, 1987; Bury, 1984). Such ineffective design development has 

resulted in the consumption of a disproportionately large amount of project 
resources by design maintenance,2 e.g. up to 70% of project resources may be 
consumed for this purpose alone (B6hm, 1976 and 1981; Multi-User Computing, 

1989, pg. 20).3»4

Thus, to avoid the 'too-little-too-late' problem human factors involvement should 

not only be early but sustained throughout the design cycle (see also Alvey Human 

Interface Committee Report, 1987, pg. 9; Eason and Cullen, 1988). Early design 
involvement ensures more effective human factors input because human issues 
which predominate at early design stages (Figure 1-2) may then set the constraints 
for later design stages which largely concern the device (Alvey MMI Workshop 
Report, 1984, pg. 20). Continuous involvement ensures correct translation and 

incorporation of human factors inputs into the design. It also ensures that inputs are 
timely and contextually relevant to design concerns at each stage of the design 
cycle. For instance, wider involvement would support the incorporation of human 

factors contributions during functional design, e.g. contributions may include 
descriptions of user goals, tasks and abilities, and these constitute an appropriate 
basis for functional design. Thus, human factors became involved in the 

specification of system usability and functionality (as opposed to only evaluation). 

In other words, human factors may contribute to the analysis, specification, 
implementation and evaluation of systems, i.e. its contributions permeate the entire

2 Design maintenance, by definition, includes both corrective actions resulting from design 

errors, and modifications and/or enhancements arising from changes in initial design requirements 

(Fitzgerald, 1988).

3 Other accounts report tha t: large software projects cost, on average, twice as much as their 

initial budgets; they are usually completed a year late; and a quarter of the projects are never 

completed at all (Multi-User Computing, 1989, pg. 22).

4 The contribution of human factors to the reduction of maintenance costs has been reported by 

Norman (1986), and Rubinstein and Hersh (1984).
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Figure 1-2 : Effort Ratios for Human and Machine Design Relative
to the System Design Cycle5

Proportion of 
Design Effort

design cycle (see Alvey Human Interface Committee Report,6 1987, pg. 32; 
Alvey MMI Workshop Report, 1984, pg. 37 & 39; Buxton et al, 1983). The design 
impact of human factors is thus maximised by earlier and wider design involvement 
(see Figures 1-3 and 1-4).

Unfortunately, these positive design developments could not be exploited directly 

due to the following reasons :

(a) to exploit the positive developments, corresponding developments in 

human factors are required, namely :

(i) the scope of human factors means of design input (e.g. standards, 

methods, etc. -- henceforth referred to collectively as 'toolsets' (see 

Chapter Two)) should be extended to rectify the historically narrow

5 Adapted from Alvey MMI Workshop Report (1984), pg. 20.

6 The report emphasised that significant impact on product design will not accrue unless human 

factors is incorporated in all phases of the design cycle.
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Figure 1-3 : Relating the Impact of Human Factors to Various
Phases of the System Design Cycle7

; 100

0 1 2 3 4 5 6

Design Phases

1 : Conceptual Phase; 2 : Prototype; 3 : Detailed Version; 
4 : Production; 5 : Evaluation; 6 :  Operation.

Figure 1-4 : Relating Design Outcomes to the Duration of Human
Factors Involvement at Various Stages of the Design Cycle8
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optimal
design outcomes
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sub-optimal 
design outcomes
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0 : Investigate; 1 : Design; 2 : Prototype; 3 : Implement; 4 : Test; 5 : Release.

7 From Moraal and Kragt (1990).

8 From Lundell and Notess (1991).
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coverage of the system design cycle (ALV/MMI/PRJ/143, 1988, pg. 

3). The extension is necessary as human factors is reported to be 
’lacking in methodology’ (Klein and Newman, 1987);
(ii) human factors design should be made more explicit and complete 

(i.e. to elevate its practice from craft to engineering status (Long and 

Dowell, 1989);

(iii) human factors contributions should be more specific to rectify 

current problems in their translation into design specifications, e.g. 

current inputs focus on what should be done but not how (Sutcliffe,
1989); the format of inputs do not support effective communication 
(Mantei and Teorey, 1988).

Since the above developments are extensive, a significant time lag is 
incurred between the supply and demand of human factors design support 

(see also Underwood, 1987; CCTA (Draft) Report, 1988, Annex 1; 
Galliers, 1984);
(b) the exploitation of positive developments was hampered by a number of 

mismatches between Software Engineering and Human Factors design 
approaches and activities, e.g. machine-centered versus user-centered 
design. These mismatches arose because previous solutions for improving 

system development were formulated independently by the individual 
disciplines.9 To facilitate wider human factors design involvement, 
existing solutions for improving system development should thus be 

reconciled across the disciplines (Long and Dowell, 1989;10 Carroll and

9 Grudin et al (1987) observed that in general, human factors is either inadequately represented or 

omitted from Software Engineering literature. Human factors has also been 'perceived as irrelevant 

to system development' (Klein and Newman, 1987).

10 Human Computer Interaction, as a discipline comprising Human Factors and Software 

Engineering (Long and Dowell, 1989), is compatible with this perspective.
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Campbell, 198611).

The above considerations were summarised aptly by Carroll and Campbell (1986) 

as follows:

"Human-computer interaction will favour inter-disciplinary co­
operation between psychology and computer science will not sustain
approaches that are too low level, too limited in scope, too late, and too 
difficult to apply in real design "

Since existing Software Engineering toolsets are better developed, it follows that 

human factors toolsets should be constructed to augment them (this is also 
consistent with the current supporting role of human factors). To this end, human 

factors research should focus on the following :

(a) in the short term, the development of a means of compensating for the 

current incompleteness of human factors knowledge, e.g. approximation 
and empirical techniques for deriving design information that cannot be 

prescribed analytically;
(b) definition of a complete human factors design cycle. This definition 
would make human factors design roles and responsibilities more explicit;
(c) identification of design relationships between Software Engineering and 
Human Factors throughout the system design cycle. Making such design 

relationships explicit would facilitate human factors involvement throughout 

the design cycle;
(d) development of appropriate toolsets to support the incorporation of 

human factors inputs throughout the system design cycle. The 

configuration of such toolsets should complement existing Software 

Engineering design toolsets. Specifically, existing design notations, 

techniques, methods and tools should be taken into account during the

As per Footnote 10, but Carroll and Campbell’s (1986) conception of Human Computer 

Interaction comprises Computer Science and Psychology. The difference may be attributed to the 

scope assumed for the component disciplines.
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construction of human factors toolsets;12
(e) in the long term, the accumulation of further human factors design 

knowledge.13

The above research agenda has also been proposed elsewhere, e.g. Alvey Human 

Interface Committee Report (1987); Alvey MMI Workshop Report (1984); Glasson 
(1984); Mantei and Teorey (1988); Grudin, Ehrlich and Shriner (1987); Klein and 

Newman (1987); Robertson (1987); CCTA (Draft) Report (1988, Annex 1); 

McKeen (1983); Innocent (1982); etc.

Preliminary objectives for the present work were then defined with respect to the 

research agenda.

1.2. Preliminary Scope and Objectives of the Research

Preliminary objectives of the research comprise the following :

(a) to assess the scope and configuration of current human factors toolsets 
for supporting system development, and to identify problems reported in 

their use. The objective of the assessments is to characterise the problems 
that are addressed by the research (see Chapter Two);

(b) to propose and demonstrate, on the basis of (a) above, methodological 

integration as a means of improving human factors input to system design. 
The demonstration comprises several design case-studies involving the 

development and application of a structured human factors method. The 

latter method is constructed specifically for integration with a particular 

Software Engineering method (see Part II).

A detailed account of the research entailed by these objectives follows.

12 Such a perspective is consistent with existing configurations of design teams, i.e. system 

design is led by software engineers with human factors designers providing collaborative support.

13 item (e) does not fall within the scope of the research. It is included here for completeness.
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Chapter Two : On Human Factors Input during 
System Development

"All things exist in time. They are not unchanging, and they cannot be designed 
without regard for the way they operate and are used over time"

Charles Owen, 1986, Design Processes Newsletter.

"To every Form of being is assigned', Thus calmly spoke 
the venerable Sage, 'An active principle.'"

William Wordsworth, 1814, The Excursion.

Having characterised the research scope, existing human factors toolsets should be 
assessed to determine what enhancements would ensure a more effective input to 
system design. Three complementary classes of human factors toolsets will be 

assessed briefly, namely:

(a) principles, guidelines, and standards;
(b) computer-based tools;
(c) techniques and methods.

Following the review, greater emphasis will be placed on (c) as a member of its 
class, namely Structured Analysis and Design Methods (SADMs), could provide 

frameworks to support the development and recruitment of (a) and (b) above. 

Specifically, design support requirements at various stages of the design cycle are 
defined explicitly by the scope, process and representation of SADMs. On this 
basis, HF toolsets could be contextualised appropriately to system design needs. 

Similarly, toolsets could be organised more effectively to maximise their symbiosis. 

Thus, the weaknesses of one are compensated appropriately by the other, while 

strengths are jointly exploited, e.g. complementary roles for procedural and 

declarative toolsets may be defined explicitly at various stages of the design cycle. 
Consequently, a case is made for integrating human factors methods with SADMs. 

The preliminary scope and objectives of the research are then expanded to support 

the proposed integration of Human Factors and Software Engineering methods. A 

more detailed account of how methodological integration may be achieved is
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described in Chapters Three to Five.

In summary, the objectives of the chapter comprise the following :

(a) to describe and contrast existing classes of human factors toolsets;

(b) to identify typical problems of the classes of toolsets in (a) above;
(c) to highlight required enhancements of the classes of toolsets so that the 

problems identified in (b) above could be obviated;

(d) to propose and assess methodological integration as a solution with 

respect to (b) and (c) above.

2.1. An Assessment of Current Solutions for Supporting Human 

Factors Input into System Development

Existing human factors toolsets may be characterised in terms of their scope 
(subject matter) and process (delivery) (Figure 2-1).

Figure 2-1 : Basic Characteristics of Human Factors Design Toolsets

Human Factors 
Contributions

Scope/Subject Matter Delivery/Process

Declarative Procedural
(Substantive) (Methodological) Passive Reactive/Active

Enactive Proactive Retroactive

34



A brief account of these characteristics follows :

(a) scope (subject matter) — declarative-procedural dimension. If the 

subject matter of a toolset is concerned directly with attributes of the artefact 

to be designed, its support is termed declarative (or substantive). General, 

requirements of declarative toolsets comprise the provision of the 
information that i s :

(1) correct and relevant to the design concerns at hand;
(2) presented using appropriate notational schemes so that the 

information is in an easily accessible and concise format;

(3) expressed at the appropriate level of description.

A toolset may alternatively provide procedural (or methodological) guidance 

on how a design of the artefact should be derived. For instance, a set of 
intermediate design representations and transformations may be 
recommended to support problem analysis and design development. 

General requirements of procedural toolsets are that its design 
representations and transformations should :

(1) be compatible with established design practices;
(2) cover the design cycle adequately;
(3) be expressed appropriately to support design reasoning and the 

management of design complexity. Too low a level of expression of 
the toolset may impose undesirable constraints on designers (e.g. 

methods have been criticised for hampering designer creativity), and 

limit its applicability across different design scenarios. Conversely, 
too high a level of expression of the toolset may result in inadequate 

design guidance, e.g. some methods are no more than checklists.

Since procedural support is not a substitute for human factors knowledge, 

declarative support is invariably required in some form.
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(b) process (delivery) — passive-active dimension. This dimension 

describes how and when human factors contributions may be delivered 

during system development, e.g. handbooks are passive in their delivery, 

while computers and consultants are active or interactive to varying degrees. 

Active input can impact systems design in three ways, namely :

(1) retroactively (or 'after-the-fact' intervention), e.g. human factors 

audit;

(2) proactively (or 'before-the-fact' intervention or feed-forward 

prescription), e.g. design handbooks;
(3) enactively (or 'during-the-fact' intervention), e.g. participative 

design.

Ideally, human factors toolsets should support design actively to ensure the 

timeliness, relevance and granularity of human factors contributions relative 
to design support needs at various stages of the design cycle. In other 
words, one needs to consider:

(1) what human factors inputs are necessary to support end-users of 
the target system;
(2) how and when human factors inputs should be presented during 

system design, i.e. software engineers should be supported 

appropriately as users of human factors design inputs. Better 
understanding and conceptual cohesion may then accrue. Thus, the 

uptake of human factors contributions (and their eventual realisation in 

the design artefact) would improve significantly if human factors 
inputs are contextualised to existing software engineering conceptions 

of the system design cycle.

Consequently, the process (how and when) and product (form and content) of 

design input are equally important concerns for improving the uptake of human 
factors contributions during system design. In other words, attention should be 

directed both at incrementing human factors design knowledge (to widen its scope) 

and at improving its delivery and presentation.
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Bearing the above considerations in mind, an assessment of existing classes of 

human factors toolsets follows.

The first class of human factors toolsets comprises design principles, guidelines 

and standards. The design support provided by this class is predominantly 
declarative (see Williams, 1989; Smith and Mosier, 1984). Although the declarative 

content varies, design guidelines in general tend to be detailed and lengthy, and 

their focus can be either vague or specific. Similarly, design principles tend to be 
simple, compact and general (McKenzie, 1988; Norman, 1988). In addition, design 

recommendations may vary from mere advice to legislated standards.

Problems reported with this class of human factors toolsets are as follows :

(a) poor scope and presentation format of inputs. Human factors inputs by 
these toolsets are presented at either too high or too low a level of 

description. Thus, the recommendations are either too vague to provide 

effective guidance, or too rigid and specific for application across various 
design scenarios respectively (Smith, 1986; Chapanis and Budurka, 1990; 
Hirsch, 1984). In either case, extensive interpretation, adaptation and 

extrapolation would be required for application during design (Klein and 
Brezovic, 1986). These problems highlight a serious weakness of the class 
of toolsets. To aggravate matters, Smith (1986) reported that designers who 

are insufficiently competent in human factors may not even recognise the 
need to adapt the declarative content;
(b) conflicting advice may be offered. As the declarative content of these 

toolsets becomes more comprehensive and detailed, contradictory advice 
may arise (Maguire, 1982; Alexander, 1987). Generally, no guidance is 

provided by the toolsets on how such contradictions may be resolved 
(Marshall, 1984);

(c) poor accessibility of human factors information. As a class, these 

toolsets are difficult to use (Rogers and Pegden, 1977; Eason and Cullen, 

1988), and the reference document quickly becomes voluminous and
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daunting (Norman, 1988).14 Thus, the toolsets tend to become part of the 

back-drop of design and are therefore overlooked frequently (McClelland, 

1990);
(d) questionable validity of human factors recommendations. In particular, 

the validity of standards is doubtful as current human factors knowledge 

may not adequately support their imposition (Smith, 1986). Furthermore, 

existing human factors standards are not testable (Chapanis and Budurka,
1990). Thus, effective enforcement is contentious;
(e) poor mapping of human factors inputs to the design context. Reports 

have indicated that system developers frequently fail to make relevant 
human factors considerations at appropriate stages of the design cycle 
(McKenzie, 1988; Smith, 1986). In response to the problem, a common 

exhortation is that human factors advice should be sought earlier in the 
system design cycle. However, in the absence of an explicitly structured 
framework for human factors design,!5 judgements on what constitutes 

appropriate and early human factors input remain subjective;
(f) the declarative emphasis of the class of toolsets encourages a narrow 
view of the recruitment of human factors designers, i.e. as consultants as 
opposed to active participants in design specification. Comprehensive 

analysis of human factors concerns may be discouraged as a result;
(g) inadequate project resourcing for a comprehensive account of relevant 

standards, guidelines and principles. Such difficulties arise because an 
appropriate representation of human factors design by the system design 

agenda remains unaddressed.

For these reasons, this class of toolsets has been viewed by designers as restrictive 
or mere formalities at best, and at worst a hindrance to design (Smith, 1986).

For example, Smith and Mosier (1984) identified more than 600 guidelines for user interface 

design alone.

15 At the highest level, a structured human factors design framework may comprise a human 

factors design life-cycle, while at the lowest level it assumes the form of a structured analysis and 

design method.
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In summary, this class of toolsets fail to address adequately the process and 

product of human factors input. For instance, when and how inputs should be 
delivered (process); and what inputs should be recruited in particular system design 

contexts (product). To resolve these problems, enhancements of this class of 

toolsets would involve addressing the following :

(1) contextualising the configuration and declarative content of the toolsets 

appropriately to the design support required at various stages of the system 
design cycle. To this end, a structured framework for human factors design 

needs to be defined explicitly. Thus, the scope of human factors guidelines 

has been extended to include procedural guidance, e.g. BS 6719:1986 (see 

also Gould, 1988; McClelland, 1990). The format and declarative content of 
human factors guidelines, principles and standards may then be configured 
to meet design support requirements as defined by the stage-wise scope and 
process of the framework. An example of work in this direction may be 

found in Esgate, Whitefield and Life (1990);
(2) ameliorating problems of accessing a rapidly increasing declarative 

knowledge-base, i.e. passive delivery through handbooks is an inadequate 
solution. To address this problem, Smith (1986) suggested the following 
procedures for identifying relevant design guidelines :

(i) begin with a guidelines review;

(ii) discard guidelines which are irrelevant;
(iii) modify, expand and weigh the importance of the remaining set of 

guidelines in anticipation of trade-offs and documentation at later 

stages of system design.

Although Smith's suggestions are helpful, a guidelines review would 

remain a daunting task in view of (c) and (g) above. Thus, computer-based 

tools have been developed to support the application of this class of human 

factors design support. Computer-based tools will be discussed later.

To conclude, principles, guidelines and standards as a class of human factors 

toolsets, relies heavily on appropriate consultation during system design. In the
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absence of an explicitly structured human factors design framework, major pitfalls 

may include the following :

(a) continued perception of human factors designers as design consultants 

as opposed to active participants in design specification;

(b) human factors design would remain a craft practice (see Long and 

Dowell, 1989);

(c) comprehensive human factors analysis may be discouraged due to 

inadequate allocation of project resources, e.g. the time set aside for human 

factors design may be unrealistically short.

The second class of human factors toolsets comprises computer-based tools. As 
with principles, guidelines and standards, computer-based tools should not be 

developed in a 'vacuum'. In other words, their configuration should support design 
requirements at each stage of the system design cycle. Thus, design support 

requirements must be identified sufficiently if appropriate functional coverage is to 
be realised in such tools.

Generally, computer-based tools provide both procedural and declarative design 

support. Procedural support provided by computer-based tools may include the 
following (after existing Software Engineering tools):

(a) project planning, e.g. for scheduling design deliverables, tracking 

project progress;
(b) design specification and documentation, e.g. text and graphics editors, 

consistency checkers (for notational rules);

(c) design evaluation, e.g. simulators, prototypers, animators;

(d) design implementation, e.g. compilers, linkers.

To provide 'total systems solution' or 'design cycle support' the above categories 

of design support should be covered comprehensively (Hewett and Durham, 1987).

Computer-based tools that provide declarative design support are a recent 

development. For instance, tools that monitor the appropriate application of human
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factors design guidelines are emerging (Perlman, 1987).

In general, computer-based tools suffer from similar problems as principles, 

guidelines and standards, e.g. Hartson and Hix (1989) reported that the functional 
coverage of computer-based tools is frequently too narrow. Aside from these 

problems, it is frequently the case that a long time lag separates the recognition of 

design support needs and the development of a computer-based tool. For instance, 
Software Engineering CASE and IPSE tools were not developed until structured 

analysis and design methods became well established (Hewett and Durham, 1987). 

In view of these observations, it may be expected that computer-based tools for 
human factors would not be realised unless its design cycle is defined explicitly. 

Specifically, appropriate requirements for computer-based design support can not 
be identified in the absence of an explicit conception of human factors design. 
Consequently, for human factors the development of computer-based tools may be 

considered a longer term objective.1̂

The final class of human factors toolsets comprises design techniques and methods 
(e.g. task analysis). Examples of such toolsets are described by Meister (1984) and 

Kloster and Tischer (1984). Although there is a wealth of human factors techniques 
and methods, the procedural support provided by this class of toolsets generally 
suffer from the following problems :

(a) too narrow a coverage of the system design scope. Existing toolsets tend 

to focus on later stages of the design cycle;

(b) the format of toolset outputs is contextualised poorly to design support 

needs at each stage of the system design cycle;

(c) the toolsets are difficult to use (Wilson et al, 1986), and are expensive 

and time consuming to apply, e.g. rigorous experiments. In addition, the 
validity of the derived results may be doubtful, e.g. experimental results 

may not be applicable to real world tasks since they are derived under

16 Current computer-based support for human factors design is in the early stages of 

development. The support presently provided is limited, e.g. HUHT tools (ESPRIT 385,1989 and 

1990) comprise primarily checklists and form-fill schemes.
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controlled conditions.

In conclusion, to achieve maximum effectiveness all classes of toolsets should be 

configured with respect to a better defined human factors design cycle. For 
instance, the scope of current human factors methods and techniques could be 
extended to cover the design cycle more completely. Since adequate human factors 

computer-based tools are generally unavailable at present, the extended methods 

and techniques would facilitate their development, e.g. their explicit design scope, 

process and representation constitute design support requirements to be met by the 

tool (see also CCTA (Draft) Report, 1988, pg. 20; Alvey Human Interface 

Committee Report, 1987, pg. 18 and 32). In other words, a pre-requisite for 
enhancing existing toolsets is the definition of a sufficiently complete and structured 

human factors design framework. To this end, well developed Software 
Engineering conceptions of the system design cycle should be examined. In this 
respect, two conceptions have gained prominence, namely those entailed by rapid 
prototyping and the traditional system development life-cycle (as instantiated by 
SADMs). A brief review and comparison of the conceptions follows. The focus of 
the comparison is on the strengths and weaknesses of the conceptions :

(a) for facilitating human factors involvement throughout system design;
(b) in providing a model for configuring a human factors design cycle.

2.2. Conceptions of the System Design Cycle : Rapid Prototyping 

versus the Traditional System Development Life-Cycle

It was suggested that a pre-requisite for enhancing existing human factors toolsets 

is a structured human factors design framework. By definition, a structured 

framework is one whose stage-wise scope, process and notation are sufficiently 
explicit and complete with respect to the system design cycle. To specify such a 
framework, the following questions need to be answered:

(a) what conceptions of the system design cycle presently exists;

(b) which conception would best support the derivation of a structured
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human factors design framework;

(c) what is entailed by the derivation of such a framework ?

Question (c) will be addressed in Chapters Three and Five.

Questions (a) and (b) constitute the subject of this sub-section. Specifically, two 
contrasting conceptions are assessed for their potential as a reference base for 

constructing a human factors design framework. The conceptions assessed 

comprise rapid prototyping and the traditional system development life-cycle 

(exemplified by SADMs).

Rapid prototyping involves ’fast-building’ a preliminary design followed by 

various forms of iterative testing and prototyping cycles, namely step-wise or 

incremental prototyping, evolutionary prototyping and throw-away prototyping 
(Hekmatpour and Ince, 1987). The essence of rapid prototyping is either a brief or 
an altogether absent design specification stage. Design documentation at this stage 

is usually poor.

Rapid prototyping is frequently equated with prototyping (e.g. Wilson and 

Rosenberg, 1988). For instance, benefits of prototyping in general have frequently 
been cited as arguments in support of rapid prototyping. Such assumptions are 
misleading as these benefits may be reaped without incurring costs which are 

unique to rapid prototyping. In particular, to speed up the construction of a 

prototype, rapid prototyping typically minimises the time spent on design analysis 
and specification. Thus, the assumption of rapid prototyping (implicitly or 

otherwise) is that iterative prototype construction-and-test cycles constitute an 
adequate substitute for such a design phase. It can not be over-emphasised that the 

assumption is fallacious as prototyping a design is not the same as designing a 

prototype (the former may involve minimal analysis and design). In this respect, the 

time saved by skimping on the design phase may subsequently incur heavy costs in 

terms of extensive maintenance, updates and bug fixing (Shuttleworth, 1987). 

Alternatively, an uneconomic number of prototypes may have to be tested before a 

satisfactory solution is eventually derived (Long and Neale, 1989; Keller, 1987). In 

contrast with the assumption of rapid prototyping, prototyping is usually
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undertaken follow ing  comprehensive design analysis.17 Consequently, 

prototyping and rapid prototyping should be differentiated explicitly. Further 

differences will be highlighted later when rapid prototyping is compared with 

SADMs. To support these considerations, the merits and demerits of rapid 

prototyping are listed in Figures 2-2 and 2-3 respectively.

In the context of a traditional system development life-cycle, design is described in 

terms of sequential phases, each of which implicates a number of stages. An early 

example of the life-cycle conception is the waterfall model (see B6hm, 1984; Jensen 

and Tonies, 1979; Fox, 1982). Generally, existing conceptions of the traditional 

system development life-cycle differ essentially in the scope of their design 

coverage and the number of phases into which the scope is decomposed, e.g. the 
design scope may range from business analysis (Wigander et al, 1979) to post­

mortem examination of retired systems (Olle, 1988); and the number of phases may 
vary from three to fifteen phases. Although slight differences in the sequencing of 

design phases exist, there is general agreement on the conceptual aspects of system 
design, e.g. the emphasis on : requirements before specification,

Figure 2-2 : Merits of Rapid Prototyping

Arguments for rapid prototyping include the following:

(a) it enables earlier conceptualisation of the design problem and facilitates the elicitation of user 
feedback;
(b) by demonstrating the prototype, it helps users visualise their system requirements. A more 
accurate identification of user requirements may thus be derived. Consequently, the quality and 
completeness of the functional specifications is improved, and the probability of attaining the 
expected performance is increased;
(c) it reduces development time and encourages the investigation and testing of various design 
solutions;
(d) it provides a tangible design artefact for problem analysis and discussion among design team 
members;
(e) it provides a means of testing design concerns specific to the artefact.

17 Prototyping unlike, rapid prototyping, is thus compatible with structured analysis and design 

methods, e.g. see Multi-User Computing, (1989), pg. 26.

44



Figure 2-3 : Demerits of Rapid Prototyping

Arguments against rapid prototyping include the following :

(a) two unsatisfactory outcomes may arise if inadequate time has been spent on analysis and problem 
formulation, namely: an inappropriate prototype may be constructed; and incorrect test criteria may be 
applied to the prototype leading to inappropriate interpretations of test results. Thus, the design 
rationale used in the construction of subsequent prototypes may be flawed. Consequently, successive 
iterations may not facilitate efficient convergence onto a design solution;
(b) inappropriate prototypes may cause end-users to be committed prematurely to a specific design 
solution. As a result, inadequate problem analysis and poor design solution may be exposed at too late 
a design stage (Long and Neale, 1989). Thus, Thimbleby (1987) highlighted that rapid prototyping 
potentially violates the principle of delaying design commitment;
(c) there may be resistance towards discarding prototypes especially if the time and expense incurred in 
their creation is not insignificant. Thus, non-ideal design characteristics may be carried forward. In the 
worst scenario, prototypes may be passed off as the final system (Boar, 1984; Fox, 1982);
(d) design audits can not be conducted properly as the design documentation is frequently inadequate. 
Thus, rapid prototyping may propagate design communication problems similar to program ’hacking'. 
Inadequate documentation would also imply poor support for later design modification and 
maintenance;
(e) a heavy reliance on computer-based tools can lead to over-design (Mantei, 1986). In addition, the 
paradigm implied by rapid prototyping of entering knowledge directly into the computer-based 
prototype, engenders an ad hoc or 'magic box' strategy. Such a strategy would not adequately support 
projects with ill defined domains, and co-operative work in design teams that characterises large system 
development (Long and Neale, 1989);
(0 rapid prototyping encourages inappropriate deferment of design decisions since it relies heavily on 
their resolution via prototype construction-and-test cycles (Grudin et al, 1987);
(g) limitations and constraints that apply to the target design artefact can be ignored during 
prototyping;
(h) a prototype can be oversold, creating unrealistic expectations in the target design artefact;
(i) the prototyping process can be difficult to manage and control.

specification before implementation; design iterations; etc.

Despite repeated criticisms and calls for their rejection, life-cycle conceptions have 

persisted to the present. The conceptions survived because the criticisms are either 

not serious, or may be attributed to expectations that are incongruent with its 

intended purpose (see later). Some of the criticisms are reviewed below.

The most common criticism is that life-cycle conceptions describe system design 

erroneously as proceeding in discrete sequential phases. Overlaps between adjacent 
phases have been cited as evidence to the contrary (Grudin et al, 1987). Although 

this criticism may be correct, it should be noted that life-cycle conceptions arc not
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intended as accurate models of system design activities. Instead, they are simplified 
design frameworks that support and so facilitate the systematic management of 

design tasks.

Another criticism of life-cycle conceptions is that system development is viewed as 

a discrete event with defined start- and end-points (Grudin et al, 1987). Although 

this is a fair criticism, one could view such conceptions as describing a steady-state, 

finite element with implicit inputs from preceding projects and influences on future 

projects.

A further criticism of the validity of life-cycle conceptions argues that system design 

is not sequential but parallel. Multiple asynchronous threads of modular design 

development are cited as evidence. Nevertheless, it may be argued that such 
observations do not necessarily imply the breakdown of the life-cycle model since 

design in each of the threads may still conform to the latter model. In other words, 
modular design development is not excluded by life-cycle conceptions.

Consequently, such arguments do not affect significantly the utility of life-cycle 
conceptions for supporting system design. Indeed life-cycle conceptions have 
persisted through the years, and design methods have been established on their 

basis. The most notable of these methods is a class commonly referred to as 
structured analysis and design methods (SADMs). A brief account of these methods 
follows.1 ̂

SADMs, as a class of Software Engineering methods, are defined by the following 

characteristics:

(a) the procedural support they provide is reasonably complete with respect 
to the system design cycle;

(b) system design is advanced in stages, each of which comprise explicitly

1  ̂ Formal methods will not be considered here since they do not generally cover the system 

design cycle sufficiently, e.g. requirements capture is unlikely to be a target of a formal method 

(Norris, 1985).
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defined scope, process and notation, i.e. design is advanced via a series of 
intermediate design products;

(c) independent design concerns are addressed separately, e.g. analysis 

before specification, specification before implementation.

Having defined what constitutes a SADM, existing misconceptions about these 

methods should be dispelled. Major misconceptions comprise the following:

(a) the design approach of SADMs, as a class, involves 'getting-it-right-the- 

first-time' (Gould and Lewis, 1983). Such a view has been interpreted to 
imply that SADMs do not involve iterative design. Thus, a more appropriate 

characterisation of the design approach of SADMs is 'getting-it-right-to- 
begin-with' (Grudin et al, 1987) or 'getting-the-first-best-guess-solution';

(b) all SADMs involve top-down design exclusively. The generalisation can 

not be true for two reasons, namely :

(i) design is seldom confined to top-down processes only;

(ii) some SADMs have explicitly disowned top-down design and 
emphasised on a 'middle-out* approach instead, e.g. JSD.

Thus, criticisms directed at top-down design should not be applied 

unquestioningly to SADMs. Unfortunately, sweeping criticisms have been 

proposed on this basis, e.g. the design support capability of SADMs is 

confined only to well defined domains;
(c) prototyping does not have a role in SADMs. This fallacy is addressed 

later when SADMs are compared with rapid prototyping. To this end, the 

merits and demerits of SADMs are listed in Figures 2-4 and 2-5 

respectively.

A comparative assessment between SADMs and rapid prototyping follows. It is 
argued presently that SADMs constitute better reference frameworks for the 

specification of an explicit human factors design cycle. A structured method may 

then be developed for human factors to support a more effective incorporation of its
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inputs throughout system design. The arguments for SADMs are three-fold.

Firstly, the benefits of rapid prototyping are shown to be matched potentially by

Figure 2-4 : Merits of Structured Analysis and Design Methods

Existing Structured Analysis and Design Methods (SADMs) provide the following design support:

(a) quality assurance: the well defined stage-wise scope and process of SADMs facilitate design 
reasoning and decisions. In addition, the methods encourage complete logical analysis before physical 
design (Hares, 1987). Also see other points below;
(b) management of design complexities: the nature and sequence of intermediate design decisions are 
defined explicitly by SADMs. In addition, independent concerns are separated, while related concerns 
are grouped appropriately;
(c) design communication : well developed stage-wise notations of SADMs support a range of 
intermediate design descriptions which facilitate communication between system developers, between 
developers and managers, and between developers and users (Hares, 1987);
(d) review of design decisions and rationale: design audits are supported by the explicit and 
comprehensive design documentation advocated by SADMs;
(e) continuous verification and validation of design specifications; the emphasis of SADMs on the 
production of stage-wise design products encourages testing, prototyping, and design iteration at 
various stages of the design cycle;
(f) detailed project planning: intermediate design products of SADMs are defined explicitly. Thus, 
design resource estimations and the setting of project milestones are both supported;
(g) recruitment of inter-discipinary knowledge and methods: the well developed methodological 
structure of SADMs constitutes a framework for recruiting such knowledge and methods. Thus, 
missing or inadequate design knowledge may be identified for further attention.

Figure 2-5 : Demerits of Structured Analysis and Design Methods

General criticisms of existing Structured Analysis and Design Methods (SADMs) include the 
following :

(a) they are deficient in the identification of user requirements;
(b) they do not address user interface design;
(c) their notation may not adequately convey the actual workings of the system to the user (Mantei 
and Teorey, 1988). However, it should be noted that positive reports on these notations have also 
been published, e.g. Hares (1987);
(d) they require comprehensive intermediate design products and documentation. These requirements 
exact heavy demands on resources that are not available to smaller system development projects;
(e) their application may be cumbersome unless supported by computer-based tools.
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SADMs. In particular:

(1) advantages (a) and (b) of rapid prototyping (i.e. facilitating design 

discussions and user feedback elicitation, Figure 2-2) are also supported by 

the explicitly defined and documented stage-wise design products entailed 
by SADMs. Prototyping is similarly encouraged by SADMs (Long and 

Neale, 1989; Essink, 1988; Keller, 1987). Thus, remaining doubts on the 

efficacy of S ADM notations for facilitating user feedback may be removed 
by the emphasis on prototyping and the use of graphical notations for 
design description (see Fitter and Green, 1979). In addition to these 

arguments, it should be noted that rapid prototyping may not be viable for 

novel design (Thimbleby, 1987). Specifically, an adequate start-point is 

required before a design can be prototyped, i.e. an extended period of 

analysis and design is necessary. Such design scenarios are supported by 
SADMs;
(2) advantage (c) of rapid prototyping (i.e. significant reduction in system 
development time, Figure 2-2) is questionable for the following reasons :

(i) demerits (a) and (d) in Figure 2-3;
(ii) design management problems inherent in rapid prototyping
(Crinnion, 1989);
(iii) difficulties in integrating final design specifications (B6hm, 1984;

Morrison, 1988).

Thus, failures of rapid prototyping in realising faster system development 

have been reported, e.g. Gr0nb£k (1989) that in nine projects undertaken 
using rapid prototyping, deadlines for design completion were all exceeded 

considerably. As a result, overall development times were found to be the 

same as other system design approaches.

Secondly, critical human factors reservations in respect of rapid prototyping should 

be considered. Specifically, rapid prototyping may not be compatible with human
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factors objectives because:

(a) rapid prototyping may be seen as replacing rather than supplementing 

early human factors involvement in system design (Grudin et al, 1987; 

Clark and Howard, 1988). For instance, it may restrict its involvement to 

prototype evaluation as opposed to active design specification. This problem 

is serious since prototyping would not substitute adequately for design (see 
Figure 2-3 : (a), (b) and (f));

(b) rapid prototyping engenders a false impression that human factors is 

contributing effectively to system design. In the best case, the recruitment of 
human factors only at the prototype evaluation stage, may propagate the 

'too-little-too-late' problem of human factors input to system design. In the 

worst case, resistance against discarding an expensive prototype (see (c) in 
Figure 2-3) may result in non-implementation of human factors 

recommendations;
(c) rapid prototyping engenders a false impression that end-users are 
invariably involved in the test and modification of successive prototypes. 

Reports indicate that prototype evaluation and modification may be 
undertaken exclusively by expert reviewers (Long and Neale, 1989).

Thus, it is concluded that a number of critical human factors problems remain 

unaddressed by rapid prototyping. Two particularly serious concerns comprise the 
absence of a direct human factors contribution to design analysis and specification, 

and the frequendy inadequate documentation of design decisions and rationale. The 

importance of adequate design documentation is highlighted by the meteoric rise of 
reverse engineering, design recovery and re-documentation methods in Software 

Engineering.19 These design recovery methods exact high resource costs on the 

project in both human and financial terms. Thus, SADMs are increasingly applied 

in system development. Consequently, SADMs constitute better reference

19 These methods had to be invoked frequently to rectify design inadequacies (Chikofsky and 

Cross II, 1990).
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frameworks for structuring human factors input to system development20

To complete the argument for SADMs, a case for adopting SADMs over a simple 
system development life-cycle should be made. To this end, the characteristics of 

SADMs should be assessed with respect to the provision of more specific contexts 

for structuring human factors inputs throughout the system design cycle. These 

concerns are addressed in the next sub-section.

2.3. A Case for Integrating Human Factors with Structured Analysis 

and Design Methods

Having argued against rapid prototyping as the reference framework for structuring 

human factors inputs, a further question needs to be answered, namely : do SADMs 

provide better reference frameworks than the traditional system development life­
cycle ? In other words, what additional benefits motivate the adoption of SADMs 
instead of a simpler life-cycle conception ? Thus, the contrast is between the 
following schemes for structuring human factors inputs throughout the system 
design cycle:

I) taking the reference framework defined by the stages of the traditional 
system development life-cycle, intersecting Software Engineering and 
Human Factors design concerns may be identified. Relevant human factors 

contributions may then be located as appropriate. Thus, existing human 

factors toolsets may be 'clustered' as 'toolkits' around specific stages of the 
system design cycle. This assignment of existing human factors toolsets 

with respect to the traditional system development life-cycle was previously

20 A choice must be made between the two conceptions of the system design cycle because rapid 

prototyping and SADMs are incompatible design approaches (note that SADMs are compatible 

with prototyping in general -- see Footnote 17). In particular, SADMs emphasise a stage-wise 

design analysis, specification and documentation as opposed to the rapid generation of a prototype. 

Thus, the time and effort spent on design specification by the two approaches are very different
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proposed by Grandjean (1984); Bems (1984); Rubinstein and Hersh 
(1984); Gould (1988); McClelland (1990); Meister (1984); Eason (1987);

II) taking the reference framework defined by explicit characteristics of a 

particular structured analysis and design method (comprising stage-wise 

scope, process and notation), intersecting Software Engineering and Human 

Factors design concerns may be identified. With respect to the 

characteristics and support requirements of the SADM, existing human 

factors methods are recruited and then organised into a corresponding 

structured human factors method.21 Since both Software Engineering and 

Human Factors methods are structured explicitly, their integration is 

facilitated. Methodological integration entails inter-weaving design stages, 

products and notation (if possible) entailed by the methods of the individual 
disciplines. Thus, the scope, timing and communication of human factors 
inputs are contextualised to specific design support requirements of the 
chosen SADM.

A brief assessment of the above schemes follows.

Although scheme I contributes to the solution of some human factors problems,
others remain unaddressed. For instance :

(1) inadequate allocation of project resources for human factors design. The 
allocation deficit may be attributed to the absence of a sufficiently structured 

conception of human factors design. Such problems have been reported 
widely, e.g. Meister (1984); Chapanis and Budurka (1990); Pikaar et al 
(1990). Although the inclusion of a human factors engineer at the project 

planning stage may alleviate the problem, accurate prediction of resource 

requirements (e.g. development time and effort) would still be difficult in

21 The structured human factors method is expected to provide a reasonably complete coverage of 

the system design cycle. Human factors design is expressed by the method in terms of explicitly 

defined stage-wise design scope, process and notation. On the basis of such a method, other human 

factors toolsets, e.g. declarative and computer-based toolsets, may then be recruited as appropriate.
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the absence of comprehensive records of previous projects. To obviate the 
problem, O'Niel (1980) reported that records gathered with respect to a 

structured conception of system design activities are instrumental for good 

project planning. In other words, the collation of such records is supported 

by structured methods. Thus, scheme II would facilitate an appropriate 

accommodation of human factors design needs by the system design 

agenda;
(2) problems in integrating design descriptions since the format and notation 

of outputs from individual human factors techniques and methods may be 

very different;
(3) problems in communicating human factors design outputs to software 

engineers since human factors notations are frequently insufficiently 

specific;
(4) sub-optimal uptake of human factors contributions. In the absence of an 
explicit conception of how human factors design is structured within the 

system design cycle, the scope, timing and granularity of human factors 
contributions may not be specific to the system design context. The uptake 
of human factors outputs is thus affected adversely;
(5) inefficient utilisation of project resources. Following the identification of 

suitable human factors techniques and methods, care must be taken to avoid 
unnecessary repetitions during their individual application. In other words, 

design activities of disparate methods which overlap have to be 

concatenated. Information requirements should also be reconciled across the 
methods. These pre-requisites are common. For instance, human factors 

methods have been reported to indicate only what should be designed but 

not how, e.g. prescriptive advice on how design decisions may be 

formulated following initial analysis is frequently omitted (Sutcliffe, 1989; 
Chapanis and Budurka, 1990). Thus, in the absence of a structured human 

factors method, valuable project time would have to be spent on :

(a) assessing the suitability of individual human factors methods;

(b) tailoring relevant methods into a coherent set as described above;

(c) extending the methods to ensure sufficiently structured and
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complete coverage of the system design cycle, e.g. human factors 

methods may be inadequate in stage-wise scope, process and notation.

To perform the above tasks, the human factors designer would have to be 

very well informed.22

In summary, four requirements for improving human factors input to system design 

are highlighted by the above account, namely :

(a) the coverage of human factors toolsets should be sufficiently complete 

with respect to the system design cycle;
(b) human factors toolsets should be coherently integrated;
(c) resource requirements for human factors design should be 

accommodated explicitly by the overall design agenda;
(d) Human Factors and Software Engineering design inter-dependencies 

should be defined sufficiently throughout the system design cycle.

Presently, scheme II (i.e. methodological integration via SADMs) is reviewed to 
highlight its potential as a solution that satisfies the above requirements.

Since their introduction in the seventies and eighties, SADMs have made rapid 

inroads into system development. For instance, SSADM has been recommended as 

a standard by the CCTA (Hewett and Durham, 1987). Notwithstanding the above 
account, such events may necessitate the following appraisal of human factors 

involvement in system development:

(1) the impact of SADMs on the effectiveness of current means of human 
factors input. For instance, are existing human factors methods compatible 

with SADMs ? Since these concerns are subsumed in (2) below, they will 
be discussed when the case for the integration of Human Factors and

22 This task may not be trivial. For instance, a recent report counted 96 methods for task 

analysis alone. Thus, the need to perform such tasks while under project pressures may be 

unacceptably inefficient (as well as stressful).
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Software Engineering methods is presented;
(2) the possibility of exploiting SADMs for improving the effectiveness of 

current human factors input. For instance :

(a) the explicit stage-wise design scope, process and notation of 

SADMs may comprise methodological characteristics to be emulated 

by human factors methods;
(b) the well defined design framework of SADMs constitutes a 

reference context for structuring human factors input to system 

design. The timeliness, granularity, and format of human factors 
inputs vis-a-vis design support needs at various stages of the system 

design cycle is thus ensured.

Exploiting SADMs in this way, constitutes a structured integration of 

Human Factors and Software Engineering methods, i.e. scheme II above.

A more detailed account of the arguments in favour of scheme II follows :

(1) well developed notations of existing SADMs may be used to describe 
human factors design outputs. The recruitment may help to improve the 

specificity of human factors descriptions. In addition, the use of a common 
notation may also facilitate the communication of human factors design 
products to software engineers;

(2) the emphasis of SADMs on comprehensive design documentation 

facilitates the capture of design rationale, i.e. antecedents and consequents 
of design decisions are documented explicitly. Comprehensive 

documentation is essential to support quality assurance since it is an 
effective means for detecting and correcting design errors, e.g. design 

audits (and hence input) by human factors designers and end-users are 

supported appropriately (see Long and Neale, 1989; Butler et al, 1989; 

Akscyn and McCracken, 1984; Alvey Human Interface Committee Report, 

1987, pg. 34). The recruitment of documentation schemes of existing 

SADMs is also important because adequate design records are frequently
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written into contractual agreements;

(3) the well defined characteristics of SADMs support a more specific 
intersection with human factors design concerns, i.e. SADMs provide a 

more specific framework for locating human factors contributions. For 

instance, existing human factors methods may be recruited to meet design 

support requirements specific to the chosen SADM. The recruited methods 
may then be developed into a structured human factors method. Such a 

method benefits human factors in three ways.

Firstly, it facilitates the identification of suitable human factors toolsets for 

further development. For instance :

(a) deficient areas of declarative human factors knowledge may be 
highlighted for further research. In the mean time, user testing on 
prototypes corresponding to design products of the method may 
compensate for such knowledge deficiencies;

(b) computer-based tools comparable to Computer-Aided Software 
Engineering (CASE) tools and Integrated Project Support 
Environments (IPSEs) may be developed based on the structured 
human factors method (see Hewett and Durham, 1987; Bott, 1988 for 
an account on the contributions of SADMs to the development of such 
computer-based tools).

Secondly, it facilitates the recruitment of relevant declarative human factors 

knowledge.

Thirdly, Human Factors and Software Engineering design roles and inter­

dependencies may be specified explicitly by integrating a structured human 

factors method with the chosen SADM. In other words, human factors 

design stages are located explicitly against corresponding SADM design 

stages. Such an integration of the methods would promote greater 

awareness and understanding of inter-disciplinary design needs. For 

instance, integration would provide familiar reference points that support the 

assimilation of human factors inputs by software engineers (and vice versa).
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Thus, more effective human factors input and uptake may be expected;

(4) the structured integration of human factors methods and SADMs 
constitutes the specification of a 'unified' system design cycle. Such a 

design cycle would ensure an explicit accommodation of human factors 

design needs. Specifically, adequate design resource allocation may be 

ensured in two ways :

(a) better project planning and estimates of resource requirements. In 
particular, more accurate projections of system development 

time sc ales would accrue from an explicit definition of inter­

disciplinary design deliverables. Projections of design resource 

requirements are also supported by more specific records of previous 

projects.
(b) explicit representation of human factors on the design agenda. In 
other words, resource are allocated explicitly for human factors 
design. Thus, encroachment on its design resources may be obviated. 

Explicit resource allocation is important because encroachments have 
been reported frequently. For instance, unrealistic time schedules have 
been imposed on human factors design (often considered a lower 

priority) as a result of technical difficulties and delays in system 
launch (Eason and Cullen, 1988; Meister, 1984).

For these reasons, the focus of the present research is on the integration of 

structured human factors methods with SADMs. Presently, the preliminary research 
scope and objectives described in Chapter One may be detailed further.

2.4. Detailing the Scope and Objectives of the Research

The research scope comprises the derivation of a general conception of structured 

human factors design, followed by its instantiation as a structured method that is 

appropriate for integration with the chosen SADM. To this end, the objectives of
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the research comprise the following:

(a) to specify general requirements and a research scheme for integrating 

structured human factors methods with SADMs (see Chapter Three);

(b) to derive a general conception of structured human factors design by 
collating and extending existing conceptions (see Chapter Four);

(c) to review previous research on the integration of human factors methods 

with SADMs (Chapter Five);

(d) to describe research concerns involved with the specification and 

subsequent integration of a structured human factors method with a chosen 

SADM (namely the Jackson System Development (JSD) method). The 
specification involves instantiating the general requirements and research 
scheme in (a) above with respect to both the JSD method and specific 

constraints of the research (e.g. available resources may limit the scope of 
the research to a subset of (b) above). These concerns are described in 
Chapter Six;

(e) to construct an appropriate structured human factors method for 
integration with the JSD method. Method construction and integration 
should satisfy the requirements stipulated in (a) and (d) above. In addition, 

lessons learnt in (c) above should be incorporated (see Chapters Seven to 
Eleven);

(f) to assess the research in general and the integrated method in particular; 

and to propose directions for furthering the present research (see Chapter 
Twelve).

A detailed account of the work entailed by these objectives follows.
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PART II :

On Human Factors Integration with 
Structured Analysis and Design 

Methods (SADMs)
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Chapter Three : General Research
Requirem ents, Activities and Plan for 
Integrating Human Factors with SADMs

"The last thing one knows in constructing a work is what to put first."
Blaise Pascal, 1909, Pensies.

Observations made in the preceding chapters are drawn together in this chapter to 

characterise general research requirements for structured integration of human 

factors methods with SADMs. Thus, the concerns of the present chapter are as 
follows:

(a) defining what constitutes structured integration of human factors 

methods with SADMs. The definition serves two purposes, namely it 

identifies high level requirements for integration, and sets the criteria for 
assessing previous research in the area (see Chapter Five);
(b) specifying a general research plan for achieving structured integration. 
This specification serves two purposes. Firstly, it provides general guidance 
to other researchers who may wish to undertake similar work. Secondly, its 
framework supports the formulation of a specific research plan for 
instantiating structured integration of human factors methods with a chosen 
SADM (see Chapter Six).

These concerns are expanded in the following sub-sections.

3.1. General Requirements of Methodological Integration

The most general requirement for structured integration relates to the functional 
definition of a method. Most definitions are expressed in terms of the design scope, 

process and notation of a method (e.g. Carver, 1988; Maddison, 1983; etc.). For
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instance, the following definition was suggested by Hartson and Hix (1988):

"A methodology for system development consists o f a set o f procedures 
that indicate a step-by-step development process over a life-cycle, and a 
notational scheme that is the means for representing designs that evolve 
during that life-cycle

SADMs, as a class of methods, requires additionally that the stage-wise :

(a) design scope should be well defined;
(b) design process should be sufficiently explicit, grouped appropriately and 
sequenced logically to support system development;
(c) design notations should be appropriate for documenting design products 
which are generated at various stages of the system design cycle.

Thus, it follows that a structured integration of human factors methods with 

SADMs should uphold the above methodological requirements. Specifically, 
general requirements for methodological integration comprise the following :

(1) design stages of the structured human factors method should be 
intersected appropriately with those of the SADM, i.e. the design scope and 
process of the two methods are inter-woven to define a coherent overall 

design schedule;
(2) existing notations of the SADM should be recruited (with extensions as 
necessary) for describing human factors design products. The maximum 

use of a common notation supports inter-disciplinary design 
communication. In particular, it improves the communicability of human 

factors design products;

(3) tighter design relationships should be defined between the structured 

human factors method and the SADM to facilitate overall design 
management, e.g. to ensure efficient co-ordination of design team
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activities.1 Thus, the status of serial and parallel design stages between 

the two component methods should be made more explicit. Since serial 

design stages imply information inter-dependencies, obligatory contact 
points (termed design inter-dependencies) should be imposed. In the case of 

parallel design stages, check points should be specified to ensure efficient 

design.2 Specifically, check points (or design conjunctions) are necessary 

to ensure that design specifications generated by the two streams of the 

integrated method are convergent, i.e. to check 'design drift'. Thus, check 

points should be specified for stages where much design extrapolation is 
involved. Too few check points or the failure to adhere to them, may result 
in potential mismatches between Software Engineering and Human Factors 

designs. Additional design iterations are necessary and the design thus 
becomes inefficient

The above requirements for methodological integration may be met in three ways, 
namely b y :

(i) direcdy integrating structured human factors methods and SADMs;
(ii) extending a structured human factors method to include a SADM that 

has been configured to suit the characteristics of the former,

(iii) extending a SADM to include a structured human factors method that 
has been configured to suit the characteristics of the former.

Although there is a wealth of human factors methods (Gould, 1988), none of the 
methods could be considered to provide a sufficiently structured coverage of the 

system design cycle (see Chapters One and Two). Consequently, (i) and (ii) above

1 Large system development projects are generally undertaken by multi-disciplinary design 

teams. Thus, it is reasonable to assume that human factors designers and software engineers would 

undertake design with respect to the structured human factors method and SADM respectively. An 

integrated method should therefore specify how the disparate design streams should be co-ordinated.

2 Situation-specific check points (e.g. those peculiar to the organisation or design team) should 

be excluded to maintain the general applicability and flexibility of the method.
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are not directly amenable routes for a structured integration of human factors 

methods with SADMs. Conversely, since the stage-wise design scope, process and 

notation of any SADM is better formed than any comparable human factors method,

(iii) represents a logical route for structured integration. Other arguments for 

selecting (iii) are as follows :

(1) the current status of SADMs — SADMs are already well established. As 
such, the integration should focus on how human factors methods may be 

configured to support existing Software Engineering practice;
(2) existing tool support for SADMs -- computer-based support tools are 

available. Such tools (e.g. graphics editors) may benefit human factors 

design if SADM notations were adopted for describing its design products;
(3) the current role of human factors in system design — since human 

factors plays a supporting role, the onus is on human factors to ensure that 

its methods are contextually appropriate to support early and continued 
system design involvement (Carver, 1988). In addition, appropriate support 

should be provided to software engineers to ensure an effective assimilation 

of human factors into the existing system design practice. Thus, human 
factors methods should be located against reference points with which 
software engineers are already familiar, e.g. the design stages of SADMs.

However, a price is paid in structuring human factors methods around SADMs. 

Specifically, a constraint is imposed which requires existing SADMs to be left 

largely unchanged by methodological integration. Since SADMs are generally well 
developed, the consequences of the constraint would not be severe if human factors 

design is represented appropriately in the integrated method (see later).

Presently, the research following (iii) is described. Specifically, (iii) implies the 

construction of a structured human factors method that satisfies the design support 

required by the chosen SADM. To this end, general research requirements would 

comprise the following:

(a) extension of the design scope of the SADM to include human factors.
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The extension is not necessarily a simple addition since the scope covered 

by a particular SADM may overlap with human factors, e.g. requirements 

analysis;
(b) integration of human factors design stages with corresponding SADM 

stages. In other words, the location and timing of human factors design 

processes are specified with respect to those of the SADM. Design inter­

dependencies are thus identified;

(c) extension of the notational capability of the SADM to include the 

description of human factors products. As in (a) above, the extension is not 

necessarily a simple addition since SADM notations may be sufficiently 

powerful for describing human factors products.

These research requirements may be matched against the pre-requisites for effective 

human factors input (see Chapter Two). In particular, human factors contributions 
should be matched against design support needs at various stages of the system 
design cycle. Thus, the scope, timing, granularity and format of human factors 

products are appropriate for the system design context. Improved uptake of human 
factors is thus ensured by the greater applicability, relevance and communicability 
of its stage-wise design inputs.

An account of research concerns that correspond to the above requirements follows.

3.2. General Research Concerns for Methodologically Integrating 

Human Factors with SADMs

It was suggested earlier that methodological integration implicates the specification 

of a structured human factors method that appropriately supports the design context 

of the chosen SADM. General research requirements for integration were then 

identified. The requirements may be detailed into the following research concerns :

(a) derivation of a conception of structured human factors design. The 

conception should be constructed by extending existing conceptions;

(b) identification of human factors design support required by the SADM.
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The required support may be identified by intersecting the design scope of 

the SADM with the conception derived in (a) above. Design support 

requirements should be identified for individual design stages of the chosen 
SADM. Thus, a pre-requisite is an adequate understanding of the SADM;

(c) specification of a structured human factors method to support the chosen 

SADM. Specifically, a review of existing human factors methods may be 

conducted with respect to the design support requirements identified in (b) 

above. For instance, existing requirements analysis methods would be 

reviewed if the scope of the SADM does not explicitly include such design 

considerations. Relevant methods are then modified and recruited to the 

structured human factors method that is being constructed. The recruitment 
of existing methods is motivated by two reasons, namely :

(i) faster convergence on an acceptable structured human factors 

method may result since it builds upon existing human factors 
knowledge;

(ii) positive transfer of training with respect to the subsequent 
application of the structured method may be maximised for the same 
reason.

Prior to their recruitment, existing methods may be developed further to 

meet the requirements for methodological integration. For instance, the 
design scope of the methods may be extended and their stage-wise design 

products, process and procedures may be defined more explicitly;
(d) integration of the structured human factors method with the chosen 
SADM. Following the derivation of a satisfactory3 structured human 

factors method, its integration with the SADM may be specified explicitly. 

At this juncture, three requirements of methodological integration should be 

addressed (see previous sub-section). Specifically :

(i) the design stages of the structured human factors method should be

3 The reader is referred to Chapter Six for an account of what constitutes a satisfactory  

structured human factors method.
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inter-woven appropriately with those of the SADM;

(ii) existing notations of the SADM should be recruited (as 

appropriate) for describing human factors design products. Note that 

this requirement may be addressed initially in (c) above;
(iii) contact points (termed design inter-dependencies) and check 

points (or design conjunctions) should be specified to ensure efficient 
design.

(e) evaluation and iterative development of the structured human factors 

method and the integrated method.4 Iterative development may be applied 
following each method specification cycle.

More needs to be said about method tests alluded in (c) to (e) above. In configuring 

method evaluation tests, two considerations should be addressed, namely :

(I) the tests should take account of the current status of the methods. In the 
present context, both the structured human factors method and integrated 
method are under development. Thus, the tests should be configured to 
provide information that would support iterative method development.
(II) the tests should consider resource constraints of the research. In 

particular, its configuration should allow a sufficient number of test cycles 

without the need to encroach on resources allocated to address other 
research concerns.

To satisfy consideration (I), the tests should address the following issues :

(a) demonstration of the design support provided by the methods at each 

stage of system development;
(b) validation of the methods in the field to establish the pertinence of the 

design support provided with respect to a real design context;

4 The focus of integrated method development is confined to the specification of appropriate 

design contact- and check-points, since its component SADM remains essentially unchanged.
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(c) realisation of superior design artefacts. Specifically, a link should be 
established between the derivation of superior design artefacts and 

improvements in human factors design support attributable to 

methodological integration.

Although the issues are interacting, their effects could be addressed incrementally 

by adopting an appropriate research strategy during method development. A 
suitable strategy should support sequential advancement of the research as follows :

(i) iterative method development and demonstration of design support 
while indirectly ensuring field validity and the realisation of superior design 

artefacts;
(ii) field validation of developed methods.

Such a strategy would comprise the following:

(1) the recruitment of established human factors methods and knowledge. 
By building upon established research and design practice, it would be 

reasonable to expect that field validity will accrue to the structured method 
being developed. Similarly, it may be expected that superior design artefacts 

would result from its application;

(2) the adoption of stringent methodological requirements entailed by 
existing SADMs. Emulating the systematic and comprehensive design 
emphasis of SADMs ensures an orderly design process in the structured 

method being developed. Since an orderly design process encourages more 
complete problem analysis, it would be reasonable to expect that superior 

design artefacts would result from the application of the method.

The adoption of such a research strategy is additionally motivated by resource 

constraints, i.e. consideration (II) above. In particular, since method evaluation 

constitutes only part of the research concerns and more than one test cycle is 

desired, field tests should be deferred until the method is sufficiently well 

developed. Such tests would exact unacceptably heavy demands on project
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resources since they would require extensive longitudinal and lateral studies to 
control for the following :

(a) designer experience and capability;
(b) characteristics peculiar to the particular system development project, e.g. 

economic pressures;

(c) organisational and social influences on the conduct of the design;

(d) design team composition.

Thus, by partially separating method development from method validation 

concerns, the strategy decomposes the research into more manageable modules. A 

suitable scope for method evaluation that is commensurate with available research 
resources may then be defined. Specifically, in the case of the method development 
module, method demonstration tests would predominate. Thus, the nature and 
scenario of method evaluation may be summarised as follows ;

(i) nature of tests : demonstration before validation of method capability; 
direct address of design support capability and indirect address of the 
realisation of superior design artefacts;

(ii) evaluation scenario : demonstration of method capability by method 

developers, 'in-house' designers and design teams (in that order), before 
field validation with other designers and design teams.

It should also be noted that the above ordering of evaluation scenario is consistent 
with the procedure for methodological integration, i.e. derivation of a satisfactory 

structured human factors method before explicit integration with the chosen SADM. 
In other words, evaluation using a design team scenario is only applicable after an 

integrated method has been specified.

Two further concerns of method evaluation need to be addressed, namely the focus 

of evaluation and the type of test beds that should be selected.

Firstly, the evaluation could focus on functionality and usability characteristics of 

the method. Since the type of evaluation is influenced by the nature and scenario of
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method evaluation (above), it may be inferred that functionality evaluation takes 

precedence over usability evaluation during method development. On deriving a 
satisfactory method, usability evaluation may then be conducted to assess the 
appropriateness of its expression. For similar reasons, subjective assessment takes 

precedence over objective assessment. Relevant subjective assessments of the 

method may include : completeness of design scope, flexibility, utility, 
acceptability, leamability, and compatibility with the SADM and other established 

design methods and practices, etc. In the longer term, sufficient data may be 

accumulated from its application to support objective assessments of the method. 
For instance, the method could be assessed in terms of its capability for facilitating 

improvements in design performance, e.g. quality of project management, design 
documentation and final design artefact; errors committed and detected during 
design development; project turn-around time; overall project resource 

requirements; etc.

Secondly, the above nature and scenario of method evaluation indicate that 

appropriate case-study systems should be selected as test beds during method 
development To this end, the selection criteria comprise :

(a) the case-study system domain. During initial method development, the 
system domain should not be unnecessarily complex or unfamiliar to the 
method developer. Alternatively, the domain of the initial case-study system 

should not be ill defined. These criteria help to ensure maximum 
expenditure of research time and effort on method development as opposed 
to domain familiarisation. On deriving a reasonable method, other system 

domains may be considered to broaden the scope of method tests, e.g. to 
test the capability of its notation for describing different design domains;

(b) the size of the case-study system : for the same reason as in (a) above, 

the scale of case-study systems should be incremented progressively as the 

method is developed. Alternatively, successively larger modules of a case- 

study system may be selected as test beds;

(c) the complexity of the case-study design scenario : for the same reason as 

in (a) above, a simpler design scenario should be selected at early stages of 

method development. For instance, a variant design scenario would be
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more suitable than a novel design scenario. Following the development of a 
satisfactory method, tests under a novel design scenario may be introduced, 

e.g. to test elicitation procedures of the method more fully.

The preceding account describes research concerns which apply generally to the 

structured integration of human factors methods with any SADM. The research 

concerns may be decomposed into more detailed activities (see Figure 3-1). A 

research plan comprising modular schemes and strategies, may then be specified to 

manage the activities more efficiently. A description of such a plan follows.

3.3. A General Research Plan for Methodologically Integrating 

Human Factors with SADMs

To manage the research effectively, an appropriate plan is necessary. The function 
of such a research plan is three-fold:

(a) to arbitrate between alternative ways of conducting the research;
(b) to support method specification, e.g. derivation of design procedures;
(c) to support the implementation of case-study tests and iterative method 

development

Figure 3-1 shows a general research plan for the structured integration of human 

factors methods with SADMs. Note that the integrated method is referred to as a 
SADM*. As shown in the Figure, the research plan essentially comprises a 

schedule of activities operationalised by modular schemes and strategies. 

Specifically, the research is made more tractable by the application of three 
strategies, namely S*, SI and S2. A review of the plan follows.

The plan is initiated by a problem statement which identifies general objectives of 

the research. In the present context, the objective is to facilitate the design of better 

human-computer systems by ensuring human factors input throughout the system 

design cycle (see Chapter One). Literature reviews may be conducted to detail the 
research problem further. For instance, the current problem of human factors input
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Figure 3-1 : A Research Plan for Specifying an Integrated Method
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was revealed as the 'too-little-too-late' problem. In addition, previous research 
solutions should be reviewed to uncover potential pitfalls and useful ideas.

New design support requirements and solutions may then be outlined. For instance, 

a requirement may be the explicit location of appropriate inter-disciplinary design 

concerns with respect to the system design cycle. Making design intersections 

between Human Factors and Software Engineering explicit ensures that human 

factors inputs are optimally relevant to design support needs at each stage of system 

development, i.e. ensuring the timeliness, format and granularity of human factors 
inputs. A solution that satisfies these requirements may be to integrate Human 

Factors and Software Engineering methods structurally. Since the design structure 

of SADMs is explicitly defined throughout the system design cycle, its recruitment 
would facilitate the structured integration of Human Factors with Software 
Engineering methods (see Chapter Two). Similarly, it follows that integration 

would also be facilitated by a correspondingly structured human factors design 
method. Since an adequately structured human factors method does not exist, it 
needs to be specified (see earlier sub-sections). To this end, existing conceptions of 

human factors design are surveyed and recruited as appropriate. The recruited 
conceptions are then extended and synthesised to derive a structured conception of 
human factors design (see Chapter Four). The structured conception constitutes the 

basis for specifying a structured human factors method. For instance, the scope of 
such a method may be identified by intersecting the human factors design 

conception with the support requirements of the chosen SADM. Thus, a compatible 

structured human factors method may be specified and integrated with the SADM.

To support the specification and integration of structured methods, previous reports 

of similar research should be reviewed (see Chapter Five). The review may indicate 

an appropriate SADM for human factors integration, e.g. a SADM that was 

previously unexplored.5

5 The selection of the JSD method for the present research is dictated primarily by its sponsors 

(see Chapter Six).
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Following the selection of a SADM, its requirements for human factors design 

support should be identified (see Chapter Six). Generally, the requirements may be 

extracted from two sources, namely b y :

(a) reviewing previous reports of the inadequacies of the chosen SADM and 

SADMs in general;

(b) comparing the design scope addressed by the SADM against the 

structured conception of human factors design derived earlier.

On the basis of these requirements, a structured human factors method may be 
specified using two research schemes, namely a scheme for specifying its design 

scope and process; and another for specifying its notation. These schemes may be 
applied in parallel if the notations of the chosen SADM are sufficiently developed 
and promising for describing human factors design products.

Figure 3-1 shows that early versions of a structured human factors method may be 
backwards engineered6 using simple case-study systems (see Chapter Seven). 

Such systems are characterised by well defined design start-points (requirements) 
and end-points (implemented design artefacts). Following the specification of a 
preliminary structured human factors method, incrementally larger case-study 

systems and forwards engineering7 tests may be applied (in that order). 
Successive versions of a structured human factors method are thus tested and 
refined iteratively.

On deriving an adequate structured human factors method, explicit integration with 

the chosen SADM may be attempted. Design inter-dependencies and check-points

6 This process will be explained later when research strategies are described. Suffice it to say at 

present that reverse or backwards engineering is defined as the process of deriving a set of design 

specifications from a finished system, i.e. it entails a post-hoc examination by person(s) other 

than the developer(s) (Rekoff, 1985). A design process for the system is thus revealed.

7 Forwards engineering is the opposite of reverse or backwards engineering. It may be viewed as 

the 'normal' process of design specification.
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are thus specified to co-ordinate design advancement between the two component 
streams of the integrated method (or SADM*). The SADM* is then subjected to 

further forwards engineering tests. The primary objective is to assess the 

appropriateness of the design inter-dependencies and check-points. Thus, 

successive versions of the integrated method are tested and refined as appropriate. 

The method refinement and test cycle is continued until a satisfactory SADM* is 
derived.

More needs to be said about the strategies that support the research. In particular, 

three research strategies are applicable, namely :

(a) a super-ordinate strategy (S*) that involves iterative cycles of method 
specification followed by its implementation in case-study tests. At the end 
of each cycle, the method is upgraded. Such a strategy is analogous to 

hypothesis testing, i.e. a method is specified (the hypothesis) and then 
implemented in the design (the test) of a case-study system (the test bed);
(b) a sub-ordinate strategy (SI) that facilitates the specification of early 

versions of a structured human factors method. The strategy involves 
backwards engineering before forwards engineering (see Figure 3-1). 
Backwards or reverse engineering is a technique for deriving intermediate 

design specifications and processes for a developed product. Although the 
technique originates from hardware design, it is increasingly applied in 
software design to rectify poorly managed projects, e.g. for post­

implementation design recovery and re-documentation (Chikofsky and 

Cross II, 1990). Thus, backwards engineering could support the early 
stages for specifying a structured human factors method. Specifically, by 

applying the technique iteratively under various design scenarios for a class 
of design artefacts (e.g. software user interfaces), a generic design process 

may be abstracted for that class. The generic design process may then be 

subjected to forwards engineering tests to assess its capability for 

supporting the design of artefacts within that class. In the present context, 

backwards engineered versions of a structured method may be assessed 

initially by simulating a variant design (forwards engineering) of the same
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case-study system. On deriving a satisfactory method, other case-study 

systems (or another module of the current case-study system) may be 

introduced as test beds.

During method tests, answers to the following questions are sought:

(i) are design processes and intermediate design products of the 

method sufficiently well defined to support human factors design, e.g. 

user interface specification (Figure 3-1, left side) ?

(ii) can notations of the method describe intermediate design products 

adequately to facilitate inter-designer and designer-user discussions ? 

Are they also specific enough to support unambiguous implementation 
of human factors specifications (Figure 3-1, right side)?
(iii) are the specified design inter-dependencies and check-points 
sufficient to ensure efficient design convergence between the 
component streams of the SADM* ? Are unnecessary design 

constraints imposed by these inter-dependencies and check-points 

(Figure 3-1, lower part) ?

Thus, appropriate upgrades to the current version of the method may be 
inferred.

(c) a second sub-ordinate strategy (S2) that supports the selection of 

appropriate case-study systems for testing the method. Specifically, strategy 
S2 prescribes the separation of test-bed complexity (e.g. familiarity with the 

domain of the case-study system) from method development concerns. For 

instance, strategy S2 could be applied to support strategies SI and S* as 

follows:

(1) use backwards engineering to derive a preliminary version of the 

structured human factors method (strategy SI);

(2) test method iteratively (strategy S* — see (3) below) under a 

forwards engineering scenario (strategy SI), using case-study 

systems of increasing complexity and size (strategy S2);
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(3) iteratively develop the method via method specification and test 
cycles (strategy S*).

A variant of strategy S2, namely the separation of method development 

concerns, may also be applied to control the complexities of the research. 

Specifically, strategy S2 prescribes that during the initial stages of method 

development, the research should focus on the definition of stage-wise 
design products entailed by the method. On adequate definition, attention 

may then be directed on their derivation.

This account completes the description of a general research plan for the 

specification of an integrated method. In implementing the research plan, specific 
research constraints need to be addressed. An instantiation of the general research 

plan is presented as follows :

(a) Chapters Four and Five summarise the outputs of literature reviews 
prescribed by the research plan for initiating method development. 

Specifically, existing conceptions of human factors design were reviewed 
and recruited (as appropriate) to the specification of a structured conception 
of human factors design (Chapter Four). In addition, previous research on 

human factors integration with S ADMs were reviewed to inform the present 
research on past successes and failures (Chapter Five). With minor 

exceptions, the outputs of these reviews are general to this class of research;

(b) Chapters Six and Seven describe an implementation of the schemes and 
strategies entailed by the general research plan. Detailed research activities 
for specifying a particular SADM*, namely an integrated Jackson System 

Development method (or JSD*), are thus operationalised. The content of 

these chapters are therefore specific to the present research. Their objective 

is to establish the context for subsequent discussions on the JSD* method.
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Chapter Four : Towards a Conception of
Structured Human Factors Design

"A precedent embalms a principle"
Lord Stowell, Advocate General, 1788.

In previous Chapters, the importance of earlier and wider human factors design 
involvement was highlighted. Consequently, additional areas of human factors 

inputs have been identified. However, the inputs mapped poorly onto the design 

support needed at various stages of the design cycle since the process of human 
factors design remains largely implicit. The unsatisfactory state of affairs results 
directly from the historically late recruitment of human factors in system design. 

Specifically, late recruitment predisposed its design methods to a narrow coverage 
of the system design cycle. Thus, to alleviate the observed problems an adequately 
structured conception of human factors design is a pre-requisite. In addition, a 

structured conception would facilitate the integration of human factors methods with 
SADMs. For instance, the requirements for structured integration may be defined 
by intersecting the scope of the conception with the chosen SADM. Relevant human 

factors methods may then be recruited to the specification of a structured human 
factors method that is appropriate for integration with the SADM (see Chapter 
Seven).

To this end, the derivation of a structured conception of human factors design 
constitutes the focus of this chapter. Thus, its objectives comprise the following :

(a) to review existing conceptions of human factors design and then collate 

them into a 'consensus* conception. On the basis of the 'consensus' 

conception, an initial conception of structured human factors design may be 

derived (see (b) below);

(b) to construct analytically a structured human factors design framework. 

The framework is derived by extending the 'consensus' conception via the 

application of basic human factors design premises. Thus, stage-wise 

manipulations of human factors design primitives (namely task, human,
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device and environment) may be specified;

(c) to assess existing conceptions of structured human factors design and to 
collate them with the analytic framework derived in (b) above. An enhanced 

conception of structured human factors design is thus derived. The latter 

conception is then used to identify existing human factors techniques and 

methods that may be recruited to the construction of a structured human 

factors method.

These objectives are discussed in the sub-sections that follow.

4.1. A Survey of Existing Conceptions of Human Factors Design

To derive a 'consensus* conception of human factors design, a review of relevant 
reports by researchers and practitioners was conducted. The survey highlighted the 
following:

(a) the coverage of human factors design is confined to a narrow part of the 
system design cycle. Thus, it may be concluded that human factors design 

is generally incomplete;
(b) the taxonomy and scope of existing human factors design concerns are 
poorly defined. As such, the location of human factors concerns with 

respect to the system design cycle are inconsistent across reports. For 

instance, Shackel (1986a) located task analysis after functional design while 
Grudin et al (1987); Haubner (1990); Pikaar et al (1990); etc. reported the 

reverse order,
(c) there is no agreement on the scope of human factors input to system 
design. For instance, Mantei and Teorey (1988) included pre-design 

product acceptance analysis, and Haubner (1990) included post­

implementation product surveys;

(d) very few reports include an explicit identification of the inputs required 

for human factors design and the intermediate design products that are 

derived subsequently. Reports that fulfil this criteria were generally 

dedicated to design analysis at specific stages of the design cycle, e.g. task
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analysis. Thus, it may be concluded that human factors design is generally 

implicit;
(e) very few reports identify explicit relationships between human factors 
design stages and describe how design should be advanced. For instance, it 

is unclear what outputs of a particular design stage would constitute inputs 

to a succeeding design stage. Of the hundred or more reports surveyed, 

only two addressed this issue, namely those by Shackel (1986a) and Jones 

(1973). Other reports generally described human factors design as 
comprising a vague ordering of design concerns. Such reports would only 

be informative with respect to what human factors concerns should be 

considered but not how they should be addressed during design;
(f) there are two levels of human factors input to system design, namely at 
the organisational level and the interactive work system level. These levels 

may correspond to system and sub-system design respectively.

A summary of reports selected from the above human factors design survey is 

shown in Tables 4-1 to 4-4. It can be seen from the Tables that human factors 
design was described as a mixture of design process and product concerns. Also, 
the design concerns were neither described at the same level nor mutually exclusive. 
For instance, it is unclear across reports whether task elicitation and description 

should be included in task analysis (these were considered distinct concerns in 
Shackel (1986a)). For these reasons, a ’consensus' conception of human factors 

design can not be inferred directly from these reports. To derive such a conception, 
a simple ranking scheme had to be applied. The procedures of the scheme are as 
follows:

(a) the number of items in Tables 4-1 to 4-4 was reduced by grouping 

similar items under one category, e.g. user analysis and user 

characterisation are grouped under the latter. Similarly, subsets are grouped 
into a super-ordinate set, e.g. task analysis and task description are 

categorised under the former. Minor or 'non-main stream’ human factors 

concerns are excluded, e.g. late customisation and product survey. To 

reduce the categories of human factors concerns further, a 'basic' set was 

selected from the reports by imposing an acceptance threshold. Specifically,

80



only design concerns that were mentioned in more than fifty percent of the 

reports would be selected for inclusion in the basic set.8 Thus, nine 
categories of human factors concerns were identified. Following 

identification, human factors concerns cited in each report were classified 

under the categories (Tables 4-1 to 4-4). The results are shown in Table 4-5;

(b) the reported sequence of human factors design categories was noted and 

ranked for each of the reports (refer to Tables 4-1 to 4-4 — pull the tabs for a 

complete view). As the number of categories across the reports are 
different, the rankings (raw score) were normalised to the maximum 

number of categories,9 i.e. to base nine. The modal and adjacent score(s) 

of the normalised set (shown in parenthesis in Table 4-6) were then 
considered to decide the sequence of the nine categories of human factors 
design. The sequence thus constitutes a 'consensus' view of human factors 

design for the surveyed reports.

The derived 'consensus' conception of human factors design may be summarised

as follows:

System level considerations

Stage 1 ; System performance definition (i.e. requirements 

specification)

(Stage la  : User characterisation)
Stage 2 : Function allocation

(Stage 2 a : User characterisation, Extant system task analysis, task

synthesis, Environmental design & Training projection)

8 Relevant contextual information should be noted to support more specific insights into human 

factors design. For instance, appropriate contextual information would support a lower level 

interpretation of the 'consensus' conception, e.g. to uncover why task analysis is located at various 

design stages.

9 A sample calculation for normalising a score from base 8 to base 9 (see Table 4-6, column 2, 

row 2, Eason (1987)) is as follows : 2 (raw score) x 9/8 = 2 (normalised score to nearest integer).
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Sub-svstem level considerations

Stage 3 : User characterisation

(Stage 3a : Function allocation)

Stage 4 : Job design

(Stage 4 a : Training design)
Stage 5 : Task analysis

(Stage 5 a : User interface design)

Stage 6 : Environmental design
Stage 7 : User interface design & Training design

Stage 8  : Evaluation

(The italics indicate human factors concerns that may also be relevant at the design 

stage.)

Although the 'consensus' conception seems reasonably complete with respect to the 
system design cycle, 10 the underlying human factors design assumptions and 

'logic' remain implicit. To support a better understanding of human factors design, 
its design variables and manipulations should be made explicit. One solution is to 
extend the 'consensus' conception into a structured design framework. The 
framework may be derived analytically by extending the conception with respect to 

basic primitives of human factors design, namely the task, user, environment and 

device. The derivation of such a framework is described in the next sub-section.

10 The completeness of a conception is a function of the state of human factors knowledge at a 

particular point in time. It may be determined directly by conducting exhaustive tests on promising 

conceptions. Alternatively, it may be ensured implicitly by deriving a 'consensus' conception via a 

sufficiently wide review of reported conceptions. For completeness, the derived conception should 

be extended analytically. Finally, its completeness with respect to the system design cycle is 

assessed against the scope of existing Software Engineering SADMs.
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4.2. Analytic Derivation of a Simplified Framework for Structured 
Human Factors Design

The preceding sub-section highlighted that the 'consensus' conception of human 

factors design is inadequately explicit and structured. Thus, it was suggested that 

basic premises of human factors design (comprising its design approach, primitives 

and assumptions) should be examined analytically to derive a structured human 
factors design framework. The framework may then be imposed on the 'consensus' 

conception to derive a structured conception of human factors design.

Generally, human factors design may be viewed as an extension of Grandjean's

(1988) concept of user-centered design. Thus, the objective of the design is to : fit 
<x> to the human' where x -  task + device + environment. Specifically, the 
perspective implies the following system11 design stages :

(a) identify the user population;
(b) define performance requirements12 of the human-machine system;

(c) define requirements of the user population with respect to the task, 
environment and device;
(d) user-centered specification of the conceptual task, interactive task, 

environment, user interface and workstation.

Any 'shortfall' in the specifications of (d) that can not be rectified to meet the 

requirements in both (b) and (c) (e.g. owing to technological limitations), may then 
be 'compensated' by appropriate personnel training and selection. In other words, 
fitting the human to <x>' should follow fitting <x> to the human\

11 A system may comprise one or more sub-systems. Systems generally comprise users and 

devices operating in a particular environment. They perform work by executing tasks to effect 

desired state changes of real world objects (Dowell and Long, 1989).

12 Satisfactory system performance may be interpreted as the achievement of work requirements 

at an acceptable level of human and computer costs (Dowell and Long, 1989).
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Similarly, in the context of human-computer systems, the objective of human 

factors design is to achieve system goals at acceptable user costs via appropriate 

configurations of the interactive task, device (both hardware and software) and 
environment. Thus, system design involves manipulating the attributes of these 

design primitives so that the desired system performance is met, i.e .:

Desired system performance = f {environment, task, device, user) 

or P system = f{E,T,D ,U}

An expansion of design manipulations of these attributes follows.

Generally, system design is instigated by desired changes in system requirements. 
In turn, the changes may be attributed to required :

(a) improvements in current system performance from some value Psystem
to P'A system »
(b) modifications of system or sub-system(s) design attributes at the same 

level of performance.13

Specifically, system requirements are addressed (e.g. pre-set training needs and 

environmental limits) and expressed in terms of necessary modifications and 
extensions of the current system (note that the current system may be a manual 

system). For instance, sub-systems may be defined, functions may be allocated 

between human and device components of the sub-systems, and socio-technical 
interactions14 among sub-systems may be described explicitly in terms of their

13 Note that the design activities in (a) and (b) above are not mutually exclusive. For instance, 

system performance improvements in (a) may necessitate sub-system design changes in (b), since 

the former is a function of the performances of the latter, i.e.:

^system =  ̂^sub-system 1 »psub-system2 *.... ]

14 Since informal work relationships are extremely varied, they should be addressed as they are 

met.
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work relationships and information exchanges. Thus, the purpose and performance 

of the target system is defined conceptually. The conceptual design is then detailed 

progressively by iterations of sub-system(s) design followed by their integration. 

Such a view of system design was reported by Eason (1987); Gillett and Northam 

(1990); Shackel (1986a); Jones (1973); and Pikaar et al (1990).

In accordance with the central tenet of human factors design (namely user-oriented 

design), sub-system design is initiated by a specific definition of users and their 

needs15 (Grudin et al, 1987; Clowes, 1986; Gillet and Northam, 1990; Haubner, 

1990; etc. — see Table 4-1 to 4-4). Prominent characteristics of users are assumed 

and documented as sub-system design constraints. 16 On the basis of these 

constraints, attributes of other human factors design primitives (namely 
environment, task and device attributes) are then manipulated iteratively to meet 

sub-system performance requirements. Since these design primitives are 

interacting, design iterations should be assumed to pervade the overview that 
follows. In addition, the designer may apply the following design prioritisation 

strategies:

(a) firstly, determine the attributes of central, critical and limiting design 
primitives. In this way, constraints which increase with design advancement 

are accommodated by primitives that are more amenable to design 

manipulations. For instance, users' jobs and tasks are addressed before 

environment and device design. Thus, the latter is designed to accommodate 

the constraints imposed by the former,
(b) secondly, determine the attributes of independent and easily controlled 

design primitives. A clearer and more stable set of design constraints is thus 

defined for subsequent accommodation by dependent design primitives. 

For instance, environment design should precede user interface design. In

15 User characterisation may include an assessment of the implications of changes to the current 

task, e.g. transfer of learning effects implicated by a particular target sub-system design.

16 It can not be over-emphasised that the assumption does not imply the obviation of user 

testing.
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this way, interactions among design primitives may be managed more 

effectively.

Bearing in mind preceding design decisions, the task to be performed by a

particular user group is defined. Task design involves decomposing sub-system

functions (comprising the human and device) so that on-line and off-line task

components17 are detailed sufficiently to support job and training design

considerations. For instance, on-line tasks may be decomposed into interactive

tasks. At this design stage, participatory design and task analysis techniques may be
recruited. The preceding task design manipulations may be represented informally 
as follows:

U -----> U (i.e. presumed user attributes are upheld)
T  > T1 (i.e. the existing task is re-designed)

Since T = Ton_j|ne + T0^_^e .

^on-line + ^off-line > ^  on-line + ^  off-line
(i.e. new on-line and off-line tasks are defined)

n n i    ,  » r » f

on-line — device interaction
(i.e. new device tasks (T'device) and
interactive tasks (T,interaction) are detailed).

Presently, system level descriptions of the social and physical environment may be 

specified at a lower level of description. Specifically, earlier socio-technical 

assumptions are made explicit and various design options for the physical 

environment may be investigated. In particular,:

(a) the macro environment may be tempered to a range that is acceptable to 

the target system, e.g. by air conditioning;
(b) a micro-environment may be created via an ancillary device, e.g.

17 On-line and off-line tasks are device-supported and manual tasks respectively.
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protective clothing to shield the user from adverse conditions;

(c) the user may be trained physiologically to tolerate periods of work in the 

environment, while the machine is designed to withstand the conditions, 
e.g. training fighter pilots to tolerate gravitational forces;

(d) a combination of all of the above.

A design option is selected following appropriate consideration of both the 

psychological and physiological implications of the stressor, and technological 

constraints on the solution. The design manipulations described thus far may be 
represented informally as follows :

U ---- > U ) attributes of these primitives are
T ---- > T'on_line + T'off_line ) carried forward to constrain the

T 'on-line = T devxce + T 'interaction > design of the environment (E).

E ---- > {E1, E} (i.e. the existing environment (E) is either left
unchanged, or some changes may be planned (E')).

At this juncture, device design (comprising software, hardware and workstation 
design) may be undertaken. To this end, functional design is pursued via iterative 

decompositions of device and interactive task components of the on-line task, i.e. 

T'device an(* ^  interaction respectively. The resulting lower level descriptions should 
be consistent with design decisions and constraints that have been carried forward 

to this stage. In addition, the inputs and outputs of T’device and T'interaction should 
complement each other. An appropriate user interface design may then be specified 

on the basis of T'interaction (e-£- lts inputs and outputs) 18 and an organisation's in- 
house style (if any). These human factors design manipulations may be summarised

18 Since all design decompositions up to and including the interactive task and user interface 

design are shaped by the adopted user model, a closer match between the designer's and user’s model 

of the system may be expected. Appropriate device usability and functionality would thus accrue.
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informally as shown below :

E -— > {F ,E}
U -— > U ) attributes of these primitives are 

) carried forward to constrain the

T  ----------- >  T ' o n - l i n e  +  T ’o f f - l i n e  ) design of the device P ) .

T ' i n t e r a c t i o n  — > {sub-tasks, procedures, object-actionpairs}
(i.e. the interactive task is decomposed to the device level) 

T d e v i c e  — > {device programs}
D -----> D'

(i.e. a functionally new device is designed to replace the old)

A brief summary of other design scenarios as follows.

(i) Re-designing the user interface of a device

In this case, the off-line and device tasks are unchanged. Thus, the design 
manipulations may be summarised informally as follows :

d e v i c e i n t e r a c t i o n

d e v i c e i n t e r a c t i o n  »

(i.e. a new set of tasks and devices is derived)

{Ton-line* ^  > {Ton-line > ^ } or {T^evjce + T ' i n t e r a c t i o n  » ^  )

(i.e. the device task is unchanged while interactive task
characteristics are modified)

T ' i n t e r a c t i o n  — > {sub-tasks, procedures, object-action pairs}
(i.e. the alternative interactive task is described at 

the device level)

T d e v i c e  — > {device programs}
(i.e. unchanged core application)

D -— > D’

(i.e. a new user interface is designed to replace the old)
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(ii) Re-designing the off-line task without changing the on-line task (the 
device is thus unchanged).

Such a design scenario may be undesirable since it could imply an increased 

workload corresponding to increases in the off-line task. Alternatively, the 

user may be compelled to undertake further off-line tasks to compensate for 

inadequate on-line support. In both cases, user costs are increased to meet 
desired performance requirements, while device costs remain unchanged 

(since additional on-line support is not provided). The design manipulations 
may be summarised informally as follows :

T -— > T

T  =  ^ o n - l i n e  +  ^  o f f - l i n e

{T, D} - - >  { T . D} or {Ton.line + , D}
(i.e. on-line task (and hence device design) is 

unchanged while off-line task is modified)

(iii) Re-designing manual tasks

In this case, on-line tasks do not exist. Thus, the design manipulations are 

summarised informally as follows :

^  —  ^ o n - l i n e  +  ^ o f f - l i n e

T  =  ^ o f f - l i n e  =  ^ m a n u a l  since TOT.yne — { }  and D — { )

T -----> T
___v , rF > T*

m a n u a l  m a n u a l

(iv) Automation of an existing set of manual tasks

The introduction of a device to support existing tasks essentially involves 

function allocation and the specification of on-line tasks. Thus, the design

95



manipulations may be summarised informally as follows :

^  ^ o n - l i n e  +  ^ o f f - l i n e

^  ”  ^ o f f - l i n e  ~ ^ m a n u a l  since Ton_̂ ne — {} and D — {}
if d  -— > D’ andD1 * {}

then Tmanuaj >  T o n _ i i n e  +  T 0 f f _ j i n e  a ^ d  T o n _ i j n e  ^  {}

(i.e. function allocation)
rP l   nni , rp I
1  o n - l i n e  —  d e v i c e  i n t e r a c t i o n

^ i n t e r a c t i o n  — >  {sub-tasks, procedures, object-action pairs}

T ' d e v i c e  — >  ( d e v i c e  programs)

( " ^ m a n u a l  * >  ( ^ " o f f - l i n e  +  " ^ d e v i c e  +  ^ i n t e r a c t i o n » ^  J

(i.e. the manual task is replaced by a new task
comprising off-line, interactive and device tasks)

(v) Automating and extending an existing set of manual tasks

This scenario is a variant of (iv) above since the existing task is extended in 
addition to the introduction of a device. Thus, function allocation and on­
line tasks have to be specified (not shown below -- see (iv) for further 
details). The design manipulations may be summarised informally as 
follows:

^  — ^on-line + ^off-line

T ~ ^off-line — ^manual since Ton_jjne — {} and D — {}

^  ^off-line > ^  off-lineor ^  manual
and if D -----> D' andD’ * {}

then T manuai > T on.jine + T 0ff_iine

{^manual ’ ^  > {^ on-line ^  off-line » ^  )

As a final consideration, user selection and appropriate training may be considered 

if the desired level of sub-system performance cannot be achieved through further 

design iterations. The design manipulations involved may be summarised informally
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as follows:

T  ---------> T'on_line + T'off.line ) attributes of these

" ^ " o n - l i n e  "  d e v i c e  " ^ i n t e r a c t i o n  ) primitives are
E ---- > {E', E} ) carried forward to

^'interaction — > {sub-tasks, procedures, object-action pairs} ) constrain training

^'device — > {device programs) ) design and user
D ---- > D' ) selection criteria.

U -— > U'

(i.e. modifying user attributes by training and selection)

Although the preceding account is a simplified description of structured human 

factors design (e.g. stage-wise design iterations and evaluation have been omitted), 
its emphasis on stage-wise design manipulations supports a more specific 

interpretation of the 'consensus' conception of human factors design (see sub­
section 4.1). Specifically, the structured framework supports the :

(a) inclusion of task synthesis at different levels of description. Specifically, 

task synthesis at a high level would precede functional allocation as the latter 
cannot begin without some notion of the system task. At a lower level, sub­

system task synthesis supports human-machine interaction design (see 

Figure 4-1). Similarly, task description is subsumed in task synthesis and 
task analysis.
(b) interpretation of design relationships described by the 'consensus' 

conception. In addition, it supports the instantiation of these relationships in 

the initial conception of structured human factors design that is derived 

subsequently (see Figure 4-1).

The conception is then enhanced by incorporating further contributions from other 

structured design conceptions. On the basis of the enhanced conception, a 

structured human factors method may then be constructed. These research concerns
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are addressed in the next sub-section.

Figure 4-1 : An Initial Conception of Structured Human Factors
Design
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4.3. Towards an Enhanced Conception of Structured Human Factors 
Design

In 1973, Jones proposed a general conception for designing human-machine 
systems (Figure 4-2) that accommodates early ideas on function allocation, e.g. as 

suggested by Fitts (1962), Chapanis (1965) and Singleton (1972).

Figure 4-2 : A Conception of the Structured Design of Human-
Machine Systems (Jones, 1973)
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Although the conception is rather simple, it highlights the following human factors
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design concerns:

(a) specification of user requirements (expressed as human performance 
setting) prior to user interface design;

(b) separation of human and machine design;

(c) design of user interfaces in parallel with ancillary support and training. 

Since then, the scope of human factors design has grown to include :

(a) conceptual definition of the target system, e.g. task and information 

flows of the system;
(b) functional specification, e.g. human-machine allocation;

(c) organisational and socio-technical design;
(d) job specification and personnel selection;
(e) system integration and evaluation.

Thus, the scope of Jones' conception was updated appropriately (see Shackel, 

1986a). Although the updated conception is an improvement, the meaning and 
underlying rationale of some aspects of the conception remain unclear (see Figure 
4-3). In particular,:

(a) the translation of Jones' 'man-machine interface design' into 'man- 

machine workstation design' may not be appropriate since the scope of the 

latter usually comprises the anthropometric design of workspaces. Thus, it 
is unclear where user interface design is addressed. Further confusion may 

arise from Shackel's exclusion of software and hardware design from the 

scope of human factors design (these concerns have been identified as 
'machine factors');

(b) the representation of task description, analysis and synthesis as distinct 

concerns is unexplained. While a case may be made for distinguishing
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between task analysis and task synthesis, 19 it is unclear why task 

description would not be a sub-activity of the two;

(c) the purpose of the 'Relate to1 arrow emanating from the 'Other systems' 

circle is obscure. One interpretation is that it highlights the need to consider 

extant system characteristics so that transfer of learning effects (both 

positive and negative) may be addressed. However, the interpretation is

Figure 4-3 : An Updated Conception of the Structured Design of
Human-Machine Systems (Shackel, 1986a)
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19 In particular, task analysis can not be conducted in the absence of an extant or reasonably 

developed system. Thus, to contribute to design analysis for specification (as opposed to design 

analysis for evaluation) task analysis needs to be augmented by another step which addresses 

target system design, namely task synthesis.
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inconsistent with other aspects of Shackel's conception. For instance, the 

suggested location of extant systems analysis relative to task analysis 

implies that the former is not supported by the latter. The implication would 
be difficult to support since the strength of task analysis is in extant system 

analysis. In addition, the location of task analysis seems to imply that the 

information it generates would not support design decisions on function 

allocation and task synthesis (see Figure 4-3). Again, the inference would 
be inconsistent with considerations on transfer of learning effects;

(d) the implications of the ’Regular operation' box for human factors design 
is unspecified, i.e. its purpose in the design conception is unclear,

(e) the designation of some of the boxes as 'machine factors' is debatable 

(see Figure 4-3 and (a) above);
(f) the meaning of inter-connecting arrows between the boxes is obscure. 

Thus, Shackel's conception needs to be expanded further so that its stage- 

wise design scope and activities are identified explicitly. Also, the boxes 
and arrows of the resulting conception should represent at a common level 

of description, the scope and process of human factors design respectively. 
The derivation of such a conception is a pre-requisite for the development of 
a structured method.

To this end, it would be helpful (as an intermediate step) to construct an enhanced 
conception of structured human factors design as follows :

(1) the initial conception of structured human factors design derived 

previously (Figure 4-1) is carried forward;

(2) an improved version of Jones' and Shackel's conceptions (Figures 4-2 

and 4-3) is proposed (Figure 4-4). Since Shackel's conception may be 
regarded as an extension of Jones' conception, the latter need not discussed 
further. Modifications implicated by the preceding assessment of Shackel's 

conception are thus implemented as shown in Figure 4-4;

(3) the conceptions derived in (1) and (2) above are collated into an 

enhanced conception. Specifically, Shackel's conception (Figure 4-4) is 

compared with the initial conception (Figure 4-1) and promising aspects of
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the former are recruited and integrated with the latter, e.g. organisational 

analysis, personnel selection and job aids (off-line) design.

Figure 4-4 : A Modified Version of Shackel's (1986a) Conception of
Structured System Design
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The enhanced conception derived is shown in Figure 4-5. Since it describes a 
reasonably complete human factors design scope, it constitutes the basis on which a 

structured human factors method may be specified for integration with a chosen 

SADM (see Chapter 7). Specifically, the scope of the structured method to be 
developed (and hence the scope of the enhanced conception addressed) is 
determined by the human factors design support required by the chosen SADM. In 

other words, the design scope of the SADM is intersected with the enhanced 

conception to identify a relevant subset of the latter. The subset constitutes a 

framework for developing a complementary structured human factors method for 

integration with the SADM. Thus, existing human factors methods and techniques
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Figure 4-5 : An Enhanced Conception of Structured Human Factors
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are examined and recruited appropriately to the construction of a structured method 
(see Chapters Six and Seven).

To complete the background information associated with this class of research, a 

review of previous reports on human factors integration with SADMs follows.
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Chapter Five : A Review of Previous Research 
into Human Factors Integration with SADMs

" And urge the mind to after sight and foresight
T.S. Eliot, 1888-1965, Little Gidding.

In this Chapter, previous research into the integration of human factors with 

SADMs are reviewed. The review covers three SADMs, namely the Jackson 

System Development (JSD) method; Structured Systems Analysis and Design 
Method (SSADM); and Yourdon Structured Method. The objectives of the review 

are as follows:

(a) to note the problems encountered by previous research in the area. 

Potential pitfalls may then be avoided. Similarly, important research 
requirements are highlighted for address by the present research;
(b) to incorporate relevant outputs of previous research into the current 

research (with enhancements as necessary);
(c) to locate the current research against similar work to facilitate later 
assessment.

An overview of the review follows.20

5.1. Human Factors Integration with the Structured Analysis and 
Structured Design (SASD) Method

This research was carried out by Hakiel and Blyth (1988,1989) in response to the

20 The present account does not reflect the order of the SADMs reviewed during the research. 

Instead, the presentation is sequenced to support the logical development of the thesis. For 

example, although the work of Carver et al (1987) was reviewed first (since it constitutes the 

predecessor of the current research) it is presented last (since it sets the context for Chapters Six 

and Seven).
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commercial requirement (Plessey) for a human factors method for user interface 

design. An additional requirement was that the human factors method should be 

compatible with their organisation's in-house system design method (namely, the 

Structured Analysis and Structured Design (SASD) method, otherwise known as 
the Yourdon Structured Method). The objective of their research was to extend the 

scope of the SASD method to include human factors design. A human factors 

method was thus derived. The method will be described following a review of the 

main concerns addressed by the research.

As in most SADMs, a key activity of the SASD method is the derivation of a 

context diagram to describe the Essential System Model. The model defines events 

to which the system must respond and specifies data flows from the system to 
external terminators. In addition, the model also determines implicitly the scope of 

subsequent analysis and design activities. Unfortunately, in the SASD method (as 
in most SADMS) users are frequently located outside the system boundary, e.g. 
users are described in the context diagram as 'external event generators'. Thus, at a 
very early stage of system development, the design scope is already confined 
inappropriately to the specification of a computer system rather than a human- 
computer system (Hakiel and Blyth, 1990a). The implication of such a restricted 

design scope would be an ineffective system since user tasks would not be 

addressed sufficiently to support the identification of appropriate system 
functionality and usability. In particular, the exclusion of users from the Essential 
System Model implies that a particular function allocation (both between users, and 

between users and machines) is assumed prior to an analysis of overall system 

performance. Consequently, design considerations on human-computer interaction 

tend to be expressed only in terms of the event list and data elements of the context 

diagram. Interaction specification is thus subsumed in the design of communicating 

sub-systems, i.e. machine-centered design. Such a design perspective would be 

biased towards the premature definition of low level input and output operations. 

Since the operations are specified in the absence of a task context, appropriate 

considerations are precluded on how human-computer interaction may be supported 

more effectively. As a result, user interface design is restricted to the optimisation 

of individual displays.
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To obviate the observed problems, Blyth and Hakiel (1989) assert that system 

design should begin with task analysis. On the basis of the analysis, design 

decisions are then made with respect to the functional deployment of resources (at 

the organisational and individual level) and the exploitation of new technologies. In 

other words, early system design activities should comprise the following:

(a) decomposition of system goals into system tasks;

(b) conceptual definition of a system model;
(c) further decomposition of system tasks to support function allocation;
(d) function allocation and description of human tasks, computer tasks and 

collaborative tasks;
(e) specification of context diagram terminators and an event list.

It was suggested that the above design approach ensures a more accurate Essential 
System Model which may then be used to constrain system design. In this way, the 
expected human-machine performance may be ensured.

These suggestions have since been extended into a method via a review of human 
factors literature (see Figure 5-1). The method structures system design into eight 
sequential levels of description; namely goal, task, conceptual, semantic, syntactic, 
lexical, alphabetic and physical levels. Their design scope are as follows :

(a) Goal and Task levels : detailed analysis of system goals and tasks, and 
function allocation. The design output is a set of task models deriving from 

various abstractions of the domain (see steps 1 to 4 later);

(b) Conceptual level: identification of conceptual objects that should be 

represented at the user interface (see step 5 later);
(c) Semantic level onwards : top-down specification of human-computer 

interaction.

A step-wise description of the method follows.
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Step 1 : Analysis of extant systems

(a) identify functional goals of the target system by consulting the initial 

statement of requirements;
(b) identify existing human-machine systems which share some or all of the 
target system goals. Real world tasks which map onto target system goals 

may then be derived and analysed systematically by sampling across a range 

of existing systems. Technological equivalence between existing and target 

systems is not required as the subsequent creation of an abstract task model 
would remove all implementation level details. Where computer-based

Figure 5-1 : Schematic Representation of a Human Factors Method
that Complements the SASD Method (Blyth and Hakiel, 1988)
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support is already in use, both computer and human sub-tasks should be 

described.

Blyth and Hakiel's (1989) suggestion to analyse existing systems in general (see

(b) above), may be contrasted with the common system development practice of 

focusing solely on the current system, i.e. the system currently used by the client 

organisation. The motivation for the suggestion was unfortunately left implicit. 

Nevertheless, further insight on the suggestion may be found in Lim (1986,1988d) 

where a similar analysis of extant systems was proposed21 as a means o f :

(1) ensuring wider consideration of design alternatives. Alternatively, it 

obviates premature commitment to a design solution (i.e. 'blinkered* 

design) and the tendency towards the replication of the current solution;
(2 ) assessing the possibility of wider transfer of learning effects (both 

positive and negative).

Following extant systems analysis, Blyth and Hakiel's method involves the 
derivation of task models at various levels of description. To support these 
descriptions, comprehensive definitions of goals, tasks, roles, jobs, functions, and 

plans were proposed. Their definitions, as well as those suggested by Dowell and 
Long (1989), have contributed to a hierarchical taxonomy of work (see Annex C).

Step 2 : User characterisation

(a) identify different classes of users and their particular goals and tasks;
(b) derive the system perspectives corresponding to each class of users.

21 Some aspects of Blyth and Hakiers (1989) method are similar to the method described in this 

thesis. The authors have acknowledged the contributions of the present work, e.g. Blyth and Hakiel

(1989).
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Step 3 : Task analysis using the Task Analysis for Knowledge Based Description

(TAKD) technique (Johnson et al. 1984)

Blyth and Hakiel selected TAKD since it shows the greatest promise as a task 
analysis technique for supporting the design of human-computer systems. For 

instance, the following TAKD procedures were adapted for their method:

(a) identify a representative set of tasks from an analysis of existing users 

and systems. Specifically, the roles and jobs of users should be explored to 
define a typical set of tasks;

(b) analyse the tasks and describe procedures, goals, sub-goals, etc., 

textually. The information should be elicited from interviews and 

observations rather than manuals since the latter tend to describe what users 
should do rather than what is actually done;
(c) extract a list of all objects (nouns) and actions (verbs) from the task 
descriptions. These objects and actions constitute the basis on which a 
conceptual model of the target system may be derived;
(d) apply TAKD techniques (generification in particular) to derive generic 
actions and objects. Using these generic descriptors, re-express the task 
description as Knowledge Representation Grammar (KRG) sentences.

Step 4 : Allocation of Functions

(a) the existing task model derived in Step 3 is incorporated with new 

requirements and Software Engineering views of target system 
functionality. An essential system function model with an explicit boundary 

is thus defined;

(b) function allocation between the human and computer may then be 

considered iteratively to meet the performance requirements of the overall 

system (see Figure 5-2). Since existing performance data may not provide 

adequate support, prototyping might be necessary in determining an 

appropriate allocation of function.
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Several weaknesses in this step of the method are noticeable, namely :

(1) the relationship between KRG descriptions of the existing task model 

and the processes in Figure 5-2 is unclear, e.g. would one KRG sentence 

be equivalent to a process ?

Figure 5-2 : Function Allocation using a System Function Model22
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22 Figure reproduced from Hakiel and Blyth (1990a).
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(2) previous weaknesses of TAKD remain unaddressed. For instance, it is 

unclear how KRGs are organised to define task structures and user roles. 

Yet, the task model is required to make three crucial contributions to 
function allocation, namely : to ensure job, role and task coherence; to 

provide an explicit account of potential workloads; and to ensure that 
information flows across the user interface are appropriately contextualised 

to task requirements. In the absence of further developments, these 

contributions would not materialise.

In contrast to the derivation of an essential system function model, function 

allocation concerns were considered in much greater detail. For instance, two 

function allocation techniques, namely those proposed by Price (1985) and Clegg et 
al (1989), were identified by Blyth and Hakiel (1989) and Hakiel and Blyth 

(1990b) respectively. Since these techniques appear to be promising, they were 
noted for further investigation (see Chapter Seven).

At this step of the method, the performance statements should be specified in an 
appropriate format to facilitate the assessment of alternative allocations of function. 
Specifically, the format should comprise the following:

Who ? e.g. user characteristics

Doing what ? e.g. nature of task

What circumstances ? e.g. work environment

What performance ? e.g. worse and best case for a particular prototype
How performance is tested ? e.g. full system scenario.

Since the format satisfies ISO's proposal that requirement specifications should be 

linked to testing schemes (ISO/TC 159/SC 4/WG 5 N84), it was noted for later 

comparison with similar proposals by other researchers, e.g. Whiteside et al 

(1985).

Step 5 : Defining the conceptual model of the system

The conceptual model of the system comprises a set of objects and user actions that
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the system must support. It is derived as follows :

(a) task objects are separated into classes and sub-classes and their 

properties are defined. For each object, actions that affect its properties are 

defined. A scheme for documenting these descriptions is included in the 
method (see Blyth and Hakiel, 1988, 1989). These design activities 

correspond to those found in the modelling phase of the Jackson System 

Development (JSD) method;

(b) compositional and taxonomic relations between objects that comprise the 
domain knowledge of the user, are described using a network diagram. 

Such diagrams are used for similar descriptions in the development of 
knowledge based systems (see Ragoczei and Hirst, 1990). Since the 
description represents a useful summary of domain semantics, it was noted 

for further consideration during the specification of a human factors method 

to complement the JSD method (see Chapter 7);
(c) a specific task model is generated to describe how objects and actions of 
sub-tasks may be composed into higher level tasks. It appears that the 
concept of a specific task model was recruited from the Knowledge 
Analysis of Task (KAT) technique (Johnson and Johnson, 1988). 
However, its present purpose is unclear since higher level tasks would have 
been specified in Steps 3 and 4.

Subsequent to this step, user interface design at the semantic, syntactic, lexical, 
alphabetic and physical levels is undertaken. However, little information is available 

on these design activities. Hence, no further comment is possible on the rest of the 

method.

In conclusion, Blyth and Hakiel's work failed to include an explicit integration of 

the human factors method with the SASD method. In particular:

(1) design inter-dependencies and the timing of design processes between 

the two methods were not made explicit;

(2) the possibility of using a common notation was not considered.
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Also, some steps of the method are poorly described or incomplete. Thus, the 
potential contributions of their work with respect to the present research, are 

restricted largely to :

(1) the identification of promising human factors techniques, e.g. function 
allocation and TAKD;

(2) the specification of human factors definitions, e.g. tasks, functions, etc.;

(3) the identification of promising design description schemes, e.g. formats 

for performance specification and domain description.

5.2. Human Factors Integration with the Structured Systems 

Analysis and Design Method (SSADM)

This consultancy based project (200 person-days) was undertaken by HUS AT 
(Loughborough) for the Department of Health and Social Security (DHSS). Its aim 
was to extend DHSS's in-house version of SSADM called DIADEM (Departmental 
Integrated Application Development Methodology). The result is a conglomeration 
of SSADM, PROMPT (Project Management Technique) and a human factors 
method that may be used by designers with little human factors training. The latter 

method constitutes the focus of this sub-section.

HUS AT's human factors method adopts a participative approach and its scope was 
intended to cover both human and organisational design.23 However, the original 

scope was curtailed as only four out of the following areas of human factors design 

concerns (namely those in bold italics below) were targeted by the client for 
incorporation into DIADEM:

(1) user analysis and socio-technical systems analysis

23 The scope of the project also includes collating reference manuals to support users of 

extended DIADEM who are not trained specifically in human factors. Thus, the manuals describe 

declarative knowledge associated with the selected areas of human factors design concerns (see 

above). Since the manuals are not available, no further discussion is possible.
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(2) user involvement in decision making

(3) user acceptability criteria

(4) methods of user involvement

(5) job design and work organisation

(6) task allocation/job stream charts
(7) human computer interface design

(8) prototyping
(9) workplace and workstation design

(10) user support

(11) management of change
(12) institutionalising human factors

The objectives of the project were to specify and locate design activities and 
procedures of the above design concerns around DIADEM (see Figure 5-3). 

Unfortunately, detailed information on most of these design concerns is not 

available as the work is crown copyright. The relatively few published reports on 
the project24 provide only partial coverage of the work. As such, it is unclear how 
design is operationalised between levels which are far apart, e.g. moving from : 
task allocation and job design —> work organisation —> dialogue design (see 
Figure 5-3, right-hand section). Although a set of lower level design products have 

been specified (Figure 5-3, middle section), the information is still insufficient to 

support an assessment of the method, e.g. its overall coherence and completeness. 
Thus, only two of the above design concerns, namely user analysis and task 

allocation charts (i.e. (a) and (f) respectively), will be reviewed presently. These 
design concerns were reported in Damodaran et al (1988) and Ip et al (1990) 

respectively.

In the context of the method, user analysis comprises the following design

24 The present review was collated from a seminar presentation (Damodaran, 1988) and two 

conference papers (namely Damodaran et al,1988; Ip et al, 1990).
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a c t i v i t i e s :

(1) user classification

(2) job and task characterisation

(3) work role analysis

The set of design checklists, questionnaires, observations sheets and description 

summary forms for user analysis is shown diagrammatically in Figure 5-4. 
Unfortunately, no further comment can be made since detailed information is 

unavailable.

Figure 5-3 : Schematic Representation of a Human Factors Method

that Complements DIADEM (Damodaran et al, 1988)
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The second human factors concern of the method addresses task allocation. In 

particular, a task charting technique was proposed to support requirements 

specification. Specifically, the technique supports the following:

(a) definition of the computer system boundary. The definition involves an 

exploration of alternative human-machine task allocations and their impact 
on users' jobs;

(b) definition of functional requirements of alternative designs derived in (a) 

above. The system boundary is then finalised by selecting a particular 

configuration of human-machine task allocation, e.g. functional 

requirements for the on-line task are detailed. These design decisions 

precede the Logical Design Stage of DIADEM;
(c) communication of alternative designs to different end-user groups. For 

instance, manual job design alternatives may be explored. Since various job 
roles are discussed with users, their feedback may be more completely 
incorporated into the design. Thus, the selection, integration and evaluation

Figure 5-4 : Checklists, Questionnaires, Observation Sheets and
Summary Forms for User Analysis in DIADEM
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of on-line and manual job design alternatives are facilitated. Appropriate 

design alternatives can then be elaborated into user requirement 

specifications to constrain the design of the automated system.

The steps of the task charting technique are summarised diagrammatically in Figure

5-5 below.

Figure 5-5 : Design Steps of the Task Charting Technique
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The notation for describing alternative job designs is shown in Figure 5-6. This 
notation was preferred over data flow and entity life history diagrams since it was 
considered more appropriate for end-users. In particular, task allocation charts 

provide visual representations of the procedures of task functions. In addition, they 

can be used to link proposed screen formats to textual descriptions of the functions. 
Thus, it was asserted that the task charting technique is particularly useful for 

highlighting relationships between users' jobs, and dialogue and screen design. 

However, several problems with the technique have been reported by Ip et al 

(1990).
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Firstly, the documentation of task flow charts is cumbersome. Specifically, chart 
drawing is a time-consuming and labour intensive task. In addition, the descriptions 

that are produced require an inordinately large volume of paper. These problems are 
compounded further by the need to produce charts at various levels of task flow 

description, e.g. job and work organisation levels.

Figure 5-6 : DIADEM's Task Allocation Chart Notation
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Secondly, at the time of the project, it was found that users of the technique could 
not identify the relationship between the charts and design outputs of DIADEM. Ip 

et al (1990) reported in retrospect that the charts may be linked to events associated 
with one or more entities of DIADEM. In other words, particular sequences of user 

task events should intersect with the Events Catalogue (a DIADEM output). Similar 

observations have been made by Carver et al (see later) with respect to users' tasks 

and entity actions modelled in the Jackson System Development method.

In conclusion, the DHSS project failed to specify explicit design inter-dependencies 

between the human factors method and DIADEM. Specifically, a high level 
conception of how human factors activities should be located against DIADEM 

stages, would not be specific enough to support the definition of design inter­

dependencies. Furthermore, there is little evidence to suggest that a structured 
human factors method was derived for integration with DIADEM. Instead, the 

project seems to have concluded with the assignment of a set of discrete human 
factors techniques against the methodological framework of DIADEM. In the 
absence of detailed publications and development of the method, the contribution of 

the DIADEM project to the present research has been limited.

5.3. Human Factors Integration with the Jackson System  
Development (JSD) Method

Two attempts have been made at integrating human factors with the Jackson 

System Development (JSD) method, namely those undertaken by Carver et al 
(1987) and Sutcliffe (1988a, b). Presently, their contributions are reviewed in turn.

5.3.1. The Work of Sutcliffe (1988a and b)

< .

Sutcliffe's work was motivated by his belief that the :

" .practice of good human-computer interface design will only result
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from the integration o f Human-Computer Interaction principles and 
procedures within existing system design methods, rather than by the 

creation of stand-alone Human-Computer Interaction methods."

Although his motivation is consistent with the present research, the scope of his 

work primarily comprises the location of disparate human factors techniques at 

particular stages of the JSD method. In other words, no attempt was made at 

developing a structured human factors method to complement the JSD method. 

Thus, the present review is confined to the human factors considerations and 

techniques that were recruited to support an extended JSD method. Specifically, the 

scope of the method was extended to include task analysis and user-computer 

dialogue specification (Sutcliffe, 1988a).

In respect of task analysis and the JSD method, three human factors considerations 

were highlighted. Firstly, the complexity of initial task descriptions should be 
analysed to support decisions on the allocation of on-line, off-line and automated 

tasks. Specifically, Sutcliffe suggested that complexity analysis would support:

(a) design analysis and modifications. For instance, an unacceptably 
complex task would indicate that smaller sub-task elements need to be 

specified. Thus, appropriate computer functions and displays may then be 

designed to support the on-line tasks;
(b) an appropriate matching of user skills and task complexity;

(c) design decisions on an appropriate variation of task complexity within an 

individual user's work.

It was also suggested by Sutcliffe (1988a) that a simplified application of the 

Cognitive Complexity Theory (CCT) would enable such an analysis. The 

simplification is motivated by the concern that CCT as it stands is much too 

complicated for direct application by designers. These suggestions were then 
investigated in a student trial. The results indicated that the expected benefits of 
complexity analysis did not accrue (Sutcliffe, 1988a). The negative outcome may be
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explained by the following:

(a) the subjects found the complexity metrics difficult to interpret and use in 

spite of the simplications proposed by Sutcliffe (see (b) below for an 

example). Thus, the simplified technique was not well received. Further 

comment on the technique is not possible in the absence of a more complete 

description in the reports;
(b) the results derived from applying the technique were imprecise. The 

latter may be attributed to the assumption that subjectively assigned 

complexity units may be summated to determine the overall complexity of 

the task. The validity of such assumptions is presently undemonstrated;

(c) the task of translating assessment results into an appropriate design 
expression is almost completely dependent on craft knowledge and designer 
expertise.

Thus, the proposed analysis technique can not be considered as promising.

Secondly, in contrast to a recommendation of the JSD method, Sutcliffe 
emphasised that links between the JSD entity model and the user's task should be 
made explicit. Specifically, task activities constitute processes which interact with 

JSD entities. Thus, the scope of JSD interactive functions could be extended to link 
task processes with the JSD model as the central focus.25 For instance, the user's 
task may be related to relevant attributes of the entity (e.g. for the book entity, an 

example may be state = 'reserved' and location = 'shelving stack'). These 
suggestions by Sutcliffe are similar to those of Carver et al (1987) as described in 
the next sub-section.

Thirdly, Sutcliffe suggested that JSD structured diagram notation could be used to 

describe tasks so that design communication problems may be avoided by the use 

of a common language between the disciplines. Again, a similar suggestion may be 
found in Carver et al (1987). However, Sutcliffe proposed a novel interpretation of

25 This may be contrasted with user-centered design for which the focal point is the user's tasks.
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the selection construct when found in a task description. He asserted that these 

incidences would correspond to logical break-points in task execution, and that they 

should be considered as task closures during display design. Unfortunately, an 

illustration on the influences of task closures on user interface design was not 
provided. Thus, apart from the specification of computer response times their 

intended application remains unclear.

Sutcliffe’s extension of the JSD method also includes four suggestions on user- 

computer dialogue specification, namely :

(a) entity actions should map onto permissible actions on objects at the user 

interface since die JSD entity model is essentially an object and event model. 
For instance, in a library application, actions carried forward from the JSD 
model to the user interface may include ’Acquire' and 'Archive' a book. 

However, Sutcliffe's suggestion is less specific than the proposals of 
Carver et al (1987). Specifically, the latter highlighted that JSD entity 
actions do not necessarily correspond on a one-to-one basis with the actions 

of user interface objects. This observation was not revealed by Sutcliffe's 
case-study as it was too simple;
(b) previous functional support specifications for the user's task should 

comprise the basis for user-computer dialogue specification. However, the 
suggestion was not expanded. Although a case-study was considered, the 
structured diagram descriptions of the user's task failed to illustrate how 

user interface design may be constrained;26
(c) the set of JSD filter processes constitutes a framework for user interface 

design (Sutcliffe, 1988b). It was suggested that the user-computer dialogue 

may be derived by extending JSD input sub-system specifications since they 

describe user inputs and errors with respect to the JSD model (i.e. its

26 The inadequacy is rectified by a later paper, namely Sutcliffe and Wang (1991). The paper was 

excluded from the present review of previous research contributions to the thesis because many 

ideas from this thesis were recruited by them (rather than vice versa). However, a comparison 

between the thesis output and their overall research output is described in Chapter Twelve.
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actions and entity attributes — also see (a) above). For instance, dialogue 
control requirements for error recovery, prompts and feedback messages, 

may be detailed as separate simple filter process descriptions. Although the 
descriptions are consistent with the JSD method, they provide only a 

segmented view of the interactive task (i.e. as opposed to a coherent 

whole). Thus, Sutcliffe suggested that inputs of filter processes should be 

grouped into transactions in accordance with the user's view. However, no 

example was provided on how the grouping should be described. 

Fortunately, a similar suggestion was proposed in Walsh et al (1989) where 
it was suggested that filter process inputs should be sequenced using one 

JSD structured diagram (more structured diagrams if concurrent processes 

are involved). Thus, relevant feedback from users may be elicited to derive 
a user-centered view of the interactive task;
(d) JSD structured diagram notation should be used to describe user 

interface objects, e.g. to relate permissible object actions and roles.

In conclusion, Sutcliffe's suggestions are focused on extending the JSD method. 
His objectives did not include the specification and integration of a structured 
human factors method with the JSD method. In particular, his proposals did not 
include an adequate account of the scope and process of human factors design. As 

such, the design relationships identified between human factors and JSD is 

confined predominantly to the scope of the latter, e.g. few locations and 
intersections of JSD and human factors design stages were identified. 

Consequently, Sutcliffe's suggestions constitute a less specific subset of the 

proposals of Carver et al (1987).

5.3.2. The Work of Carver, Clenshaw, Myles and Barber (1987)

Carver et al (1987) reported an informal attempt at integrating human factors with 

the JSD method. The attempt was motivated by the following observations :

(1) inadequately specified systems were extremely difficult to modify;
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(2) significant benefits would accrue from earlier and closer collaboration 

between human factors designers and software engineers. Thus, the 
problems observed in (a) above may be obviated.

Their observations derive essentially from experiences of design projects 

commissioned by the Ministry of Defence, e.g. experiences on the Divisional 

Intelligence (G2) All Sources Cell project during military exercises 'Crested Eagle' 

and 'Lionheart'. The following objectives to provide human factors support for the 
JSD method were thus defined:

(a) to improve the usability of the JSD method by enhancing existing 
procedures;

(b) to extend the design coverage of the JSD method to include the 
specification of the human-computer interface;
(c) to explore the possibility of documenting the design process in machine 
readable form.

In respect of objective (a) above, two proposals were made, namely :

(i) the procedure of extracting nouns and verbs from interview transcripts to 
identify candidate entities and actions respectively should be modified. 
Carver et al (1987) noted that the current procedure of constructing and 

refining independent lists of nouns and verbs resulted in the loss of useful 

information since verbs were extracted out of context. Thus, they proposed 

that candidate actions should be collated by listing events in terms of their 

verbs, subjects and objects. In this way, a list of entities and actions could 
be extracted more effectively;

(ii) requirements definition should be represented explicitly prior to the 

modelling stage of the JSD method. Specifically, the information elicited 

from interviews and existing documentation should adequately support: the 

formulation of user needs statements; the identification of any hardware 

constraints; the definition of a requirements statement on the types of 

facilities that should be supported by the system.
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These proposals were targeted at enhancing procedures of the existing JSD 
method. In contrast, objective (b) above is targeted at extending the design scope 
of the method. For instance, its scope could be extended to include project 

selection, cost and benefit analysis, project planning and management, and user 

interface specification. Due to resource constraints, Carver et al (1987) focused on 

an extension of JSD to include user interface specification. In this respect, they 

suggested the following:

(i) JSD specifications during the initial model stage should explicitly address 
human-computer interaction. In particular, it was noted that preliminary 

specifications of the input sub-system should be linked to user interface 
design since the former interposes between the real world and the JSD 
model. Thus, screen display entities that intervene between the JSD model 
and the real world (via the user) may be defined (see Figures 5-7 and 5-8). 
Interactive facilities supporting the processes and connections associated 
with the display entities are then detailed in the information function stage. 
In this way, a list of on-line interactions with the facilities may be linked to

Figure 5-7 : JSD Initial Model Extended to Include a Human-
Computer Interaction Layer (Carver et al, 1987)
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Figure 5-8 : Screen Layout Description Corresponding to the

Extended JSD Initial Model in Figure 5-7
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specific actions of the JSD model. It should be noted that such linkages 
would not always comprise a one-to-one relationship. Display design is 
then undertaken based on the described interactions;

(ii) task and goal analysis should be recruited to the method to clarify the 
purpose of the computer system and the functional support it should provide 

in respect of the user's task.

To address the above concerns, Carver and Cameron (1987) suggested the 

following high level procedures for user interface specification in the extended JSD 

method:

(i) build the JSD model;

(ii) identify functions in the network phase. A basic set of inputs (one for 
each action and enquiry) is thus defined;

(iii) associate the inputs with users' tasks;

(iv) define the interactions required for each input, and express the 
interactions as a combination of actions on the user interface;

(v) introduce further functions to support the required interaction and the 

users' task;

(vi) specify off-line events to complete the description of the users' task.
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The final objective of Carver et al (1987) was to document the user interface 

specifications in a machine readable form. In this respect, it was observed initially 
that the JSD structured diagram notation could not describe events that are ordered 

unpredictably; e.g. multiple events that occur haphazardly; and multi-tasking with 

no pattern of controlling each of the ongoing processes. However, such problems 

were resolved by extending the constructs of the JSD notation, e.g. to include the 

description of concurrent events. Thus, it was demonstrated that the notation 

constitutes a powerful language for task description and user-computer dialogue 
specification. Furthermore, existing computer tools such as Program Development 

Facility (PDF), MacDraw™ and FileVision™ may be recruited to support design 

documentation. Consequently, Carver et al (1987) reported that machine readable 

documentation was achieved.

To summarise, the work of Carver et al (1987) highlighted the following :

(a) the JSD method is defined sufficiently to support an intersection of its 
design concerns with those of human factors design (Carver et al, 1987);

(b) the JSD method encourages user centered design since it emphasises real 
world modelling. Thus, its design approach is compatible with human 
factors design (Carver, 1988);
(c) the JSD structured diagram notation constitutes a common language for 
describing Human Factors and Software Engineering design. Thus, inter­

disciplinary communication is facilitated (Carver and Cameron, 1987).

In conclusion, the work of Carver et al (1987) may be considered the precursor of 

the present research (see Chapter Seven, and Chapters Nine to Eleven).27 To 
extend their work, the objectives of the present research would include the 
following:

(i) to derive a more complete and explicit scope and process of human 

factors design;

27 To be more specific, their observations culminated in the initiation and sponsorship of the 

present research.
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(ii) to identify a more complete intersection between human factors design 

and the JSD method on the basis of (i) above;

(iii) to construct a structured human factors method that complements the 

JSD method;

(iv) to integrate the human factors method with the JSD method.

Since the scope of human factors design is extensive (see Chapter 4, sub-section

4.3), only a subset of the concerns derived in (i) above can be addressed. Thus, the 

final scope of the present research is re-defined in the next Chapter.
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PART III :

On Human Factors Integration with the 
Jackson System Development 

Method
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Chapter Six : General Research Concerns for 
Integrating Human Factors with the Jackson 
System Development Method

"  Thought is the child o f action "

Disraeli, 1826, Vivian Grey .

This Chapter establishes the context of the research activities described in Chapter 

Seven. To this end, its objectives are as follows :

(a) to set out the constraints of the present research, and expose the rationale 

for integrating human factors with the Jackson System Development (JSD) 
method;
(b) to identify the human factors design support required by the JSD 

method;
(c) to define the research scope and requirements of (a) and (b) above. For 
instance, the constraints of the present research essentially limits its scope to 

a sub-set of the human factors design concerns identified in Chapters Four 
and Five;
(d) to instantiate the general research plan for integrating human factors with 

SADMs (Chapter Three) with respect to the present research context, i.e. 
the instantiated plan should address the requirements set out in (c) above.

An expanded account of these objectives follows.

6.1. Choice of the Jackson System Development Method and other 
Constraints on the Present Research

Two criteria dictated the choice of the Jackson System Development (JSD) method 

for the present research; namely the appropriateness of the method and the 

preference of the research sponsor. Since the latter was influenced by the former,
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subsequent discussions on the choice of the JSD method are focused on its 

beneficial characteristics.

In addition to the benefits of SADMs in general (see Chapter Two; Lim et al, in 

press), the JSD method is also beneficial for the following reasons :

(a) JSD is a well established SADM and is among the more popular 

methods for developing real-time systems (Morrison, 1988; Wilson et al, 
1989);

(b) JSD specifications are in principle directly executable (Carver and 

Cameron, 1987). Thus, a system produced using JSD may be viewed as a 

simulation of the relevant parts of the real world and its functions provide 
outputs of the simulation (Carver, Clenshaw et al, 1987). An emphasis on 

simulating the real world may provide a means for accommodating an 
appropriate user's model of the system (see (c) below);
(c) JSD starts by modelling the proposed computer system in terms of 

objects and events in the real world of the user (this may be contrasted with 
SSADM which begins by data flow description). Since JSD specifications 
are developed from an understanding of the user's world, they intersect 

with user requirements capture, task description and analysis (see Chapter 
Five, sub-section 5.3). These intersections facilitate the integration of 
human factors with the JSD method;

(d) JSD has been shown to complement object-oriented methods and is 
itself object-oriented (Birchenough and Cameron, 1989; Cameron, 1987). 

Thus, the methodological framework of JSD could potentially contribute to 

the design of object-oriented user interfaces. Since such user interfaces are 
reportedly superior in usability characteristics (Selby and Long, 1991) and 

have made considerable inroads in the personal computer market (e.g. 

Apple Macintosh), it would be pertinent to consider the integration of 
human factors with an object-oriented method such as JSD;

(e) the well developed methodological framework of JSD facilitates the 

location of human factors inputs. For instance, its input sub-system has 

been used as a framework for locating user interface design (Sutcliffe, 

1988b; Carver et al, 1987). In addition, general design concepts of JSD
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may be recruited. For instance :

(1) its input sub-system specification provides a taxonomy of input 

errors, e.g. context error, simple input error, etc.;

(2) its information functions address design semantics, e.g. system 

outputs are contextualised to the requirements of the JSD model;

(3) its categories of information flow (e.g. state vector inspection and 

data-streams) and its assignment of time grain markers identify 
important aspects of information specification, i.e. content; direction 

of flow; timing, currency and duration of display; etc.

(f) JSD structured diagram notation has been shown to be suitable for 
precise description of users' tasks (Carver, 1988; Carver and Cameron, 

1987; Sutcliffe, 1988a). Specifically, the notation offers well developed 
constructs which describe sequential, selection, iteration, concurrent, inter­
locking, backtracking and uncertain events (see Figure 6-1; Carver and 

Cameron, 1987). JSD notation has also been shown to be a graphical 

equivalent of BNF (Boldyreff, 1986). This equivalence with an established 
notation for describing human-computer interaction, not only indicates the 
capability of the JSD notation for similar description, but additional benefits 
owing to its graphical nature may also accrue. For instance, the notation has 
been reported to be easily understood by users (Carver, 1988; Finkelstein 

and Potts, 1985). Thus, user feedback elicitation is facilitated. Other 

benefits which accrue from recruiting the notation for human factors 

descriptions are as follows ;

(1) the poor specificity of current human factors descriptions would 

improve since the notation is more precise;

(2) the use of a common notation would obviate communication 

problems between software engineers and human factors designers. 
Since the primary objective of integrating human factors with SADMs 

is to ensure early and continued human factors involvement (i.e. via 

collaborative design), effective and unambiguous communication 

between designers of the two disciplines is essential. A common
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language is therefore crucial. Since existing JSD notations also 

support human factors descriptions (see above), notational integration 

is facilitated;
(3) formal human factors specification may accrue in the future since 

JSD notations could potentially map onto the notations of formal 

methods. Such a translation has been demonstrated by Sridhar and 

Hoare (1985) for CSP (Communicating Sequential Processes).

Figure 6-1 : Basic Constructs of JSD Structured Diagram Notation
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A end
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0
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A is an iteration of B.

A select Selection:
B;

A alt a  consists of either one B, or
C; one C, or one D.

A alt
D; A is a selection of B, C, or D.

A end

These desirable characteristics of JSD exerted a strong influence on its choice for 
the current research. The choice is also appropriate since no research has been 

commissioned specifically to investigate the integration of human factors with the 

method. Previous insights on the potential of the integration were gleaned from 

opportunistic and incidental observations during system design and consultancy 

projects. In other words, previous efforts were not directed at method development.
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A contrary situation applies for SSADM (see Chapter Five, Sub-sections 5.2 and

5.3).

Present research constraints may be attributed generally to the project time-frame 

and the requirements of the research sponsor. Significant constraints comprise the 

following:

(i) human factors integration should not unduly disrupt current JSD 

practices. Specifically, the integrity of JSD should be preserved and its 

notations should be exploited for human factors descriptions (see (f) 
above). It should be noted that these constraints need not necessarily affect 
the research adversely. On the contrary, the integration of a human factors 
method around an essentially unchanged JSD method implies that human 

factors inputs are located at design reference points and practices which are 

familiar to software engineers. The assimilation of human factors inputs is 
thus facilitated. Improved uptake is therefore expected to accrue;
(ii) the scope of the current research is limited to the derivation of an 

integrated method. Specifically, the research scope is confined to case-study 
demonstrations of the method as opposed to its validation in the field. The 
research is thus focused on establishing the viability and capability of the 
method as opposed to validating its efficacy for ensuring design artifacts of 
superior usability and functionality.1 Again, it does not necessarily imply 

that the research would be affected adversely. The reasons are as follows.

Firstly, a superior design artifact could be expected by improving the uptake 

of human factors inputs. Such improvements are supported by the 

integrated method via its orderly and inter-related design processes.

1 Direct validation of method efficacy would require exhaustive field studies that involve 

controlling for design team composition and interactions; the competence of individual designers; 

characteristics of the design problem; etc. These controls demand resources that could not be 

accommodated by the present research, i.e. the project resources and time-frame are already taxed 

heavily by method derivation and demonstration concerns. Thus, method validation had to be 

deferred to future research.
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Secondly, by recruiting established research and design practices to the 

construction of an integrated method, it would be reasonable to expect that 
the method would support the specification of better design artefacts (see 

Chapter Three, Sub-section 3.2). Further implications of these constraints 

are discussed in Chapter Twelve;

(iii) the scope of the current research (and hence the integrated method) is 
limited to primary human factors design concerns. Thus, some design 

concerns will be referenced but not addressed in detail, e.g. organisational 
and job design; training and personnel selection; and late evaluation (already 

well-established). As dictated by the project time-frame, the research 

priority is a breadth-wise integration of human factors and JSD (spanning 
requirements definition and display design), followed by a depth-wise 
account of primary human factors design concerns;
(iv) the human factors component of the integrated method (i.e. the 
structured human factors method) should be targeted at a human factors 
designer with a working knowledge of JSD. This constraint satisfied the 

requirements of the research sponsor and is consistent with (iii) above.

In the following sub-sections, general research considerations for human factors 
integration with SADMs (comprising the scope, requirements and plan of research) 

are instantiated for the present research concerning the JSD method.

6.2. An Overview of the Jackson System Development Method

JSD involves designing the technical aspects of software systems2 based on an 

event model. Thus, the method is well suited for designing real-time systems 
(Renold, 1989).

JSD comprises three main stages, namely Modelling, Network and Implementation 

Stages (although the original version of JSD is presented in six stages, other

2 Although JSD does not include specialised techniques such as physical database design and 

human factors, it highlights where they should be accommodated in the framework of the method.
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methodological characteristics remain essentially unchanged). Each of these stages 

are defined by explicit design activities and products to guide the user of the 

method. The scope of the stages are as follows :

(a) Modelling Stage : the main purpose of this stage is to capture the subject 

matter of the target system. Thus, an abstract model of the users’ world is 

defined using a set of entities and their actions. A JSD entity must exist in 

the real world and is either a person, organisation, or object that performs 

and/or suffers a relevant sequence of actions. A JSD action is an atomic 

event in the real world (with specific start- and end-points), about which the 
system must produce or use information. The time ordering of actions of 

each entity is described using one or more structured diagrams (see Figure
6-1). Each model process communicates with its real world process via 
inputs associated with its actions. The model is thus realised in the computer 

as a set of sequential processes. Since model processes define the range of 
functions that a system can support, they are differentiated from function 
processes which are concerned only with the production of system outputs 

(see (b) below);
(b) Network Stage : this stage is concerned with the functional definition of 
the target system. Specifically, function processes (comprising input sub­

systems, information processes and interactive functions) are specified and 
connected by information flows to model processes defined in the preceding 
stage. Thus, a network of concurrent function and model processes is 

derived. The timing of their information flows and outputs, and linkages 
with external world processes are also defined. Figure 6-2 shows a 

schematic representation of JSD specifications. At this juncture, it is 

pertinent to note that in JSD, design specification concerns are separated 

from implementation concerns (see (c) below);

(c) Implementation Stage : the purpose of this stage is to transform JSD 

specifications into sequential programs that may be executed more 

efficiently by the target hardware. For instance, its concerns include the 

scheduling of processes, and data storage and access. Specifically, a set of 

one or more processes are grouped and delegated to a physical or virtual
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processor. This transformation of processes would not affect the external 
behaviour of the system. In other words, the mles of transformation ensure 

that JSD specifications are preserved during implementation (see Zave, 

1984; Renold, 1989). In summary, the characteristics of JSD 

implementation are as follows :

(1) it is a process that is well regulated (see Zave, 1984) and 

mechanistic to the extent that most of its transformations could be 

automated (Renold, 1989). Thus, human factors input during JSD 
implementation is limited; 3
(2) it is different from other instances of implementation since it 

involves a transformation of the specification with respect to the 

targeted hardware, and not the physical construction of the system.

Figure 6-2 : A Schematic Representation of JSD Specifications
(Renold, 1989)

system inputs 
(external actions)System

system actions
correct actions

Real World

^  system outputs

Information
Functions

Input
Processes

Model
Processes

Interactive
Functions

3 Specifically, human factors inputs are confined to the specification of additional user feedback 

requirements (e.g. when a particular JSD implementation results in longer than expected transient 

response time), and an assessment of implications associated with batch and on-line 

implementation options (e.g. relating user task requirements to computer information updates).
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Since software realisation is beyond the scope of legitimate human 

factors concerns, JSD implementation would not be addressed by the 
present research, i.e. the research focus is on design specification.

In summary, JSD involves understanding the problem domain before the 

specification of a design solution. Thus, it emphasises the derivation of a real world 

model before functional specification, i.e. to define respectively what the system is 

about before deciding what the system has to do. In other words, system modelling 

is separated from functional definition. Similarly, design specification is separated 

from implementation, i.e. what the system has to do is decoupled from how it may 

be achieved.

This account completes a brief overview of JSD. For a more complete description 

of the method, the reader is referred to Jackson (1983) and Cameron (1989).

6.3. Identifying the Human Factors Design Support Required by the 

Jackson System Development Method

Presently, the list of general human factors deficiencies of existing SADMs reported 
by Anderson (1988) is considered in the context of JSD.

Anderson's observations generally apply to JSD with the following exceptions :

(a) point 4 (Table 6-1) does not apply to JSD since it has been shown to be 

compatible with object-oriented design approaches (see sub-section 6.1);

(b) point 5 (Table 6-1) may not be entirely true since it was reported that the 

basic constructs of the JSD structured diagram notation are easily 

assimilated by users (see sub-section 6.1). However, the use of prototyping 

should be encouraged for other reasons (see later);

(c) point 6 (Table 6-1) interacts with two demands of a SADM; namely in- 

depth analysis and specification before implementation; and comprehensive 

documentation of stage-wise design products. Firstly, it may be argued that 

the former requirement would reduce the time available for design iterations.

140



However, this disadvantage should be offset against benefits that accrue 
from a thorough design analysis phase, e.g. faster convergence to a design 

solution (see Chapter Two, Sub-section 2.2). Secondly, the emphasis on 

comprehensive design documentation may encourage a reluctance towards 

design modifications and iterations. The assertion is based on observations 

made during the initial introduction of SADMs. With the emergence of 
CASE tools (e.g. PDF™ and SpeedBuilder™ for the JSD method) the 
assertion no longer applies.

Table 6-1 : Human Factors Deficiencies of Existing Structured
Analysis and Design Methods (after Anderson, 1988)

1. SADMs may not provide procedures for eliciting the operational requirements of the 
system, e.g. information on users roles, tasks, etc.

2.SADMs may not support function allocation between user and computer. The tendency 
is to computerise functions that can be automated and leave the remainder to the user.

3. SADMs provide no indication of how the coherence of specifications (e.g. 
appropriateness of proposed computerised functions) and their implementation may be 
assessed with respect to the user's task.

4. Some SADMs do not support object-oriented user interface design.

5. The notation of SADMs may be too difficult Thus, in the absence of prototyping, 
user feedback elicitation may be supported poorly.

6. SADMs may not encourage iterative design.

7. The scope of SADMs does not adequately address the human-computer dialogue.

8. Physical dialogue design is addressed poorly by SADMs, e.g. there is no reference to 
style kits and screen design is left to common sense.

Granted these exceptions, human factors deficiencies of the JSD method may be 

inferred from the remainder of Anderson's list and the human factors design review 

reported in Chapter Four. Thus, it was concluded that JSD is essentially deficient in 

two areas of human factors design, namely requirements and task analysis; and user
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interface design. Similar conclusions were also reported by Finkelstein and Potts

(1985); McNeile (1986); Carver, Clenshaw et al (1987); Carver and Cameron 

(1987); Carver (1988); Sutcliffe (1988b, 1989); Renold (1989); and Sutcliffe and 

Wang (1991).

These deficiencies of JSD thus define the scope of human factors design that should 

be addressed by the present research.4 A suitable structured human factors 

method may then be developed for integration with JSD. The requirements 
corresponding to the present research scope is described in the next sub-section.

6.4. Research Requirements for Human Factors Integration with the 

Jackson System Development Method

It was stated in earlier Chapters that the scope of the present research comprises the 
integration of human factors design with a chosen SADM. Thus, human factors 
integration would involve an extension of the design scope of the SADM, e.g. to 
encompass user interface design. The undertaking should be contrasted against 

attempts at enhancing the practice of the SADM.

Consequently, in the context of JSD, the present research is not concerned with 
making JSD more usable (e.g. by enhancing existing JSD procedures for deriving 

model and function processes5), but with extending JSD to include human 
factors design concerns. Thus, a structured human factors method is developed and 

integrated with the JSD method. Specifically, the deficiencies of JSD are rectified 
by incorporating requirements analysis, task analysis and user interface design in 

the method. The importance of these rectifications are highlighted aptly by the

4 As stated in sub-section 6.1, some human factors concerns would be excluded from the present 

research scope due to project constraints, e.g. training and personnel selection.

5 Efforts in this direction have been made by Carver, Clenshaw et al (1987) (see Chapter Five); 

and Renold (1989).
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following statements:

"Interfaces cannot be developed as 'add-on' parts of an interactive system, with their 

development carried out in isolation from the development of the rest of the application

system. Thus, an important concept is a wholistic approach to interactive system
development. Such an approach provides a comprehensive methodology for software 

design, emphasizing interface development as an integral and equal part o f the

process A  wholistic system development enlarges the definition o f a 'system' to

include both humans and computers existing approaches to interface
design are often ad hoc, unstructured and without cohesion results in user
interface specifications which appear to comprise random, unconnected messages and 

displays, and user actions."

Hartson and Hix (1988)

" it is important to see this task (interface design) in the wider context of system
developm ent — it cannot take p lace successfully in a vacuum  "

Newman (1988)

To this end, it was stated earlier that the structured human factors method should 
satisfy the following requirements :

(a) it should facilitate the design of a superior design artifact In the case of a 
structured method, a superior design artifact is ensured by encouraging an 
orderly design process via a set of well defined design deliverables. Thus, 

this requirement is subsumed by requirement (b) below;
(b) it should support the needs of human factors designers for user interface 
description and specification. Its human factors design concerns should also 

be sufficiently explicit to inform software engineers and users. These 

requirements entail the specification of appropriate stage-wise design scope, 

process and notation for the method. A review of corresponding 

requirements implicated by these methodological concerns follows.

Firstly, the design scope of the structured human factors method should meet the 

following requirements:

(a) it should account for human factors design concerns during system
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specification, i.e. appropriate consideration of environment, device, task, 
and user characteristics. The manner in which such concerns are addressed 
during system design should be examined to identify stage-wise 

intersections between the scope of human factors design and the JSD 
method (see Chapter 4). Design inter-dependencies are similarly identified 
to support the specification of contact points and information exchanges;

(b) it should compensate for the incompleteness of current human factors 

knowledge, e.g. by emphasising prototyping and user testing as necessary 

activities of the method. Thus, prototyping may be necessary to validate 

design assumptions, etc. As the structured method involves the derivation 

of stage-wise design products, prototyping and user testing activities could 
be undertaken at various stages of design.

Secondly, the design process of the structured human factors method should meet
the following requirements:

(a) it should uphold design principles embedded in JSD, namely modelling 

before functional design, and the separation of design concerns, e.g. 
separating specification from implementation. These principles may be 

exemplified by setting requirements analysis and task modelling before 
function allocation, and the definition of separate streams for Human 

Factors and Software Engineering design;
(b) it should facilitate early and continued human factors involvement 
throughout system design, i.e. the stages of the method should support the 

derivation of a functional and usable design;

(c) it should support various design scenarios, e.g. variant design, novel 
design and the computerisation of manual systems;

(d) its procedures need to be comprehensive enough for application by 

human factors designers with a working knowledge of JSD. However, they 

should not be too rigid that design creativity is stifled. Appropriate existing 

design techniques should also be recruited.

Thirdly, the design notation of the structured human factors method should meet
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the following requirements:

(a) it should be sufficiently powerful to describe the subject matter and 

rationale of each design stage. In this respect, Frohlich and Luff (1989) 
suggested that the information to be described during conceptual design 

should include the following :

(i) the design problem as revealed by requirements and task analysis;

(ii) promising design solutions;

(iii) the implications of each solution with respect to the user's model 
of the system.

(b) its documentation schemes should adequately record stage-wise design 
outputs entailed by the method. The records should support an assessment 

of alternative design solutions;
(c) it should recruit existing JSD notations as much as possible. In addition, 
although existing notations may be extended or modified for human factors 
use, the change should be minimal. In this way, the benefits of a common 
notation may be realised.

The research agenda is thus determined by these methodological requirements. 
Work activities implicated by the agenda are reported in Chapter Seven.

6.5. An Instantiation of the General Research Plan for Integrating 

Human Factors with the Jackson System Development Method

In Chapter Three and the preceding sub-section, the requirements for human factors 

integration with SADMs were defined, namely :

(a) the stage-wise design scope and process of the SADM and structured 

human factors method should be inter-woven appropriately;

(b) obligatory design inter-dependencies between inter-disciplinary design

145



streams should be specified;
(c) existing SADM notations should be exploited for describing human 

factors design products.

It follows from these requirements that appropriate consideration should be given to 

the characteristics of the chosen SADM during the construction of a structured 

human factors method. Research activities entailed by these requirements are 

presently exemplified for the JSD method.

At a high level, the development and integration of a structured human factors 

method with JSD may be conceptualised as comprising the following sequential 

activities6 :

(a) define a set of design stages and products for a structured human factors 
method that augments the deficiencies of the JSD method (identified in sub­
section 6.3). The scope of human factors support is thus constrained;

(bl) define stage-wise design processes and procedures for deriving 

products of successive design stages specified in (a) above.
(b2) extend JSD notations to include the description of human factors 

design products specified in (a) above. Since structured design, by 
definition, implies design derivation and description via a set of stage-wise 

processes and products respectively, the outputs of (a), (bl) and (b2) 

constitute a structured human factors method (henceforth referred to as 
JSD*(HF));

(c) define obligatory contact points between JSD*(HF) and JSD methods; 

i.e. design inter-dependencies are specified. The two component methods 
are thus integrated. The JSD and integrated methods are henceforth referred 
to respectively as JSD* and JSD*(SE) (to indicate that additional design 

inter-dependencies with JSD*(HF) have been introduced to existing JSD).

At this juncture, specific research constraints may be introduced (e.g. to match 

case-study tests appropriately to available resources for research), and the activities

6 Including iterations within (a) to (c) as necessary.
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are then operationalised into a research plan. For instance, it can be seen from 
Figure 6-3 that the current research plan essentially comprises cycles of method 

specification followed by implementation in case-study tests. A more detailed 

account of the plan follows.

As indicated in (a) to (b2) above, the research is initiated by the specification of a 
preliminary version of the JSD*(HF) method. The method may be constructed by 

assessing the stage-wise scope, process and notation of the JSD method to 

determine the human factors design support required (see sub-section 6.3). The 

assessment should also expose the potential for recruiting particular aspects of the 
method, e.g. exploiting JSD structured diagram notation for task description (see 

Chapter Five, sub-section 5.3.2). On the basis of the assessments, a preliminary 
version of the JSD*(HF) method (and hence an early version of JSD*) may be 
specified in two ways. Firstly, a version may be constructed independently from 

existing human factors methods. The efficacy of the derived JSD*(HF) method in 
complementing the JSD method may then be validated in the field.

Secondly, existing human factors methods and design practices may be surveyed 
and then recruited to the construction of a JSD*(HF) method. This approach offers 
greater assurances that the resulting method would support the specification of a 

superior design artefact, i.e. substantiated conceptions (in the form of established 

methods and design practices) is more likely to have conceptual and ecological 
validity.? Since the approach builds upon existing knowledge, the following 

additional benefits may accrue :

(a) quicker convergence to an acceptable JSD*(HF) method. Thus, less

iterative testing of method versions is necessary. The early derivation of a

JSD*(HF) method would permit more case-study tests to be undertaken

7 This assertion should be tempered by other factors, e.g. the composition and abilities of 

design team members. In other words, it is acknowledged that a method alone cannot guarantee 

superior design. Thus, the efficacy of a method needs to be validated in the field regardless of the 

research approach adopted.
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Figure 6-3 : An Instantiation of the General Research Plan for

Human Factors Integration with the JSD Method
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within the project time-frame. Consequently, the derived method is expected 
to be more robust;

(b) positive transfer of learning in respect of the JSD*(HF) method since 

users of existing human factors methods would already be familiar with the 

parts recruited from the latter.

For these reasons, the second research approach is adopted as shown in Figure 6-3. 

An account of the approach follows.

It was observed in sub-section 6.3 that user interface design is not included 
explicitly in the JSD method, and should hence be supported by the JSD*(HF) 

method that is to be developed. Thus, sequential research activities for integrating 

human factors with the JSD method would comprise the following :

(a) a literature search of existing user interface design techniques;
(b) assessment and recruitment of promising design techniques in (a) above 
(with modifications and extensions as necessary to meet the requirements of 

a structured method) to support the construction of a structured user 
interface design technique for the JSD*(HF) method;
(c) assessment and exploitation of JSD notations (with modifications and 
extensions as necessary) for describing stage-wise products of structured 
user interface design in the JSD*(HF) method.

The above sequence of activities is repeated for all areas of human factors design 

support required by the JSD method, e.g. task analysis. A reasonably complete 

version of the JSD*(HF) method is thus derived incrementally and subjected to 

case-study tests. Specifically, parallel case-study design tests are conducted to 
assess the utility and capability of the following methodological characteristics of 

the JSD*(HF) method:

(a) notations and documentation schemes for describing stage-wise human 

factors design products;

(b) design processes for supporting the derivation and transformation of
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stage-wise human factors design products. By adopting simple case-study 

systems (i.e. systems with well defined start- and end-points) for initial 

design tests, 'missing* design stages may be backwards engineered (see 

later), e.g. to ensure that JSD*(HF) design transformations are manageable.

In this way, progressively improved and detailed versions of the JSD*(HF) 
method are constructed and tested iteratively on further case-study systems. When a 

satisfactory version of the JSD*(HF) method is derived, forwards engineering tests 

may be applied. Following an acceptable outcome of the tests, the integration of 

JSD*(HF) and JSD methods is then made explicit as follows :

(a) stage-wise concerns of the JSD*(HF) method are inter-woven with 
appropriate design stages of the JSD method;

(b) obligatory design inter-dependencies^ between JSD*(HF) and 
JSD*(SE) methods are specified, e.g. obligatory information exchanges.

Thus, a preliminary version of the JSD* method is derived. The relationship 

between Software Engineering and Human Factors design entailed by the JSD* 
method is then subjected to further iterations of forwards engineering tests. 

Questions of scale are also addressed at this stage of the research by using larger 
case-study systems in the design tests. An acceptable JSD* method is thus derived.

At this juncture, case-study assessments that support method development should 

be elaborated. Generally, assessments on the adequacy of a method comprise 

subjective judgements in respect of the following :

(a) its support for design derivation, i.e. whether the stage-wise scope and 
process of the method represent manageable steps for design specification.

8 Situation-specific and informal exchanges between design stages of the component methods 

need not be described explicitly, i.e. only obligatory contacts points should be made explicit. This 

assertion is consistent with the requirement that a method should be generally applicable across 

design domains and project circumstances.
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Specifically, the assessment should determine whether:

(i) the scope of the proposed method is reasonably complete. For 
instance, its design support should span requirements to specification;

(ii) activities within and between design stages are manageably and 

sensibly organised to support design reasoning. Specifically, design 

perspectives which vary with the system design cycle should be 

supported adequately by the stage-wise scope and process of the 

proposed method, i.e. assessment of the products and procedures of 
the method; the coherence of their grouping into design stages, and the 
sequencing of the stages.

(b) its support for design description, specification and communication, i.e. 

whether the proposed notations and documentation schemes are sufficiently 

specific and comprehensive to facilitate inter-designer and designer-user 
discussions. In particular, the proposed notations should be :

(i) sufficiently powerful to support the description of both intermediate 
and final human factors design products;

(ii) sufficiently specific to support unambiguous human factors design 

specification.

Similarly, the proposed documentation schemes should ensure an adequate 

record of major design decisions and rationale for all stage-wise design 
products of the method.

(c) its support for design co-ordination and management between JSD*(HF) 

and JSD*(SE) components of the JSD* method, i.e. whether specified 

design inter-dependencies are adequate to ensure efficient design.

On the basis of these assessments, appropriate upgrades to a particular version of 

the method may be inferred. Thus, progressively refined versions of the method are 

derived, culminating in an acceptable version of the JSD* method.
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To address systematically the above concerns during the construction of JSD*(HF) 

and JSD* methods, particular research strategies were suggested in Chapter Three 
(sub-section 3.3). Presently, three research strategies applied during the integration 

of human factors with the JSD method are described.

The super-ordinate strategy (S*) comprises the iteration of method specification 
followed by its implementation in case-study tests. The version of JSD*(HF) is 

upgraded between successive specification-and-implementation cycles (see Figure 

6-3). Interactions between this and other strategies are described later.

A second research strategy (sub-ordinate to S*) is backwards engineering9 before 
forwards engineering (SI). The application of this strategy is shown schematically 
in Figure 6-3. Essentially, the strategy involves specifying the derivative design 

capabilities of a method via a sequence comprising backwards and forwards 
engineering processes (see Chapter Three, sub-section 3.3). Thus, the research is 

focused initially on backwards engineering the stage-wise products, processes and 

notations of the JSD*(HF) method.

Following the derivation of a preliminary version of the method, its notations and 

design processes may be developed concurrently if desired (see Figure 6-3). For 
instance, notational development could begin with an assessment of the capability 
of existing JSD notations for describing stage-wise design products entailed by the 
JSD*(HF) method. Identified notational deficiencies may be rectified by recruiting 

suitable notations from existing human factors methods. In particular, the notations 
of methods that have already been ported to the construction of the JSD*(HF) 

method should be examined and extended if necessary. To ascertain whether the 

deficiencies observed previously have been rectified, the descriptive capability of 

the notations is re-assessed using the same case-study system. Following a positive 

assessment, further notational tests on other case-study

9 Reverse or backwards engineering is used widely as a design recovery technique to decipher the 

design process for a finished product, i.e. to derive a post-hoc understanding of how a particular 

artefact is designed. The backwards engineered design process is then tested under forwards 

engineering ('normal' design) to assess its 'goodness of fit’ (see Chikofsky and Cross II, 1990).
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systems may then be introduced.

A parallel iteration of similar specification-and-assessment procedures applies for 

developing the design process of the JSD*(HF) method. When a reasonable 

version of the method is derived, forwards engineering tests may then be applied to 

assess its capability for supporting design derivation.

It should be noted, at this juncture, that strategy SI is facilitated by a further 

strategy (namely strategy S2). The latter strategy involves testing various versions 
of the JSD*(HF) method using case-study systems of increasing size and 

complexity. In other words, strategy S2 imposes a range of test demands on 

successive versions of the method derived using strategy SI. For instance, small 
and simple case-study systems would be prescribed by strategy S2 at earlier stages 
of JSD*(HF) development; and on initial application of forward engineering tests 

on JSD*(HF) and JSD* methods. These systems would be suitable test-beds 

because:

(a) at early stages of JSD*(HF) development, the well defined design start- 
point (design requirements) and end-point (design specification) of such 
systems would facilitate the construction of a preliminary version of the 

method. Specifically, the scope, process and notation of intervening design 

stages may be backwards engineered more easily;
(b) during the initial application of forward engineering tests, simple 

systems permit the scale and complexity of the case-study domain to be 
decoupled from the concerns of method development. In this way, the 
complexities of the research may be managed better, e.g. method tests using 

case-study systems of greater size and complexity are introduced only after 

an acceptable version of the method is derived.

Thus, strategy S2 generally facilitates method development by separating issues 
concerning method development from those concerning its capability for supporting 

various design scenarios. The strategy involves addressing the latter set of issues 

incrementally at major stages of method development, e.g. when moving from
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backwards to forwards engineering tests and from JSD*(HF) to JSD*.

In summary, the scope of strategy S1 includes the derivation and testing of various 

versions of the JSD*(HF) method. Initial versions of the method are generally 
constructed using backwards engineering. Forwards engineering tests are then 

introduced when a satisfactory version of the method is derived. Strategy S2 

supports strategy S1 by prescribing simple case-study systems as test-beds during 

the initial stages of method development The use of larger and more complex case- 

study systems are deferred until a satisfactory version of the method is derived. 

Progressively advanced versions of the method are thus specified and tested 
cyclically in accordance with the super-ordinate strategy, namely S*. The latter 
strategy prescribes iterative cycles of method specification followed by their 

implementation in case-study tests. On deriving an acceptable JSD*(HF) method, 
design inter-dependencies with the JSD*(SE) method are then made explicit to 

complete the integration of Human Factors and Software Engineering methods. The 
resulting product constitutes the first version of the integrated method, i.e. JSD*. 
Further forwards engineering tests are then applied on the integrated method in 
accordance with strategy SI. During this phase of JSD* development, strategies S2 
and S* are applied as before. Progressively advanced versions of the JSD* method 
are thus generated and assessed, culminating in an acceptable version of the 
method.

The above account completes an instantiation of the general research plan (proposed 
in Chapter Three) with respect to the integration of human factors with the JSD 

method. Subsequently, the instantiated research plan was implemented to support 
the specification of JSD*(HF) and JSD* methods. The milestones of the 

implemented plan are reviewed in the following chapter.
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Chapter Seven : Research Highlights in 
Integrating Human Factors with the Jackson 
System Development Method

"Knowledge advances by steps, and not by leaps."
Lord Macaulay, 1828, Edinburgh Review.

This chapter provides a historical account of the research activities undertaken for 

the purpose of specifying and subsequendy integrating a structured human factors 
method with the JSD method. Since the project is extensive (43 reports were 

written — see Part VII for a list of working documents), it would be inappropriate 
here for a complete account of the research to be reported. Consequently, an 
appropriate selection leading to the final product of the research (i.e. the JSD* 

method) is now presented.

7.1. An Overview of the Research into Human Factors Integration 
with the Jackson System Development Method

Figure 7-1 summarises the activities of the present research. These activities derive 
from the research plan described in Sub-section 6.5 (Chapter Six). It can be seen 
from the Figure that following the specification of preliminary JSD*(HF) and JSD* 

conceptions, three sets of research requirements (see Chapter Six) were addressed, 
namely the specification o f :

(a) stage-wise notational and documentation schemes;

(b) stage-wise scope, process and procedures;
(c) design inter-dependencies between JSD*(SE) and JSD*(HF) 

components of the JSD* method.

These requirements were investigated over several research cycles involving 

various case-study applications (see Table 7-1). Table 7-2 is a chronological profile 

of the significant developments and reports of the research. A review of highlights
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that shaped the research follows.

Figure 7-1 : A Summary of Research Activities for Human Factors
Integration with the Jackson System Development Method
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7.1.1. A Review of Activities for Specifying Stage-wise Design 

Notations and Documentation Schemes of the JSD*(HF) Method

The first set of research requirements involved specifying and testing notations and 

documentation schemes for the JSD*(HF) method. These requirements were 

decoupled initially from those concerning the scope, process and procedures of a 
method. Such a research scheme was supported by the recruitment of existing JSD 
notations. In addition, the research scheme was facilitated by an early specification 

of preliminary JSD*(HF) and JSD* conceptions, which was supported in turn by 

the well reported human factors design requirements of the JSD method (see 

Chapter Five, Sub-section 5.3). Consequently, the notational concerns at this stage

Table 7-1 : Profile of Case-Study Applications Used in the Research

Year Case-Studv Anplications

1987-1988 MacDraw™ (Macintosh-based) 
DisplayWrite™ (PC-based)

1988-1989 MacDraw™
Automatic Teller Machine
Library Management System
London Transport Ticketing Machine
WriteNow™ menus
IKBS Troubleshooting System
Digital Network Management System Simulator
Digital Network Management System
Recreation Facility Booking System
Microsoft Disk Operating System™

1989-1990 Recreation Facility Booking System 
Digital Network Management System 

Home Energy Management System Prototype

Note : Applications highlighted in italics were case-studies used extensively for method 

development. Other applications were recruited selectively to progress parts of 

the method.
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Table 7-2 : Profile of Research Developments and Reports

Year

1987-1988

1988-1989

1989-1990

Research Developments

** Setting project aims and objectives.
* * Brief review of Software Engineering 
methods.
* * Initial examination of JSD structured 
diagram notation and design process.
* * Initial study of existing human factors 
contributions to user interface design.
** Defining methodological integration 

and design terminologies.
* * Initial framework for achieving 
methodological integration.
** Generating an initial conception of 

human factors integration with JSD.
** Specifying case-study plans for the 

research.
* * Initial work on the Digital Network 
Management case-study.
** Specifying JSD* terminology, 
stage-wise scope, process and notation.
** Generating a detailed conception 
of JSD*.

** Testing JSD* using the Recreation 

Facility Booking System case-study.
* * Further recruitment of human factors 
design techniques to JSD*.
** Specifying the first version of the 

JSD* method.

** Specifying research plans for the 

Digital Network Management case-study. 
** Testing and generating successive 

versions of the JSD* method.

Working Document No.

WDs 1, 2.
WDs 3, 4.

WDs 5, 6, 7, 8.

WDs 9, 10, 12, 13.

WD 11.

WD 14.

WDs 15, 17,19, 20. 

WDs 16 ,18 ,22 ,25 . 

WD 21.

WDs 23,24 ,26 ,27 . 

WD 28.

WD 29.

WDs 30, 31, 32.

WDs 33, 34.

WD 35.

WDs 36, 37A, 37B, 
38A, 38B, 39A, 39B, 
40A.

Note : Research milestones and major project reports are highlighted in 
ita lic s .



of the research comprise the following:

(a) substantiating reports on the utility of JSD structured diagram notation 

for human factors description (Chapter Five, Sub-section 5.3). In 

particular, a range of JSD notations were tested on their capability for 
describing tasks (at both conceptual and interaction levels — see Table 7-3) 

and screen objects (e.g. the behaviour of menus and windows). Case-study 

applications used for these tests comprise parts of the following : 

MacDraw™ (Macintosh-based); a Library Management System; an IKBS 

Troubleshooter (Poltrock et al, 1986); and Automatic Teller Machines 

(various versions). The tests indicated JSD structured diagram notation to 
be particularly suitable for describing time-ordered events and object- 
oriented information. The results thus confirmed earlier reports on the utility 

of JSD modelling notation (comprising entity and action lists and structured 
diagram notation). In contrast, the recruitment of its network diagram 

notation could not be supported unequivocally. A detailed account of these 
research concerns may be found in Lim (1987; 1988d; 1988e);

Table 7-3 : Information Description Capability of Existing JSD
Notations

Information JSD EntityfAction JSD Structured JSD Network

Type Lists Diagram Notation Diagram Notation

Semantic X X X
(e.g. names and (e.g. names and (e.g. entity
descriptions of descriptions of nodes relationships)
objects and actions) and sub-nodes)

Syntactic Debatable X
(e.g. definition (e.g. JSD structured
of attributes ?) diagram constructs)

Lexical X X
(e.g. atomic (e.g. leaves of JSD
actions) structured diagrams)
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(b) justifying the choice of JSD structured diagram notation by 

demonstrating its capability for human factors description to be at least 

equivalent to other established notations. Thus, comparisons were made 

with grammar-based notations (e.g. BNF (Reisner, 1977); TAG (Payne and 

Green, 1986)); networks (e.g. GTN (Kieras and Poison, 1985)); 

flowcharts (e.g. Drury, 1983) and tree hierarchies (e.g. HTA (Annett and 
Duncan, 1967). Sample descriptions (e.g. Display Write™ tasks) published 

by the preceding authors were re-described using JSD structured diagram 

notation. The objective was to demonstrate that the latter notation is capable 

of describing the same information with at least the same specificity and 

'elegance' (e.g. conciseness, modifiability, leamability). In addition, 
reported weaknesses of the notations were noted. The results of these 
comparisons were favourable (see Walsh, 1987a and b).

Following the decision to use the JSD structured diagram notation, the research 
focus shifted onto the scope, process and procedures of a method. In other words, 
subsequent notational developments were contingent on the identification of 
additional requirements to support the design task, e.g. the description of 
intermediate design representations to support reasoning. Similarly, documentation 

schemes were developed to ensure a comprehensive record of design decisions and 
design rationale. Thus, notational and documentation concerns pervaded the course 

of the research. Notable developments in respect of these concerns are as follows :

(a) the inclusion of a hierarchy construct in JSD structured diagram 

notation. The construct represents a more elegant way of describing non­

sequential events, since it replaces the need to use a combination of iteration 
and selection constructs for such descriptions (see Annex A; Lim, 1988e, 

1989b). Thus, the hierarchy construct represents a useful addition to 

support the use of the notation for task description;
(b) the relaxation of description rules associated with JSD structured 
diagram notation (Lim, 1988e). Specifically, rules which were intended 

originally to ensure the direct executability of JSD specifications were 

relaxed to accommodate the 'fuzziness' of human factors descriptions, for
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instance the rule:

(i) 'described actions should be atomic1 is interpreted less stringently 

to imply that the atomicity of actions is dictated by the purpose of the 
description. Thus, 'chunking' of sub-tasks may be accommodated;

(ii) 'described actions should have detectable start and end points' is 
not always upheld. Although the rule may be satisfied in most 
instances, where overt actions are described, compliance with respect 

to cognitive processes can not be assured. Thus, its application is 

relaxed.

(c) an extended application of JSD structured diagram notation to include the
following design descriptions:

(i) spatial layout and composition of screen objects (Lim, 1989b). The 
objective of using JSD structured diagram notation for such 
descriptions was to capture the information in machine readable form. 
This undertaking constituted an opportunistic attempt (as opposed to a 
formal research goal) to exploit the capabilities of the structured 
diagram notation. Unfortunately, following case-study description 
tests (Recreation Facility Booking System and Digital Network 

Management System Simulator), it was concluded that extensions to 
notational interpretation, required to widen its applicability, would 

constitute non-trivial modifications to the notation. Since these 

modifications might have resulted in negative transfer to JSD analysts, 
the attempt was abandoned in favour of a simple pictorial description 

(which provides essentially the same information);

(ii) behaviour and changes in appearance of screen objects. Since the 
JSD structured diagram notation is particularly suitable for describing 

objects, only minor extensions were necessary to link the behaviour of 

screen objects to changes in their appearance. Such descriptions are 

effected by assigning unique identifiers to object actions so that they 

may be linked to pictorial descriptions of appearance changes (see

161



Figure 7-2);
(iii) screen transitions. The transitions correspond to the dynamic 

presentation of functional supports, and error and feedback messages 
to the user. The description (termed the Dialogue and Inter-Task 

Screen Actuation Description (DITaSAD)) is linked to screen layout 

diagrams and message index tables (Lim, 1989d, 1990d, 1990e). Its 

purpose is to contextualise major screen presentations to the progress 

of the user's task.

Figure 7-2 : Using JSD Structured Diagrams to Link Screen Object

Behaviours to Corresponding Changes in their Appearance

User action 
C body

Screen 
object (OBJ)

User action 
A body

User action 
B body

/  i \
A B C

/  I  \

A, B and C are permissible selections of user actions 
on an object named OBJ.

Changes in appearance of object 
OBJ corresponding to actions A, B 
andC.

(d) a wider recruitment of existing JSD notations, in particular its network 

diagram notation. Specifically, the potential of the notation for describing 
information exchanges between system entities was investigated, e.g. the 

control of information flows, such as its direction of flow and timing. To 

this end, the notation was considered for the following descriptions :

(i) a conceptual representation of information exchanges between the 

human, computer and other real world entities, e.g. whether particular 

information flows and updates are continuous, periodic, or only 

effected on request;

(ii) the nature of information exchanges between users in the
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organisation. Such descriptions would be useful when socio-technical 

considerations are addressed in system development;

(iii) the display of screen objects, e.g. whether particular functional 

objects are always presented.

Following case-study tests (Recreation Facility Booking System and Digital 

Network Management System Simulator), it was concluded that substantial 
investigations would be required to use the notation for the above 

descriptions. Although the potential benefits of such recruitment were 

acknowledged, their investigations would have entailed a re-allocation of 

project resources and corresponding changes in the research scope. Thus, 

the investigations could not be supported, since other research commitments 
assumed greater priority. Consequently, further research in this direction is 
deferred to follow-up projects;

(e) the investigation and subsequent recruitment of other (non-JSD) 
notations and documentation schemes, namely :

(i) network-type diagrams which were used to describe relational 
information such as composition and taxonomic relationships among 
objects. In particular, the diagram is used to describe design concepts 

in a representation termed the Domain of Design Discourse (DoDD) 
description (Lim, 1989d, 1990a). The description is intended as a 

means for eliciting and communicating the boundaries of the design 

problem (see Valusek, 1988);

(ii) circuit-type diagrams which were used to describe interaction task 

pathways and activation schedules of screen objects (Lim, 1989b, 

1989d). However, the diagram was dropped for two reasons. Firstly, 
the notation was found to be unduly cumbersome to generate and to 

update during a case-study test involving the Recreation Facility 

Booking System. Secondly, its description of sequential events is 

insufficiently specific, whenever feedback loops occur. Thus, circuit- 

type diagrams were replaced with a combination of JSD structured 

diagrams and pictorial screen layout diagrams. The latter set of
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diagrams was used to describe screen transitions corresponding to the 

presentation of major functional supports for the users' task, and error 

and feedback messages;

(iii) pictorial screen layout diagrams which were used to describe the 
location, grouping and appearance of screen objects. The screen 

diagrams are labelled such that their sequential and inheritance 

relationships are identifiable (see Lim, 1990d);

(iv) object appearance diagrams which were used to describe changes 
in screen object appearance resulting from corresponding changes in 

state, e.g. following permissible actions on the object (see Figure 7-2; 

Lim, 1990d);
(v) information tables which provide textual descriptions to support: 
JSD structured diagram descriptions; pictorial screen layout diagrams; 

object appearance diagrams; and network-type diagrams. For instance, 
the tables may be used to document the decisions and rationale 
underlying a particular design (see Chapters Nine to Eleven).

This account completes a profile of the research highlights associated with the 
development of stage-wise notations and documentation schemes for the method. 

Case-study illustrations of the final set of JSD*(HF) notations and documentation 

schemes are presented later in Part IV.

7.1.2. A Review of Activities for Specifying Stage-wise Design 

Scope and Processes of the JSD*(HF) Method

In Sub-section 7.1, it was proposed that preliminary JSD*(HF) and JSD* 

conceptions may be specified to meet design support requirements particular to the 

JSD method (also see Chapter Five, Sub-section 5.3). Since the notation for the 
JSD*(HF) method was constrained largely to the use of existing JSD notations, a 
greater proportion of the research effort spent on generating JSD*(HF) conceptions 

was directed at specifying appropriate stage-wise design scope and processes for 

the method. The research emphasis also resulted from the implicit and largely 

incomplete conceptualisation of human factors design. Thus, a number of
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preliminary JSD*(HF) and JSD* conceptions were derived as shown in Figures 7- 
3 and 7-4.

On the basis of these preliminary conceptions, the methods were then elaborated via 

appropriate recruitment and extensions of existing human factors techniques. To 

support the recruitment of existing methods, a general conception of structured 
human factors design was derived (Chapter Four) and intersected with preliminary 
JSD*(HF) conceptions. Thus, pertinent aspects of the general design conception 

were recruited (with some backwards engineering and 'brain-storming') to develop 

more detailed conceptions of the JSD*(HF) method. A survey of relevant human 
factors techniques was then initiated. The scope of the survey included system-sub- 

system definition (which addresses design concerns at the organisational level), 
user characterisation, task analysis and design, user interface design, performance 
specification, and function allocation. Although the survey was comprehensive, it 

was not feasible to undertake an in-depth study of all human factors design 
concerns in view of the limited research time-frame. Thus, later studies focused 
directly on addressing design support deficiencies of the JSD method. The final 

scope of the survey is shown in Figure 7-5 (this may be contrasted with Figure 4- 
5). An account of the activities and conceptual developments at this stage of the 
research follows.

The conception shown in Figure 7-5 was detailed further by 'brain-storming' and 

literature reviews on the following:

(a) general design studies, e.g. Jones (1973); Coyne (1988); Rouse and 
Boff (eds., 1987); Design Studies (Design Research Society Journal, 

Butterworh Scientific Ltd.); etc. The review afforded an understanding of 

design tasks and the implications of methodological support, e.g. the impact 
of methods on design practices (see Part V), and how methods are used by 

designers (see Part IV on the resulting need for flexibility in a method);

(b) general concepts on human factors design, e.g. the use of metaphors in 
user interface design. The literature reviewed included texts and papers by 

Card, Moran and Newell (1983), Rouse and Boff (eds., 1987); Rasmussen

(1986), Shneiderman (1987); Helander (ed., 1988); Hutchins (1987);
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Figure 7-3 : Initial JSD* and JSD*(HF) Conceptions
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Conception in Figure 7-4

An initial attempt at specifying 
JSD*(HF) and JSD* conceptions 
based on observed design support 
deficiencies in the JSD method. 
The focus of the conception was 
on :

(a) incorporating outputs of task 
analysis into JSD design;
(b) ensuring user interface design 
and metaphor identification (if 
any) is based on outputs of task 
analysis;
(c) specifying two contact points 
between human factors design 
and the JSD method;
(d) specifying appropriate design 
roles. Specifically, user interface 
design should be undertaken by 
human factors designers, while 
technical aspects of system 
specification should continue
as the domain of JSD analysts.

This JSD*(HF) and JSD* conception 
was derived by a co-worker at about 
the same time as the one above.
The focus of the conception was on :

(a) ensuring task analysis is 
constrained by user requirements 
(if well defined);
(b) incorporating outputs from task 
analysis into user interface design;
(c) deriving an appropriate expression 
of the user interface based on a model 
of the user and the target task;
(d) identifying an appropriate user 
interface style and metaphor 
identification (if any) based on task 
analysis;
(e) specifying a contact point 
between human factors design and 
the JSD method;
(f) specifying appropriate design roles. 
Specifically, user interface design 
should be undertaken by human factors 
designers, while technical aspects of 
system specification should continue 
as the domain of JSD analysts.
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Figure 7-4 : A Product-Oriented Conception of JSD*
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The two JSD* and JSD*(HF) conceptions shown in Figure 7-3 were combined. Notable 
changes comprise the following:

(a) the user model is subsumed by the task model;
(b) human factors and JSD design products are distinguished explicitly;
(c) a composite task model is introduced to address different levels of task design and 
description.
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Figure 7-5 : Scope of the Review of Current Concerns of Human

Factors Design
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Incomplete coverage by the method is represented by boxes partially outlined in bold.
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Moran (1981); etc. The objective of the review was to establish a suitable 

knowledge base to support the specification of appropriate stage-wise 

design scope and processes for the JSD*(HF) method;
(c) requirements elicitation and task analysis techniques. Following a 

preliminary review of several task analysis techniques, a set of promising 

candidates were selected for detailed study. The set included:

(i) Hierarchical Task Analysis (Annett and Duncan (1967) among 

other reports);
(ii) Task Analysis for Knowledge Descriptions (Johnson et al (1984) 

among other reports);

(iii) Knowledge Analysis of Tasks (Keane and Johnson (1987) among 

other reports);
(iv) Hierarchical Planning (Sebillote, 1988);
(v) GOMS (Card et al (1983) among other reports).

For detailed accounts of these reviews, the reader is referred to Silcock 
(1989), Coles and Lim (1989), and Silcock and Lim (1989). It should be 
noted that the review of task analysis techniques also included function 
allocation techniques, e.g. reports by Price (1985) and Clegg et al (1989).

In general, the review indicated that existing task analysis techniques are 

poorly structured. Specifically, their procedures are frequently incomplete 

or poorly described; their scope is too narrow (e.g. the applicability of a 
technique may be limited to evaluation or training only), or too specific for 

wider application (e.g. GOMS). In addition, some task analysis techniques 

were still being developed at the time of the review. Nevertheless, the 
review supported the development of an extant systems task analysis 
technique for the JSD*(HF) method. For instance, general task analysis 

concepts and procedures were recruited, e.g. to support target system 
design, current system information may be abstracted to reveal its logical 

design (see Johnson and Johnson, 1988) and generified to derive a 

generalised description;
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(d) models of human-computer dialogue and user interface design methods. 

Both linguistic and non-linguistic models of human-computer dialogue were 

reviewed. The former model is exemplified by CLG, while non-linguistic 
models comprise dialogue cell (Borufka et al, 1982); interaction event 

(Benbasat and Wand, 1984); architectural abstraction models (e.g. Coutaz, 

1985, 1989).

An initial review indicated that human factors design is not supported 

equally well by these models. For instance, architectural models do not 
appear to consider user needs at all. In this regard, Hartson and Hix (1988) 
reported that linguistic models are most suitable for incorporating human 

factors design (see Table 7-4). Thus, linguistic models and their design 
methods were studied in greater detail. The first linguistic model was 
proposed by Foley and Wallace in 1974. Since then variants on the basic 

theme followed, namely linguistic models comprising varying numbers of 
semantic, syntactic and lexical levels, e.g. Moran (1981), Buxton (1983). 
Although linguistic models constitute a good scheme for describing 

human-computer dialogue, their emphasis on a rigid top-down description 
has been found to be inappropriate for supporting user interface 

specification (Sharratt, 1987; 1988). In response to these problems, 

modifications of the model have been proposed, e.g. Frohlich and Luff 
(1989) suggested that semantic and syntactic design should be undertaken 

simultaneously (see also Preece et al, 1987).

Following comparisons between methods based on the linguistic models 

(e.g. CLG and Foley's user interface design method) and early conceptions 

of the JSD*(HF) method (see Lim 1989c; Tables 7-5 and 7-6), it was 
concluded that the latter did not require an explicit incorporation of a 

linguistic model. Instead, the model’s function may be embodied in object 

oriented descriptions (see Chapter Six, Sub-section 6.1, point (d)). The 
latter were chosen for the following reasons :

(i) object-oriented descriptions are compatible with JSD*(SE)

descriptions generated at the JSD Model Stage;
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Table 7-4 : Scope of Description of Various Models of Human-
Computer Dialogue (after Hartson and Hix, 1988)

Hartson and Hix's List of ‘Essential'

User Interface Design Concerns

(a) the use of task analysis to specify a structural 
description and representation of the interface, i.e. 
user interface design is driven by task-oriented 
models (see Kieras and Poison, 1985).

(b) the use of structural models to capture the 
general process of human-computer communication, 
i.e. describing the structure of inputs and outputs. 
Dialogue objects and their relationships are thus 
identified and the domain defined.

(c) the use of interface models to represent particular 
instances of human-computer interaction, i.e. 
specifying the form, content and sequencing for parts 
of a user interface. Thus, a device-oriented definition is 
derived.

Table 7-5 : Comparison of User Interface Design Concerns of CLG
(Moran, 1981) and the JSD*(HF) Method

-----------------------------------------------------------------
Corresponding Design Coverage by Design 

Stages of the JSD*(HF) Method (Approximate)

Extant Systems System Analysis to System and 
User Task Model Stages.

Interaction Task Model and Interface Model Stages. 

Display Design Stage.

User Interface Design Concerns 

Addressed fry CLG

Conceptual component

Communication component 

Physical component

Mdresse(Lby.M£tfatk 
Based on;

Linguistic Models

Linguistic Models 
Architectural 
Abstraction Models (?)

Linguistic Models 
Architectural Abstraction 
Models
Dialog Cell Model 
Interaction Event Model
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Table 7-6 : Comparison of User Interface Design Concerns of Foley
and van Dam's Method (1982) and the JSD*(HF) Method

Folev’s User Interface Design Method JSD*(HF) Design Method

(1) Specifying the Interaction Concept (1) Extant Systems System Analysis to
Stage -  define: Composite Task Model Stages :
(a) set of all objects in the system -----$9* (a) JSD object/entity lists
(b) relationship between objects ....(b) Domain of Design Discourse
(c) object properties ......$»■ (c) JSD object/entity lists
(d) permissible operations on objects ^  (d) JSD structured diagram descriptions

Shortcomings (after Frohlich and Luff, 1989) : Handled by:
(a) recognition of composite and meta-objects (a) domain of design discourse desccription
(b) differentiation of action types, e.g. (b) constructs of JSD structured diagram
specifying local and global actions. notation, e.g. common actions across entity 

structures may be considered global.

(2) Specifying the Interaction Semantics (2) System and User Task Model (SUTaM) to
Stage — define: Display Design (DD) Stages :
(a) function name (a) SUTaM sub-nodes and JSD function 

names (?)
(b) action on objects *4)----- (b) SUTaM descriptions
(c) definition of both system and user ----$»> (c) SUTaM descriptions
oriented operations
(d) parameters of operations (d) JSD action list
(e) results of operations ^ -----gS* (e) JSD functions and DD descriptions
(f) errors ^ ( f )  JSD input sub-system and DD descriptions
(g) feedback messages (g) JSD input sub-system and DD descriptions
(h) performance measures *0$___(h) statement of user needs table

(3) Specifying the Interaction Syntax 
Stage — define:

^ (3 ) System and User Task Model (SUTaM) to 
Display Design (DD) Stages :

(a) sequencing of inputs and outputs (I/Os) jfc- (a) SUTaM and Interaction Task Model (TIM)
descriptions

(b) specification of input and output tokens. (b) ITM and Interface Model (IM) descriptions

(4) Specifying the Interaction Lexicon ^ (4) ITM to Display Design (DD) Stages :
Stage -- define:
(a) mouse movements and key presses (a) ITM descriptions
(b) screen layouts (b) DD descriptions

Shortcomings (after Frohlich and Luff, 1989): Handled by:
(a) outputs would be described better by 
scenario diagrams

ifo* (a) DD descriptions and JSD*(HF) descriptions 
in general
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(ii) object-oriented descriptions are independent of their 
implementation, since such information is concealed within object 

representations. The descriptions can thus accommodate context-free 

representations of specific interface features, e.g. the behaviour of 
windows;

(iii) the strong hierarchical inheritance of object-oriented descriptions 

helps to ensure consistency;

(iv) the class concept of object-oriented descriptions facilitates easy 

implementation of variant designs. Thus, design re-usability and 
prototyping is supported.

Nevertheless, a system-oriented design perspective should be maintained as 
information on temporal sequences (e.g. intermediate execution steps) is 
obscured inherently by object-oriented views (Hartson and Hix, 1988). 

Thus, the characteristics of user interface objects and actions should relate to 
tasks that users are expected to perform.

(e) classes of human factors models and their potential contributions to 

system design. The review sought to uncover:

(i) the nature, type and expression of human factors models. Many 

papers were reviewed including those by Clowes (1988), Farooq and 
Dominick (1988), Johnson (in press), Long (1986, 1987), Nielson

(1987), Norman (1983), Simon (1988), Whitefield (1987), Young

(1983), etc. The review identified a profusion of human factors
models and considerable confusion in their interpretation (Long, 

1987). Attempts to resolve this state of affairs via definitions,

classifications and taxonomies (e.g. explicit specification of who is
doing the modelling and what is being modelled (see Whitefield, 

1987)) have successfully clarified the nature and type of human

factors models. However, the current representation of models (e.g.

'models of the user') is either left implicit and poorly described, or too

theoretical and complex for practical application.10 Thus, it was
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concluded that system and task models constitute more promising 

recruits to the JSD*(HF) method. Nevertheless, by adopting a user- 

oriented approach an implicit user model may be subsumed by 

particular characteristics of system and task models;

(ii) how human factors models were used in design. The review 

indicated that research into human factors models was still in its early 
stages (see Footnote 10). Thus, few case-study applications had been 

reported and the assumed user models tended to be described poorly 

(see van der Veer et al, 1988; Guest, 1988). The review also indicated 

that human factors models were used primarily as explanatory aids in 

diagnostic evaluation, as opposed to predictive aids to support design 

generation11 (see Whitefield, 1990);
(iii) how human factors models are transformed between stages of the 

system design cycle. In this respect, current definitions, taxonomies 
and classifications were generally concerned with categorising 
existing human factors models (which may not cover system design 

needs). Such classifications do not adequately support the application 
of human factors models. In particular, no information is provided on 
how particular models may be recruited to support design at each stage 
of the design cycle. Although attempts were made to identify the 
protagonist of human factors models (e.g. designer's models, user's 

models, etc.), the subject matter addressed by the models was not 

intersected explicitly with specific or stage-wise design concerns. 

Thus, the recruitment of human factors models is usually confined to 
the late evaluation stage, e.g. to check the designer's interpretation 

against the user's conceptual model (see also (ii) above on the primary 
use of human factors models as explanatory aids). Consequently, to 
facilitate earlier recruitment (e.g. during design specification), human 

factors models should be set explicitly against specific stages of the 
system design cycle (or embedded in a structured method). Figure 7-6 

shows the result of such an attempt (see Lim (1989a) for further

1 0  The situation is probably a result of the incomplete human factors knowledge in this area.

1 1  With the possible exception of task models.
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d e t a i l s ) .  T h e  c o n c e p t i o n  la t e r  s u p p o r t e d  t h e  p o s i t i n g  o f  a n  e x t a n t  

s y s t e m s  a n a ly s i s  t e c h n iq u e  a n d  a  u s e r  in t e r f a c e  d e s i g n  p r o c e s s  fo r  th e  

J S D * ( H F )  m e t h o d  ( s e e  F ig u r e  1 - l b ) .

I n  s u m m a r y ,  th e  r e v i e w  r e v e a l e d  th a t  t h e  c o n t r ib u t io n s  o f  h u m a n  f a c t o r s  

m o d e l s  to  s y s t e m  d e s i g n  i s  c o n f i n e d  la r g e ly  t o  la t e  e v a lu a t io n  r a th e r  th a n  to  

d e s i g n  s p e c i f i c a t io n .  In  a d d it io n ,  i t  in d ic a t e d  s y s t e m  a n d  ta s k  m o d e l s  t o  b e  

m o r e  p r o m i s in g  r e c r u i t s  t o  th e  J S D * ( H F )  m e t h o d ,  e . g .  t o  s u p p o r t  s y s t e m  

d e s i g n  a t th e  o r g a n is a t io n a l  l e v e l  ( e .g .  s o c i o - t e c h n i c a l  c o n s i d e r a t io n s )  a n d  

in t e r a c t iv e  w o r k  s y s t e m  l e v e l  ( e .g .  ' s y s t e m  im a g e ')  r e s p e c t iv e l y .

( f )  c a s e - s t u d y  a p p l i c a t i o n s  o f  h u m a n  f a c t o r s  d e s i g n  t e c h n i q u e s  ( h u m a n  

f a c t o r s  d e s i g n  'p r a c t ic e ' ) .  T h e  r e v i e w  in c l u d e d  r e p o r t s  b y  F i n k e l s t e i n  a n d  

F i n k e l s t e i n  ( 1 9 8 3 ) ,  S m i t h  e t  a l  ( 1 9 8 2 ) ,  Y o u n g  ( 1 9 8 8 ) ,  C l o w e s  ( 1 9 8 6 ) ,  

E a s o n  ( 1 9 8 8 ) ,  F a r o o q  a n d  D o m in i c k  ( 1 9 8 8 ) ,  G u e s t  ( 1 9 8 2 ) ,  H a m m o n d  e t  a l

( 1 9 8 3 ) ,  M o r a n  ( 1 9 8 1 ) ,  N o r m a n  ( 1 9 8 6 ) ,  N e w m a n  ( 1 9 8 8 ) ,  F o l e y  e t  a l

( 1 9 8 4 ) ,  F r o h l i c h  a n d  L u f f  ( 1 9 8 9 ) ,  e t c .  T h e  t e c h n i q u e s  r e p o r t e d  w e r e  

c o m p a r e d  w it h  p r o p o s e d  c o n c e p t i o n s  o f  t h e  J S D * ( H F )  m e t h o d  ( s e e  T a b le  

7 - 7 ) .  P r o m is in g  t e c h n iq u e s  w e r e  r e c r u i t e d  a n d  in c o r p o r a t e d  in t o  s u c c e s s i v e  

c o n c e p t i o n s .  F o r  a  d e t a i l e d  a c c o u n t  o f  t h e s e  d e v e l o p m e n t s ,  th e  r e a d e r  is  

r e fe r r e d  to  L im  ( 1 9 8 9 a ,  b ) .

In  s u m m a r y , a  's u ita b le '  J S D * ( H F )  c o n c e p t i o n  w a s  d e r iv e d  o n  th e  b a s i s  o f  in s ig h t s  

d e r iv e d  f r o m  l i t e r a t u r e  r e v i e w s .  V a r io u s  c a s e - s t u d i e s  w e r e  th e n  in t r o d u c e d  to  

d e m o n s t r a t e  i t s  a p p l i c a t i o n  a n d  t o  s u p p o r t  a n  i n t e n s i v e  p h a s e  o f  c o n c e p t i o n  

s p e c i f i c a t i o n  a n d  t e s t .  F u r th e r  l i t e r a t u r e  r e v i e w s  w e r e  c o n d u c t e d  to  s u p p o r t  th e  

r e c t i f i c a t i o n  o f  o b s e r v e d  in a d e q u a c i e s  in  e a c h  J S D * ( H F )  c o n c e p t i o n .  T h u s ,  

p r o g r e s s iv e ly  d e v e lo p e d  c o n c e p t io n s  w e r e  d e r iv e d  w it h  r e s p e c t  to  th e  r e q u ir e m e n ts  

o f  a  s t r u c tu r e d  m e t h o d .  N o t a b le  d e v e lo p m e n t s  in  th is  r e s e a r c h  p h a s e  in c l u d e  th e  

f o l l o w i n g :

( 1 )  c o n c e p t u a l i s a t io n  o f  u s e r  r e q u ir e m e n ts  a s  c o m p r is in g  th e  s p e c i f ic a t io n  o f  

c o n d i t io n a l  s t a te m e n ts  p e r ta in in g  to  th e  ta s k , d e v i c e  a n d  e n v ir o n m e n t  (w it h
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respect to the target user group);
(2) adoption of a user-task centered approach for system design. In this 

approach, design commences with a characterisation of the target user group 
and its current task performance on the extant system (denoted as ’System 

X' in Figure 7-7a). The information derived is compared with requirements 

that motivated the design of a new system. On this basis, appropriate extant 

task abstractions may then be recruited to advance the design via the 

synthesis of a conceptual task for the target system (denoted as 'System Y' 
in Figure 7-7a). These design concepts comprise an early version of the 

extant systems approach (see Lim, 1988d). Further decomposition of the 

conceptual task may then be undertaken to generate the user task model;12
(3) definition of an interaction task model to characterise inputs and outputs 

for a particular user interface design. The model is to be derived on the basis 

of conceptual and on-line task descriptions (corresponding to the composite

Table 7-7 : Comparison of Newman's (1988) Conception of User 
Interface Design 'Practice' and the JSD*(HF) Method

N zw rnrti (l$88lC<mc£ptL?n.4fUseL. 
Interface-Design Practice.

(1) User Modelling Stage: 
specification of a mixture of user 
requirements, task knowledge and a 
design product similar to the domain 
of design discourse description 
advocated by the JSD*(HF) method.

(a) constraints imposed by style
(b) suitability of particular styles
(c) representation of style
(d) extension and modification of styles

Corresponding Stages of the 
JSD* (HF) Method

(1) Extant Systems System Analysis 
and Statement of User Needs Stages: 
A user model is subsumed by the 
characteristics of task performance, 
i.e. task models are derived for a 
particular user group.

(2) Interface Model and Display 
Design Stages:
-  extension and modification of 
chosen characteristics of the adopted 
user interface environment (if any).

(2) The User Interface Style Design 
Stage addresses concerns o f:

1 2  Note that the user task model was initially proposed as a description of on-line tasks only. 

On-line and off-line tasks remain undifferentiated until later in the research. Only then were the 

tasks described separately and re-named system and user task models respectively.

177



and system task models respectively), and the user interface environment or 

style (if any);
(4) propositions on how a suitable user interface environment or style could 
be selected using an extant systems analysis approach;

(5) conceptualisation of a set of 'basic elements' for describing a user 

interface design (see Figure 7-8);
(6) more explicit specification of the stage-wise design scope and processes

Figure 7-7a : Further JSD* Conceptions I

Task
Description : 
[XB(u)t UB(x)]

Generalised 
Task Model 
X: GTM (x)

Extant
System

Composite 
Task Model 
Y : CTM (y)Generalised 

Task Model 
Y : GTM (y)

User Interface 
Constraints or 
Environment

Statement of 
User Needs & 
Requirements User Task 

Model 
[ UB (y) ]|JSD*(SE) ,■#

Specification sssillll
Model

Interface Model: 
[ IB (u <—> y) ]

Functions

User Interface
S p e c if i c a t io n

♦  . ■
Implementation WffftDeveloped

System

Evaluation

pa

Conception A  
Lim, 1989b

Following literature reviews, the JSD*(HF) conception in Figure 7-4 was detailed further. Four developments may 
be noted:

(a) an expansion of the task model to include generalised task model descriptions;
(b) further developments of the extant systems system analysis approach. Specifically, intermediate JSD*(HF) design 
products have been demarcated for both the extant system (System X) and target system (System Y);
(c) the introduction of separate descriptions of user and computer behaviours, corresponding to the derivation of a user 
task model and interface model descriptions respectively;
(d) the recognition of an earlier design cycle where an appropriate user interface environment (if any) may be assessed 
and adopted. This preceding design cycle is represented by boxes with oblique lines (see Figure).
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Figure 7-7b : Further JSD* Conceptions II

System

Developed
System
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TOT
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ii Specification
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Functions

User Interface 
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Implementation

Evaluation

Statement of 
User Needs

Composite 
Task Model 
Y : CTM (y) ]
h Z I

User Interface 
Constraints or 
Environment

User Task User Task
Model: Model:
[off-line] [on-line]

Interaction Interface
Task Model ----- Model
(ITM)

Conception B 
Lim, 1989d

Following further literature reviews and initial case-study tests, Conception A was developed further. Four developments 
may be noted:

(a) a stage-oriented representation of the conception (as opposed to the previous product-oriented representation);
(b) the separation of on-line and off-line user task components. User interface design is advanced primarily via the on-line task;
(c) the addition of an interaction level description of the user's task. This description corresponds to intraface model 
descriptions of the computer behaviour;
(d) the distinction between explicit system requirements and implicit user needs. This distinction prompted the addition of a 
specific stage to summarise implicit user needs that have been elicited.

of the JSD*(HF) method. These characteristics are expressed respectively 

as a set of design products and procedures of the method. The proposed 

methodological developments were then tested in design case-studies 

involving three systems, namely the Digital Network Management System 

Simulator, Recreation Facility Booking System and Disk Operating 

System.™ Since these case-study systems represent various types of user 

interface designs (namely WIMP (which includes form-fill, menu and direct 

manipulation characteristics) and command-line user interfaces (Lim, 

1989b)), a range of tests on the descriptive capability of JSD*(HF)
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notations was thus afforded;
(7) compilation of a glossary of definitions and terms to support potential 

users of the JSD*(HF) and JSD* methods (see Part VII).

These developments culminated in the derivation of an 'acceptable' version of the 

JSD*(HF) method. Explicit integration with the JSD method was then attempted. 

These research concerns are described in the next sub-section.

Figure 7-8 : 'Basic Elements' for Describing a User Interface Design

Design of user's conceptual task (including domain semantics)

User Interface Design

Interactive task 
determines:

Screen 4  

compositions 
(including 
groupings)

Object
representations
(including
groupings)

Object behaviours 
(including appearance 
changes, links with 
other objects, etc.) i

Screen transitions, 
to present feedback 
messages and functions in 
support of the user's task.

Object

Screen

7.1.3. A Review of Research Activities for Specifying Inter- 

Dependencies between Design Streams of the JSD* Method

The final phase of the research is concerned with specifying-and-testing various 

versions of the JSD* method. Thus, it is initiated by the integration of an
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'acceptable' version of the JSD*(HF) method with the JSD method. Integration 

entails further examination of the JSD method so that design inter-dependencies 
may be located against appropriate stages of the JSD*(HF) method. Obligatory 

contact points between Software Engineering and Human Factors design streams 

were thus specified. The identification of these contact points was reasonably 
straightforward for the following reasons :

(a) the JSD*(HF) method was tailored specifically to an essentially 

unchanged JSD method. Thus, high level design intersections would have 

been addressed during the construction of the JSD*(HF) method;
(b) both JSD*(HF) and JSD methods were structured into explicitly defined 
design stages. Consequently, their design scope and processes (and hence 

information needs) could be intersected unambiguously.

The first attempt at integrating the methods was made following case-study tests 
using the Digital Network Management System Simulator. Design inter­
dependencies between the two streams of the JSD* method were inferred by post- 
hoc comparisons of JSD and JSD*(HF) specifications of the case-study system 

(see Lim, 1989b). Thus, a version of the JSD* method that locates these design 
inter-dependencies explicitly was generated (see Figure 7-9a).

A breadth-wise test on a second case-study (namely the Recreation Facility Booking 
System) was then undertaken to verify the design inter-dependencies identified 
previously. To this end, both design streams of the JSD* method were undertaken 

in parallel and their design products were compared at these obligatory contact 
points. However, actual meetings between software engineers and human factors 

designers were considered unnecessary since the objective of the test was to verify 

expected and actual intersections in design information at inter-dependency points 

of the method. In other words, the forwards engineering test was concerned 

primarily with determining what information should be exchanged at which 

contact point, so that design convergence across the two JSD* streams may be 

ensured. Thus, a post-hoc comparison of design products from the two design
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Figure 7-9a : Early Versions of the JSD* Method I
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Specification
Phase
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Proposed Locations of JSD*(SE) 
and JSD*(HF) Contact

Intensive case-study tests were undertaken at this stage of the research. Findings from these tests supported further 
developments of the method, e.g. specification of later stages of the method. The following method developments should 
be noted:

(a) the Task Description Stage is now developed fully and re-named the Extant Systems System Analysis Stage;
(b) a clearer distinction between on-line and off-line components of the user's task was made. The on-line component was 
then re-named the 'system task model'. The 'user task model' is thus modified to comprise only the off-line component;
(c) procedures for the Interaction Task Model and Interface Model Stages were enhanced. In addition, the design procedures 
and products of the Display Design Stage were specified;
(d) design inter-dependencies between JSD*(HF) and JSD*(SE) streams were specified explicitly. Requisite information 
exchanges between the design streams were identified, e.g. intermediate design products and information to be shared;
(e) a clearer presentation of the method was considered, e.g. design activities of the JSD*(HF) method were organised into 
different design phases; the method scope was defined more tightly, e.g. a clearer location of 'secondary' design activities 
such as the selection of a suitable user interface environment, and wider concerns of requirements specification.
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streams would be adequate (see Lim, 1989b).13

The pertinence of the proposed contact points was thus determined by assessing the 
design support afforded by sharing information at each of these points, e.g. how 

human factors design could benefit from accessing specifications of the input sub­

system generated by software engineers and vice versa (e.g. how task descriptions 

generated by human factors (see Part IV) could define the context for specifying 

JSD functions. Minor modifications of the JSD*(HF) method instigated by these 

considerations were later implemented and tested in a second cycle using the 
Recreation Facility Booking System. For these tests, post-hoc comparisons of 
stage-wise JSD*(SE) and JSD*(HF) design products were repeated as before (see 

Lim, 1989d).

Succeeding versions of the JSD* method (see Figure 7-9a and b) were thus 

assessed repeatedly until an 'acceptable' version was derived. A larger case-study 
system, namely the Digital Network Management System, was then introduced to 
impose more demanding tests on the method. To this end, parallel test cycles were 

undertaken using the trouble-shooting and security modules of the case-study 

system (see Lim, 1990b, c, d, e; Silcock and Lim, 1990b; Silcock, 1990a, b). In 
contrast to preceding tests (see above), full application of the JSD* method was 

planned, i.e. both design streams of the method should be undertaken including the 
obligatory contact points. The objective of the tests was to demonstrate the 
JSD*(HF) method and to ascertain the appropriateness of contact points proposed 

for the JSD* method. Unfortunately, the tests could not be realised fully due to time 
constraints and excessive manpower demands from the sponsors of the research. 

Consequently, complete application of the method was discontinued following the 

first contact point, i.e. at the Composite Task Model Stage (see Part IV). Thus, 
case-study tests for assessing the appropriateness of proposed contacts points 

reverted subsequently to previous test scenarios, i.e. a

1 3  The test scenario minimised resource commitments by the research sponsors with respect to 

their role as software engineers in the case-study. Potential delays to the research was thus 

minimised.
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post-hoc comparison of JSD*(SE) and JSD*(HF) specifications. In addition, the 

case-study specifications generated by human factors designers and software 
engineers were not integrated explicitly for JSD implementation (although a user 

interface design prototype was constructed).14 As a consequence, the final version

Figure 7-9b : Early Versions of the JSD* Method II
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Proposed Locations of JSD*(SE) and 
JSD*(HF) Contact

Intensive case-study testing was continued. Lessons learnt from these tests enhanced the method as follows:

(a) closer links were established between the Statement of User Needs and Composite Task Model Stages;
(b) the interaction task model was adopted as the basis for specifying interface model and display design descriptions;
(c) design inter-dependencies between JSD*(HF) and JSD*(SE) streams were made more explicit;
(d) human factors descriptions comprising the specification of a user interface design were defined explicitly.

1 4  Despite these set-backs, the results of case-study tests on the JSD*(HF) method would remain 

valid (see also Chapter Twelve).
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of the JSD* method (as opposed to the JSD*(HF) method — see Footnote 14 and 

Figure 8-1) was not tested as comprehensively as would be desired (see Part V).15 

Nevertheless, overall indications from the case-study tests were considered 

positive.

The main product of the research may now be described. Since the existing JSD 

method (also referred to as the JSD*(SE) method to account for additional design 

inter-dependencies with the JSD*(HF) method) remains essentially unchanged, the 

account is focused on the JSD*(HF) method. In addition, an account of the 

JSD*(SE) method is unnecessary since its design inter-dependencies would be 
accommodated in a description of the JSD*(HF) method. However, an overview of 

the JSD* method is included to contextualise design contributions attributed to the 

stage-wise design scope, process and notation of the JSD*(HF) method. To 
illustrate the method, case-study examples are drawn from the security module of 

the Digital Network Management System.16

1 5  This limitation is being addressed in a follow-up project commissioned by the research 

sponsors.

1 6  This case-study module was selected because it is smaller than the trouble-shooting module 

and is thus more convenient for method illustration. It should be noted that original descriptions 

for the case-study have been revised and simplified to suit the purposes of the illustration.
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PART IV :

A Structured Human Factors Method for the 
Jackson System Development Method
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Chapter Eight : An Overview of the JSD*(HF) 
Method

"In the land of the blind, even the one-eyed man is king."
bottom-line argument for the method? John Long, 1990.

"Good order is the foundation of all good things"
Edmund Burke, 1790.

The objective of the present overview is to establish a conceptual foundation for a 
detailed account of the JSD*(HF) method. The latter account comprises a stage- 

wise description of the method and its relationship with the JSD*(SE) method (see 
later chapters).

8.1 JSD*(HF), JSD*(SE) and JSD* Methods

JSD*(HF) is one of two component structured methods that constitute the JSD* 
method (see Figure 8-1).1 It is the human factors component of JSD* developed 
specifically for integration with an essentially unchanged JSD method. Henceforth, 

the latter method will be referred to as the JSD*(SE) method since additional inter­
dependencies with the JSD*(HF) method have been specified to support 

collaborative design. These inter-dependencies constitute obligatory contact points 

at which design information is shared and agreed between designers working in the 

parallel streams of the JSD* method (inter-dependencies are indicated in Figure 8-1 
by boxes outlined in bold). Once agreed, the information becomes binding since it 

constitutes the basis for later design extensions. Thus, any violation of the agreed 

design basis should be communicated to designers working in the other stream of 

the JSD* method. In this way, a common design focus and scope may be ensured 

for SE and HF design to proceed in parallel.

* Figure 8-1 shows that the JSD*(HF) method comprises the focus of the research. For this 
reason, its design stages are shown in greater detail relative to the JSD*(SE) method. Actual 
differences in complexity between the methods are not represented in the Figure.
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Figure 8-1 : Locating the JSD*(HF) Method within the JSD* Method
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In addition to design inter-dependency points, other meeting points may be defined 
in a given application of the JSD* method. Such meetings are usually dictated by 

situation- or organisation-specific factors, e.g. meetings instigated by ad hoc 

factors such as the close proximity of design team members; information quality at 

project inception; particular local requirements; etc. Thus, to ensure general 
applicability of the method only obligatory design inter-dependencies between the 

streams are emphasised. In other words, contact points which are not fundamental 

for advancing the design are considered discretionary (i.e. not a requirements of the 

method) and are accommodated only when necessary. The objective is to ensure 

that JSD* is not over-specified so ensuring its general applicability and flexibility 
(although it should be adequately specified to meet the requirements of a structured 

method). For instance, it should be sufficiently flexible to accommodate adaptations 

in its application. An example of flexibility in the method may be illustrated by the 

Extant Systems System Analysis Stage where the depth of extant systems analysis
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is specified as a 'bottom-line' requirement, i.e. the derivation of a current task 

description is obligatory while other design products are derived only if the 

designer considers them necessary. These methodological concerns are discussed at 

length in Chapters Nine and Twelve.

8.2 General Characteristics of the JSD*(HF) Method

Generally, the focus of the JSD*(HF) method is on complementing the design 
specification stages of the JSD*(SE) method. Such a focus is appropriate because :

(1) literature surveys indicate that current HF contributions to system 

development are well established at later stages of the design cycle, e.g. HF 
evaluation during design implementation. In contrast, HF contributions to 
design specification are inadequate and implicit. Since the recruitment of HF 

contributions is traditionally late, the discovery of such design errors is also 

delayed. As a result, the required modifications are costly and difficult to 
implement (see Chapter One), Thus, greater emphasis should be placed on 
ensuring HF contributions to design specification;

(2) JSD*(SE) implementation activities comprise mechanistic 
transformations which do not alter design specifications defined at earlier 
stages of the JSD* method. In other words, the external behaviour of 
JSD*(SE) specifications is maintained if the transformations comply with 
implementation rules of the method (Zave, 1984). Thus, HF contributions 
at JSD*(SE) implementation stages would be minimal if appropriate HF 

inputs have been incorporated during design specification. In particular, HF 

contributions at design implementation would be confined to the following :

(i) designing additional feedback cues for users if longer than expected 

transient response times result from a particular JSD*(SE) 
implementation (e.g. a feedback cue such as the Macintosh wrist-watch 

icon may be provided). This design scenario may arise if hardware 

specifications (e.g. processing capabilities) can not be met 

subsequently due to budgetary constraints (e.g. the number of
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processors available is lower than expected), or unforeseen hardware 

limitations;

(ii) validating the fidelity of JSD*(SE) implementation. The proposed 

transformation of JSD*(SE) specifications may be evaluated by 

conducting user tests on either a design prototype or the final artefact;
(iii) ensuring appropriate design modifications (and design iteration as 
necessary) following evaluations in (ii) above.

For these reasons, a participative followed by consultative HF role is envisaged at 

JSD* design specification and implementation stages respectively. In respect of the 

latter, existing evaluation methods and practices may be recruited to support the 
method. An overview of the JSD*(HF) method follows.

The JSD*(HF) method is structured into three phases, each of which comprises a 
number of design stages (see Figure 8-1). The scope of the design phases is as 

follows:

(i) the Information Elicitation and Analysis Phase is concerned with user 
requirements capture and task analysis. Its design stages comprise the 
Extant Systems System Analysis and Generalised Task Model Stages;
(ii) the Design Synthesis Phase addresses the derivation of a conceptual 

design of the target system. Its design stages comprise the Statement of 

User Needs, Composite Task Model and System and User Task Model 

Stages;

(iii) the Design Specification Phase is focused on functional and user- 

interface design. The remaining three stages of the JSD*(HF) method, i.e. 

Interaction Task Model, Interface Model and Display Design Stages, belong 

to this phase.

A detailed account of the JSD*(HF) method is presented in later chapters. It 

suffices to say at present that salient characteristics of the method include the 

following:

(1) its stages comprise coherent groupings of design processes which
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transform inputs to desired outputs. In most cases, the output or outputs of 

a design stage constitute input or inputs to a succeeding stage. Wider 
relationships may also apply for a number of stages, e.g. design output(s) 
of one stage may feed into several succeeding design stages. Such instances 

are indicated explicitly when the stages are described in detail later,

(2) its stages are defined explicidy with respect to their scope, process and 

notation. Thus, each design stage is characterised by a set of design 

products, procedures and documentation schemes;
(3) its stage-wise design products are explicitly defined. Thus, prototyping 
is encouraged to accommodate the incompleteness of current HF knowledge 

(see also (4) and (5) below). To this end, prototypes may be constructed at 
each stage of the method to exemplify proposed designs. Consequently, 
early and continuous evaluation is encouraged throughout the system design 

cycle. However, as with any structured method, the JSD*(HF) method may 
be incompatible with the design approach entailed by rapid prototyping. In 

particular, a structured method involves a phase of design analysis and 
documentation prior to the specification of a 'first-best-guess' solution 

(which may then be prototyped). Such a design phase is excluded in a rapid 
prototyping approach;

(4) its methodological structure upholds accepted design principles such as :

(i) the delaying of design commitments (Thimbleby, 1990), e.g. by 
ensuring that detailed design is preceded by an adequate conceptual 
design;

(ii) the conduct of early design evaluation either analytically by the 

designer or empirically using a prototype;

(iii) the conduct of iterative design;

(iv) the conduct of incremental or modular design development. This 

design scenario may be pursued in both streams of the JSD* method 
following the specification of a conceptual design;

(5) its well defined stage-wise scope, process and notation provide a basis 

for configuring and recruiting alternative means of HF input, e.g. 

guidelines, computer-based tools and prototyping. For instance, its well
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defined stage-wise scope facilitates the identification of appropriate design 
guidelines for recruitment throughout the design cycle. Similarly, its well 

defined stage-wise scope, process and notation provide a basis for 

developing computer-based tools to support design specification. Finally, 

prototyping is encouraged at each stage of the method since its design 

products are all defined explicitly (see (3) above);

(6) its notation is essentially an adapted version of the structured diagram 
notation of the JSD*(SE) method (see Annex A and Figure 6-1). The 
notation was recruited following a series of assessments which indicated its 

suitability for describing HF design products (Walsh, 1987a; Lim, 1988e; 
Carver, 1988). The structured diagrams are supported by tables which 
provide a detailed textual description;

(7) its methodological configuration is tailored specifically to the JSD*(SE) 
method since the latter is left essentially unchanged. In particular, design 
inter-dependencies between the JSD*(SE) and JSD*(HF) methods are 

defined to support collaborative design. Assimilation of the JSD*(HF) 

method by software engineers may also be facilitated since familiar 
reference points within the JSD*(SE) method are highlighted by the design 

inter-dependencies. Thus, a positive transfer of knowledge is supported; 2
(8) its procedures are targeted at a HF designer with a basic understanding 
of the JSD*(SE) method. Experience in the latter method over and above 

this general requirement may enable a more effective realisation of the JSD* 
method. However, it should be noted that a particular design team 

composition is not implied by the JSD* method. The only implication of the 

method is that HF, SE and domain expertise should be represented. Thus, 

later references to design teams working in respective streams of the JSD* 
method, are for explanatory purposes only. While design teams may be the 

case on most occasions, the undertaking of both method streams by a single 
designer should not be precluded;

(9) its approach to design specification is best characterised as a user-task

2  Maintaining an unchanged JSD*(SE) stream was a requirement set down by the sponsors of 
this research (see acknowledgements and Chapter Six).
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oriented approach.^  During design, a user model is realised in terms of 

particular task execution and performance characteristics;

(10) its focus is primarily on design specification rather than on design 

implementation and evaluation. The bias is intended to redress the imbalance 
arising from the traditionally late recruitment of human factors contributions 

to system development

The above account completes an overview of the JSD*(HF) method. A detailed 

description of the method is presented in Chapters Nine to Eleven.

8.3 Hierarchical Description of Work Systems and the JSD*(HF) 

Method

Large human-computer systems usually involve a co-ordinated network of 
interactive sub-systems, e.g. tactical planning and control modules of defence 
systems on board an aircraft carrier. In such cases, the method should be applied in 

two steps as follows :

(i) conceptual design at the organisation level is first defined in the first two 
phases of the method, i.e. the Information Elicitation and Analysis, and 

Design Synthesis Phases. Following a conceptual definition of the system 
purpose, sub-systems may be identified. Formal socio-technical 
interactions4 among the sub-systems (e.g. work relationships and 

information exchanges) are then described using a mixture of data flow and 
network diagrams (used in SSADM and SASD, and JSD respectively). The 

descriptions derived at these phases of the JSD*(HF) method complements 
similar information derived by JSD*(SE) designers;

(11) lower level requirements, conceptual and functional design of each sub­

system may then be specified. To this end, the first two phases of the

3 See Fleishman and Quaintance (1984) for alternative perspectives on human task performance.
4  Although informal work relationships are difficult to uncover, they should be addressed during 
design when appropriate.
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method are repeated to define each sub-system more specifically. Design 

specifications for the sub-system is then derived by a complete application 
of the method. The process is repeated until design specifications for all 

sub-systems are derived.

Since JSD*(HF) activities at the organisation level are repeated at the sub-system 

level, the method may be exemplified completely by a description of the latter (see 

later chapters).

8.4 Format for Presenting the JSD*(HF) Method

In accordance with the definition of a structured method, the JSD*(HF) method is 

presented in terms of its stage-wise design scope, process and notation. In 
particular:

(i) the scope of each of its stages is described in terms of the design 
products to be derived. To illustrate the products, examples are selected 
from a case-study undertaken during method development, namely a Digital 

Data Network Management System;
(ii) its design process is characterised at two levels of description, namely 

at inter-stage and intra-stage levels. The former comprises a stage-to-stage 

description of the method while the latter entails the definition of sub­

processes and procedures for each of its design stages (targeted at a HF 
designer with a basic understanding of JSD). Intra-stage level processes and 

procedures are described using a block diagram (see Figure 8-2) and text 

respectively. Rules of thumb (i.e. semi-formal notes) to support method 
application are also included where appropriate;

(iii) the notation (including documentation formats) for describing human 

factors design products is defined for each of its stages. Illustrations of such 
description schemes are provided using examples selected from the case- 

study cited in (i) above.

To facilitate method assimilation, the above presentation format is supported by the
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following:

(a) an overview of each stage is provided for readers who are generally 

interested in the method;
(b) a detailed account of the design stage follows the overview in (a) above. 

Design products, procedures and notations of the stage are described and 

illustrated using case-study examples. Thus, a deeper understanding may be 

derived by readers who may be interested in applying the method.

In summary, the presentation format permits selective reading of Chapters Nine to 

Eleven corresponding to the level of method exposure desired by the reader.

Figure 8-2 : Block Diagram Summary of Each Design Stage of the
JSD*(HF) Method

A

L - B  . | 

I c I
Stage A comprises sub-processes B and C.

B Input P (of X) feeds into all sub-processes of 
Stage A.

Q(x)
A

^  n^  15

c I
Input Q (of X) feeds into sub-process B only.
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8.5. Notes on the Choice and Scope of the Case-Study Illustration

Many case-studies were undertaken in the course of the research. However, the 

final case-study (concerning the design of a network management system) is most 
suitable for illustrating the JSD*(HF) method.5 Since the scope of the system is 

rather large (relative to resources available to the project), only the trouble-shooting 

and security modules were addressed during method development. Of the two 

modules, a sub-set of the design descriptions for the security module is used to 

illustrate the method. This sub-set is selected to meet the following requirements :

(a) it should adequately illustrate the stage-wise design scope and notation 

of the method. This requirement includes a comprehensive illustration of the 
the products and documentation schemes of each design stage;

(b) it should adequately exemplify design transformations between stages of 
the method. This requirement implies that case-study examples should 
illustrate a coherent and traceable thread of design advancements across the 
stages of the method.

In other words, the objective of the case-study is to expose the procedural human 
factors knowledge embedded within the JSD*(HF) method. However, the 
recruitment and application of declarative human factors knowledge are excluded 
from the scope of the case-study illustration since they fall outside the remit of the 

present research. Nevertheless, such instances are highlighted in the illustrations 
when appropriate.

Against this background, a detailed account of the JSD*(HF) method is presently 

described.

5 The assertion stems from the strategies for case-study tests on the method (see Chapter Six). 
In particular, the strategies require that the final case-study be a non-trivial system so that a more 
complete test of the method is afforded. Thus, the final case-study is most suitable for illustrating 
the method.
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Chapter Nine : The Information Elicitation and 
Analysis Phase of the JSD*(HF) Method

"Really we create nothing. We merely plagiarise nature."
Jean Baitaillon.

"Engineering attempts to fully constrain its outputs Engineering investigates
successful designs and adopts those 'means' that it finds generalisable."

Jim Carter.

This chapter presents a stage-wise account of the Information Elicitation and 

Analysis Phase of the JSD*(HF) method. The two stages of this phase, namely the 
Extant Systems System Analysis and Generalised Task Model Stages, are described 
in the order by which design is advanced (see Figure on the following page). The 

stages are concerned with the generation and analysis of background information 
that would later support the derivation of a design solution. Intermediate processes 
and products for each stage of the method are described in the format proposed in 

Chapter 8. Specifically, each stage of the method is expanded graphically as a block 

diagram containing one or more sub-processes. The stage-wise processes transform 

inputs into a number of intermediate design products. Case-study examples of these 

design products and processes are provided where appropriate. In addition, design 
relationships between the JSD*(HF) and JSD*(SE) method are highlighted.

9.1. Extant Systems System Analysis (ESSA) Stage

Summary

The main objective of the ESSA Stage is to generate background design information 

that will assist target system design. In analysing extant systems, the HF designer 

may be interested in characterising current user needs and problems; existing task 

allocation between the human and device; existing user interface design features and 

rationale; etc. The information is described by a number of ESSA Stage products, 

each providing a different perspective on the design, e.g. user-task design, user
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interface design, etc. (see later and Annex D). These products constitute the data 

base that supports target system design at later stages of the method (see Figure 

below — the ESSA Stage is highlighted in black).

Information Elicitation and Analysis Phase Design Synthesis Phase

Extant Systems 
System Analysis Generalised Task Model Statement of User Needs

Composite Task ModelFunctions 
ListOther Contributions

JSD*(SE) * 1 * * 1 1 1 1 1

System and User Task ModelSpecification 
| Model | System Task Model User Task Model

| Functions |
User Interface Specification

Interaction Task Model
Implementation I

Display DesignInterface Model
Evaluation

ggagJl = Points of SE and HF contact 

[llltl = Design phases of the JSD*(HF) method

Design Specification Phase

Two aspects of extant systems analysis should be noted. Firstly, extant systems 
include both the current system (i.e. the system currently in use in the client 

organization) and related systems (i.e. similar systems in use in other sections of 

the client organisation or elsewhere). The objective of including related systems in 

the initial analysis (as opposed to studying only the current system) is to avoid 
'tunnel vision' at an early stage of system design. It is expected that analyses of 

extant designs would provide valuable insights about appropriate and inappropriate 
design features with respect to the target system, i.e. extant designs are assessed on 

their potential for recruitment to the target system. In practice, extensive analysis of 

the current system and a number of extant systems may be involved (see below). 

Thus, a broader perspective is derived to support wider consideration of alternative
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designs. In addition, information derived from extant systems analysis may indicate 

possible transfer of learning by current system users (both positive and negative 

transfer). These concerns are addressed later at the Generalised Task Model Stage.

Secondly, it should be emphasised that the detail to which extant systems are 

analysed depends on the circumstances of the design project, e.g. the resources 
available; the designer's familiarity with the system domain; etc. Indeed, the study 

of a related system need not be undertaken physically if the designer is able to draw 
on past experience of related systems. In other words, the extent of such analyses 
should be decided by the designer in each instance. Where limited extant systems 

analysis is undertaken, the designer is required to note the information source and 

rationale of all products leading to a target system design.

A brief account of the design processes and products of this stage follows (see 
Figure 9-1. The reader is referred to Chapter 8 for an explanation of the 
representation scheme). Italics will be used to highlight the design processes shown 

in the Figure.

An initial statement of requirements that describes key target system characteristics 

is collated from the client's brief, contractual documents, etc. On the basis of such 

a statement, relevant extant systems may be identified at the ESSA Stage. Thus, 
appropriate current, related, and partially related systems are selected for analysis. 

Using 'off-the-shelf techniques such as interviews, unobtrusive observations, etc., 

pertinent information on these systems may then be elicited from various sources, 

e.g. end-user groups, existing job descriptions, user manuals, etc.

Structured diagram descriptions of two primary products are derived for each extant 

system analysed. First, a Task Description for the extant system (TD(ext)) is 

derived by decomposing tasks into sub-tasks. In most cases, a single task 

description would have to be collated from information elicited from diverse 

sources, e.g. protocols with different task performers, etc. To achieve this 

objective, a basic set of generic descriptors or 'building blocks' (e.g. objects and 

actions that are common across the information sources) needs to be defined. Thus, 

generification procedures suggested by Johnson and Johnson (1987); and
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Figure 9-1 : Block Diagram Summary of the Extant Systems System

Analysis (ESSA) Stage

SoRe

■ TD(ext)

GTM’(ext)«4-

R'(ext) < -

Extant Systems System 
Analysis [ESSA]

>1 Identify

Generify and 
Re-Describe

Abstract

Compare 
and Scope

Analyse and 
Decompose

Evaluate, 
Select and 
Arbitrate

Select

Extant System(s)
(i.e. EPS, ERS, ECS) 
Information Sources; 
e.g. end-users, manuals, etc.

GTM(ext)

GTM(y) (from 
GTM Stage)

R(ext)

GTM"(ext) ^  To later 
JSD*(HF) 
design stages

STM(ext) and UTM(ext)KEY ;

ITM (ext)
EXT = {ECS, ERS, EPS) 
R'(ext) G R(ext)IM(ext) and UIE(ext)

R(ext),
R’(ext) DD(ext)

SUN(ext)

DoDD(ext)

DD = Display Design

DoDD = Domain of Design Discourse

ECS = Extant Current System

EPS = Extant Partial System
ERS = Extant Related System
(ext) = extant system (EXT) descriptions

EXT = Extant Systems
GTM = Generalised Task Model

IM = Interface Model

ITM = Interaction Task Model 
R = JSD*(HF) design products 

SoRe -  Statement of Requirements 

STM -  System Task Model 
SUN = Statement of User Needs 

TD = Task Description 

UIE = User Interface Environment 
UTM = User Task Model
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Johnson, Johnson and Russell (1988), have been recruited to support the 
JSD*(HF) method. Similarly, to support later design analysis and synthesis an 
appropriate level of task description needs be derived. Thus, the method includes 
conditions which state that task decomposition should be terminated only when the 
description derived:

(a) is generally understood among designers and end-users. In particular, 
tasks should be decomposed to a level that facilitates unambiguous 

identification with pre-specified system goals;

(b) is commensurate with the criticality, frequency and centrality of the task 
(see Johnson and Johnson, 1987);

(c) supports unambiguous identification of performance shaping factors 
(PSFs);
(d) supports the identification of training requirements and criteria, e.g. the 

attainment of satisfactory Probability of failure x Cost (or P x C) values 
(Duncan, 1974).

Second, a Generalised Task Model for the Extant System (GTM(ext)) is abstracted 
from the Task Description (TD(ext)). The objective is to remove device dependent 

details to facilitate later comparisons between extant and target system designs. 
Although the level of abstraction should be sufficiently high to reveal the logic 
underlying the system task, the resulting description need not be homogenous. For 

instance, the level of abstraction may be deliberately lower for particular parts of the 

description to preserve information on design features of interest in later stages. 

Thus, the generalised task model supports HF analysis of extant system designs 

vis-a-vis requirements of the target system.

Apart from the above products, other ESSA Stage products may be derived 

depending on individual project circumstances. For instance, the full complement 

(comprising products of all subsequent stages of the method -- the set is represented 

generally as R(ext) in Figure 9-1) may be derived in cases where the extant and 
target systems are highly similar (as in variant design). However, it is unlikely that 

all extant system information will be relevant to target system design although 
extant systems are selected on the basis of common domain or task characteristics. 

Thus, an appropriate scope of analysis is identified by comparing GTM(ext) with
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the Generalised Task Model of the Target System (i.e. GTM(y) — see later). A 

relevant sub-set of GTM(ext) (denoted as GTM'(ext) in Figure 9-1) is thus 

identified. Both TD(ext) and GTM'(ext) support the generation of further ESSA 

Stage products as appropriate. For instance, TD(ext) and GTM'(ext) may be 

analysed  further to identify relevant R(ext) descriptions. Lower level 

decompositions such as STM(ext) and ITM(ext) may then be collated.

Generally, the R(ext) descriptions derived are evaluated to identify potential 

candidates for recruitment during target system design. The candidate set is denoted 
as R'(ext) descriptions in Figure 9-1. Since R'(ext) descriptions relate to a sub-set 
of GTM'(ext), pertinent parts of the latter are collated to derive a GTM"(ext) 

description for each of the extant systems analysed. The set of GTM"(ext) 

descriptions are then carried forward to the next stage (the Generalised Task Model 

Stage) where compatible aspects may be synthesised on the basis of the statement 

of requirements and GTM(y). Thus, an overall GTM(x) description is derived.^ 
Similarly, other R'(ext) descriptions feed later stages of the method where 
corresponding JSD*(HF) descriptions of the target system are derived, e.g. 
SUN(ext) descriptions support the derivation of SUN(y) descriptions at the 
Statement of User Needs Stage, etc. In other words, ESSA Stage information is 

processed into products whose scope and format are similar to corresponding 

products derived at later JSD*(HF) stages (see Figure 9-1). For instance, the 

information is processed into descriptions comprising JSD* structured diagrams, 

semantic nets, pictorial diagrams and tables. Uptake of ESSA Stage products is 

thus facilitated.

Since ESSA Stage analysis may appear to address 'variant' design only,7 it is 

pertinent to emphasise that the method is not limited to such designs. On the 

contrary, together with the Generalised and Composite Task Model Stages, 'novel' 

design is also supported (see later).

6 JSD*(HF) descriptions with an '(x)' suffix denote products synthesised from parts of extant 
system descriptions (denoted by an '(ext)' suffix). Similarly, design descriptions with a '(y)' suffix 
denote JSD*(HF) products associated with the target system.
7 Note that most system designs currently involve variant design (see Rouse and Boff, 1987).
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A more detailed account of the ESSA Stage, appropriate for potential users of the 

method, follows.

Detailed Account

ESSA Stage activities may be grouped into three categories, namely :

(a) Identification of extant systems for analysis
(b) Elicitation of task information

(c) Derivation of ESSA Stage products

A review of the design activities and their procedures follows. Case-study examples 

of ESSA Stage products are also included as appropriate.

fa) Identification of Extant Systems for Analysis

The first step in the method is to characterise the purpose of the target system (this 
step is undertaken together with JSD*(SE) analysts). Thus, information pertaining 

to the subject matter and requirements of the system is extracted from the client's 

brief, e.g. target system tasks, hardware requirements, desirable current system 

characteristics and perceived future needs. Other information sources such as 

feasibility reports, informal and contractual documents, transcripts of protocols 

with stake-holders, etc., may also be consulted.

The information elicited is summarised to generate an initial statement of 

requirements. The statement should be sufficiently detailed to define the scope of 

target system design. In particular, it should identify key characteristics of the target 

system such as the domain of application (e.g. Network Management), 

technological constraints (e.g. a command-line user interface), end-user 

characteristics (e.g. novices), etc.

Target system characteristics thus identified are grouped into one or more sets of
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'concrete' and 'abstract' characteristics which are of particular interest to the HF 

analyst. 'Concrete' sets map onto extant systems that operate in the same domain as 

the target system, i.e. 'variants' of the target system. 'Abstract' sets, on the other 

hand, map onto systems operating in different or partially similar domains. These 

systems may be compared conceptually with the target system to support 'novel' 
design (as opposed to 'variant' design). However, the analysis of such systems 

would not generate the same wealth of information since its relation to the target 

system is more distant than 'concretely' related systems.

On the basis of these sets, suitable extant systems may be identified for analysis. In 

particular, three categories of extant systems may be identified, namely :

(1) the 'extant current system' in use in the client organisation, i.e. the 

system to be replaced by the target system. Aside from domain similarity, 
device characteristics of the current system may or may not be related to the 
target system. For instance, a weak relationship would be expected in 

computerising manual systems. It should be noted that the current system is 
especially important from a HF viewpoint as transfer effects (both positive 

and negative) attributed to current expectations and experiences of installed 

users would have to be addressed during target system design;
(2) 'extant related  systems’ whose domain of application is sim ilar to the 
target system. This category includes systems in use in other sections of the 

same organisation or elsewhere;

(3) 'extant partia l systems' which share sub-tasks similar to those intended 
for the target system, but whose domains of application are largely 

different or unrelated.

The relationship between extant and target systems is summarised in Figure 9-2.

At a minimum, it is recommended that the extant current system should be 
analysed to support a better conceptualisation of the target system. A number of 

extant related  and partial systems may then be analysed (in that order) to augment 
the design data base. It should be emphasised that the selection and analysis of 

extant systems is iterative, e.g. the analyst may decide to analyse other extant
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systems during the course of the ESSA and other JSD*(HF) stages (see 
Generalised Task Model Stage later). The procedures for selecting appropriate 
extant systems for analysis are summarised below.

Figure 9-2 : Extant System Categories Assumed by the JSD*(HF)

Method

System Category Organisation Status Domain Status

Extant Current System Client Same or very similar to target system

Extant Related System Client or Other Similar to target system

Extant Partial System Client or Other Similarities only at sub-task level

Procedures for selecting extant systems

1. Consult the statement of requirements and other sources (such as transcripts of interviews
with task performers, system manuals, etc.) for information on key target system 
characteristics such as the following ;
(a) the domain of application
(b) technological constraints
(c) client-specified task constraints
(d) system performance criteria
(e) user characteristics
(f) environmental factors
These characteristics are then used to identify extant systems for analysis.

2. Abstract and generalise key target system characteristics. In particular, identify salient
features of the domain of application and task. Appropriate characteristics of the extant 
current system may also be incorporated.

3. From the generalised set, particular sub-sets may then be selected. Generic categories
of extant systems are thus defined, i.e. extant systems which fall within the categories 
represent potential candidates for analysis. Such generic categories need not include all 
characteristics of the target system. However, the criteria for selecting a particular set 
should be made explicit. These criteria are largely situation-specific, e.g. they are 
determined by particular information requirements, e.g. on critical or problematic 
aspects of the target task (see (4) below).

4. Select and record a list of extant systems for analysis. The number of extant systems
selected is influenced by situational factors such as :
(a) target task characteristics, e.g. task criticality, frequency and difficulty;
(b) resources available for analysis, e.g. availability of current system personnel for 
interview; time constraints; etc.
(c) target domain characteristics, e.g. similarities with the current system; well- or ill- 
defined system; designer familiarity with the domain; etc.
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(b) Elicitation of Task Information

Having selected a number of extant systems, relevant design information is elicited 

to support HF analysis and later generation of ESSA Stage products. Information 

elicitation is facilitated by a number of 'off-the shelf techniques such as interviews, 

observational studies, concurrent and retrospective protocols, critical incident 

analysis, questionnaires, literature survey, etc. These techniques will not be 

described since they should be familiar to target users of the method. As an 

example, procedures for task performer interviews (which would be conducted in 

most cases) are described overleaf.8 The reader is referred to Diaper (1989a, b) 
for an account of other elicitation techniques. Suffice it to say that an elicitation 

technique that meets the requirements of the analysis should be selected.

(cl Derivation of ESSA Stage Products

ESSA Stage products9 that may be derived following extant systems analysis 
comprise the following:

(1) Extant Task Description (T D (ext)): a device-dependent description of 
the user's task for an extant (ext) system;
(2) Extant Generalised Task Model (GTM(ext)) : a 'device-independent' 

description of the user's task for an extant (ext) system;

(3) Extant System Task M odel (STM (ext)) and U ser Task M odel 

(UTM(ext)) : device-independent descriptions of the user's on-line (i.e. 

computer supported) and off-line (i.e. manual) tasks for an extant (ext) 

system;

(4) Extant Interaction Task Model (ITM(ext)) : a description of device-level 

interactions currently required to perform the on-line task;

8 Part of these interview procedures are attributed to Silcock who joined the RARDE project (on 
which the PhD is based) in its final year. Guided by the present author (the project leader), 
Silcock's contributions (cited as appropriate) comprise a review of task analysis and elicitation 
methods, and part specification of secondary design activities of the JSD*(HF) method.
9 Acronyms for these product will be used henceforth.
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Procedures for task performer interviews

1. Conduct interviews. To facilitate information elicitation :
(a) use graphical representations during the interview. For example, pertinent design 
information may be uncovered by asking task performers to describe the task with 
respect to graphical representations of the device. The elicited descriptions may also 
be represented graphically and presented later to task performers for corfirmation. The 
graphical notation used would depend on the information being described, e.g. tree 
diagrams may be used for describing organisational structure, while JSD structured 
diagrams, tree diagrams and flowcharts may be appropriate for task description.
(b) use 'how' and why' questions during the interview. Previous research suggests 
that answers to 'why' and 'how' questions are usually related to superordinate and 
subordinate goals respectively. The use of such questions may facilitate subsequent 
construction of task 'hierarchies' from interview transcripts.

2. For each task performer, transcribe audio and visual records of the interview (if any).

3. Analyse the interview transcripts. Design information that supports the generation of
ESSA Stage products is extracted from the transcripts as follows :
(a) pertinent phrases in the transcripts should be highlighted and summarised;
(b) answers to 'how' and 'why' questions are examined to extract the structure of the task;
(c) relations between domain objects should be noted, e.g. composite objects, task 
groupings, etc. The information may be used to define the domain of the target system;
(d) statements describing user needs, problems and possible solutions should be noted. 
Such information supports the derivation of an enhanced statement of requirements.

4. Re-describe the information using notations of corresponding stage-wise products of the
JSD*(HF) method. The objective is to facilitate later transformation of the information 
into the scope and format of later JSD*(HF) design products.

(5) Extant Interface Model (IM (ext)): a description of the appearance and 

behaviours of bespoke objects of the extant user interface, including variant 

objects of the chosen in-house style or user interface environment (if any);

(6) Extant Display Design (DD(ext)) descriptions : of static and dynamic 

characteristics of extant displays (including dialogue and error messages), 

e.g. screen composition, layout and actuation with respect to the user’s task;

(7) Extant Domain o f Design Discourse (DoDD(ext)) : a semantic net 
description of the application domain of an extant system;

(8) Extant Statement o f User Needs (SUN(ext)) : a summary of user 

problems and needs for an extant system.

These products support later assessments for recruiting particular extant designs to 

the target system. To this end, extant system descriptions are processed into the
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scope and format of corresponding products derived at later stages of the method. 
In other words, extant and target system descriptions^ are 'mirror images' of one 

another, e.g. ITM(ext) and ITM(y); STM(ext) and STM(y); etc. The uptake of 
extant system descriptions at later design stages is thus facilitated. It should be 
noted, however, that in many cases the full complement of ESSA Stage products 

need not be derived. In particular, ESSA Stage analysis may be terminated 

following the derivation of a GTM(ext) description if the information captured is 

considered sufficient for target system design. Thus, a HF designer should assess 

whether the derivation of a wider range of ESSA Stage products would benefit 

target system design.11

A selective review of ESSA Stage products follows. A complete case-study 
illustration of the products is unnecessary since extant system descriptions are 

'mirrored' by target system descriptions. Thus, the reader should refer to either 

Chapters Ten and Eleven for case-study illustrations of target system descriptions, 

or to Annex D for a more extensive account of ESSA Stage products.

(1) Extant Task Description (TD(extY)

TD(ext) is a device-dependent description of the user's task. Its level of 

decomposition is determined by the purpose of the analysis. For instance, a low 

level description (e.g. to the keystroke level) may be derived for an extant current 

system (i.e. a system that operates in the same domain as the target system) 

designed using the same user interface environment (if any). Alternatively, a higher 

level description of TD(ext) may be derived when extant systems less closely 

related to the target system domain are analysed, e.g. extant related systems. In 

such cases, the description needs to support comparisons between the conceptual 

designs of extant systems and target system requirements.

10 JSD*(HF) products corresponding to the target system are denoted by the following scheme : 
<JSD*(HF) stage name> <(y)>, e.g. GTM(y).
11 Thus, the rationale for deriving a particular range of ESSA Stage products should be 
documented.
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TD(ext) is described using JSD* Structured Diagram Notation (see Annex A). The 

description is supported by an information table that provides a textual account of 

important task design features.

Procedures for deriving a TD(ext) description are summarised below.

-----------------------------------------------------------------------------------------------------------------

Procedures for deriving TD(ext)

1. Take as input information that has been elicited from task performers, manuals, etc.
Identify the super-ordinate task (and task goal), and decompose them into sub-tasks 
(and sub-goals). Note the sequence, frequency and conditions that control the 
execution of each set of sub-tasks (these will be represented in TD(ext) using JSD* 
structured diagram notation). The objective is to derive a comprehensive description 
of task components to support subsequent task analysis and design.

2. Continue the decomposition until a satisfactory level of description is derived. The
point at which decomposition is terminated will depend on the purpose of the 
analysis. For example, if target system design involves re-designing the extant current 
system using similar technology, then it may be informative to continue task 
decomposition to the keystroke level. In contrast, if target system design is instigated 
by the use of substitute technology such a level of decomposition would not be 
warranted. At a minimum, sub-tasks of the TD(ext) description should detail how 
superordinate task goals may be fulfilled, e.g. it should describe start- and end-points 
of major tasks and define pre-requisites for the fulfilment of set goals.

3. Analyse task performance from a HF perspective. Particular attention should be given to:
(a) user problems and needs as well as positive extant design features that may 
contribute later to target system design;
(b) the rationale underlying extant designs. The information would support later 
assessments of the efficacy of existing design features.

4. Record the derived information using JSD* structured diagrams and include textual
comments in an accompanying table as necessary. Note that:
(a) the table structure may vary according to the needs of the structured diagram. In 
most cases, it should include a column each for elaborating boxes of a structured 
diagram and for noting HF comments on particular task design features;
(b) table items should be recorded in the sequence by which structured diagrams are 
read, i.e. from top to bottom and then from left to right;
(c) complete elaboration of all boxes of a structured diagram in the accompanying 
table is unnecessary since the objective is to clarify complicated parts of the diagram 
and not exhaustive documentation. In particular, the selective elaboration of structured 
diagram boxes is intended to balance the requirements for adequate documentation and 
economy of effort (limited project resources).

2 1 0



Generification and TD(ext)

On most occasions, task descriptions for an extant current system would be elicited 
from various information sources. To derive a single TD(ext) description, 

generification techniques have to be applied to identify and remove subjective 
variation across descriptions elicited from each of the sources.

Generification may be considered a special instance of abstraction (see Annex B). 

Its main purpose is to identify a superordinate classification (generic descriptor) for 

a set of two or more entities based on shared attributes. Thus, generification may be 

applied to extract a single TD(ext) description from a set of related extant tasks. In 

particular, subjective variation across individual task descriptions are removed by 
defining a generic descriptor for task elements that share common attributes. Details 

of the generification procedure are described below (Silcock and Lim, 1990a).12

Procedures for eenerifvine extant task descriptions

1. Collate a list of all objects and actions from the information elicited.

2. Reduce the set by listing each object and action once and once only.

3. Associate all similar terms using one of the following techniques :
Technique 1: The designer associates a particular term with other similar terms 
iteratively by expressing the original task description in terms of an alternative object 
or action. If the alternative description is considered ’adequate’, then the terms may be 
considered similar.
Technique 2: Task performers are asked to sort object and action cards into different 
groups on the basis of task relevant criteria.

4. (Subjectively) assign a common or generic label to each group o f ’like’ terms.

5. Validate the generic description derived by asking task performers to assign a generic
label (from (4) above) to each item in the original list of objects and actions. If a 
specific item can not be located satisfactorily, task performers are free to supply an 
alternative label. Thus, suitable generic entities are identified iteratively.

6 . Giving due consideration to the original information, construct a generic task
description using generic entities where appropriate.

7. Validate the generic task description with task performers by comparing the generic
description with the account elicited from task performers.

12 See Footnote 8.
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Case-Study Illustration ofTD(ext)

Two extant systems were analysed in the network security management case-study, 

namely an extant related system in use at University College London and an extant 
partia l system represented by the PC security application, MacPassword.™ The 

target system comprises a hypothetical system to be implemented at the Royal 

Armament Research and Development Establishment (simulated client). It should be 
noted that the extant current system was not analysed owing to military security 

and the unavailability of security staff at the client organisation for interview.

More needs to be said about the extant systems selected for analysis. The network 

security management system at University College London was selected because it 
shares the same domain as the target system. Thus, information derived from its 

analysis may support the generation of a conceptual design for the target system. 

For instance, security management tasks in both systems comprise accessing the 
computer followed by the detection, identification and response to security 
breaches. Similarly, MacPassword™ is selected as its domain (i.e. p erso n a l 

c o m p u te r  security management) is partia lly  re la ted  to n e tw o rk  security 

management. Its selection for analysis was motivated by the potential recruitment of 

its low level design features to the target system.

Examples of the TD(ext) descriptions derived for the extant system at University 

College London Computer Centre (TD(UCLCC)) and the MacPassword™ 

application (TD(MPASS)) are shown in Figures 9-3 and 9-4 respectively. 

Information tables for each of these descriptions are also shown.

To illustrate how extant system analysis may contribute to target system design, 

part of the security management task is examined. Specifically, the task concerns 

the identification and response to failed log-on events arising from illegal or 

incorrect password inputs. These events are important since they may signal 

attempted access by a hacker. In this respect, the TD(UCLCC) description indicates 

that the extant system did not provide a facility to alert the network manager to such 

events. Thus, these security breaches can only be uncovered by manually searching 

through volumes of computer logs or network user reports. To rectify these design
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Figure 9-4 : Task Description for PC Security Management for the

MacPassword™ Application (TD(MPASS)) — Page 1
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Figure 9-4 : Task Description for PC Security Management for the

MacPassword™ Application (TD(MPASS)) — Page 2
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inadequacies, computer supports suggested by the analysis include automatic alerts 

to failed log-on events and information collation functions. These suggestions were 

substantiated by the TD(MPASS) description since similar requirements were 
identified, i.e. computer owners need to consult computer logs for evidence of 

failed log on events. In this respect, the analysis highlighted a potentially useful 
design feature in MacPassword,™ namely computerised recording of passwords 

used in such events. Such records may provide clues to the identity of the hacker 

and may help to distinguish between illegal and incorrect password inputs, i.e. 

password mis-keys may be differentiated from hacking attempts.

(b) Extant Generalised Task Model (GTM(exf))

The objective of a GTM(ext) description is to support conceptual assessments of 

extant system(s) designs relative to target system requirements. To this end, 
GTM(ext)s are derived for all extant systems analysed at the ESSA Stage. Extant 
designs that may be ported to the target system are thus exposed.

GTM(ext) is derived by eliminating a proportion of the detail in TD(ext) that is 

specific to a device. In other words, TD(ext) is a device-dependent description 
while GTM(ext) tends towards device-independence. Thus, the logic underlying a 
specific task is brought out by abstraction. Despite their tendency towards device- 

independence, GTM(ext) descriptions should retain sufficient information about 

relevant extant design features, e.g. design rationale. In particular, the level of 

GTM(ext) description should not be too high that design features of interest are lost 

(see rules of thumb for GTM(ext) derivation overleaf).

As with TD(ext), GTM(ext) is described using structured diagrams and an 

information table. Procedures for deriving GTM(ext) descriptions are summarised 

on the next page.
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Procedures for deriving GTM(ext)

Starting at the top of the TD(ext) description, work through each node as follows :

1. summarise the semantics of the task (and its sub-tasks) in 'device-independent' terms to
reveal the underlying logic of the particular node. This process is supported by 
by GTM(y) since it constitutes a 'device-independent' structure for the target system. 
Specifically, GTM(y) and the statement of requirements provide guidance on the level 
of GTM(ext) description. In general, the more similar the extant and target systems 
are to one another, the more device dependent details should be retained in the 
GTM(ext) description (see rules of thumb below).

2. continue abstracting each node down the TD(ext) hierarchy. This process may
become more difficult at lower levels since they are, by nature, likely to be more 
device specific (e.g. task inputs and outputs). Note that GTM(ext) descriptions should 
relate to salient characteristics of the target system so that later comparisons are 
facilitated.

3. record GTM(ext) descriptions using JSD* structured diagram notation, and include
additional notes in a supporting table as appropriate.

Rules o f thumb for GTM(ext) derivation

1. The level of GTM(ext) description should be high enough to facilitate comparison
between extant and target systems.

2. The level of GTM(ext) description should be low enough to capture sufficient
information of interest. Thus, a completely device independent description is not 
always desirable since information on the relationship between particular task 
characteristics and device design would be lost.

3. A one-to-one mapping between device-dependent and device-independent descriptions is
unlikely, particularly at lower levels of description. Thus, it may not be possible to 
abstract a TD(ext) node directly in 'device independent’ terms. In such cases, it may be 
necessary to combine the node with an adjacent node(s) and consider their abstraction 
into one device independent term.

Case-Studv Illustration of GTM(ext)

A case-study example of a GTM(ext) description is shown in Figure 9-5. The 

Figure shows that on abstracting the description (i.e. GTM(UCLCC)) from 

TD(UCLCC):

(i) lower level details were omitted in favour of a more general description, 

e.g. the 'Status illegal' sub-node and its leaves (Figure 9-3, Page 1) have 

been reduced to a single 'Record violation details' leaf (Figure 9-5, Page 1);

(ii) device-specific task information was removed, e.g. the 'Search printout'
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leaf (Figure 9-3, Page 3);
(iii) its overall task structure was largely carried over to the GTM(UCLCC) 

description;

(iv) details outside the scope of target system design were excluded. Thus,

Figure 9-5 : Generalised Task Model Description for Network 

Security Management at University College London Computer Centre 

(GTM(UCLCC)) -  Page 1

Manager 
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Enter
password

User reports 
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Manager 
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details body
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User report 
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Record report 
details body

Record breach 
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Check network 
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call from user
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Network usage 
status

Record source 
port details
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'o' = Selection 
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^  = One of each in any order 

— = Continue on pages 2 and 3

Boxes with symbols :
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Figure 9-5 : Generalised Task Model Description for Network
Security Management at University College London Computer Centre

(GTM(UCLCC)) -  Page 3
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Boxes with symbols :

'o' = Selection 
= Iteration 

' ' = Sequence

Figure 9-5 may be considered a GTM"(UCLCC) description, i.e. a subset 
of a complete GTM(UCLCC) description. In particular, the 'Check source 

port status' sub-node in Figure 9-3, Page 4, was omitted since the scope of 

the target system did not include connections with external networks.

A design information table was not derived in this instance since TD(UCLCC) 

tables provide sufficient support for interpreting the GTM(UCLCC) description.

As for MacPassword™, a GTM(ext) description was not derived since the 
TD(MPASS) description was adequate to support assessments of the potential 
porting of its design features to the target system. Further case-study examples of a 

wider range of ESS A Stage products (derived in specific instances) are provided in 
Annex D.
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A summary of ESS A Stage procedures is provided below.

Hi?h level procedures o f  the ESSA Stage

(i) Examine contractual documents and records of the clients' brief

(ii) Collate the information to derive an initial statement of requirements.

(iii) Select the current system used by the client.

(iv) Elicit and analyse user, task and general design characteristics of the current system. 
The scope of elicitation and analysis should relate to the scope of the target system.

(v) Identify further extant systems for analysis if more information is desired. The
activities in step (iv) above are thus repeated.

(vi) On the basis of the information derived, generate the requisite range of ESSA Stage 
products. The products actually generated depend largely on the prevailing design 
scenario. However, the basic set should include the Task Description and 
Generalised Task Model for each extant system analysed.

An account of design activities for the next stage of the method (i.e. the Generalised 

Task Model Stage) follows.

9.2. Generalised Task Model (GTM) Stage 

Summary

The second stage of the method, namely the GTM Stage, is concerned with the 
generation of design descriptions to support the conceptual design of the target 

system (see Figure overleaf. The present stage is indicated by a box highlighted in 

bold). Specifically, device independent descriptions13 are generated to facilitate 

analytic mapping between appropriate extant design features and target system

13 The extent of abstraction to device-independence is determined by how dissimilar the 
characteristics of the extant system are with respect to the target system. The level of description 
should be high enough to reveal logical aspects of the task (as opposed to the device, e.g. detailed 
interaction sequences). The final description should also retain sufficient information on extant 
design features that may be relevant to the design of the target system.
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Information Elicitation and Analysis Phase Design Synthesis Phase

Extant Systems 
System Analysis Generalised Task Model Statement of User Needs

Composite Task ModelFunctions 
ListOther Contributions

1 JSD*(SE) W

System and User Task ModelSpecification 
| Model |

¥
System Task Model User Task Model

| Functions |
User Interface Specification

Interaction Task Model
Implementation

Display DesignInterface ModelEvaluation

gggggj = Points of SE and HF contact 

l i l l l  = Design phases of the JSD*(HF) method

Design Specification Phase

requirements. To this end, two products are derived, namely a generalised extant 
task model (termed GTM(x)) and a generalised target task model (termed 

GTM(y)). These models establish the foundation for recruiting extant system 

designs and for specifying design extensions in respect of new target system tasks. 
Thus, an early indication of the training required by target system users may be 

inferred from GTM(x) and GTM(y) descriptions. Specifically, inferences may be 

drawn from an assessment of the complexity of the GTM(y) description, and the 

transfer of learning (both positive and negative) attributed to the extent of porting 

from the GTM(x) description.

The generalised task models derived are carried forward to the Composite Task 

Model Stage where appropriate elements are synthesized on the basis of the 
statement of user needs (see later). In other words, a composite task model is 

derived by synthesising compatible and complementary sub-sets of GTM(x) and 

GTM(y).
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Detailed Account

An account of the activities for deriving GTM(x) and GTM(y) descriptions follows. 

As before, italics will be used to highlight the design activities shown in Figure 9-6.

Figure 9-6 : Block Diagram Summary of the Generalised Task Model 
(GTM) Stage

GTM(x)

GTM(y)

Synthesise

Analyse and 
Abstract

Generalised Task Model X

Generalised Task Model Y

(ext) = JSD*(HF) descriptions of an extant systems (EXT)
SoRe = Statement of Requirements
(x) = JSD*(HF) descriptions of an extant system 'composite' (X)

(y) = JSD*(HF) descriptions of the target system (Y)

(a") Generalised Task Model of the Target System (GTM(VO

GTM(y) represents the first attempt at defining a conceptual design for the target 

system. The objective of GTM(y) is to expose new and salient features of the target 

system and to define the scope and structure of its tasks. Since the description 

illuminates key characteristics of the target system, GTM(y) also suggests further 

extant systems for analysis. Thus, GTM(y) provides the basis for initial design 

development.

To derive a GTM(y) description, the initial statement of requirements is analysed 

and task details are abstracted to a conceptual level. Since the statement of
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requirements originates from the client and is beyond the control of the method, 

sufficient information to support the derivation of a comprehensive GTM(y) can not 

be guaranteed. Thus, on most occasions, GTM(y) must be enhanced within the 

method to support the definition of a reasonably complete conceptual task for the 

target system. In this respect, products of extant systems analyses such as the 

conceptual task description for the current system (i.e. GTM(ext)s), could be 

consulted. GTM(y) is thus extended by incorporating pertinent sub-sets of 

GTM(ext) descriptions. Procedures for deriving GTM(y) are described below.

Procedures for deriving GTM(v)

1. Take as input task information described in the statement of requirements. Temporal and
conditional aspects of task execution should also be noted.

2. Summarise the task (and sub-tasks) in device independent terms to reveal the logic
underlying its design.

3. Re-express the GTM(y) description using the JSD* structured diagram notation, and
record additional notes in a supporting table.

Case-Studv Illustration of GTM(y)

A simple case-study example of GTM(y) is shown in Figure 9-7. The description is 

derived from the statement of requirements as defined by the client organisation 

(simulated by the Royal Armament Research and Development Establishment). The 
statement of requirements provides little information on the network manager's 

task. For instance, it fails to distinguish between different types of security breach 

and the actions to be taken. Thus, Figure 9-7 indicates that user access is invariably 

disabled for any security breach.

To rectify such inadequacies, the HF designer may resort to extant systems analysis 

to generate more detailed task information. Since security staff at the client 

organisation were unavailable for interview (due to military security), the extant 
current system could not be analysed. Instead, extant related and partial systems 

were selected for analysis. These extant systems correspond respectively to the
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network management system at University College London and the PC security 

application, MacPassword™.

Figure 9-7 : Generalised Task Model of Network Security
Management for the Target System

Status
normal

Enable
useridSet user id Status
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Set user 

password

Close

GTM(y)
Security

Management

Activate 
alarm body

Activate
alarm

Open

Disable
userid

Security 
breach action

Set security 
parameters

Access point 
actions

Monitor 
security status

Boxes with symbols :

'o' = Selection 
'*' = Iteration 
' ' = Sequence

fb) Generalised Task Model of Extant Systems (GTMfx^

Following the definition of a conceptual task by GTM(y), promising sub-sets of 

GTM(ext)s may be synthesised into a composite representation termed a 

GTM(x).l4 Thus, GTM(x) encapsulates conceptual designs of extant systems that 

could potentially be ported to the target system. To this end, low level details of 

extant designs corresponding to the selected set are documented.

*4 Synthesis of GTM(ext)s is only necessary if more than one extant system has been analysed, 
e.g. when related and current extant systems are analysed. In other words, if only the current 
system is analysed, then GTM(x) = GTM(ext) = generalised task model of the extant current 
system.
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The procedures for deriving a GTM(x) description are given below.

P r o c e d u r e s  f o r  d e r i v in g  G T M (x)

1. Take as input GTM (ext) descriptions of various extant systems analysed at the ESSA
Stage.

2. Compare the GTM(ext) descriptions with target system requirements (a subset of
which is represented in GTM(y)). On the basis of earlier HF evaluations, identify 
aspects of extant tasks that are potentially relevant to target system design. Also note 
potential influences from other ESSA Stage products, i.e. consider any other (ext) 
products that have been derived at the latter stage.

3. Identify sub-sets of GTM(ext) descriptions which are compatible. These sub-sets
comprise desirable extant task characteristics that may be carried over to the design 
of the target system.

4. Synthesise the selected subset (i.e. GTM"(ext) descriptions) into a single representation,
i.e. GTM(x).

Case-Study Illustration of GTM(x)

An example of GTM(x) for network security management is shown in Figure 9-8. 
This example was derived by synthesising the GTM(UCLCC) and TD(MPASS) 

descriptions presented earlier (see Figures 9-4 and 9-5). It can be seen from Figure 
9-8 that system access characteristics of MacPassword™ have been recruited 
(Figure 9-8, Page 1) and synthesised with the security management tasks derived 

from University College London Computer Centre (see Figure 9-8, Pages 1 to 3. 

Note that Pages 2 and 3 of the Figure are the same as those of Figure 9-5). No 

supporting table for the GTM(x) description was considered necessary since its 

structured diagram nodes have already been detailed in corresponding TD(ext) 

descriptions.

This account completes an overview of the Generalised Task Model (GTM) Stage. 

Together with the ESSA Stage, design activities of the Information Elicitation and 

Analysis Phase are now complete. The conceptual design solutions derived 

presently are developed further in the Design Synthesis Phase. To this end, the 

initial statement of requirements needs to be augmented to define an adequate set of
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Figure 9-8 : Generalised Task Model Description for an Extant

System Composite (GTM(x)) — Page 3
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Boxes with symbols :

'o’ = Selection 
= Iteration 

' ' = Sequence

design criteria for synthesising generalised task model descriptions. Thus, a basis 

to support subsequent design extensions is established. Such concerns constitute 

the scope of the Statement of User Needs, Composite Task Model, and System and 

User Task Model Stages. The design activities and products of these stages are 
described in the next chapter.
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Chapter Ten : The Design Synthesis Phase of 
the JSD*(HF) Method

"To be still searching what we know not by what we know "
Milton, 1644, Areopagitica.

"Leaving the old, both worlds at once they view.
That stand upon the threshold of the new."

Edmund Waller, 1606-1687.

In this chapter, the stages of the Design Synthesis Phase of the method, namely the 

Statement of User Needs, Composite Task Model and System and User Task 

Model Stages, will be presented in the order by which design is advanced. The 

account includes a description of the design products that are derived to support 
target system specification. Design activities of each of the stages are described 

using the format outlined in Chapter 8, i.e. each design stage is described as 
comprising one or more design sub-processes which transform inputs into a 
number of products. Case-study examples will be used to illustrate these products. 

In addition, design inter-dependencies between stages of the JSD*(HF) and 
JSD*(SE) methods are highlighted where appropriate (see Figure overleaf).

10.1. Statement of User Needs (SUN) Stage 

Summary

The Statement of User Needs Stage summarizes the conclusions of extant systems 

analysis and defines user requirements for the target system. Thus, the information 

collated comprises a mixture of the following : existing user needs and problems; 
existing design requirements, rationale and constraints; the rationale underlying 

extant design features to be ported to the target system; performance criteria and 

domain semantics for the target system; etc. Its location vis-a-vis other stages of the 
method is highlighted in the Figure (overleaf) by a box outlined in bold.
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Three design descriptions in respect of the target system are derived at the Statement 
of User Needs Stage; namely a Statement of User Needs (SUN(y)), a Domain of 
Design Discourse (DoDD(y)) description and an action and object list. The primary 
purpose of these products is to constrain later design decisions and extensions, e.g. 

to ensure an appropriate synthesis of generalised task models at the Composite Task 

Model Stage.

Detailed Account

The design activities and products of the stage are summarised in Figure 10-1. A 

detailed account of the products and their derivation follows. As before, design 

processes shown in the Figure are italicised in the expanded account.
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Figure 10-1 : Block Diagram Summary of the Statement of User

Needs (SUN) Stage

GTM(y)
SoRe

ESSA information 
SUN'(ext) 

DoDD'(ext)

+*  SUN(y)

^DoDTXy)
^  Actions and 

objects lists

Collate and 
Re-Describe

Arbitrate and 
Synthesise

Statement of User 
Needs [SUN]

Inputs from late evaluation

DoDD -  Domain of Design Discourse
ESSA = Extant Systems System Analysis (Stage)
(ext) = JSD*(HF) descriptions of an extant systems (EXT)

GTM = Generalised Task Model
SoRe = Statement of Requirements
(y) = JSD*(HF) descriptions of the target system (Y)

(a) Statement of User Needs for the Target System (SUN(v))

The Statement of User Needs description (SUN(y)) is derived by collating and re­
describing design information extracted from the initial statement of requirements 

and products of preceding JSD*(HF) stages, e.g. GTM(y). The purpose of the 

description is to establish a basis for conceptual design extension at later stages of 

the method. At a minimum, SUN(y) must be detailed enough to support GTM(x) 

and GTM(y) synthesis at the Composite Task Model Stage. In cases where target 

system requirements have been addressed in sufficient detail by extant systems 

analysis, corresponding SUN(ext) descriptions may be incorporated to derive a 
more detailed SUN(y). For instance, information on specific device-level designs 
intended for the target system may be included.
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As a guide, SUN(y) should address the following :

(i) target system requirements, general design constraints and system 
performance criteria;
(ii) user problems with the existing system uncovered in earlier HF 

assessments;

(iii) HF design recommendations and potential solutions to the problems 

described in (ii) above;

(iv) promising extant design features and the rationale underlying their 

potential recruitment to the target system.

The scope of the target system is thus characterised initially by a textual description 
of SUN(y). The description is shared with JSD*(SE) designers since a 'check­
point' occurs at this stage of the method (see later account on the Composite Task 

Model Stage).

The procedures for deriving SUN(y) are summarised below.

Procedures for deriving SUN(v)

1. Take as input SUN(ext) descriptions and information on user problems uncovered at the
ESSA Stage.

2. Interpret user problems with extant systems in the context of the target system.

3. Referring to the initial statement of requirements, summarise and extend the statements
(e.g. by recruiting descriptions from (1) above) and propose preliminary solutions 
to the problems highlighted in (1) and (2) above.

4. Summarise SUN(y) statements textually.

Case-Studv Illustration ofSUN(y)

An extract from SUN(y) for the security management task is shown in Figure 10-2. 

In this case-study, several statements from the initial statement of requirements and
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SUN(ext) descriptions have been incorporated into SUN(y) (compare Figure 10-2 

with Figures AD-1 and AD-2 (Annex D)).

Figure 10-2 : Part of SUN(y) for Network Security Management

pl--------------------------------------------------------------------------------------------------

Statement of User Needs (Target System)

1. A record of network events should be kept to support the task of following 
up security breaches. The record should include the following information :
(i) date and time of log-on;
(ii) service requested and outcome of request (either offered or denied);
(iii) user source and destination addresses;
(iv) failed log-on events and the offending password(s).

2. Specific information search and retrieve functions should be provided to 
facilitate access to logged information. A hard copy log may also be necessary.

3. The network management workstation should notify the manager whenever a 
security breach is detected, e.g. failed log-ons and service request refusals). 
Notification criteria should be context sensitive, e.g. frequency, threshold and 
condition-based triggers; and alarm activation should not unduly interrupt other 
network management tasks. The alarms should be sufficient to attract the 
network manager's attention, e.g. both auditory and visual alarms may be used. 
Security breaches which occur when the network management workstation is 
unmanned (e.g. outside office hours) should be repeated on next log-on by the 
network manager.

4. Communication between the network manager and users is often necessary, 
e.g. when reporting and confirming a security breach. Although telephones are 
effective, communication mediums that support asynchronous communication 
should be provided to prevent excessive interruptions and work stress, e.g. 
electronic mail.

etc.

(b) Domain of Design Discourse Description for the Target System (DoDDfv))

The Domain of Design Discourse description summarises the semantics of the target 

system by identifying explicit relationships among domain entities (comprising 

domain objects, major task events and processes). Thus, DoDD(y) establishes a 

common conceptual scope and vocabulary that support discussions between
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designers and end-users. For instance, target system solutions may be proposed 
and interpreted in terms of common domain entities. In addition, interactions among 

entities of real and representation worlds may be compared using such 

descriptions. Thus, promising metaphors could be assessed for their potential 

incorporation into a user interface design for the target system (see Frohlich and 

Luff, 1989; Ragoczei and Hirst, 1990).

A semantic net description of DoDD(y) is constructed by extracting domain 

information from the initial statement of requirements. Relevant sub-sets of 

DoDD(ext) descriptions may also be incorporated. To complete the semantic net 

description, its nodes and relations are expanded textually in an accompanying 

table.

Procedures for deriving DoDD(y) are summarised below.

Procedures for deriving DoDD(v)

1. Extract domain and task information from the initial statement of target system
requirements, GTM(y) and products of extant system analysis (such asDoDD(ext), 
SUN(ext) and GTM(ext)). The information of interest would comprise the following :
(a) Objects. Object attributes that uniquely define a particular object should be 
recorded; e.g. ‘'Network User’ attributes = {user id, password};
(b) Task concepts, events and processes, such as 'Hacker Tracing' in network security;
(c) Relations between objects and entities (both composite and taxonomic);
e.g. the 'Network User' entity is general to both 'Hacker' and 'Legal User’ entities 
since it is defined by the network status attribute 'network access' = {true/false}.

2. Collate the information as a semantic net.

Rules o f  thumb for DoDD(v)

1. DoDD(y) should be sufficiently rich in information to support explanations of system
tasks. It should also facilitate scenario construction.

2. DoDD(y) should not include device dependent details. The information described is
restricted to the semantics of the target system domain.

3. To finalise a DoDD(y) description, further design iterations may be necessary following
agreement (between software engineers and human factors designers) on a Functions 
List for the target system (see later).
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Case-Study Illustration ofDoDD(y)

A case-study example of a DoDD(y) description for network security management 

is shown in Figure 10-3. In this instance, DoDD(y) was synthesised largely from 

DoDD(ext) descriptions (compare Figure 10-3 with Figures AD-3 and AD-4 

(Annex D)). Thus, pertinent sub-sets of extant system descriptions were 
incorporated with domain information extracted from the initial statement of 

requirements.

(c) Actions and objects list

The actions and objects list is an optional addition to a DoDD(y) description since 

similar lists are derived at earlier stages of both the JSD*(HF) and JSD*(SE) 

methods. Since it is an optional product, a case-study example will not be given 
here (the reader may refer to Lim (1990b) for an illustration). For the present 

purpose, it suffices to note the following :

(i) the focus of the list should be on the target system domain, i.e. device­

specific details should be excluded;
(ii) the list should be collated from the initial statement of requirements and 

products of extant system analyses.

In conclusion, the objective of the Statement of User Needs Stage is to establish a 

design basis to support and constrain the specification of an appropriate design 

solution. For instance, the design basis would include conditions to be satisfied 

when generalised task models are synthesised to generate a conceptual model of the 
target system (see later stages of the method).
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Figure 10-3 : DoDD(y) for Network Security Management
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DoDD(y) Table

Node Description No. Relation

Network Security 
Management

The primary concern 
of network security 
management is to 
prevent unauthorised 
network access.

(1)

(2)

(3)

(4)

To ensure authorised access to the network and its services, the 
network manager is required to allocate and update security 
parameters such as user identifications and passwords.
Security breaches may be identified by monitoring network 
access events.
Security breaches may be identified by direct liaison with 
network users. For instance, users may detect and report a 
security breach on a particular machine to the network manager. 
Alternatively, the manager may contact the user to ascertain 
whether suspicious network usage events are attributable to a 
security breach.

Records of network events should be kept. Relevant information 
includes: source and destination addresses; passwords; user 
identifications; date and time of log-ons and offs.

Security parameters etc. (5) etc.
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10.2. Composite Task Model (CTM) Stage

Summary

The objective of the Composite Task Model Stage is to generate a conceptual model 
of the target system. Specifically, the generalised task models derived earlier are 

synthesized to generate a composite task model or a CTM(y) description. On the 

basis of such a model, specific functions may be allocated to either the human or 

computer. In other words, components of the composite task model are designated 

specifically as on-line (i.e. those which are supported by the computer) and off-line 

(i.e. manual) tasks. On-line sub-tasks may then be decomposed further and 

demarcated into interactive and computer components as appropriate.

The location of the Composite Task Model Stage vis-a-vis other stages of the 
method is shown in the Figure below.

Information Elicitation and Analysis Phase Design Synthesis Phase

Extant Systems 
System Analysis Generalised Task Model Statement of User Needs

Functions 
List

Other Contributions

System and User Task ModelSpecification
Model I

T :
System Task Model User Task Model

| Functions |
User Interface Specification

Interaction Task Model
Implementauon

Display DesignInterface ModelEvaluation

IggggJ = Points of SE and HF contact 

llllll = Design phases of the JSD*(HF) method

Design Specification Phase
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Two significant aspects of the Composite Task Model Stage should be highlighted,
namely:

(a) design iterations may occur between the Statement of User Needs and 

Composite Task Model Stages. For instance, such design iterations may be 

necessitated by modifications to either SUN(y) or CTM(y) following user 

feedback. Wider design implications may also arise (see (b) below);
(b) the first design inter-dependency occurs between the Composite Task 
Model and JSD Modelling Stages of the JSD*(HF) and JSD*(SE) methods 

respectively (see Figure above). At this obligatory 'contact point', software 

engineers and human factors designers should meet to define the scope of 

subsequent design extensions. To this end, JSD*(HF) and JSD*(SE) 

design products generated thus far are discussed. In general, the 
discussions should consider the following : attributes of objects and actions, 
user needs and problems, notable task events, task semantics, and the 

desired support of the user's task. To facilitate the discussions, an event 
table that highlights major task execution steps may be derived on the basis 
of the CTM(y) description (see later).15 The output of these discussions is 

a list of target system functions (termed the 'Functions List' — see later). 
Thus, the scope of target system design is defined and subsequent design 

extensions by JSD*(HF) and JSD*(SE) designers are hence constrained. In 

cases where the imposed constraints can not be met satisfactorily, the 

violations should be notified immediately to other members of the design 
team. Appropriate design changes may then be introduced to accommodate 

the violations.

A detailed account of the Composite Task Model Stage follows.

I5  Event table descriptions are predominantly device independent
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Detailed Account

(a) Composite Task Model of the Target System (CTM(vV)

The CTM(y) description is generated in two steps (see Figure 10-4). First, the 

GTM(y) description derived earlier is extended as follows :

(i) novel additions may be proposed to meet new target system 

requirements;
(ii) pertinent extant system tasks may be incorporated on the basis of the 
statement of requirements and user needs. Thus, an appropriate sub-set of 

GTM(x) is synthesised with GTM(y)16 to generate a CTM(y) description.

Figure 10-4 : Block Diagram Summary of the Composite Task Model 
(CTM) Stage

SUN(y)
SoRe

GTM(x), GTM(y)

initial
CTM(y)

SUN(y)
SoRe

CTM(y) Allocate
Functions

Synthesise

Composite Task 
Model (CTM)

DoDD = Domain of Design Discourse description 

GTM = Generalised Task Model
SoRe = Statement of Requirements SUN = Statement of User Needs

(x) = JSD*(HF) descriptions of an extant system 'composite' (X)

(y) = JSD*(HF) description of the target system (Y)

16 The rationale for porting extant design features should be documented so that explicit links 
may be established with design criteria defined at the Statement of User Needs Stage.
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Second, by applying relevant human factors expertise and declarative design 

guidelines, functions are allocated appropriately to the human and computer 

components of the system. To this end, on-line and off-line tasks are designated by 

working through each component of the initial CTM(y) description systematically. 

The scope of the target computer system is thus characterised by on-line 

components of the CTM(y) description. On the basis of the description, discussions 

with software engineers may then proceed as per the design inter-dependency 

requirements of this stage. Following the discussions, the CTM(y) description is 

updated as appropriate.

Procedures for deriving CTM(y) are detailed below.

Procedures for deriving CTM(v)

1. On the basis of GTM(y), the initial statement of requirements and SUN(y) identify
appropriate GTM(x) components for incorporation. In particular, GTM(x) and GTM(y) 
descriptions should be compared to identify and remove (or modify) conflicting designs. 
On a similar basis, consider novel additions to GTM(y) as appropriate. Thus, a 
structured diagram description ofCTM(y) is synthesised at a predominantly device 
independent level.

2. Record the underlying design rationale and decisions in an information table. The
structured diagram description ofCTM(y) is thus augmented.

3. On the basis of earlier HF evaluation of extant system tasks, the initial statement of
requirements and SUN(y), allocate functions appropriately between the human and 
computer. Specifically, components ('leaves') of CTM(y) are designated into on-line 
or off-line tasks. The designations are differentiated by drawing envelopes around 
off-line tasks. CTM(y) may have to be decomposed further to ensure an appropriate 
level of description. To this end, ESSA Stage products may be consulted again as 
necessary. Continue this process until a satisfactory CTM(y) description is derived.

Case-Studv Illustration ofCTM(v)

A case-study example of a CTM(y) description is shown in Figure 10-5 for part of 

the network security management task. It may be observed from the Figure that an 

envelope around the structured diagram leaves of CTM(y) indicates off-line tasks. 

Conversely, on-line tasks correspond to leaves which have no envelope.

250



For a more specific illustration, consider the occurrence of a failed log-on event (see 
Figure 10-5 under Failed log-on by user body'). On detecting the event, user 

access is disabled and the network manager is alerted to its occurrence by the 
computer. The manager is then required to access information logged by the 

computer to determine the user involved and the cause of the event, e.g. whether 

the event is due to mis-typing a password or actual attempts at hacking. These 

tasks, namely access disabling and information gathering are designated as on-line 

tasks. The manager may also contact the user to verify a particular inference and 

thus decide whether the disabled user identification should be restored. In the 
context of the case-study, user contact is unsupported by the computer, i.e. it is an 
off-line task. Accordingly, the Telephone network user* box has a surrounding 

envelope in Figure 10-5.

To illustrate the extent to which products of extant systems analysis have proved 

useful for supporting target system design, CTM(y) should be compared with 
preceding GTM(y) and GTM(x) descriptions (see Figures 10-5, 9-7 and 9-8 

respectively). For instance, it may be observed that extant system responses to 
failed log-on events (as described by GTM(x)) have been ported to the target 
system (as described by CTM(y)). In particular, both systems involve gathering 

information on the event and contacting the user to clarify the circumstances of the 

event A password change may then be enforced if appropriate. Similarly, specific 
target system requirements (as described by GTM(y)) have also been incorporated 

into the CTM(y) description, e.g. automatic security monitoring, and user 

identification enabling and disabling by the network management workstation.

An information table to support the structured diagram description of CTM(y) is 

shown in Table 10-2. Thus, lower level details are documented, e.g. the rationale 
underlying particular characteristics of CTM(y). Such documentation would 

support stage-wise evaluation, iterative design, and post-implementation design 

maintenance.
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(b) Event Tables

An event table is an optional product of the Composite Task Model Stage since it 
does not contribute directly towards design advancement within the JSD*(HF) 

method. Specifically, its purpose is to facilitate discussions between software 
engineers and human factors designers. To this end, inter-dependent design 

information from earlier JSD*(HF) products is collated to generate an event table 

for the target system. In particular, major task events described by CTM(y), 

DoDD(y) and SUN(y) descriptions (and extant system contributions to these 

descriptions) are summarised.

Procedures for deriving an event table are summarised below.

Procedures for deriving event tables

1. Take CTM(y), DoDD(y) and SUN(y) as inputs. If necessary, refer to extant systemfs)
descriptions and the initial statement of requirements.

2. Identify major events such as sub-task completion and significant real world changes.
Note the objects and actions affected by the event.

3. Collate the information in a table.

Case-Studv Illustration o f an Event Table

A case-study example of part of an event table for network security management is 
shown in Table 10-3. The table and other JSD*(HF) products (as appropriate) are 

shared with software engineers during discussions at this inter-dependency point. A 

more detailed account of inter-dependent design activities follows.
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Inter-Dependencies between the JSD Modelling Stage (JSD*(SE>) MethocD and the

Composite Task Model Stage (7SD*(HF) Method)

Generally, a common design scope should be agreed between JSD*(HF) and 
JSD*(SE) designers at each inter-dependency point, and carried forward through 

succeeding stages of the JSD* method. Strict adherence to a common scope ensures 

that subsequent extensions of the target system design are convergent17

To define a common design scope, intersecting JSD*(HF) and JSD*(SE) design 
concerns and information (i.e. design inter-dependencies) should be identified for 
discussion. The identification of such intersections is facilitated by the explicit 

products generated at corresponding stages of the two component methods. Thus, 
the stage-wise design scope of the methods is examined to identify potential design 

inter-dependencies. In this way, the first inter-dependency was determined to occur 

between the JSD Modelling and Composite Task Model Stages of the JSD*(SE) 

and JSD*(HF) methods respectively. A more detailed discussion of the inference 
follows.

By definition, the JSD Model (a JSD*(SE) product) describes the purpose and 
subject matter of the system. Thus, the model focuses on what is to be performed 

by the system rather than on how work goals may be achieved. Consequently, the 
design perspectives entailed by JSD modelling and task analysis are different. In 

particular, user tasks are excluded from the scope of a JSD model. For instance, the 

JSD Model for a library system is concerned with describing permissible actions on 

a book rather than a librarian's tasks. Since the actions suffered by a book 
correspond largely to those initiated by a librarian, potential overlaps between 

JSD*(SE) and JSD*(HF) methods at this design stage would comprise a set of 

common domain entities and their actions, e.g. 'shelve' a 'book'. However, in 

addressing user's tasks and potential user interface design concerns, information 

about the user and 'representation' world assumed by the current system may also 

be noted by human factors designers. In contrast, JSD analysts are concerned only

17 Strict adherence to inter-dependency requirements ensures efficient design management by 
obviating unnecessary design iterations.
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with modelling real world entities. In adopting a minimalist perspective, it may be 

inferred that the inter-dependent information pool would be dictated by the needs of 
JSD*(SE) analysts. Thus, JSD*(HF) designers should take account of the 

information set assumed by JSD*(SE) analysts at this inter-dependency point. 

However, the converse may not apply. Consequently, at a minimum, the 
information embedded in the JSD Model should be shared and agreed. The inter­

dependent information pool may then be broadened by considering design 

information requirements of the Functions Stage, and System and User Task Model 

Stage of the JSD*(SE) and JSD*(HF) methods respectively.

On the basis of such considerations, JSD*(SE) and JSD*(HF) designers should 

share and agree the following design products at this inter-dependency point:

fri DoDDM : the semantics of the target system are described by this 
JSD*(HF) product. Thus, it would support the derivation of a JSD model; 

(iri Event table : notable events are listed in the table to characterise the 
target system scope. The derivation of a JSD model would be supported by 
such a table;
(iif) SUN(v): user needs at various levels of description are addressed by 
this JSD*(HF) product. As such, SUN(y) provides a means of assessing 

the scope of a particular JSD model with respect to the functions that it 

should be capable of supporting. In this way, alternative target system 

boundaries may be investigated;

riv') Object and action lis t : the list characterises the domain of the target 

system and identifies ancillary devices associated with the system. Thus, it 

supports the derivation of a JSD model;

(V) CTM (Vi: a conceptual design of the target system is established by this 
JSD*(HF) product. In particular, on-line and off-line tasks are demarcated 

explicitly in a CTM(y) description. Thus, it provides a means of assessing 

the scope of a particular JSD model with respect to the functions that it 

should be capable of supporting. In this way, alternative target system 

boundaries may be investigated;

(vri JSD model : this JSD*(SE) product provides a software engineer's 
view of the target system scope. Thus, it complements JSD*(HF) products
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described in (i), (iii) and (v) above.

Figure 10-6 is a graphical summary of the above JSD*(SE) and JSD*(HF) 

products that may be shared at this design inter-dependency point.

Figure 10-6 : Design Products Exchanged between JSD*(SE) and
JSD*(HF) Methods at the First Inter-Dependency Point

JSD ModelJSD*(SE) Method \JSD*(HF) Method

CTM(y) 
DoDD(y) 
SUN(y) 
Event table 
Actions and 
objects list

Model

FUNCTIONS LIST

CTM = Composite Task Model
DoDD = Domain of Design Discourse description
JSD = Jackson System Development
JSD*(HF) -  Human Factors component of the JSD* method
JSD*(SE) = Software Engineering component of the JSD* method
SUN = Statement of User Needs

(y) = JSD*(HF) descriptions of the target system (Y)

(cJ Functions List

Following discussions and agreement on the scope of the target system, a 

Functions List is drawn up collaboratively by JSD*(SE) and JSD*(HF) designers. 

The list summarises the initiating trigger, end result and performance characteristics 
of task support functions in a tabular format. At this stage, detailed computer 

functions are usually excluded. On the basis of the Functions List, software 
engineers and human factors designers may work independently until the next inter-
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dependency point (discussed later). It should be emphasised, however, that all 
designers should be notified of any deviation from the Functions List as soon as 

they arise.

Case-Study Illustration of a Functions List

A case-study example of part of a Functions List for network security management 

is shown in Table 10-4.

Table 10-4 : Part of a Functions List for Network Security

Management18

Function Trigger End result Performance

Show network 
user activity

On network manager's 
request for 
information on the 
activity of a named 
network user over a 
specified time period.

Displays information for the named 
network user over the time period 
tl-t2 : log-on time, source address, 
physical location, destination 
address, log-off time, failed log-on 
event at time t.

Alert security 
breach: 
failed log-on

Occurrence of a failed 
log-on event.

Auditory and visual alert to failed 
log-on event giving time of 
occurrence, network user 
identification, access point and 
physical location.

Within 10 
seconds of the 
failed log-on 
event.

Record failed 
log-on events

Occurrence of a failed 
log-on event.

Record (for previous two months) 
of failed log-on events giving time 
of occurrence, user identification, 
access point and physical location.

Enforce a 
password 
change

On network manager's 
request to enforce a 
password change on a 
specific network user.

On the next log-on, the named 
network user will be asked to 
change his/her password. Failure to 
effect a password change will 
automatically disable the user 
identification.

1 o
° Table 10-4 is a modified version of a table drawn up by the JSD consultant on the RARDE 

project (see acknowledgements). The Table limits the extent of RARDE's commitment to the 
case-study by restricting the scope of JSD*(SE) products to be derived (not described since they are 
outside the scope of the thesis).
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10.3. System and User Task Model (SUTaM) Stage

Summary

Having agreed a common design scope with software engineers, human factors 

designers may then proceed independently to the System and User Task Model 

Stage where high level target system functions are specified. The location of the 
stage vis-a-vis other JSD*(HF) stages is shown in the Figure below.

Information Elicitation and Analysis Phase Design Synthesis Phase

Extant Systems 
System Analysis Generalised Task Model Statement of User Needs

| Composite Task Model jFuncuons 
List

Other Contributions

\JSD*(SE)„

Specification 
| Motel |

System and User Task Model
System Task Model User Task Model

I Functions I
User Interface SpecificaUon

Interaction Task Model
|  Implementation J

I Display DesignInterface ModelEvaluation

IggggJ = Points of SE and HF contact 

l l l l l  = Design phases of the JSD*(HF) method

Design Specification Phase

At the present stage, on-line and off-line tasks of the composite task model 

(designated previously) are decomposed further to generate system and user task 

models respectively. An account of these models follows. A system task model is 

essentially a high level description of the human-computer interaction cycles 

required to achieve on-line task goals. In contrast, a user task model comprises a 

summary description of manual tasks. Although, functional design is pursued
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primarily by decomposing the human-computer interaction cycles of the system task 

model, the user task model may also be decomposed further to support workload 
assessments during job design. It should be noted that during the decomposition of 

these models, appropriate sub-sets of corresponding extant system descriptions 

(i.e. STM(x) and UTM(x)) may also be incorporated. To this end, appropriate 

extant system features are identified by comparing GTM(x) and CTM(y) with 

respect to the design criteria defined by SUN(y). In particular, relevant STM(x) and 

UTM(x) sub-sets are determined by identifying specific contributions from GTM(x) 
to CTM(y).

A further concern at this stage of the JSD*(HF) method involves its design inter­

dependencies with the Functions Stage of the JSD*(SE) method. Since functional 
decomposition is actively pursued by both JSD*(HF) and JSD*(SE) designers at 

these design stages, the Functions List derived at the previous inter-dependency 
point would not be specific enough. Thus, further inter-dependencies should be 
identified to constrain the design extensions to be undertaken presently. In addition, 

close contact between the designers should be maintained to ensure convergent and 
efficient design. If close contact can not be achieved, additional design iterations 
may be necessary when JSD*(SE) and JSD*HF) specifications are integrated. The 

result is thus inefficient design management.

A more detailed description of the design products and procedures of this stage 

follows.

Detailed Account

(a') System Task Model of the Target System (STMfvfi

STM(y) is derived by decomposing on-line task components of CTM(y). During 

decomposition, due consideration should be given to the design criteria defined at 

the Statement of User Needs Stage. Thus, the human-computer interaction cycles 

required for achieving on-line task goals are defined at a high level. These cycles of 

STM(y) are described by designating its structured diagram leaves into sets of H
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(Human) and C (Computer) leaves.

In general, an STM(y) description is derived to support user interface design at the 

Design Specification Phase of the method. The design support is achieved as 

follows:

(i) H (Human) leaves of STM(y) may be decomposed further to derive a 

lower level description of the human-computer interaction required by the 
on-line task. Such a decomposition is undertaken at the Interaction Task 

Model Stage where a product, termed ITM(y), is derived (see later). A 

foundation for specifying required inputs by the computer user is thus 

established;
(ii) C (Computer) leaves of STM(y) may suggest potential user interface 

objects for the target system. At the Interface Model Stage, the objects are 
specified in detail as a set IM(y) descriptions (see later). Thus, a foundation 

for specifying the following is established:

(1) the behaviour of user interface objects following user input and/or 

state changes of real and representation world entities;
(2) the appearance of user interface objects and the content of 
computer messages.

(b) User Task Model of the Target System (UTM(v))

Although off-line tasks do not contribute directly to computer system design (being 

manual tasks), they should still be considered since their characteristics may have 
implications for user interface design. For instance, information flows between on­

line and off-line tasks may influence the content, format and presentation of 
computer displays. Consequently, a target user task model (also referred to as 

UTM(y)) is derived by collating and decomposing (if necessary) off-line 

components of CTM(y). On the basis of the design criteria defined at the Statement 

of User Needs Stage, appropriate sub-sets of UTM(x) may also be identified for 

incorporation. Thus, a structured diagram description of UTM(y) is derived. If
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necessary, further information may also be documented in a supporting table.

Figure 10-7 summarises the above activities at this stage of the JSD*(HF) method.

Figure 10-7 : Block Diagram Summary of the System and User Task 

Model (SUTaM) Stage

CTM(y)

STM(ext)
UTM(ext)

SUN(y)

STM(y)
UTM(y)

Decompose

Synthesise

System and User Task 
Model (SUTaM)

CTM = Composite Task Model
(ext) = JSD*(HF) descriptions of extant systems (EXT)
SUN = Statement of User Needs STM = System Task Model

UTM = User Task Model
(y) = JSD*(HF) descriptions of the target system (Y)

The procedures for deriving STM(y) and UTM(y) are described overleaf.

Case-Studv Illustration o f  STM(v)

A case-study example of STM(y) for network security management is shown in 

Figure 10-8. It can be seen that in deriving STM(y), on-line task components of 

CTM(y) (see Figure 10-5) have been decomposed and assigned appropriately to 

human and computer entities of the work system. For instance, the 'Enter user id 

and password body1 sub-node (Figure 10-8 (Page 1), upper-middle part) has been 
decomposed into network manager (NMgr) inputs and workstation (NMW) 

prompts. In certain instances, complete separation of the interactive task into H 

(Human) and C (Computer) leaves may not be necessary (refer to the procedures
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for this stage for more information). A case-study example of such an instance is 
the 'Access user data' leaf which is described as a joint network manager and 

workstation task (NMgr-NMW) (Figure 10-8 (Page 3), upper left-hand comer).

Procedures for deriving STM(v) and UTM(v) descriptions

1. STM(y) and UTM(y) descriptions are constructed respectively by decomposing on-line
and off-line task components of the CTM(y) description. During decomposition, the 
structure of the CTM(y) description should be maintained as far as is possible to 
facilitate cross-referencing between STM(y) and UTM(y) descriptions.

2. The STM(y) description should identify Human inputs (H) and Computer outputs (C)
required to perform the on-line task. Maintain a 'device independent' description as far 
as possible.

3. Describe STM(y) and UTM(y) using JSD* structured diagrams, and note pertinent
design information texlually in an accompanying table.

Rules o f  thumb for deriving STM(v) and UTM(v) descriptions

1. Significant off-line tasks may be highlighted within an STM(y) description if desired.
In such instances, the tasks should be indicated as a structured diagram sub-node and 
not decomposed further. In this way, cross-referencing between STM(y) and UTM(y) 
may be supported better. In addition, a more coherent description of the overall task 
is afforded since the CTM(y) structure is propagated more completely in the STM(y) 
description.

2. In some cases, STM(y) description may be terminated with a 'H-C sub-node (rather
than distinct H and C leaves). For instance, actions associated with the chosen user 
interface environment need not be described at the lower level since they are outside 
the remit of later JSD*(HF) design stages. Alternatively, a H-C sub-node may be 
used where intervening interactive transitions may be assumed as understood. For 
instance, the sequence comprising 'H: activate function' —> 'C: refresh screen on user 
input' —> 'C: carry-out function', may be described equally well by 'H-C: carry out 
function'. The H input required may then be detailed later in the ITM(y) description if 
necessary. In this way, the STM(y) description would be less cluttered.

Design Inter-dependencies between the JSD Functions Stage and the System and 

User Task Model Stage of the JSD*(SE) and JSD*(HF) Methods

A second design inter-dependency occurs between the System and User Task 
Model Stage and the JSD Functions Stage of the JSD*(HF) and JSD*(SE) methods 

respectively. This inter-dependency point is extremely important since it addresses 

the definition and extension of target system functions, e.g. appropriate computer
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STM(y) Table

Name Description Design Comments

NMW: Prompt 
NMgr input

Alert security 
breach body

Change user 
account body

The network management 
workstation prompts the network 
manager to input a NMgr 
identification number and password. 
These inputs are subsequently verified 
by the network management 
workstation before NMgr access is 
enabled.

The network management 
workstation may alert the network 
manager to security breaches 
including failed log-ons. The network 
management workstation can also 
indicate that a security breach report 
has been sent by a network user 
(messaging via the network).

Imposed account changes are enforced 
automatically by the network 
management workstation.

It is important that input 
prompts by the network 
management workstation should 
offer minimal assistance to 
those unfamiliar with the 
log-on procedure.

Alerts should be signalled in real 
time, and should be sufficient to 
capture the network manager's 
attention following log-on. 
Alerts in response to events 
occurring when the network 
management workstation is 
unmanned should be signalled to 
the network manager on next 
log-on.

functions are identified to support the user's task; the configurations of JSD 

functions are decided; etc. Thus, design constraints imposed at the previous inter­

dependency point would not be adequate to ensure convergent JSD*(HF) and 

JSD*(SE) design extensions at this stage. Consequently, further design constraints 
should be defined.

Figure 10-9 summarises the products that should be shared and agreed between 

JSD*(HF) and JSD*(SE) designers at this design inter-dependency. The Figure 

describes the following scenario :

(1) JSD*(HF) designers are expected to contribute a STM(y) description of 

function sequences required for achieving on-line target system tasks. The 

sequences are described as a set of high level human-computer interaction 

cycles;

(2) JSD*(SE) designers are expected to contribute descriptions of the : JSD
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Figure 10-9 : Design Products Exchanged between JSD*(SE)
and JSD*(HF) Methods at the Second Inter-Dependency Point

| (jfp*('SE) Method.

Functions

•

JSD functions 
Input and output 
data streams 
Input subsystem

  STM(y)

JSD*(HF) Method

System and User 
Task Model

JSD = Jackson System Development
JSD*(SE) = Software Engineering component of the JSD* method 

JSD*(HF) = Human Factors component of the JSD* method 
STM = System Task Model 
(y) = JSD*(HF) descriptions of the target system (Y)

function and model processes; JSD input sub-system;19 and JSD input and 
output data streams.

These contributions will now be explained further:

(a) JSD functions : since the configuration of JSD functions should support 

the user's task, pertinent user-related information that has been uncovered 

by JSD*(HF) designers should be considered by JSD*(SE) analysts at this 

inter-dependency point. In particular, STM(y), DoDD(y), SUN(y) and 

CTM(y) descriptions20 would provide JSD*(SE) analysts with a better 

view of user needs, problems and task requirements. Thus, a more 

appropriate set of JSD functions may be specified;

19 Input sub-system specifications contribute to the design of error and feedback messages at later 
stages of the JSD*(HF) method.
20 Although it was optional to share the last three JSD*(HF) products at the first inter­
dependency point (to pre-empt design information required at the Functions Stage of the JSD*(SE) 
method), it is obligatory that consensus on these products is reached between JSD*(SE) and 
JSD*(HF) designers at the present inter-dependency point. Thus, convergence may be ensured 
between JSD*(HF) and JSD*(SE) design specifications.
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Cb) System timing : such JSD*(SE) decisions would require a good 

understanding of user task needs. For instance, decisions concerning the 

timing and frequency of computer updates of a customer's account should 
relate to the information required by the user's task, e.g. the cashier would 

require account updates every minute to enforce withdrawal limits, while the 

bank clerk would only require daily updates to verify interest computations. 

To support such decisions, JSD*(HF) design descriptions (namely 

STM(y), UTM(y), DoDD(y), SUN(y) and CTM(y)) should be consulted 

for relevant user task information;

(c) JSD data flows : since JSD input and output information streams 

implicate exchanges across the user interface, they should be discussed with 

JSD*(HF) designers (information flows between JSD model and function 

processes are excluded). It is expected that JSD*(HF) designers could then 
contribute to these JSD*(SE) specifications by sequencing the information 

streams appropriately with respect to the user's interactive task;

(d) JSD input sub-svstem : JSD*(SE) specifications of the input sub-system 

include error categories (e.g. simple errors and false inputs) and context 
filters. The specifications should be discussed with JSD*(HF) designers 
since they intersect later human factors specifications of error and feedback 

messages.

In addition to establishing a consensus on the above JSD* products, close contact 

should be maintained between JSD*(HF) and JSD*(SE) designers at this inter­

dependency point. Thus, new design extensions should be communicated between 

designers as soon as they are developed sufficiently.

The above account completes a stage-wise review of the Design Synthesis Phase of 

the JSD*(HF) method.

At this juncture, a conceptual target system design would have been specified 

sufficiently for user interface design to proceed. The latter is addressed at the 

Design Specification Phase in three stages, namely the Interaction Task Model, 

Interface Model and Display Design Stages. A account of these stages follows.
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Chapter Eleven : The Design Specification 
Phase of the JSD*(HF) Method

"The end of our foundation is the knowledge of causes, and the secret motions 

of things; and the enlarging of the bounds of human Empire, to the 

effecting of all things possible."
Francis Bacon,, 1627, New Atlantis.

Following the conceptual design of the target system, user interface specification 

commences in the Design Specification Phase of the JSD*(HF) method. Presently, 

the three stages that comprise this phase, namely the Interaction Task Model, 

Interface Model and Display Design Stages, are presented in the sequence 
performed during design (i.e. in the above-mentioned order). As before, design 
activities and products of the stages are summarised using a block diagram. Case- 
study examples are also provided where appropriate.

11.1. Interaction Task Model (ITM) Stage

Summary

Having defined the on-line task conceptually in terms of human-computer 

interaction cycles of an STM(y) description, the cycles may be decomposed further 

at the Interaction Task Model Stage. A product, termed an interaction task model (or 

ITM(y)), is derived. The location of this stage vis-a-vis other stages of the 

JSD*(HF) method is shown in the Figure overleaf.

ITM(y) is essentially a description of the device level interactions required to 

achieve user task goals using the target computer system. It is described in terms of 

object and action primitives of the chosen user interface environment (if any) and 

basic keystrokes of the designated hardware. To support subsequent specification 
of error recovery schemes, feedback messages and screen displays, low level 

actions of ITM(y) are also grouped into coherent interaction ’units'. In this respect,
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it is essential that an appropriate level of UM(y) description is derived. To this end, 
design iterations with later JSD*(HF) stages may be expected.

Information Elicitation and Analysis Phase

£
Design Synthesis Phase

ggggj = Points of SE and HF contact 

llllll = Design phases of the JSD*(HF) method

Extant Systems 
System Analysis Generalised Task Model

Functions 
List

Other Contributions

|  JSD*(SE) \

H I Specification
I Model Il_ ^ J

| ] F u n c t i o n s J

I
 Implementation |

B B s n m B B i

Evaluation

Statement of User Needs

|  Composite Task Model |

System and User Task Model

System Task Model User Task Model

mm
User Interface Specification 

I  Interaction Task ModelI

Interface Model I Display Design

Design Specification Phase

Detailed Account

Since the Interaction Task Model Stage follows the System and User Task Model 

Stage, STM(y) comprises its primary input. Specifically, H leaves of STM(y) (i.e. 

on-line user actions) are decomposed further to derive a device dependent 

description comprising object and action primitives of the chosen user-interface 

environment (if any) and basic keystrokes of the designated hardware. To ensure 

the derivation of a consistent ITM(y) description, earlier JSD*(HF) products, 

namely SUN(y) and DoDD(y), should also be considered during STM(y) 

decomposition. In addition, relevant aspects of the current user interface 

environment (if any) and an appropriate sub-set of rrM'(ext) (extant system 

description derived at the Extant Systems System Analysis Stage) may be 

synthesised iteratively with an initial ITM(y) description (see Figure 11-1). Thus,
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an ITM(y) description sufficient to support later JSD*(HF) design stages (namely 

the Interface Model and Display Design Stages) is derived. It is essential that the 
final ITM(y) description should be at a level understood generally by design team 

members.

Figure 11-1 : Block Diagram Summary of the Interaction Task Model 

(ITM) Stage

DoDD(y)

SUN(y)

SoRe
UIE(y)

STM(y)

Synthesise

Decompose

Interaction Task Model 
(ITM)

DoDD = Domain of Design Discourse
(ext) = JSD*(HF) description of extant systems (EXT)

SoRe = Enhanced Statement of Requirements STM = System Task Model
SUN = Statement of User Needs UIE = User Interface Environment
(y) = JSD*(HF) description of the target system (Y)

On deriving a satisfactory description of ITM(y), screen 'boundaries' may be 

designated at appropriate intervals between groups of structured diagram leaves (see 

case-study example later). In other words, appropriate start- and end-points of 

interactive task units are demarcated on the ITM(y) description. For each designated 

'boundary', unique numbers (e.g. 'bubble' SI in Figure 11-2) are assigned to 

support cross-referencing between ITM(y) and products of the Interface Model and 
Display Design Stages. Explicit links are thus established between the error-free 
task description of ITM(y), and static and dynamic descriptions of screen 

presentation specified at these stages. In this way, the actuation of particular screens 

(of defined composition and layout) is set appropriately against the user task context 

(see later). Thus, the presentation context for computer support functions, and error 

and help messages is defined.
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Procedures for deriving ITM(y) are described below.

Procedures for deriving ITM(v)

1. Select H and H-C leaves of the STM(y) description for further decomposition.

2. Decompose each H leaf (or H-C leaf) to a level that is easily understood by design team
members. To ensure a consistent design description, the following should be considered 
during decomposition:
(a) characteristics of the extant and chosen target user interface environment (if any), e.g. 
when naming newly specified actions of ITM(y);
(b) extant interaction task model (ITM(ext)) as appropriate;
(c) DoDD(y), SUN(y), and enhanced statement of requirements for the target system.

3. Note specific design features of ITM(y) to be considered later when products of the
Interface Model and Display Design Stages are derived, i.e. IM(y) andDD(y).

4. Describe ITM(y) using JSD* structured diagram notation and note additional information
in an accompanying table.

5. Re-work CTM(y), STM(y) and UTM(y) as necessary. To this end, iterations with
preceding design stages may be necessary. In some cases, wider changes may involve 
modifying the original system task allocation. Thus, close contact with JSD*(SE) 
analysts should be maintained, i.e. changes should be communicated between designers 
as they arise so that HF and SE design converge efficiently.

6. On deriving a satisfactory description oflTM(y), work through sections of the structured
diagram systematically as per the constructs of the notation. Specifically, screen 
boundaries are demarcated on the ITM(y) description by identifying coherent groups of 
interactive task units in the STM(y) description. Assign alpha-numeric identifiers to each 
boundary so that inter-linkages may be established later between ITM(y) and products of 
the Design Display Stage, e.g. Pictorial Screen Layouts (refer to the procedures of the 
Design Display Stage for an account of the indexing scheme used for this purpose). 
Continue the process for the entire ITM(y) description.

Rules o f thumb for deriving ITM(v)

1. It is vital to derive a satisfactory description oflTM(y) before the Interface Model and
Display Design Stages are undertaken.

2. Several versions oflTM(y) may be necessary before a satisfactory description is derived. In
other words, ITM(y) derivation may involve decomposing STM(y) in two or more steps. 
For instance, ITM(y) may be described initially in terms of input primitives of the chosen 
user interface environment (if any). Following the derivation of a set ofIM(y) descriptions 
and Pictorial Screen Layouts at later stages o f the method, the initial version oflTM(y) 
may then be decomposed further to detail inputs associated with bespoke user interface 
design features. Iterations with later design stages may also be necessary.

3. Sub-nodes ofSTM(y) at two levels (or more) from the bottom of the structured diagram
description are likely to remain unchanged, i.e. in most instances, they would be carried 
over to the ITM(y) description.

4. To ensure unique sub-node labels in a structured diagram description, it may be necessary to
modify sub-node names that have been carried forward from the STM(y) to the ITM(y) 
description (see (3) above). The original and new names should be semantically similar so 
that relationships between STM(y) and ITM(y) descriptions remain clearly identifiable.
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In conclusion, the objectives of the Interaction Task Model Stage are three-fold:

(a) to describe the device level interactions that a user is expected to perform 

using the target computer system;

(b) to establish a foundation for advancing design at later stages of the 

method; and

(c) to specify a reference framework that inter-links design products derived 
at the Design Specification Phase of the method.

Case-Studv Illustration ofTTM(v)

A case-study example of ITM(y) for network security management is shown in 

Figure 11-2. This description of ITM(y) was derived following several iterations 
with later stages of the method (refer to the procedures of the Interface Model and 

Display Design Stages for further information). Thus, user inputs required for 
accomplishing on-line task goals were specified at a lower level of description. 
Note that a supporting information table was not derived on this occasion since the 

structured diagram provided a sufficiently clear description of ITM(y).

It was indicated earlier that ITM(y) is derived by decomposing H leaves of STM(y) 

(i.e. human actions) in terms of input primitives of the chosen user interface 

environment. For the present case-study, HyperCard™ was used to simulate the 

implementation environment.21 Thus, the 'Access user data' action of STM(y) 

(Figure 10-8 — Page 3) was decomposed to derive an ITM(y) description that 

includes HyperCard™ primitives such as 'button' objects and 'button click' actions 

(see Figure 11-2 -- Page 1).

Figure 11-2 illustrates another characteristic of an ITM(y) description, namely the 

demarcation of screen boundaries and numbering scheme, e.g. SI, S2, etc. 

Presently, a case-study example of how such screen demarcations may be linked to 
pictorial screen layouts is described for Screens 3A and 3B (corresponding to

21 HyperCard™ was chosen because it is a tool commonly used for prototyping WIMP-type user 
interface designs.
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'bubbles' labelled S3A and S3B in Figure 11-2 — Page 1). Screen 3A describes a 

scenario where the network management workstation is unmanned. In this case, the 
workstation is required to automatically monitor security breach events and user 

reports, and then display the number and classes of incidences on the next log-on 

by the network manager (see Figure 11-3).

Figure 11-3 : Pictorial Screen Layout of Screen 3A

File Edit Uieui Special

NM Database

Security

Sec/I N Sec/Pd

fllert Summary

From 22/04/90 at 17.30 
To 23/04/90 at 09.30

Host/user report(s): 0 
Failed logon attempt(s): 1 

Failed password change(s): 0

Screen 3B describes an alternative scenario for which security breach events and 
user reports occur when the workstation is manned (see Figure 11-4). In this 
instance, the workstation is required to alert the manager (immediately in certain 

circumstances) that a security event has occurred in the background of an ongoing 
interactive session.

Wider links between ITM(y) and other products of the Interface Model and Display 
Design Stages are addressed later in this chapter.
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Figure 11-4 : Pictorial Screen Layout of Screen 3B

File Edit Uiem Special UJindouj

NM Database
Security

Sec/I N

niert

Date: 2 2 / 0 4 / 9 0  Time: 01.30

<alert type>

Having specified the device-level inputs required of the user, the composition, 

layout and behaviour of screen displays may now be considered. These design 
concerns are described in the next sub-section.

11.2. Interface Model (IM) and Display Design (DD) Stages

Summary

To ensure coherent design specification, the remaining stages of the method 

(namely the Interface Model and Display Design Stages) are undertaken iteratively. 

For this reason, they are described together in this sub-section.

The objective of the Interface Model Stage is to specify the behaviour and 

appearance of screen objects in relation to user inputs and state changes of 

representation and real world entities. Thus, object modelling, command syntax and
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icon design comprise the design concerns of the stage.

The objectives of the Display Design Stage are as follows :

(a) to specify the content and layout of display screens;
(b) to compile a glossary of screen objects; and

(c) to define the contexts for presenting error and feedback messages, and 
computer support functions.

The locations of the above stages vis-a-vis other stages of the JSD*(HF) method 
are shown in the Figure below.

Information Elicitation and Analysis Phase Design Synthesis Phase

Extant Systems 
System Analysis Generalised Task Model

Other Contributions Functions
List

I  JSD*(SE) r t
Specification 

| Model |

V

= Points of SE and HF contact 

llill = Design phases of the JSD*(HF) method

Statement of User Needs

I Composite Task Model

System and User Task Model

System Task Model User Task Model

| Functions j

Implementation

Evaluation

User Interface Specification

Interaction Task Model

t
1 Display Design .

Design Specification Phase

As shown in the Figure, STM(y) and ITM(y) comprise primary inputs to the 

stages. In addition, appropriate consideration should be given to the input sub­

system specifications derived earlier by JSD*(SE) analysts, and relevant sub-sets of
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extant design descriptions, namely DD(ext) and IM(ext) descriptions (Note : 
appropriate sub-sets of the latter descriptions comprise those which are consistent 

with parts of the GTM(x) description that have been incorporated into CTM(y)). On 

the basis of the preceding products, suitable display designs are specified at the 

Interface Model and Display Design Stages of the method. Specifically, the 

preceding products constitute design requirements and constraints to be satisfied by 

a particular user interface design, e.g. specific screen compositions and behaviours. 
Thus, prototyping and user tests are particularly important at these design stages.

In summary, the set of descriptions derived at the Design Specification Phase of the 
method constitute HF specifications of the user interface. Subsequently, the 

descriptions are discussed and synthesised with JSD*(SE) specifications. Design 

implementation is then undertaken following the original JSD method.

A detailed account of interface model and display design descriptions follows. 

Detailed Account

(a') Interface Model Specifications for the Target System (TM(vV)

At the Interface Model Stage, a set of specifications (termed IM(y)) is derived to 
describe the behaviour and appearance of screen objects. Two categories of objects 

are described, namely bespoke objects and variant objects of the chosen user 

interface environment (if any). In most cases, generic objects of the chosen 

environment are not described since the design team would be conversant with their 

characteristics.

IM(y) descriptions are derived by decomposing C leaves of the STM(y) 

description, i.e. computer actions. The decomposition should satisfy the conditions 

prescribed by JSD*(HF) products that have been derived earlier, such as DoDD(y), 

SUN(y) and the enhanced statement of target system requirements. On this basis,
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the designer may consider the following :

(1) adopting a 'global' concept to structure the user interface, e.g. the 

application of an appropriate user interface metaphor,

(2) porting IM(ext) descriptions that are consistent with parts of the GTM(x) 

description that have previously been recruited to the target system;

(3) selecting an appropriate user interface environment or house-style;
(4) introducing bespoke design extensions.

A set of IM(y) descriptions is thus derived and documented using 
structured and pictorial diagrams. The rationale relating to the above design 
decisions should also be documented as appropriate. These descriptions 
are then carried forward to support screen specification at the Display 
Design Stage. In particular, explicit relationships among IM(y), ITM(y), 
and screen composition and actuation are specified using an indexing 
scheme involving screen and object identifiers (e.g. name and appearance). 
Case-study examples of IM(y) descriptions are presented later.

(b) Display Design Specifications for the Target System (DDfvfi

A set of JSD*(HF) products, collectively referred to as DD(y), is derived at the 

Display Design Stage. DD(y) descriptions address the following concerns of user 

interface specification:

(i) 'static' description of screen displays. Specifically, the composition and 

layout of information, error, feedback and help screens are specified 
pictorially. The descriptions (termed Pictorial Screen Layouts or PSL(y)) 

are supported by a Dictionary of Objects (DO(y)), and a Dialogue and Error 

Message Table (DET(y));

(ii) 'dynamic' description of screen displays. Specifically, the context for 

actuating display screens to present computer task support functions and 

messages is specified. The structured diagram description derived is termed 

a Dialogue and Inter-Task Screen Actuation Description or DITaS AD(y).
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The above JSD*(HF) products are now described in more detail.

Pictorial Screen Layout (PSL(y)) diagrams describe the content, appearance, 

location and grouping of information and functional screen objects. Explicit 

relationships among PSL(y), ITM(y), DITaSAD(y) and IM(y) descriptions are 
specified using an indexing scheme involving screen and object identifiers (e.g. 

name and appearance). Thus, the static and dynamic descriptions of a screen design 

are inter-linked as follows :

(i) PSL(y) descriptions are linked with IM(y) descriptions at the objects 

level. Specifically, static PSL(y) descriptions are complemented by dynamic 

IM(y) descriptions of screen objects, e.g. their individual behaviours and 
their relationships with other objects (objects may reside in the same display 
screen (intra-screen object-object relationships) or different display screens 

(inter-screen object-object relationships);

(ii) PSL(y) descriptions are linked with DITaSAD(y) at the screen level. 

Specifically, static PSL(y) descriptions are complemented by dynamic 
DITaSAD(y) descriptions of display screens, e.g. their actuation contexts 

and triggers.

It should be noted that the objective of a PSL(y) description is not the specification 
of all possible display screens. For instance, the description of screen scrolling and 

refresh is excluded. Instead, the objective of a PSL(y) description is to specify the 

display screens associated with potential user errors and interactive task contexts. 

Thus, PSL(y) is inter-linked with DET(y), ITM(y) and DITaSAD(y).

PSL(y) descriptions are generally supported by DO(y) descriptions which provide 

further information on the objects comprising each display screen, e.g. salient 

characteristics such as inter-screen triggers and permissible user actions. In 

addition, PSL(y) descriptions of error, feedback and help message screens are 
supported further by a message index or DET(y) table (refer to its account on the 

following page).

It should be noted that PSL(y) descriptions may be composed directly using a
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computer-based prototyping tool. In this way, voluminous paper-based 

documentation and laborious scale drawings or dimensioned screen diagrams (see 

Figure 11-5) may be obviated.22 Although PSL(y) and DET(y) descriptions are 

thus supplanted, IM(y), DITaSAD(y) and DO(y) descriptions should still be 

documented as required by the method. Case-study examples of PSL(y) 
descriptions are presented later.

Figure 11-5 : Dimensioned Pictorial Screen Layout of Screen 3A

NM Database

Security 

0.4"
Sec/IN Sec/Pd

0 . 6" *
fllert Summary

From 22/04/90 at 17.30 
To 23/04/90 at 09.30

Host/user report(s): 0 
Failed logon attempt(s): 1 

Failed password change(s): 0

All fonts size 12 Geneva

The Dialogue and Error Message Table (DET(y)) is essentially an index of 

message identifiers and contents. As indicated previously, the identifiers comprise 

part of a scheme for describing explicit links between PSL(y) and DITaSAD(y). 
Specifically, the contexts and triggers for presenting particular display screens are

22 Other benefits of using a prototyping tool may include directly executable specifications and 
animation of proposed designs.
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defined with respect to the status of interactive task performance. Links between 

DET(y) and PSL(y) descriptions of the content and layout of screen messages are 

similarly established by assigning unique message and screen identifiers (refer to 

the earlier account of PSL(y) descriptions). A case-study example of DET(y) is 

presented later.

Finally, the Display and Inter-Task Screen Actuation Description (DITaSAD(y)) 
sets screen actuations against the interactive task context. In other words, it 
specifies the points at which particular computer messages and functions are 

presented in support of the user's on-line task (refer to earlier accounts of PSL(y) 

and DET(y) descriptions). It should be noted that the objective of a DITaSAD(y) 

description is not the specification of all possible screen actuations. For instance, 

the description of screen scrolling and refresh is excluded. Instead, the objective of 

DITaSAD(y) is to set major screen actuations against the status of interactive task 
performance. In other words, it relates the actuation of display screens (described 
by PSL(y)) to users' interaction difficulties and errors (described by DET(y)), and 
to transitions between coherent interactive task units (described by ITM(y)). Thus, 
DITaSAD(y) is inter-linked with PSL(y), DET(y) and ITM(y). A case-study 

example of a structured diagram description of DITaSAD(y) is presented later.

Figure 11-6 summarises the activities and products of the design stages described 
above.
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Figure 11-6 : Block Diagram Summary of the Interface Model (IM)

and Display Design (DD) Stages

DoDD(y) ”  

SUN(y) — 

SoRe —

ITM(y)
STM(y) 

+  UIE(y)

I -  ITM(y)
UIE(y)

-  PSL'(ext)
-  DET(ext)
-  DITaSAD'(ext) 
_  JSD*(SE) input

 PSL(y)
  DET(y) <

  DITaSAD(y)

Synthesise

Synthesise

Re-Express

Re-Describe 
& Decompose

Display Design [DD]

Interface Model [IM]

sub-system specifications

DET = Dialogue and Error Message Table

DITaSAD = Dialogue and Inter-Task Screen Actuation Description
DoDD = Domain of Design Discourse
(ext) = JSD*(HF) descriptions of extant systems (EXT)
ITM = Interaction Task Model
PSL = Pictorial Screen Layout

SoRe = Enhanced Statement of Requirements

STM -  System Task Model
SUN = Statement of User Needs

UIE = User Interface Environment
(y) -  JSD*(HF) descriptions of the target system (Y)

Procedures for deriving IM(y) and DD(y) descriptions are presented on the 

following two pages.
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Procedures for deriving IM (v) and DD(v)

1. Do not begin specifying IM(y) and DD(y) until ITM(y) is sufficiently decomposed into
input level primitives. However, complete decomposition o f ITM(y) is not necessary 
prior to the Interface Model and Display Design Stages (see (8) below).

2. On the basis of screen demarcations on ITM(y), a human factors designer may apply either
3(a) or (b). The choice would depend on prevailing design circumstances such as how 
familiar the designer is with the chosen user interface environment (if any), and how 
well defined the chosen environment is. PSL(y) and IM(y) descriptions are thus derived 
incrementally with due references to ITM(y). Note that iterations among the Interaction 
Task Model, Interface Model and Display Design Stages may instigate changes to design 
descriptions derived earlier. The process is continued iteratively until the entire ITM(y) 
description has been considered.

3(a). For each demarcated screen in ITM(y), specify IM(y) descriptions of screen objects. On 
the basis of these IM(y) descriptions, compose appropriate PSL(y) diagrams. Repeat the 
process as indicated in (2) above until the entire ITM(y) description has been considered.

3(b). For each demarcated screen in ITM(y), compose an initial PSL(y) diagram. Specify an 
IM(y) description for each object in the diagram. The result is a set of structured diagram 
descriptions and a tabular dictionary of objects for each PSLjy) diagram. Thus, IM(y) and 
PSL(y) descriptions are derived iteratively. The process is repeated as indicated in (2) 
above until the entire ITM(y) description has been considered.

4. When deriving PSL(y) diagrams, note when and how each display screen is to be actuated
and the objects involved in effecting the actuation. Specifically, make notes on how 
each screen is triggered and consumed. Such notes would support the later construction 
of a DITaSAD(y) description (see (9) below).

5. To facilitate reference, each PSL(y) diagram should be collated with IM(y) descriptions
(including object dictionary tables) of its constituent objects. Note that lower level 
descriptions ofIM(y) may be specified. For instance, HyperCard™ tye program scripts 
may be specified if structured diagram descriptions are sufficiently detailed. In addition, 
within and between screen object-object relationships may be described and linked with 
PSL(y) diagrams by assigning a unique identifier to each object. Thus, the level at 
which IM(y) may be described is flexible, and depends largely on the training of the 
human factors designer.

6. During the derivation of IM(y) and PSL(y) descriptions, H-C leaves of STM(y) (which
have been carried forward to ITM(y)) may suggest'generic' computer support functions, 
e.g. standard functions of text and graphics editors. In such instances, design features of 
relevant off-the-shelf packages (which constitute extant partial systems) may be 
examined to identify potential extant objects and functions for recruitment to target 
system design. To this end, the selected objects and functions should be consistent with 
ITM(y). In addition, they should be re-named and modified (as appropriate) in accordance 
with the semantics defined by DoDD(y). Such considerations may instigate modifications 
to their behaviours and representations.

7. Since ITM(y) describes error-free performance only, potential user errors should now be
considered. These concerns are addressed byDITaSAD(y) andDET(y) descriptions. To 
derive these descriptions, potential user errors are identified by examining each PSL(y) 
diagram. In addition, various error scenarios should be investigated analytically in 
accordance withlM(y), ITM(y) and the input sub-system specification generated by 
JSD*(SE) designers. Thus, potential deviations from the 'ideal' sequence prescribed by 
ITM(y) are uncovered. In the first instance, re-design to rectify anticipated user errors and 
difficulties is considered. If a satisfactory solution can not be found, appropriate error
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---------------------------------------------------------------------------------------------------------------------

Procedures for deriving IM(v) and DD(\) (con't) :

and help messages should be composed to support the user. Thus, a DET(y) table is 
derived and linked to the ITM(y) description. For each message item in the table, a 
PSL(y) diagram is composed and labelled in accordance with the rules below. To facilitate 
reference, the present set of PSL(y) diagrams is collated with the set ofPSL(y) and IM(y) 
descriptions that had been derived earlier.

8. When PSL(y), IM(y) and DET(y) descriptions have been defined satisfactorily, a further
design iteration may be undertaken (as appropriate) to finalise' the decomposition of 
ITM(y) to a device-level description. Thus, ITM(y) may be described in terms of specific 
actions of bespoke screen objects that have now been defined by IM(y) and PSL(y).

9. Having finalised' the descriptions in (8) above, the dynamics of screen presentation is then
specified. To this end, preceding JSD*(HF) products (namely JTM(y) and IM(y)) and notes 
made in (4) above are consulted. Thus, a structured diagram description ofDlTaSAD(y) is 
derived to summarise how each PSL(y) screen is 'triggered' and 'consumed' with respect to 
the user interactions prescribed by ITM(y).

Rules of thumb for deriving IM(v) and DD(v)

1. The constituents of each PSL(y) screen should be described further in a supporting table
termed an objects dictionary. In this way, detailed object behaviours may be highlighted.

2. Whenever possible, each PSL(y) screen should be uniquely and sequentially named in
accordance with the order of presentation as described by DITaSAD(y).

3. The names of PSL(y) screens should also indicate their relationship (as appropriate), e.g.
parentage. Thus, Screens 3.1 and 3.1 A are both children of Screen 3, and Screen 3.1 and 
3.1 A are mutually exclusive selections of screens to be presented.

4. The appearance and name of each object should be propagated consistently across screens.
Instances of an object class may be assigned a composite name comprising a root name 
and a unique identifier. Such information should be noted in the objects dictionary.

5. IM(y) descriptions need not be derived for generic objects of the chosen user interface
environment.

6. Error and dialogue message screens should be denoted by a composite name comprising a
root name followed by '.5' and a unique message identifier linked to DET(y) and 
DITaSAD(y), e.g. 'Screen 1 5  -- em3'. The name reads 'error screen 1 5  with message 
number 3 (contents shown in DET(y) table) may be triggered following Screen 1.'An 
alternative scheme is to name error and confirmation screens respectively using a 'E' or 
'C' letter followed by a root name and message identifier as before. Note that a '5' is not 
used in this case, and the name 'Screen E(1 )1 — em3' should be read as before. However, 
the name also indicates that message em3 is displayed using a variant of a generic error 
screen template called Screen E(l). Specifically, only the <message content> of Screen 
E(l) is varied.

7. DITaSAD(y) may be specified in two or more steps to facilitate its derivation. In particular,
the designer may exclude error considerations from an initial DITaSAD(y) specification, 
i.e. screen actuations corresponding directly to ITM(y) are described first. Error scenarios 
are then introduced to complete the description of DlTaSAD(y).

8. Structured diagram leaves of a DlTaSAD(y) description largely comprise 'consume screen'
boxes. Thus, in deriving a DITaSAD(y) description, intervening action leaves o f the 
ITM(y) description that do not result in a screen actuation are removed (since DITaSAD(y) 
(and PSL(y) descriptions) is concerned largely with major screen actuations). Nevertheless, 
the super-ordinate structure oflTM(y) should still be carried forward.
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Case-Studv Illustrations ofIM(v) andDD(v)

A case-study illustration of products derived at the Interface Model and Display 

Design Stages follows. In particular, case-study examples are described to highlight 
inter-linkages among the products of these stages. To this end, the case-study 

scenario introduced in preceding accounts of earlier JSD*(HF) products (i.e. a 

'failed log-on' event) is used again for the present illustration. It may be pertinent to 
note that the following account describes JSD*(HF) specifications of a user 
interface design (a set comprising IM(y), DITaSAD(y), DET(y) and PSL(y) 

descriptions).

(a) Dialogue and Screen Actuation Description (PITaSADfv)

Figure 11-7 shows part of a DITaSAD(y) that describes target system responses to 
a failed log-on event. Specifically, it describes the on-line component of the 
network manager's task in terms of a succession of major screen actuations, e.g. 
Screens 4B, 5B-1, etc. An information table is not derived in this instance since the 

structured diagram description of DITaSAD(y) is self explanatory.

Target system responses to a failed log-on event may be conceptualised as 
comprising two component streams, namely human and computer responses to the 

event. The streams are described by ITM(y) and DITaSAD(y) descriptions 

respectively (see Figure 11-2 (Page 1) and Figure 11-7). By specifying linkages 

between the streams, screen actuations (comprising the sequence : 'Screen 4B' --> 

either 'Screen El-em3' or 'Screen 5B-1' —> etc.) are contextualised against the on­

line tasks to be performed by a network manager (comprising the sequence : 'show 

user list' --> select user name' —> etc.). The inter-links are summarised in the 

diagram overleaf. For complete user interface specification, the above descriptions 

are complemented further by IM(y), PSL(y) and DET(y) descriptions. An account 

of these JSD*(HF) descriptions follows.
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Network manager : on-line tasks following a failed log-on event

-Show
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r '" " " " * W i c a l i o o  io  ̂ ** identification

]P T

Screeri4B — Screer 

Screen El-em3

5B-1 ----- Screen 5B-2 ^  Screen C2

Network management workstation : screen actuations following a failed log-on event

(b) Pictorial Screen Layout (PSL(vV). Interface Model (IM(v)l and Dialogue and 

Error Message Table (DET(v^

Following an alert to a failed log-on event (see Figures 11-3 and 11-4), it was 
indicated earlier that a series of screens is presented to the network manager. 
JSD*(HF) descriptions of the design of these screens and their constituents are 

illustrated below. The descriptions are collated into sets that reflect the sequence of 

screen presentation.

Having been alerted to a failed log-on event, the network manager is required to 
access the computer database so that further information may be gathered on the 

user involved. To this end, the manager double-clicks the security icon in Screen 

3C (not shown since it is similar to Screens 3A and 3B -  see Figures 11-3 and 11- 

4 respectively) to activate the application for network security management. The 

input triggers Screen 4B, and a menu offering a selection of three actions, namely 

'Search Connection', 'Show User List' and 'Show Access Points', is thus 
presented to the network manager (see Figure 11-8).2  ̂ To indicate the desired 

selection, the manager mouse-clicks one of the three radio buttons followed by the

23 To support the PSL(y) description of a screen, further information on its constituents is 
tabulated in an Objects Dictionary, e.g. the PSL(y) description of Screen 4B is supported by Table 
11-1. In addition, the behaviour of individual screen objects is expanded in an IM(y) description, 
e.g. the IM(y) description in Figure 11-9 describes radio button objects in Screen 4B.
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Figure 11-7 : Part of DITaSAD(y) for Network Security Management
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Boxes with symbols:

'o' = Selection 
"  = Sequence
— = Continue on pages 2 to 4 (not shown)

E 1 ,C 2 -  Particular instances of a screen, namely an 'Error’ and 'Confirm dialogue screen, 
em = error message
NMW = Network Management Workstation 
NMgr -  Network Manager 
S = Screen
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’Select’ button (see Figures 11-8 and 11-9). If either of these inputs is omitted, an 
error message screen, namely Screen El-em3, is activated (see Figure 11-10 for a 

description of the generic error screen template named Screen E l, and Table 11-3 

for the content of error message 3 (or em3)) 24

Figure 11-8 : Pictorial Screen Layout of Screen 4B

F i l e

as for 
Macintosh 
User 
Interface 
Environment

S e c u r i t y  Act ion 
S e l e c t i o n  Me n u

S ea rc h  C o n n e c t io n s  

d >  Show  U ser  List

S h o w  R e c e s s  P o in t s

(  S e l e c t )

24 In other words, error message 3 or em3 shares the same screen design as other error messages, 
namely Screen El. Specifically, the screen layout is the same for these messages, i.e. the only 
difference is the content of their error messages.
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Table 11-1 : Objects Dictionary -- Screen 4B

Screen Object Description Design Attributes

File (menu bar) Offers 'Open' and 'Quit' menu items. 'Open' 
allows the network manager to open host and 
user reports. 'Quit' allows the manager to quit 
the security application.

Behaviour as per standard 
Macintosh menu items.

Security Action 
Selection Menu

Allows the network manager to select an 
appropriate action, namely 'Search Connections' 
(for details of network connections), 'Show User 
List' (for a list of network users), and 'Show 
Access Points' (for a list of Access points).

Radio buttons Allows the network manager to select an action 
from the menu above.

Behaviour as per standard 
HyperCard radio buttons.

Select button On activation, this button activates the next 
screen. Depending on the network manager's 
selection, one of the following screens is 
activated:

— Search Connections: Screen 5A-1;
— Show User List: Screen 5B-1; and
— Show Access Points: Screen 5C-1.

Behaviour as per standard 
HyperCard buttons.

Figure 11-9 : IM(y) Description of Radio Buttons in Screen 4B

Generic radio 
button of 
Screen 4B

On menu button 
click, highlight 
button

On 'Select' 
button click, 
activate ??

where:

?? = Screen 5A-1 if the menu button clicked is 'Search Connections'. 
?? = Screen 5B-1 if the menu button clicked is 'Show User List'.
?? = Screen 5C-1 if the menu button clicked is 'Show Access Points'.
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Figure 11-10 : Pictorial Screen Layout of Screen E l

<error  m e s s a g e >

Table 11-2 : Objects Dictionary — Screen E l

Screen object Description Design Attributes

Dialogue box The dialogue box is activated in response to a user 
input error. An error message is displayed in the 
box (see DET(y)).

Behaviour as per standard 
Macintosh dialogue boxes.

OK button Allows the network manager to acknowledge the 
message and return to the previous screen.

Behaviour as per standard 
HypeiCard button.

Table 11-3 : P art of DET(y) for the Target Network Security

Management System

Message no. Message

eml Sorry, your log-on inputs are incorrect Your session will be terminated.

em2 Please indicate a host and/or user report action by selecting either the 'Delete' 
or Pending’ radio button.

em3 Please indicate the required security action by selecting a radio button from 
the 'Security Action Selection Menu'. Do this BEFORE clicking the 'Select' 
button.

em4 Please select a user name from the user name display window. Do this 
BEFORE clicking the 'Show' button.

etc. etc.
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If the inputs for Screen 4B have been made correctly, Screen 5B-1 is presented (see 
Figure 11-11). Using this screen, the network manager may specify what network 

user information should be collated and displayed as lists. For instance, the 

manager may request a list of user identifications that have been disabled 
temporarily. Following an examination of the list, the manager may access further 

information on a particular user by mouse-clicking the desired user name item in the 
'User Name Display' window (inside the 'User List' window — see Figure 11-11). 
Screen 5B-2 (Figure 11-15) is thus activated to display personal and usage 

information on the selected user. Having assessed the information displayed in the 

User Details' window, the manager may decide to contact the user to uncover 

possible causes of the failed log-on event. An appropriate action is then taken. For 

instance, the manager may decide to restore the user account via the 'Enable' 

command in the menu bar (see Figure 11-15). On detecting such a request, the 
network management workstation will seek final confirmation from the manager by 

activating Screen C2 (Figure 11-16). Although Screen C2 may be considered a 
redundant confirmation step, it was included to make the interaction cycle more 
consistent with punitive actions that may be imposed by the manager. Specifically, 
interaction consistency is maintained since 'Disable User' and 'Mark User' actions 

both require positive confirmation from the manager.

The above products of the Design Specification Phase constitutes the set of human 

factors specifications of a user interface design.26 Following discussions with 

software engineers,26 JSD*(HF) and JSD*(SE) specifications are integrated and

26 It may be pertinent to add that JSD*(HF) products derived between the Generalised Task Model 
and Interaction Task Model Stages (inclusive), could contribute to the design of training 
programmes and user manuals.
26 The final integration of JSD*(HF) and JSD*(SE) specifications should be led by software 
engineers. This recommendation is consistent with the current training of human factors designers 
and their present role in system design.
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then implemented as per the original JSD method.27 Late evaluation activities 

would usually follow. These activities will not be reviewed here since they are 

already well established and are thus excluded from the present research.28 If 
necessary, the reader should refer to Long and Whitefield (1986) for information on 

late evaluation techniques.

27 Design implementation was not considered in as much detail as design specification because 
the transformations entailed by JSD implementation is a well regulated and mechanistic process. In 
addition, the external behaviour of a JSD specification is not altered by JSD implementation (see 
Zave, 1984). Furthermore, it is anticipated that human factors input at this stage would be 
confined largely to the specification of additional feedback displays to account for cases where a 
longer than expected transient response time results from a particular JSD implementation.
28 The exclusion of late evaluation is consistent with the objective of the present research, 
namely to address the 'too-little-too-late' problem of human factors input to system design. As 
such, the JSD*(HF) method is concerned primarily with early and continuous human factors 
involvement in system development. In other words, the research emphasis is on defining 
processes and descriptions for design analysis  and specification  rather than design 
implementation and evaluation.
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Table 11-4 : Objects Dictionary -  Screen 5B-1

Screen object Description Design Attributes

User list 
window

Used to specify particular name lists 
to be displayed (e.g. to display a list 
of disabled user names only).

Activated by selecting ’Show User List' 
from the 'Security Action Selection 
Menu' (see Screen 4B for further details).

Radio buttons Used to specify which user names 
should be listed in the user name 
display window. Possible listings are 
all users, marked users only, and 
disabled users only (this includes two 
sub-lists (checkboxes in Screen 5B-1)).

Behaviour as per standard HyperCard 
buttons. Default display is to list all 
user names in the user name display. 
Selecting a radio button should blank 
out the name display, and when the 
'Show' button is clicked, the specified 
user name list should be displayed.

User name 
display

Used to display user names. Activated 
by clicking the user list radio buttons 
(see above) followed by the 'Show' 
button.

Default display is to list all user names 
in alphabetical order. A user name item 
may then be selected (causing it to be 
highlighted) to display further user 
information in the 'User Details' window 
(see Screen 5B-2).

Show button Used to trigger the display of user 
names following the selection of a 
particular user list radio button (see 
above).

Behaviour as per standard HyperCard 
buttons.

Security Action 
Selection Menu

Details as described previously for 
Screen 4B.

Figure 11-12 : IM(y) Description of Item(s) in the 'User Name

Display' Window — Screen 5B-1

On selection 
highlight item

Activate 
Screen 5B-2

User Name 
Display item
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Figure 11-13 : IM(y) Description of a 'Generic' Radio Button in the 

'User List' Window — Screen 5B-1

On selection 
highlight button

Generic radio 
button of 
Screen 5B-1

On 'Show' button 
click, list ?? in 
user names display 
window

where:

?? = complete user name list if the radio button selected is 'Select all users'.

?? = marked user name list if the radio button selected is 'Select marked users only'.

?? = complete disabled user name list if the radio button selected is 'Select disabled 

users' and either none or both checkboxes are selected.

?? = disabled failed log-on user name list if both 'Select disabled users' radio button and 

■Failed log-on' checkbox are selected.

?? = remaining disabled user name list if both 'Select disabled users' radio button and 

'Other* checkbox are selected.
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Figure 11-14 : IM(y) Description of the 'Show1 Button — Screen

5B-1
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Table 11-5 : Objects Dictionary -  Screen 5B-2 (Page 2)

Screen object Description Design Attributes

Enable This command is used to enable a 
(previously disabled) user id.

Available only when the User Details' 
window is displayed (i.e. after a user name 
item has been selected). Activates Screen 
C l. Behaviour as per standard Macintosh 
menu bar items.

Disable This command is used to disable a 
user id. Comments on the action 
should be recorded (see Screen Cl 
for more information).

Available only when the User Details' 
window is displayed (i.e. after a user name 
item has been selected). Activates Screen 
Cl. Behaviour as per standard Macintosh 
menu bar items.

Change
password

This command is used to enforce a 
password change on a user id. 
Comments on the action should be 
recorded (see Screen Cl for more 
information).

Available only when the User Details' 
window is displayed (i.e. after a user name 
item has been selected). Activates Screen 
Cl. Behaviour as per standard Macintosh 
menu bar items.

Mark This command is used to 'mark' a 
user id to highlight suspicious 
activities. Comments on the 
action should be recorded (see 
Screen Cl for more information).

Available only when the User Details' 
window is displayed (i.e. after a user name 
item has been selected). Activates Screen 
Cl. Behaviour as per standard Macintosh 
menu bar items.

Figure 11-16 : Pictorial Screen Layout of Screen C2
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Table 11-6 : Objects Dictionary -  Screen C2

Screen object Description Design Attributes

Dialogue box The dialogue box displays the user id, 
and confirm and cancel options after an 
’Enable' action is selected. In contrast 
with Screen Cl, comments on this 
action are not recorded.

The dialogue box displays the 
enable action and the user name in 
question. Behaviour as per standard 
Macintosh dialogue boxes.

OK and Cancel 
buttons

Used to confirm or cancel an *Enable' 
action.

Behaviour as per standard 
HyperCard button.

The above account completes a review of the entire JSD*(HF) method.

In conclusion, the method contributes to system development as follows :

(a) as a structured human factors method, it specifies explicitly the scope, 
process and notation of human factors contributions to the entire system 

development cycle;

(b) as part of an integrated Human Factors and Software Engineering 
method (namely JSD*):

(i) it supports timely and contextually relevant human factors input to 

system design;

(ii) it facilitates an explicit accommodation of human factors design 

needs by the overall system design agenda;
(iii) it defines clearer roles and design relationships between human 

factors designers and software engineers.

Consequently, a more effective uptake of human factors contributions may be 

expected from the application of the method.
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Chapter Twelve : An Assessment of the 
Present Work and Opportunities for Follow-Up 
Research

"The old order changeth, yielding place to new "
Lord Tennyson, 1809-1892.

"The meaning of things lies not in the things themselves 

but in our attitude towards them."
Antoine de Saint-Exupery

Since this chapter concludes the thesis, its scope includes the following :

(a) assessing the human factors design scope addressed by the research. For 
instance, was an appropriate set of concerns addressed ?
(b) assessing the formulation and implementation of research plans and 

activities. For instance, were appropriate case-study systems and tests used 
during method development and demonstration ?

(c) assessing the research product. For instance, were research requirements 

satisfied fully by the proposed method, and what were its limitations ?
(d) identifying the possibilities for further extensions of the method. For 
instance, a wider scope of human factors integration with the JSD method 

may be considered in (a), (b) and (c) above;
(e) identifying further research to support methodological integration as a 

means of incorporating human factors into system development. For 

instance, computer-based tools may be developed to support the integrated 
method, and declarative human factors knowledge may be identified for 

application at various stages of the method.

An account of the above considerations follows.
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12.1. An Assessment of the Human Factors Design Scope Addressed 

by the Research

It was observed in earlier chapters that the research scope is potentially very wide. 

Thus, a scope commensurate with the project resources had to be defined. After 
careful consideration, a concise and coherent set of human factors design concerns 

was identified (see Figure 7-5, Chapter Seven). However, the research undertaking 

was still extensive and an in-depth study of all human factors design concerns was 

not feasible. Thus, compromises had to be made to balance appropriately a breadth- 
first and depth-first coverage of the set of design concerns. Specifically, only 'key' 

human factors concerns were addressed in detailed. Such concerns were selected on 
the basis of the following criteria :

(i) the current state of human factors knowledge with respect to the 
particular design concern. Specifically, design concerns which are well 

established and supported are assigned a lower research priority, e.g. late 
human factors evaluation;
(ii) the human factors design support required by the SADM chosen for 
integration. Thus, the requirements of the JSD method were accommodated 

preferentially by the present research (see Chapter Six);

(iii) the research resources required to address the particular design concern. 
Generally, to avoid jeopardising other research requirements design 

concerns which require extensive resources were not studied in detail;

(iv) the potential alleviation of existing problems of human factors input that 
would be gained from a better accommodation of the particular design 

concern. Thus, the criterion pre-disposes the research towards addressing 

design concerns at earlier stages of system development;

(v) the potential improvement of the quality of the final artefact that would 

be gained from a better accommodation of the particular design concern. 

This criterion was not applied in isolation since it is difficult to attribute 

specific improvements in artefact usability and functionality to individual 

design concerns. Thus, the criterion was used only to support (i) above.

Bearing the above criteria in mind, the scope of design concerns addressed by the
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present research (namely user requirements specification, task analysis and user 

interface design — see Chapter Six) may now be assessed.

First, an in-depth study of user requirements specification was excluded from the 
research. 1 Instead, its component concerns, namely user requirements elicitation, 

analysis and specification, were addressed by the present research as follows :

(i) existing 'off-the-shelf requirements elicitation techniques were recruited 

to the method since they were already well developed. To support the 

recruitment, the following pre-requisites were m et:

(a) the requirements elicitation stage was located explicitly vis-a-vis 
other stages of the method;
(b) the subject matter and scope of requirements elicitation were 

defined, e.g. extant current and related systems;
(c) the design products to be derived were specified (see (iii) below);
(d) a relevant set of requirements elicitation techniques was identified.

(ii) requirements analysis was incorporated with task analysis since their 
design concerns overlap to a large extent. Thus, a number of existing task 

analysis techniques were recruited and incorporated into the ESSA and 
GTM Stages. Nevertheless, the method could benefit from a wider survey 

of knowledge engineering literature since more advanced requirements 

analysis techniques may be uncovered for recruitment, e.g. repertory grid 

and cluster analyses. Such surveys could be pursued in a follow-up 

research project;

(iii) requirements specification products were specified as comprising a 

statement of user needs table, a domain of design discourse description, and 
a performance specification table (i.e. products of the SUN Stage). 

Although case-study tests showed that design specification was supported 

by these products, detailed examinations of other notational schemes for

1 The scope of user requirements specification is extensive. Thus, the resources required for an 

in-depth study could only be accommodated by a separate research project
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describing the domain of design discourse and for specifying system 

performance were not undertaken. Thus, further investigations of alternative 
notations may benefit the method.

To summarise, resource limitations precluded an in-depth study of user 
requirements specification. Instead, a comprehensive breadth-wise study was 

undertaken to identify well established and appropriate techniques for incorporation 

into the JSD*(HF) method. In this way, potentially serious limitations were 
obviated.

Second, the scope, process and notation of task analysis and user interface design 
were defined more completely and explicitly by the present research. Notable 
improvements over previous conceptions include the following :

(i) a structured technique for task analysis, termed extant systems analysis, 

was specified (see Chapter Nine). It should be emphasised that novel and 

variant design are both supported by the technique since task synthesis is 
addressed by the Generalised and Composite Task Model Stages. General 
advantages of the technique comprise the following :

(a) it encourages a wider consideration of alternative designs since it 
emphasises the analysis of extant systems as opposed to analysing 

only the current or existing system. Thus, 'blinkered* design may be 

avoided;

(b) its stage-wise procedures, inputs and products are defined 

explicitly to better support design;

(c) wider design concerns such as transfer of learning, training 

projections, definition of system performance and semantics, are also 

highlighted at appropriate stages of the method.

(ii) the contribution of task analysis to user interface design was exemplified 

completely and explicitly. In particular, to support display design extant 

system analysis should be followed by the derivation of system and user 

task models, and an interaction task model. Thus, a more complete

312



conception of human factors support for system design was advanced;

(iii) human factors contributions to user interface design specification were 
defined explicitly. In particular, human factors specifications were defined 
as comprising an interaction task model, and a set of interface model and 

display design descriptions;

(iv) a structured human factors method was developed to provide early and 

continuous support for system design. In other words, the scope of the 

method extends across requirements specification to user interface design. 

Thus, a comprehensive set of human factors products, procedures and 
notations was specified to support each stage of system design.

To conclude, the main product of the research, namely the JSD*(HF) method, is 

concerned predominantly with providing procedural support for human factors 

involvement throughout system design. Thus, it follows that subsequent research 
projects should identify the declarative human factors knowledge (e.g. design 
guidelines) that may be recruited at each stage of the method. Alternatively, follow- 

up projects may be concerned with specifying computer-based tools to support 
effective application of the method, e.g. CASE- and IPSE-type tools. Such research 
extensions are detailed in Sub-section 12.4.

12.2. An Assessment of the Research Scope and Activities for 

Developing a Structured Human Factors Method

Generally, research activities were largely implemented as planned, e.g. literature 

surveys; case-study selection, planning and familiarisation; specification and 
implementation of research strategies; specification and test of method conceptions; 
etc. In addition, collaborative tests of the JSD* method were co-ordinated 

satisfactorily except for tests involving design inter-dependencies of the method 

(see Sub-section 12.3). A detailed assessment of how key concerns of method 

development were addressed is discussed below.

(i) case-studies — it was clear at project inception that the number of case- 

study tests would be limited by the resources available for the present
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research. Thus, considerable care was devoted to the planning and selection 
of appropriate case-study systems and method tests. For instance, the 
representativeness of selected case-study systems (of its class and of system 

design in general) and subsequent implications for the extrapolation and 

generalisation of test results across system classes and design scenarios, 

were considered at research start-up. These considerations were necessary 

since they support later assessment of the capability of the JSD*(HF) 

method, e.g. the types of systems that may be developed using the method. 
Thus, it was inferred initially that both real-time and data-processing 

systems should be included in case-study tests of the method. However, it 

became clear later that such concerns were not directly relevant for the 
following reasons:

(a) the capability of the integrated method is determined by the 
capabilities of its component methods;

(b) the structured human factors method was developed with respect 

to a SADM. Since the SADM chosen for integration was left 

essentially unchanged, the capability of the integrated method would 
be limited by the capability of the SADM. In particular, the types of 
systems that may be accommodated by the integrated method are 
determined largely by the way design specifications are described and 

transformed by the chosen SADM. For instance, since JSD is an 

appropriate method for specifying real-time systems, JSD* (the 

integrated method) is expected to be similarly suitable. This 

expectation follows because JSD structured diagram notation is 

adopted by the structured human factors method and its design 

specifications are finally implemented following the JSD method.

Thus, system types were not considered further by the present research. 
Instead, the following criteria for selecting case-study systems were 

considered during method specification and test:

(a) system size and complexity (small to large systems, well and ill 

defined systems);
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(b) domain of application, e.g. Recreation Booking System and 

Digital Network Security Management System;

(c) design scenarios, e.g. variant and new/novel design (represented 

by the case-study design context and the familiarity of the designer 
with the case-study domain); ^

(d) user interface styles, e.g. WIMP and command-line interfaces (see 
Lim, 1989b).

Since the number of case-studies and method tests that could be conducted 

were limited, case-study systems that support the co-variation of these 

criteria were selected. Research strategies were then applied to manage 

method specification and test, and to relate the latter to the selection of case- 

study systems. Thus, appropriate case-study systems were identified to 
support each stage of method development; e.g. small and well-defined 
case-study systems to support the application of a backwards before 
forwards engineering strategy applied during the early stages of method 

development;
(ii) scope o f case-study tests of the JSD*(HF) method ~ generally, the 
objective of the case-study tests was to demonstrate the capability of the 
method for providing human factors support throughout the system design 

cycle. In contrast, the tests were not concerned with validating the efficacy 
of the method for ensuring superior design artefacts. This restriction of the 

tests was necessary because the extensive field tests required for method 

validation could not be accommodated by the resources available to the 

present research (without incurring inappropriate sacrifices to other aspects 

of the work). Instead, concerns involving the validity of the JSD*(HF) 

method were addressed during method development as follows :

(a) by developing the JSD*(HF) method in accordance with the

9 It is unclear what constitutes 'novel design1. A satisfactory definition was not found in the 

literature. Thus, novel design was conceptualised as comprising a process involving an ill-defined 

design scenario, and the derivation of a new design product (extensions of existing designs were 

included, e.g. computerisation of a manual system).
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requirements of a SADM. In particular, the explicit and well defined 

characteristics of SADMs were emulated by the JSD*(HF) method. 

Thus, the JSD*(HF) method, in common with all SADMs, assumes 

that a systematic and orderly design process would support better the 

derivation of a superior design artefact; 3

(b) by exploiting established human factors methods and practices. 
Thus, the validity of the JSD*(HF) method is supported since it 

recruits and builds on existing human factors knowledge;

(c) by simulating Human Factors and Software Engineering 

contributions explicitly during case-study tests of the method. In this 

way, pertinent human factors support and design inter-dependencies 

were identified;
(d) by targeting a specific user of the JSD*(HF) method.4 Explicit 
requirements were then identified and satisfied during method 

development, e.g. the scope and level of proceduralisation required by 
the method user;
(e) by testing proposed method conceptions iteratively using more 
than one case-study system. Thus, the JSD*(HF) method was derived 
only after several specification-and-test cycles and case-study systems;
(f) by targeting the official version of the JSD method. Thus, pertinent 

human factors support and design inter-dependencies were identified 
and accommodated by the JSD*(HF) method.

A more detailed account of the measures taken to address validity concerns

3 It should be noted that a method alone cannot guarantee a superior design artefact

4 Specifically, the method is targeted at human factors designers with a working knowledge of 

the JSD method. During method development, the method user was simulated by a member of the 

RARDE project team. Since her knowledge of the JSD method was greater than most human 

factors designers, care was taken to constrain her application of such expertise. The role of a 

method user was later assumed (implicitly) by another team member when the original simulator 

went on extended leave. Since the second simulator had to learn the method from scratch in a short 

time (having joined the project at mid term), his experiences were indicative of the usability of the 

method (see Sub-section 12.3).

316



may be found in Sub-sections 3.3 and 6.5 (Chapters Three and Six 

respectively). It suffices to say here that the above measures were 
implemented satisfactorily during the development of the JSD*(HF) 

method.

Since direct validation of the JSD*(HF) method was not undertaken, it 

follows that future research should focus on testing the method in the field. 

The acceptability and efficacy of the method may thus be assessed. 
Assessments of interest would include the following :

(a) social implications of introducing the method, e.g. impact on 
existing design team relationships and practices; impact on work 

practices of individual designers (both JSD analysts and human 

factors designers);
(b) 'real world' benefits that would be gained by applying the method, 
e.g. cost-benefit analysis.

The results of such studies would help to identify methodological 
enhancements required to improve uptake of the method;

(iii) nature of case-study tests of the JSD*(HF) method -- generally, case- 
study tests could be configured to assess the functionality and usability of 

the method. An account of each of these assessments follows.

First, functionality assessments comprise determination of the design 

support provided by the method. In the context of a structured method, such 

assessments entail an examination of how well the design task (e.g. design 
management, reasoning, documentation, etc.) is supported by the stage- 
wise design scope, process and notation of a method. In the case of an 

integrated Software Engineering and Human Factors method (of which the 

JSD* method is an instance), the assessment should include an examination 

of the design inter-dependencies required by the method. For instance, the 

specified design inter-dependencies should be assessed on how appropriate 

and complete they are for supporting collaborative design.

317



Generally, functionality assessments constitute a basic part of the present 
research. Thus, case-study assessments were completed as planned with 

one exception, namely tests on the design inter-dependencies of the method 

were not implemented satisfactorily (a result of the difficulties in co­
ordinating case-study tests involving the sponsors of the research). 

Nevertheless, the implications for the JSD*(HF) method were not serious 

(see Chapter Seven, Sub-section 7.1.3). Thus, functionality assessments of 
the JSD* and JSD*(HF) methods were generally positive. A more detailed 

account of the assessments is presented in Sub-section 12.3 where the 

JSD*(HF) method is discussed.

Second, usability assessments comprise determination of the cost incurred 

in applying the JSD*(HF) method. An extended assessment may include 
opportunity costs to account for benefits foregone by method application, 

or benefits that would be gained if alternative design approaches were 
applied, e.g. rapid prototyping. Thus, usability assessment involves a cost- 
benefit analysis of the utility of the method, e.g. benefits of method 
application are compared with efforts expended in learning the method 

(learnability), with having to change current work practices (acceptability), 
etc. Such assessments are indicative of the method's capacity for 

accommodating different users,^ design scenarios and project 

characteristics, i.e. an indication of the flexibility and tailorability of the 

method. Since these method characteristics comprise important determinants 

of its uptake, they were accommodated appropriately during method 

development, e.g. existing methods were recruited to maximise positive 

transfer of learning; the chosen SADM was maintained largely unchanged; a 

flexible level of extant system analysis was specified; the method was 

characterised at different levels of description to support varying degrees of 

method application; etc. Unfortunately, an overall usability assessment of 

the method could not be supported due to the limited resources available to 

the present research. However, an informal assessment of the learnability of 

the method was afforded when a new researcher joined the project at mid-

5 The JSD*(HF) method is targeted at a particular method user (see Footnote 4).
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term (see Footnote 4). The assessment is discussed in the next sub-section.

In summary, the scope of the research comprises the development of the JSD*(HF) 
method and case-study assessments of its functionality. By constraining 

appropriately the scope of method development and assessment, the research 

activities were largely completed as planned. Thus, key research concerns were 

addressed and a 'reasonably valid' JSD*(HF) method was developed. A detailed 

account of an assessment of the method is discussed below.

12.3. An Assessment of the JSD*(HF) Method

In Part IV, a structured human factors method, termed the JSD*(HF) method, was 

described explicitly as follows :

(a) its stage-wise design scope was defined explicitly as comprising a 
set of products;
(b) its stage-wise design process was defined explicitly as comprising 
a set of procedures, rules of thumb and design inter-dependencies;

(c) its stage-wise design notation was defined explicitly as comprising 

a set of documentation schemes.

On the basis of these methodological characteristics, the JSD*(HF) and JSD 

methods were integrated to generate the JSD* method.

In general, case-study assessments of the JSD*(HF) method indicated that the 

requirements of structured integration were largely satisfied. Case-study 

assessments were directed only at the JSD*(HF) method and its design inter­

dependencies, since the JSD method is essentially unchanged. These assessments 
are presently reviewed.

The JSD*(HF) method may be assessed on the following :

(I) its solution to current problems of human factors input into system
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development. For instance, to what extent does the method alleviate existing 

problems of human factors input, and what are its limitations ?
(II) its potential in relation to other human factors methods, i.e. a 

comparative assessment involving existing human factors methods. For 

instance, how does the JSD*(HF) method compare with existing (non­

structured) human factors methods ?
(El) its potential in relation to other integrated methods, i.e. a comparative 

assessment involving existing integrated methods. For instance, how well 
is the JSD*(HF) method integrated with JSD, and how does it compare 

with other integrated methods; e.g. those methods proposed by Sutcliffe 

and Wang (1991), Blyth and Hakiel (1989), etc. ?
(IV) its methodological characteristics in relation to the requirements of a 

S ADM. For instance, are the stage-wise scope, process and notation of the 

method defined adequately for a structured method ?

It should be noted that the above assessments may intersect one another, i.e. they 
are not mutually exclusive. For instance, assessment (III) is a composite of 
assessments (I), (II) and (IV) above. A more detailed account of the assessments 

follows.

First, the assessments in (I) above follows from the arguments for structured 

integration of Human Factors and Software Engineering methods described in 

Chapter Two, e.g. the 'too-little-too-late' problem of human factors input; 

encroachment of resources for human factors design due to poor project planning or 

its exclusion from the design agenda; etc. Generally, case-study assessments 

indicated the method to be promising. In particular, its structured characteristics and 

complete coverage of the design cycle provide an explicit address of human factors 
contributions to system development. On this basis, inter-dependencies between 

Human Factors and Software Engineering design were specified to ensure human 

factors inputs that are timely and contextually relevant Thus, the uptake of human 

factors contributions may be enhanced by methodological integration.

The utility of the method was also supported by post-hoc observations of a user 
interface design specified using rapid prototyping. In particular, some of the design
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pitfalls arising from specific inadequacies of a rapid prototyping approach, could 

have been avoided if the JSD*(HF) method had been applied (see Lim, 1991). 

These assertions were illustrated by demonstrating how the user interface would 
have been designed using the JSD*(HF) method. However, it should be 

emphasised that since controlled studies were not undertaken such evidence is at 

best circumstantial. Consequently, controlled studies and field trials should assume 
priority in a follow-up research project.

Second, the assessments in (II) are related to the arguments that a structured human 
factors method is a pre-requisite for integration with SADMs (see Chapter Three). 

Specifically, it was observed that existing human factors methods provide only 
incomplete and implicit coverage of the system design cycle. By definition, such 

inadequacies would be addressed directly by the characteristics of a structured 

method. This requirement was satisfied by the JSD*(HF) method (see Chapter 

Seven). In particular, the method addresses explicitly system design concerns 
spanning user requirements to display design. Thus, its scope, process and notation 

extend significantly the design support provided by existing human factors 
methods. Other benefits that would be gained from its integration with JSD were 

discussed in (I) above.

Third, the assessments in (IE) may be related to the review and critique of previous 
reports of human factors integration with SADMs (see Chapter Five). Specifically, 

the JSD*(HF) method may be assessed comparatively in terms of its 

methodological configuration and design support. Such a comparison was made in 

respect of the following assessments :

(a) to what extent were inadequacies of other integrated methods addressed

by the JSD*(HF) method ?

(b) to what extent was the design support provided by other integrated
methods matched or exceeded by the JSD*(HF) method ?

Since the JSD*(HF) method was only developed recently, an extended survey of 

method users was not possible. Thus, as an interim assessment, the integrated 

methods reviewed in Chapter Five were compared and rated by the present author.
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The subjective scores for these methods are shown in Table 12-1. An inspection of 

the scores reveals that the JSD*(HF) method was rated highly. The outcome was 

expected for the following reasons :

(a) the development of the JSD*(HF) method benefited from preceding 

attempts at methodological integration. For instance, by building on the 

knowledge generated in preceding attempts, similar pitfalls were avoided in 

the present research, e.g. the need to define specific human factors inputs 

and products for each stage of the method;
(b) some preceding attempts were not concerned specifically with the 

development of a structured human factors method;

(c) some preceding attempts were not concerned specifically with the 

integration of human factors with SADMs;

(d) some preceding attempts were incidental or comprise only a part of other 

commercial work. Thus, resources for method development were rather 
limited. In contrast, seven person-years were allocated for the development 
of the JSD*(HF) method;
(e) some preceding attempts recruited earlier outputs of the present 
research, e.g. Sutcliffe and Wang (1991); Blyth and Hakiel (1989). Since 

then, these outputs have been developed further or superseded.

Fourth, it was stated in Sub-section 12.2 that the assessments in (IV) are concerned 

with functionality and usability assessments of the method. A detailed account of 

these assessments follows.

Generally, functionality assessments address the following :

(a) the design scope of the method. For instance, to what extent is the 

scope of human factors design addressed by the stages and products of the 

JSD*(HF) method ?

(b) the design process of the method. For instance, how logically 

sequenced, manageable and complete are the design stages of the JSD*(HF) 

method ? Are the design procedures of the method sufficiently explicit and 

complete to support design specification by the targeted user of the method ?
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(c) the design notation of the method. For instance, to what degree are 

requirements for comprehensive and specific human factors design 

descriptions supported by the stage-wise notations and documentation 
schemes of the method ? Are the notations and descriptions of the method 
adequately powerful and comprehensive to support effective communication 

among human factors designers, software engineers and end-users ?

(d) the design inter-dependencies of the method. For instance, are 

intersecting design concerns identified correctly and completely ? Are design 

inter-dependencies specified adequately to support effective and efficient 
collaboration between JSD*(HF) and JSD*(SE) design, i.e. to ensure 

design convergence without fortuitous iterations ?

In general, case-study results in respect of these assessments of the method were 

positive. However, the results for assessment (d) should be considered 

provisionally positive since they were inferred largely from post-hoc inspections of 
design descriptions derived by applying the JSD*(HF) and JSD*(SE) methods (see 
Chapter Seven). In particular, design inter-dependencies should be specified when 
the design information to be used is common to both methods, and when 
intersections are found between Human Factors and Software Engineering design 

descriptions.

The assessments also highlighted potential areas for follow-up research, namely :

(a) design inter-dependencies of the method. It was noted Sub-sections 

7.1.3 and 12.2 (Chapters Seven and Twelve respectively) that case-study 

tests on design inter-dependencies of the method were not realised 
completely. In particular, ’real time' co-ordination between JSD*(HF) and 

JSD*(SE) design did not materialise during the case-study tests (see Sub­

section 12.2). Thus, case-study assessments of JSD*(HF) design inter­

dependencies were based largely on post-hoc comparisons of JSD*(HF) 

and JSD*(SE) design descriptions. As a result, more specific design inter­

dependencies could not be defined to ensure a tighter synchronisation of 

information exchanges between JSD*(HF) and JSD*(SE) stages. Thus, 

follow-up research projects should repeat case-study tests involving 'real
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time' co-ordination between JSD*(HF) and JSD*(SE) design.6 Further 

areas of investigation concerning design inter-dependencies of the method 

are reviewed below.

First, an area of study not pursued in the present research concerns the 

determination of more explicit relationships between JSD*(HF) and 

JSD*(SE) design products. For instance, it is presently unclear how 
JSD*(HF) products may be influenced by specific specifications of the 

JSD*(SE) Functions Stage, e.g. types of data stream merges; time grain 
markers; etc. Such relationships should be identified so that appropriate 

design inter-dependencies may be specified. Thus, the large and unwieldy 

design transformations at the Functions Stage (see Finkelstein and Potts, 

1985) may be supported better.

Second, the effectiveness of the Functions List in ensuring design 
convergence should be determined. Thus, the current definition of the 

Functions List may be enhanced, e.g. a clearer specification of its scope and 

derivation procedures. Alternatively, further design inter-dependencies may 
be specified to provide better support for parallel design development by 
JSD*(HF) and JSD*(SE) designers (see next paragraph).

Third, the potential of performing early stages of JSD*(HF) design in 

parallel with JSD*(SE) Model and Function Stages should be examined 

further. Presently, a conservative application of the method would comprise 

a sequential performance of the stages as follows :

(1) JSD*(HF) design stages prior to the Composite Task Model Stage 

are performed to completion;

(2) JSD*(HF) design is suspended at the Composite Task Model 

Stage;

(3) JSD*(SE) Model and Function Stages are performed to

6 Such a follow-up project has been commissioned by RARDE (sponsors of the present 

research).
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completion;

(4) JSD*(HF) and JSD*(SE) design is resumed in parallel.

In this way, a converging JSD*(HF) and JSD*(SE) design may be ensured 

with greater confidence (thus the design is efficiently managed). However, 
such a conservative application of the method would incur costs that may be 

unacceptable. For instance, human factors input to the functional definition 

of the target system would be delayed. As a result, an appropriate 

accommodation of its contributions may be hampered by constraints 

imposed by preceding JSD*(SE) design products. Alternatively, the 

efficiency promised by conservative method application would be eroded by 
additional iterative cycles required to accommodate late human factors input. 
Strictly sequential application may also complicate design management 
across system development projects. For instance, to avoid leaving human 
factors resources 'idle' at particular stages of the design cycle, a number of 
design projects may be inter-leaved. This work practice would be stressful 

if a larger number of projects are involved. In addition, design continuity 

would be disrupted. To resolve such issues, the design inter-dependencies 
of the method would have to be examined further to determine the extent to 

which early JSD*(HF) and JSD(SE) stages may be undertaken in parallel.

(b) final integration o f JSD*(HF) and JSD*(SE) design specifications. 

Presently, the method requires the following :

(1) JSD*(HF) specifications of the user interface should be discussed 

with JSD*(SE) analysts;

(2) JSD*(HF) and JSD*(SE) specifications are integrated and then 

implemented by JSD*(SE) analysts. In other words, the analysts are 

required to generate an overall set of specifications so that JSD 
implementation rules may be applied.

To this end, explicit relationships between JSD*(SE) and JSD*(HF) 

specifications have to be established. The task is supported by the following 

rules of thumb (recruited to the method from Carver and Cameron, 1987;
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and Carver, Clenshaw et al, 1987):

(1) active user interface objects should be linked communicatively 
with JSD*(SE) model and function processes;

(2) one or more user actions at the user interface may comprise one 
input to JSD*(SE) function processes, i.e. the relationship comprises 
a many-to-one mapping;

(3) one or more on-line task actions of the user may correspond to one 

action of the JSD*(SE) model, i.e. the relationship comprises a many- 

to-one mapping;

(4) user interface message and display objects should be linked 

communicatively with JSD*(SE) information functions.

Note that these rules of thumb may intersect (i.e. are not mutually 
exclusive). In particular, the scope of rules (1) and (2) intersects with rules
(4) and (3) respectively.

On the basis of these rules, high level relationships between JSD*(SE) and 
JSD*(HF) specifications were inferred, namely rules (2) and (3) above 
relate JSD*(SE) specifications to ITM(y) specifications; 7 while rules (1) 

and (4) relate JSD*(SE) specifications to IM(y) and DD(y) specifications. 
Since the participation of the research sponsors in collaborative case-study 

tests did not include the delivery of complete JSD*(SE) specifications and 

the final integration of JSD*(SE) and JSD*(HF) specifications, lower level 

relationships between the two sets of specifications could not be 

investigated. For instance, it is presently unclear how ITM(y) actions may 

be related and linked to JSD*(SE) model and function processes. 

Consequently, follow-up research projects should include case-study tests 
involving the comparison and integration of complete JSD*(SE) and 

JSD*(HF) design specifications. Such studies would be instrumental in

7 The rules also relate JSD*(SE) specifications to STM(y), an intermediate design description 

excluded from the final set of JSD*(HF) user interface specifications.
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enhancing the JSD* method as follows :

(1) by uncovering more explicit requirements for JSD*(SE) and 

JSD*(HF) collaboration, additional and/or better procedures may be 

specified (if necessary) to enhance the support provided by the JSD* 

method;
(2) by extending the scope of JSD*(SE) and JSD*(HF) collaboration 

(hence the scope of the JSD* method) to include the JSD 

implementation stage, human factors support may be broadened to 
include the translation of JSD*(HF) specifications into executable 

code (see also (c) below);
(3) by understanding the processes involved in the final integration of 

JSD*(HF) and JSD*(SE) specifications, CASE-type tools may be 

developed to support the JSD* method;
(4) by understanding the implications of late design modifications, 
consequential changes to JSD*(HF) and JSD*(SE) descriptions and 
specifications may be managed better. In addition, by providing 

explicit methodological support to facilitate a wider consideration of 
JSD*(HF) and JSD*(SE) information, it may be expected that 

proposed design modifications would be more appropriate. Thus, 
future studies should consider tracing the effects of design 
modifications on stage-wise products of the JSD*(HF) and JSD*(SE) 

methods.

(c) implementation of integrated JSD* specifications. Presently, human 

factors support for JSD* implementation relates largely to the transient 
response times of the target system. In particular, unacceptably long 
response times would either require an alternative JSD implementation, or 

additional feedback cues to the user. Since JSD implementation was outside 

the remit of the present research, it was not addressed in detail. As such, it 

follows that future studies should investigate the possibility of providing 

more extensive human factors support for JSD implementation.

The above review completes an account on the functionality assessment of the
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JSD*(HF) method.

As regards usability assessments of the method, none were originally planned for 
the present research. However, an opportunity for an informal assessment was 

exploited when a new research team member joined the project at mid-term. An 

informal assessment of the leamability of the method was thus afforded. Since the 

new member assimilated the method within a short period of time, it was concluded 
provisionally that its leamability was good. A more intensive assessment would be 
necessary to affirm this conclusion. Such assessments should be undertaken in a 
follow-up research project. Another usability assessment involves a cost-benefit 

analysis of method application. In this respect, it may be expected that resources for 

design analysis and documentation would increase.** However, this increase does 

not necessarily imply an overall increase in the total resource cost. In particular, a 

higher expenditure of resources on design analysis and documentation may be off­

set by subsequent savings due to greater efficiency in design planning, 
management, specification and maintenance (i.e. arguments that support the 
application of SADMs in general). More cannot be said at present since the 

collection of quantitative data is not yet possible (the method having only just been 

developed). Thus, to support stronger claims concerning the usability of the 
method, further research would be required. In particular, field studies could be 
conducted to examine the following :

(1) the 'real world' performance of the JSD*(HF) and JSD* methods. For 

instance, how well do JSD*(SE) and JSD*(HF) designers collaborate under 

'real' design situations ? Other related questions would include : how well 

does the method support design team interaction; how much disruption to 

current design practice would result from introducing the JSD* method; to 

what extent would design creativity be constrained by the methods; etc. ?
(2) the cost-benefit profile of the JSD*(HF) and JSD* methods. To this 

end, both qualitative and quantitative data should be gathered from case- 

study applications of the methods, e.g. to what degree do the methods affect

8 In respect of design documentation, the increase in resource costs could be reduced considerably 

by computer-based tool support
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system development resources and schedules; to what extent does the 
JSD*(HF) method facilitate the generation of superior design artefacts; what 

problems are commonly faced by users of the methods; etc. ? Appropriate 

measures may then be taken to enhance the JSD*(HF) method and support 

its subsequent introduction. Thus, the uptake of the JSD*(HF) method may 

be improved.

The above account completes an overall assessment of the JSD*(HF) method.

12.4. W ider Extensions of the Research

This sub-section is concerned with how the framework of the JSD*(HF) method 

may be exploited for specifying wider human factors support for system 

development. To this end, potential extensions of the method may be inferred from 
Figure 12-1. Specifically, the Figure shows that the design support provided by the 
JSD*(HF) method is predominantly procedural. Thus, it follows that the scope of 
the method may be extended to include declarative human factors knowledge. In 
addition, both types of human factors support may be delivered using computer- 
based tools. These extensions of the method will now be discussed further.

The incorporation of declarative human factors knowledge into the JSD*(HFi 

method

The incorporation of declarative human factors knowledge essentially implies an 

extension of the current user base of the JSD*(HF) method. For instance, the 

method user base may be extended to include designers who are not human factors 

experts, e.g. software engineers with some knowledge of human factors (see 

Figure 12-1, lower left-hand side). To attain this goal, the following objectives 

would have to be achieved:

(1) explicit links would have to be identified between JSD*(HF) stages and 

modular human factors design ’topics', e.g. organisational design; socio-
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Figure 12-1 : Locating the JSD*(HF) Method within a Range of
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(a) system design is advanced essentially via separate Human Factors and 
Software Engineering design streams (attributed partially to the 
requirement to maintain an unchanged JSD method);
(b) human factors design support is embedded in a collaborative method. 
In particular, the stage-wise scope, process and notation of the JSD*(HF) 
and JSD*(SE) methods are linked by specific design inter-dependencies. 
Thus, context and timing of inter-disciplinary design inputs are defined;
(c) the scope of human factors design support provided by the method is 
predominantly procedural;
(d) the targeted method user is a human factors designer with a working 
knowledge of the JSD method.
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technical design; job design; training design; personnel selection; 
workstation design; environment and workplace design; etc. In other 

words, the design 'topics' have to be set specifically against the stage-wise 
context defined by the JSD*(HF) method. Thus, appropriate 'repositories' 

of declarative human factors knowledge may be collated to support each 

stage of system development as described in (3) below;

(2) design procedures of the JSD*(HF) method would have to be specified 

at a lower level of description. Thus, a wider user base would be 

accommodated by the method;
(3) a more comprehensive set of human factors concepts, techniques and 
reference materials would have to be collated to support method application 

by a wider range of designers. A prospective set would include the 
following:

(a) concepts and techniques for human factors design — requirements 
analysis and specification techniques (see Life 1991; Checkland, 
1981); socio-technical design techniques (e.g. the Effective Technical 
and Human Implementation of Computer Systems (ETHICS) method 
developed by Mumford and Weir, 1979); organisational and 
participative design techniques (see Eason, 1987; Eason and Cullen, 

1988); late evaluation techniques (see Long and Whitefield, 1986);
(b) reference materials for human factors design — extracts from 

human factors design handbooks, guidelines, standards and 

principles, e.g. Smith and Mosier (1984); Helander (1988).

Thus, such an extension of the present research would entail intensive 

literature surveys to augment each stage of the JSD*(HF) method.
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The development of computer-based tools to support the JSD*(HF>) and JSD* 

methods

Three types of computer-based tools may be developed to support the design tasks 

entailed by the application of the JSD* and JSD*(HF) methods,9 namely CSCW- 

(Computer Supported Co-operative Work), IPSE- (Integrated Project Support 

Environment) and CASE- (Computer Aided Software Engineering) type tools. 

Presently, the potential for computer-based tool support for each of the methods is 

discussed.

First, IPSE- and CSCW-type computer-based tools may be developed to facilitate 

collaborative design management as defined by the JSD* method. For instance, the 

following computer-based tools may be considered :

(1) CSCW-type tools may be developed to facilitate information exchanges 
between JSD*(HF) and JSD*(SE) designers, e.g. automatic despatch of 
information associated with design inter-dependencies of the method. Thus, 

by despatching design information as soon as it becomes available, such 

computer-based functions could improve design collaboration;
(2) IPSE-type tools may be developed to support the management of 
JSD*(HF) and JSD*(SE) design, e.g. overall project planning and tracking 
of collaborative design advancements. In addition, adherence to the design 

process of the JSD* method may be enforced by the tool via appropriate 

inter-locks across JSD*(HF) and JSD*(SE) design streams. For instance, 

the tool may be designed to block the documentation of JSD Model 

specifications (JSD*(SE) stream) until products of the Composite Task 

Model Stage (JSD*(HF) stream) have been specified. Design inter­

dependencies may be supported similarly by the tool.

9 Note that IPSE and CASE tools for the JSD*(SE) method are already available, e.g. MacPDF 

(Macintosh-based Program Development Facility developed by RARDE); PDF™ (Program 

Development Facility) and SpeedBuilder™ (both developed by Michael Jackson Systems Limited, 

now Learmont and Burchett Management Systems Limited). For this reason, the development of 

computer-based tools for the JSD*(SE) method is excluded from the present account
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Second, computer-based tools for the JSD*(HF) method should provide CASE- 

and IPSE-type design support. For instance, the following computer-based tools 

may be considered:

(1) IPSE-type tools may be developed to support the management of 
JSD*(HF) design, e.g. project planning and tracking to chart the completion 

of JSD*(HF) deliverables against planned schedules. In addition, adherence 

to the design process of the JSD*(HF) method may be enforced by the tool 

via appropriate inter-locks among its design stages. For instance, the tool 

may be designed to block the documentation of display designs until a 

composite task model has been specified. To this end, a simple design may 
be to implement a 'signing-off scheme for the designer to indicate the 
satisfactory completion of each JSD*(HF) product. The tool may then 

counter-check the input by searching through entry fields designated for the 
documentation of JSD*(HF) products. If all entry fields have been 

completed, the tool may then release the inter-locks to permit the 

documentation of later JSD*(HF) design products. Thus, conceptual task 
description may be encouraged prior to interaction level specification;
(2) CASE-type tools may be developed to support JSD*(HF) design 

specification. In particular, the following functional supports should be 
considered:

(i) text and graphics editors to facilitate design documentation;

(ii) consistency checkers to ensure appropriate application of 

notational constructs, and the consistent propagation of structured 

diagram descriptions of products across succeeding stages of the 

JSD*(HF) method;

(iii) simulators to investigate the performance of alternative designs, 

e.g. MicroSaint™ tools such as MicroSaint Human Operator 

Simulator (MS HOS)™, and HARDMAN III™ Manpower and 

Personnel Integration (MANPRINT) toolset (see Dahl et al, 1991a, b);

(iv) prototypers and animators to demonstrate promising designs 

during feedback elicitation and analysis.
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In conclusion, it should be emphasised that the JSD* and JSD*(HF) methods have 

been developed sufficiently to support the specification of computer-based tools. ̂  

Pending further extensions of the JSD*(HF) method, computer-based tools may 
also be developed to support the application of declarative human factors 

knowledge (see Perlman, 1988).

12.5. Concluding Summary

The primary assertion of the thesis is that current problems of human factors input 
to system development would be alleviated by integrating Human Factors and 

Software Engineering methods throughout the system design cycle. It was also 
argued that methodological integration would be facilitated by the explicitly defined 
characteristics of SADMs. In particular, the well defined stage-wise scope, process 

and notation of such methods would facilitate the identification of intersecting 
Human Factors and Software Engineering design concerns.

To develop these assertions and arguments further, a research plan and a set of 

strategies for achieving methodological integration were specified. In particular, the 
plan and strategies address the development and subsequent integration of a 
structured human factors method with a particular SADM.

Methodological integration was achieved in two sequential specification-and-test 

phases comprising a number of case-study iterations and design scenarios. 

Specifically, the sequential phases involve the following :

(a) the development of a structured human factors method to complement 

the SADM chosen for integration. Method development was pursued in two 

modules. The first module addresses the scope and process of the method, 

while the second was concerned with its notation. Thus, a structured human 
factors method was developed iteratively;

10 However, the development of CASE-type tools to generate code automatically from JSD*(HF) 

design descriptions will require tighter specifications of its notational rules.

335



(b) an explicit specification of design inter-dependencies between the 

structured human factors method and the SADM. Thus, the methods were 

integrated and operationalised to support timely and contextually relevant 
human factors input throughout the system design cycle. In this way, a 

more effective uptake of human factors contributions may accrue.

The research plan was then instantiated for the JSD method. Thus, human factors 

design deficiencies of the JSD method were identified and design support 
requirements to be satisfied by the structured human factors method were defined. 

On this basis, the JSD*(HF) method was developed and its design stages inter­

woven appropriately with the JSD method. Specific design inter-dependencies were 
also defined between the JSD*(HF) and JSD methods. To account for the design 

inter-dependencies, the JSD method was re-named the JSD*(SE) method. 

Throughout method development, case-study assessments were conducted. 
Following several iterations involving various case-study systems and design 

scenarios, a promising integrated method, termed the JSD* method, was derived. 
The method constitutes the primary product of the present research.

To conclude, the foundation established by the present work would support two 

directions of future research. First, the method has been developed sufficiently to 
support field trials.11 In particular, such studies of 'real world' application of the 

method could uncover information that would contribute significantly to later 

enhancements of the JSD*(HF) method (and by implication the JSD* method).12

11 Such a follow-up project has been commissioned by the sponsors of the present research. The 

objective of the follow-up project is to test the method further using a larger and more complex 

case-study system, namely a military command, control and communications system. At a 

minimum, the project will repeat the case-study tests described in this thesis and address a similar 

set of methodological issues, e.g. effects of system scale-up; efficacy of its support for design 

specification; appropriateness of its design inter-dependencies; etc.

12 As with any design method, the JSD*(HF) and JSD* methods are expected to 'evolve' with its 

application in the field. For instance, SSADM and JSD have both undergone several updates as 

part of their maturation process.
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Second, the explicitly defined stage-wise scope, process and notation of the 
JSD*(HF) method could be used to support complementary forms of human factors 

input, e.g. design principles, guidelines and computer-based tools. In other words, 

its broad and explicit methodological characteristics constitute a definition of the 

system design context. Thus, the human factors support required at each stage of 

system development may be identified. On this basis, appropriate human factors 

principles, guidelines and computer-based tools may be recruited or developed to 

support the system design cycle. These concerns may be pursued further in a 

follow-up research project.
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Glossary o f Term s

Abstraction See Annex B.

Automated task A task performed entirely by a device.

Decomposition See Annex B.

Design phase A group of design stages that addresses a common aspect of 

system development. For instance, the JSD*(SE) Specification Phase 
(comprising JSD Modelling and Network Stages) is concerned primarily with 

design specification (as opposed to design implementation).

Design stage A group of design activities concerned with transforming 
input(s) from a preceding stage(s) into its characteristic product(s).

Device independent A term used to describe a task that is not specific to a 
particular device. For instance, TD(ext) is a device dependent description. In 
contrast, GTM(ext) is a predominantly device independent description since 

device-specific details were removed during its abstraction from a TD(ext) 
description. The purpose of deriving a device independent description is to 

uncover the logic underlying a design so that generalisations may be made 

about its functional features. Thus, the potential porting of design features 
across systems may be assessed. However, it should also be noted that a 
completely device independent description is not always desired since low 

level design details would be lost.

Domain objects Objects associated with the domain of application.

Extant System or EXT A general term for a class of systems comprising the 

extant current system, extant partial system and extant related system.

Extant System Composite or X A 'virtual' composite system synthesised 

analytically from a number of extant systems (either part or whole). Such a 

system description is derived to support subsequent reasoning about the 

system to be designed.

Extant Related System An existing system that shares the same domain of 

application as the system to be designed, but is not used by the client 

organisation, i.e. it is used by other organisations.
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Extant Current System The existing system to be replaced by the system to 

be designed, i.e. the system currently used by the client organisation.

Extant Partial System Parts of an existing system that may be relevant to 

the system to be designed. For instance, its sub-tasks (and associated design 

features) may be similar to those anticipated for the system to be designed. In 

other words, the domains of the systems intersect partially.

Generification See Annex B.

Inter-dependencies Intersecting JSD*(HF) and JSD*(SE) design concerns. 

At each inter-dependency, design information of common interest would have 

to be shared, agreed and complied with throughout later stages of design. 

Since the shared information is mutually binding, unavoidable violations in 

one design stream must be communicated to the other. Appropriate iteration of 

the design stages governed by the particular inter-dependency may then be 
undertaken. Usually, design stages following the violation point would have 

to be repeated. The purpose of design inter-dependencies is to ensure that the 
specifications derived in parallel JSD*(HF) and JSD*(SE) streams are 

convergent.
Interface objects Interactive objects that may be manipulated by a user, or 

non-interactive components of an information display.

JSD* A term referring to the integrated method which comprises a structured 

human factors method (termed the JSD*(HF) method) and the JSD method 
(renamed the JSD*(SE) method).

JSD*(HF) The human factors component of the JSD* method.

JSD*(SE) The JSD component of the JSD* method. The JSD*(SE) method is

essentially the original JSD method extended to include design inter­

dependencies with the JSD*(HF) method.

Off-line task User's tasks that do not involve a computer.

On-line task User's tasks which involve direct interactions with a computer.

Screen objects A sub-set of user interface objects comprising information and
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functional representations in a screen display.

Synthesis See Annex B.
System A particular configuration of human and computer entities interacting to 

perform work under a specific environment.

Target System The system to be designed.

Task System activity required to achieve work goals.
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Index of Ahhreviations

C Confirm (refers to a generic screen design template for users to confirm an 

input).
CTM Composite Task Model (Stage).
CTM(y) Composite task model of the target system.

DD Display Design (Stage).

DET(ext), DET(y) Dialogue and error message tables for the extant and 

target systems respectively.
DITaSAD(ext), DITaSAD(y) Dialogue and inter-task screen actuation 

descriptions of the extant and target systems respectively.
DoDD(ext), DoDD(y) Domain of design discourse description of the extant 

and target systems respectively.

E Error (refers to a generic screen design template used to signal error messages 
to the user).

ECS Extant Current System
em Error message (usually followed by a numeric suffix which identifies the 

message item in the Dialogue and Error Message Table).

EPS Extant Partial System

E RS Extant Related System
E S S A Extant Systems System Analysis (Stage)

EXT Extant system

(ext) Denotes JSD*(HF) descriptions of an extant system, e.g. GTM(ext).

GTM Generalised Task Model (Stage).

GTM(x), GTM(ext), GTM(y) Generalised task model of a 'virtual' extant 

system composite, an extant system and the target system respectively.

HF Human Factors

IM Interface Model (Stage)
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IM(ext), IM(y) Interface model of the extant and target systems respectively.

ITM Interaction Task Model (Stage)
ITM(ext), ITM(y) Interaction task model of the extant and target systems 

respectively.

JSD Jackson System Development (method).
JSD* An integrated method comprising the Jackson System Development 

method and a structured human factors method.
JSD*(HF) Human Factors component of the JSD* method.
JSD*(SE) JSD component of the JSD* method.

MPASS MacPassword™ (a Macintosh-based software for PC security).

NMgr Network Manager.
NMS Network Management System.
NMW Network Management Workstation.

PSL(ext), PSL(y) Pictorial screen layout diagrams for the extant and target 

systems respectively.

R(ext) General term used to denote a range of products derived at the Extant 
Systems System Analysis Stage. Thus, STM(ext); UTM(ext); ITM(ext); 

IM(ext); DoDD(ext); SUN(ext); UIE(ext) and DD(ext) are all instances of 

R(ext).

S Screen (refers to a screen design. Usually followed by a alpha-numeric suffix 

which identifies the pictorial screen layout diagram for a particular screen).

S E Software Engineering

STM System Task Model (Stage)

STM(ext), STM(y) System task model of the extant and target systems 

respectively.

S o R e S tatement of Requirements

SUN Statement of User Needs (Stage)

SUN(ext), SUN(y) Statement of user needs for the extant and target systems
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respectively.
SUTaM System and User Task Model (Stage)

TD Task Description

TD(ext) Task description for an extant system.

U C L University College London

U C L C C University College London Computer Centre
UIE(ext), UIE(y) User interface environment of the extant and target systems 

respectively.
UTM User Task Model (Stage)
UTM(ext), UTM(y) User task model of the extant and target systems 

respectively.

(x) Denotes JSD*(HF) descriptions of a 'virtual' extant system composite, e.g. 
GTM(x).

X Represents the 'virtual' extant system composite that is derived to support 
design reasoning.

(y) Denotes JSD*(HF) descriptions of the target system, e.g. CTM(y).
Y Represents the target system or system to be designed.
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Annexes

Annex A : JSD Structured Diagram Notation. JSD* Structured Diagram Notation 

and Task Description

Generally, constructs of the JSD structured diagram notation (comprising sequence, 

selection, iteration and posit-quit -- see Figure AA-l(A)) were recruited to the 

JSD*(HF) method for task description. The recruitment was motivated by two 

reasons, namely:

(1) design communications between JSD*(SE) and JSD*(HF) designers 
would be facilitated by a common notation;

(2) the JSD structured diagram notation could support a more specific 

description of tasks.

To this end, the utility of the notation was investigated by Cameron and Carver 
(1987); Walsh (1987a); Lim (1988e); and Carver (1988). Although the results were 

positive, an additional construct was introduced by Lim (1988e) to support the 

description of non-sequential hierarchies (see Figure AA-l(B) below). The 
application of such a construct (termed a hierarchy construct) is demonstrated in 
Figure AA-2 below. For comparison, JSD and JSD* structured diagram 

descriptions is shown for a fictitious task 'T' which may be characterised as 

follows:

(a) it comprises four sub-tasks, namely A, B, C and D;
(b) its sub-tasks B and C may be performed in any order, i.e. B then C, or 

C then B;

(c) its sub-tasks B and C can be carried out only after A;

(d) its sub-task D can be carried out only after B and C.

An inspection of the descriptions of task T reveals that the JSD structured diagram 

description is clearly unwieldy. In particular, the diagram would become 

unmanageably large with a greater number of sub-tasks. Thus, the addition of a
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hierarchy construct permits a more elegant, readable and concise task description.

Figure AA-1 : Constructs of JSD and JSD* Structured Diagram

Notation

A) Constructs of JSD Structured Diagram Notation
posit (backtracking arising 

iteration sequence selection quit from recognition difficulties)

o I ? * ? 0

B) Additional Construct of JSD* Structured Diagram Notation

^  hierarchy

Figure AA-2 : JSD and JSD* Structured Diagram Descriptions of a 
Fictitious Task 'T '

Textual Description:

Task T : Do A, then B and C in any order, then D.

JSD Structured Diagram Description JSD* Structured Diagram Description

Main
body

C first o 
body

B first 
body
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Annex B: Basic Design Concepts of the JSD*(HF) Method

(a) Abstraction

Abstraction is applied by the designer to derive a particular perspective of a task. 

For instance, task performance requirements may be viewed either in terms of user 

operations with a device, or in terms of higher level sub-task units performed to 

satisfy specific system goals.

In the context of the JSD*(HF) method, abstraction is used primarily to expose the 

conceptual (rather than detailed) design of a particular task. Specifically, it supports 

the derivation of generalised task models of the extant and target systems, i.e. 
GTM(ext) and GTM(y) respectively.

tiri Generification

Generification is a process that identifies common elements among discrete objects 

so that they may be characterised as a set for a specific design context. In particular, 
the common elements define a super-ordinate or 'generic' class to which all the 
original objects would belong. As an example, consider objects A, B and C whose 
attributes are represented by the sets {1, 2, 3, 4}, {1, 2, 3, 6, 7} and {1, 2, 3, 8, 

9} respectively. Thus, for a specific design context, a generic class G comprising 

the intersection of their attributes, i.e. G = {1,2,3}, may be defined to characterise 

objects A, B and C as set. It can not be over-emphasised that the selected set of 

generic attributes is determined largely by the design context.

In respect of the JSD*(HF) method, generification is used in the following :

(i) the identification and selection of extant systems for analysis. In this 

case, the set of generic attributes of interest corresponds to the key 

characteristics of the target system. By selecting particular sub-sets of these 

characteristics, one or more generic categories may be defined to guide the 

selection of extant systems for analysis. For an illustration, consider the
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generic class G from the above example. In this case, G describes a generic 

set of target system characteristics of interest, and A to C characterise extant 

systems selected for further analysis;
(ii) the derivation of a single Task Description (TD(ext)) from information 

elicited from various sources. In other words, a generic task description is 
constructed using task elements that are common across performers. Thus, 

a super-ordinate description applicable across task performers is derived. 

Taking the above example further, A, B and C may comprise various 

accounts of a task as described by different performers. A generic task 

description, considered by the group of performers to be equivalent to their 

original account, may then be derived to support system design. Such a 

description may be characterised by H = {1, 2, ??), where ?? was 
considered by different task performers to be equivalent to {4}, {6, 7} and 

{8,9}.

Four other scenarios for applying generification are described in Figure 

AB-1 below. A brief account of these scenarios follows.

First, generification across sub-task constituents may be applied on a task 

description elicited from a task performer. In this case, generification may 
be applied to remove inconsistent sub-task level descriptions. To this end, a

Figure AB-1 : Scenarios for Applying Generification1

Scenario Generification Type

Single task performer and single task Across objects, actions and attributes

Many task performers and single task Across task performers

Single task performer and many related tasks Across tasks

Many task performers and many related tasks Across task performers and/or tasks

1 Note that generification across sub-tasks is possible in all scenarios.
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generic set of attributes, actions and objects is defined, and the sub-task is 

then re-described in terms of the set.

Second, generification across tasks may be applied when a task performer 

describes many related tasks that share a common underlying 'logic'. 
Depending on the design context, it may be useful to derive a generic 
description of aspects that are common across the tasks.

Third, generification across task performers may be applied when a task is 

described by many task performers. In such cases, it is necessary to derive 

a single task description with which to work during design. For instance, 

the descriptions of task objects and their manipulations may vary across task 
performers. If it is established that the variations are not due to different task 
performance strategies, they should be removed by generification.

Fourth, generification across task performers and!or tasks may be applied 

when various related tasks are described by different groups of task 
performers. An example of such an application was reported by Johnson, 
Diaper and Long (1984) concerning training syllabus development for 

groups of students who are required eventually to perform slightly different 
tasks. Their motivation for applying generification is as follows :

(1) to define a common training component that satisfies task 

requirements that are generic across the student groups;

(2) to define separate and distinct training components that satisfy task 

requirements unique to each student group.

To this end, a generic description was derived to characterise each group of 

students and their tasks. The generic descriptions were then compared to 
identify common and specific knowledge requirements for performing the 
tasks. Appropriate training syllabi were thus developed for each group of 

students.

In conclusion, it should be noted that the selection of a particular application of
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generification is determined by the prevailing design context.

(c) Decomposition

Task decomposition is characterised by a successive breakdown of tasks to the level 
of description required to support design. In particular, task decomposition is used 

in the JSD*(HF) method for the following :

(1) to derive a task description for the extant system, i.e. TD(ext);

(2) to generate detailed specifications from a conceptual design.

(d) Synthesis

Task synthesis addresses the appropriate composition and extension of sub-tasks so 
that system goals are satisfied at acceptable cost. In the context of the JSD*(HF) 

method, task synthesis includes the selection, extrapolation and incorporation of 

suitable sub-tasks of extant systems. Consequently, task synthesis is undertaken 
only after abstraction and generification. In particular, the latter processes are 

applied extensively during extant systems analysis to uncover the logic of extant 
designs. Thus, appropriate extant system features may be identified for recruitment 

to the target system.

Task synthesis is undertaken predominantly at two stages of the JSD*(HF) method, 

namely:

(a) the Generalised Task Model Stage where suitable sub-sets of individual 

GTM(ext) descriptions are composed to generate a GTM(x) description;

(b) the Composite Task Model Stage where a suitable sub-set of the 
GTM(x) description is composed with a GTM(y) description. The 

integrated description is then extended to generate a CIM(y) description.
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Annex C : The Hierarchical Conception of Work Assumed bv the JSD*(HF1

Method

Figure AC-1 shows the hierarchical conception of work proposed by Lim (1989d) 

following a review of similar attempts by Johnson et al (1988), Waddington and 

Johnson (1989), Blyth and Hakiel (1989), and Dowell and Long (1989). Thus, the 
JSD*(HF) method (and human-computer interaction in general) may be set against 

a broader conception of the work context. In this way, user tasks, roles, jobs, etc. 
may be considered appropriately during design. An account of the conception 
follows:

(a) the highest level in the conception is the organisation tasked with 

performing the work. As such, an organisation may be conceptualised as a 

'superordinate' system that may be decomposed into a number of sub­
systems. In other words, a job involving the performance of one or more 
roles (or groups of tasks) is assigned to each sub-system. The tasks are 

performed by the sub-system in accordance with a plan. Such a plan 

comprises task execution procedures and strategies that determine the 

application of specific procedures;

(b) the conception is decomposed into three branches that support 
complementary perspectives on a design. For instance, the object and action 
branch supports specific design description, while design descriptions 

based on the goal and function branches may reveal the logic underlying 

particular characteristics of task performance (see Figure AC-1);

(c) procedures and strategies of the conception may apply at several levels 

of description, namely at the objects and actions level; goals and sub-goals 

level; tasks and sub-tasks level; and functions level. Thus, task procedures 

and strategies may interact across levels of description;

(iii) roles are viewed in the conception as comprising a particular group of 

functions (see Figure AC-1). In this respect, Human Factors and Software 

Engineering perspectives of functions may differ slightly. In Human 

Factors, a function may be considered a non-trivial unit of behaviour 
(human or device) that enables the accomplishment of the system 'mission' 

(Drury, 1983). Thus, a function may be allocated, as a whole, to a human
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or device. In contrast, Software Engineering functions tend to refer to low 
level functions supported by the computer software. Nevertheless, the 

differences would be reconciled if functions are considered to include tasks 

that do not necessarily result in work (see (iv) below);
(iv) the conception defines work as the achievement of desired state changes 

for a relevant set of real world objects. Similarly, work goals and sub-goals 

may be described in terms of the initial-to-target state changes to be effected 

by the system. In this respect, a system (as opposed to a computer system) 

is defined as comprising a human-and-computer 'unit' working together 

under a specific environment.2 A distinction should also be made between 
the work the system is expected to accomplish, and the tasks performed by 

the human and computer components of the system. In particular, since 

work goals and tasks do not necessarily share a one-to-one relationship (see 
Figure AC-1), task executions may not always produce work, i.e. they 
include actions which facilitate work.

(v) the conception classifies tasks into off-line and on-line tasks. Generally, 
on-line tasks involve interactions between the human and computer, while 
off-line tasks are unsupported by the computer. In this context, on-line task 
components may be assigned entirely to the computer, i.e. automated tasks. 
Such a classification of tasks is consistent with proposals made by other 

researchers. For instance, Johnson and Johnson's (1988) classification 

comprises tasks which are fu lly , partially  and unsupported  by the 
computer. Similarly, Sutcliffe (1988a) suggested three categories of tasks, 

namely non-computerised tasks; fully computer-supported tasks; and 

interactive tasks. Figure AC-2 shows a 'consensus' classification of tasks 

and their relationship to the components of a system.

2  Note that the definition includes multiple human-and-computer 'units'.
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Figure AC-2 : Task Classes and their Relationship to Human and
Computer Components of a System

S Y S T E M

information flow

OFF-LINE
TASKS H H um an  g l  7 INTERACTIVE AUTOMATED 

 ̂ TASKS v
Computer

information flow

C On-line tasks = Interactive tasks + Automated tasks ^  
System tasks = Off-line tasks + On-line tasks J
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Annex D : Detailed Account of Secondary Activities and Products of the ESSA 

Stage for the Network Security Management Case-studv

This annex completes the account of the ESSA Stage described in Chapter Nine. In 
particular, secondary activities and products relevant to a variant design scenario are 
described. Note that the extent to which such activities and products are 

accommodated, depends largely on how similar the characteristics and 

implementation technology are between the extant and target systems. Bearing this 

point in mind, the complete range of secondary products and activities of the ESSA 

Stage will now be described. Illustrations from the Network Security Management 

case-study are included where appropriate.

(D Extant System Task Model (STMfexf)') and Extant User Task Model 
(UTMfexfn Descriptions

To characterise conceptually the on-line task of the extant system, a description 
termed an extant System Task Model (STM(ext)) is derived. Thus, the on-line task 

is described in terms of human-computer interaction cycles. Since STM(ext) is a 
high level description, the form of the interaction should not be specified. Such 
design details are accommodated later by other ESSA Stage products (refer to later 

accounts on ITM(ext), IM(ext) and DD(ext)).

A complementary description termed a User Task Model (UTM(ext)) is also derived 

to document the off-line task of the extant system. Thus, off-line sub-tasks that may 

be relevant to the design of the target system are collated into a single description.

The procedures for deriving STM(ext) and UTM(ext) descriptions are summarised 

overleaf.
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------------------------------------------------------------------------------------------------------------------
Procedures for deriving STM(ext) and UTM(ext)

1. Take GTM(ext) as input and identify on-line and off-line tasks. If more detailed
information is desired, derive a lower GTM(ext) description by consulting TD(ext). If 
necessary, conduct another elicitation cycle.

2(a) To derive STM(ext), note user actions and computer responses for each on-line sub-node 
of the GTM(ext) description. Thus, the H: (human) and C: (computer) leaves of the 
STM(ext) description are derived.

2(b) UTM(ext) is derived by noting off-line sub-nodes of the GTM(ext) description. The 
sub-nodes are then collated to derive a single description.

3. Record STM(ext) and UTM(ext) descriptions using JSD* structured diagram notation and 
note additional information in a supporting table.

Rules o f  Thumb for deriving STM(ext) and VTM(ext)

1. Where it is uninformative to describe on-line sub-tasks in terms of separate H: and C:
leaves, then combined (i.e. H-C:) nodes may be used.

2. The structure of the GTM(ext) description should be maintained in STM(y) and UTM(y)
(ifpossible) to facilitate cross-referencing between the descriptions. In addition, a more 
coherent view of the task is afforded.

3. For the same reason as in (2) above, significant off-line should also be indicated in the
STM(ext) description. Thus, cross-referencing between STM(ext) and UTM(ext) 
descriptions is supported. Similarly, off-line tasks which influence the design of the 
user interface should be flagged in the STM(y) description to prompt appropriate 
consideration by the designer.

(II) Extant Interaction Task Model or ITM(ext) Description

ITM(ext) is a device-level description of the interactive task to be performed by the 

user. It is derived by decomposing H: leaves of the STM(ext) description.

The procedures for deriving an ITM(ext) description are summarised on the next 

page.
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Procedures for deriving ITM(ext)

1. Take each H: leaf of the STM(ext) description and note how inputs are effected via the
user interface. Consult the TD(ext) description for more information if necessary.
A further elicitation cycle should be conducted if required.

2. On the basis of the notes made in (1) above, decompose H: components of the STM(ext)
description to derive an ITM(ext) description. The description details the user inputs 
required to perform the interactive task.

3. Record thelTM(ext) description using JSD* structured diagram notation and note user
problems and additional information in a supporting table.

Rule o f thumb for deriving ITM(ext)

ITM(ext) components attributed to the adopted user-interface environment need not be 
described since they should be familiar to design team members.

(IIP Extant Interface Model or IM(exf) Descriptions

IM(ext) descriptions address the appearance and behaviour of user interface objects 
of the extant system. The descriptions are decomposed from the C: leaves of the 

STM(ext) description.

Procedures for deriving IM(ext) descriptions are summarised below.

Procedures for deriving IM(ext)

1. Identify user interface objects of the extant system systematically by referring to the C:
leaves of the STM(ext) description.

2. Using JSD* structured diagram notation, record the appearance and behaviour of each
object. In addition, note object responses to user inputs described in ITM(ext).

Rule o f  thumb for deriving IM(ext)

User interface objects originating from the adopted user interface environment need not be 
described since they should be familiar to design team members.
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(IV) Extant Display Design or DDfext) Descriptions

DD(ext) descriptions comprise the following set of products :

(a) an extant Dialogue and Inter-Task Screen Actuation Description or 

DITaSAD(ext). The context for actuating screen displays and for triggering 

dialogue and error messages is specified by this description;

(b) extant Pictorial Screen Layout or PSL(ext) descriptions. Static aspects of 
screen displays, e.g. composition, layout and grouping of screen objects are 

specified by these descriptions;

(c) an extant Dialogue and Error Message Table or DET(y). Screen 

messages described in DITaSAD(ext) are indexed in this table.

Procedures for deriving DD(ext) descriptions are summarised below.

Procedures for deriving DD(ext)

1. Take as input ITM(ext), IM(ext) and TD(ext) descriptions. Note the screen designs and
transitions in relation to major executions of the user's task. Relate the transitions to 
actions described in ITM(ext), and note the ITM(ext) leaves bounded by each screen 
transition. Thus, screen transitions are mapped onto specific user tasks.

2. Assign a unique number to each screen to support cross-referencing among ITM(ext),
IM(ext) and DD(ext) descriptions.

3. For each screen, note potential user errors and the error messages displayed. In addition,
note information displays. Assign a unique identifier to each message item and 
tabulate them as per the DET(ext) format.

4. Referring to notes made in (1) and (3) above, construct a DITaSAD(ext) diagram.
Conditions that should be satisfied for each screen transitions should be included in the 
structured diagram and its supporting table.

5. On the basis of notes made in (1) and (3) above, document existing screen designs which
may be relevant to the design of the target system. User problems and the rationale 
underlying existing designs should also be documented.
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(V) Extant Statement of User Needs or SUNfext) Description

Pertinent human factors observations made during extant system analysis are 
summarised textually in a SUN(ext) description. Generally, extant system 

information of interest would include the following :

(a) user problems with the extant design;

(b) extant design rationale, requirements and constraints;

(c) possible solutions to observed user problems;
(d) user needs not supported by the extant design.

Relevant SUN(ext) information is carried forward to the Statement of User Needs 
Stage where they are synthesised with the initial statement of requirements for the 
target system. The set of requirements is then extended appropriately to define a 

basis for target system design.

Procedures for deriving a SUN(ext) description are summarised below.

--------------------------------------------------------------------------------------------------------------------
Procedures for deriving SUN (ext)

1. Referring to key target system requirements, construct a list of general design concerns
and user needs to be investigated during extant systems analysis. The list may be 
incremented subsequently to account for early observations and products of extant 
systems analysis.

2. For each item on the list, note design information that is potentially relevant to the
design of the target system, e.g. existing design rationale and constraints; user 
problems; etc.

3. Record suggestions on how existing problems may be obviated. The suggestions should
be interpreted in the context of the target system.

4. Collate the information following the format of a SUN(ext) description.

Case-Studv Illustrations of a SUN(ext) Description

Case-study illustrations of SUN(ext) descriptions for the University of London
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Computer Centre (UCLCC) and the MacPassword™ application (MPASS) are 
shown in Figures AD-1 and AD-2 respectively.

An account of how SUN(ext) descriptions could support target system design 

follows. The information in SUN(UCLCC) suggested that failed log-on events 

should be signalled to the network manager in real time when the network 
management workstation is manned. Should such events occur when the 

workstation is unmanned, the manager should be alerted on next log-on. In either 

case, security alerts should include pertinent information on the event to support the 

manager's decision concerning an appropriate response. An example of the 

information to be included was described in SUN(MPASS), namely a password- 

and-time log to differentiate between password mis-types and hacking attempts. 
These SUN(UCLCC) and SUN(MPASS) recommendations are thus considered 
during target system design.

Figure AD-1 : Extract from the Extant Statement of User Needs for 

the University College London Computer Centre (SUN(UCLCC))

Statement of User. Needs (SUN(UCLCC)l
1. The network manager should be alerted in real-time to failed log-on events. The alert 

should adequately capture the network manager's attention (consider both visual and 
auditory alarms). Should the breach occur when the network management workstation 
is unmanned, the manager should be alerted on next log-on.

2. Communication between the network manager and users (and between the manager and 
external networks) should be supported adequately. In particular, facilities that support 
both synchronous and asynchronous communication should be provided, e.g. telephone 
and electronic-mail facilities respectively.

3. Information processing functions should accompany security alerts. Thus, relevant 
information may be collated to support various task contexts. In particular, the 
functions should support database search and retrieval so that various logs may be 
collated, e.g. logs of atypical network usage (e.g. usage outside normal working hours); 
log of previous hacking activities (i.e. both failed and illegal log-ons); etc.

4. The number of successive failed log-ons should be limited to ensure a more secure 
network. On reaching such a limit, a temporary ’lock out' should be enforced.

 etc.
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Figure AD-2 : Extract from the Extant Statement of User Needs for

the MacPassword™ Application (SUN(MPASS))

-----------------------------------------------------------------------------------------------------------------

Statement of User Needs (SUN(MPASS))

1. The owner is required to search event logs for evidence of security breaches. To support 
the task, appropriate search functions should be provided to highlight pertinent 
information in the logs.

2. Password logs were found to be useful in identifying hacking activity. Thus, passwords 
used in failed log-ons should be recorded.

3. Obligatory password changes should be enforced at regular intervals.

4. User access parameters should be configurable and implemented easily.

5. Secondary measures to protect event logs from hacker access should be considered since 
no other record of usage activity is kept

 etc.

(VI) Extant Domain of Design Discourse or DoDD(exf) Description

DoDD(ext) is a semantic description of the extant system domain. The domain of 
extant and target systems intersect to different extents depending on the type of 

extant system involved. Specifically, the extent of domain intersection with the 
target system decreases in the following order: extant current system, extant related 

system and extant partial system.

Procedures for deriving a DoDD(ext) description are given on the following page. 

Case-Study Illustrations of a DoDD( ext) Description

As before, two case-study examples of a DoDD(ext) description are shown, namely 

DoDD(UCLCC) and DoDD(MPASS) (refer to Figures AD-3 and AD-4 
respectively). Design information tables that accompany these descriptions are also 

shown.
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--------------------------------------------------------------------------------------------------------------------
Procedures for deriving DoDD(ext)

1. Identify general design concepts and real world objects manipulated by the extant system.

2. From the set in (1) above, identify a sub-set that is potentially relevant to the target
system. Define the semantics and relationships among the design concepts and objects.

3. Record the information as a semantic net, i.e. the format of a DoDD(ext) description.
Assign unique identifiers to all relations. For readability, the identifiers should be 
assigned serially from left to right and top to bottom (where possible). Note additional 
irformation on each relation in an accompanying table.

Rules o f thumb for deriving DoDD(ext)

1. DoDD(ext) should be sufficiently detailed to support the construction of task scenarios that
are accommodated by the extant system.

2. DoDD(ext) should not include device dependent information. The irformation described
should be confined to the semantics of the extant system domain.

Figure AD-3 : Domain of Design Discourse Description for the

University College London Computer Centre (DoDD(UCLCC))
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Workstation /  N.
'  (5)(3) (4) ^

r  Users
Network Manager / S

N  <8> * / <6> ^
^ 4  ^  Hackers

Legal users \.
^  /  \  (12)/  \  X

TT (10) UU ^  Types of security breachuser / \  (13. |
Identification ^ ^  (14)

Password ^  m  .
Failed log-on y

Illegal log-on\ I
(16)

05) ^

\ Types of breach responses
/  i \

(17) (18) (19)
*  1  xPassword

change Trace Dlsable

381



D
oD

D
(U

C
LC

C
) 

Ta
bl

e 
- 

Pa
ge

a>

C*

43

JB

I

ID O 
bO bO

<D D 
C  C

£oa
<D■s
o
ia
c
ou

T3

5a
o
6
ID
» -

3£
Id

S'
e .2  
■g * .S
!  c
ID 

- CH

(D bO

bo bo 13  
ID ID

8JS
1x>

£
§o
£
&K

•a
bO 

3 3  <D
rc3 s a
3

o
z Ci n . © 0 0 . CO T f

hb»
(A
VQ

1

(4-1 o  c

-8
• ■ S o l
CO COC O jrf
8 3 *

. a S
8  CO §

I

E -a s•a§ a  s£ bO £
s  i  iS 8 -3
P S §

<D
C

■Sco
8
8
ea

D

3
i  
a0 £
S£a> 
bO

1 
£

s i
co C5 fa^  -S.3 ^a  i

1
' S5
33

4>■3
O

z I  8 |
Z  c o  2

o£
323
•a
bO

3 I
O >,

382



DoDD(UCLCC) Table -  Page 2
Node Description No. R elations

Failed
log-on

Occurs on incorrect user 
identification or password 
input. The occurrence 
terminates the session in all 
cases.

(15) In response to a failed log-on by a legal user, 
the network manager may enforce a password 
change to encourage the selection of a more 
suitable password.

Illegal
log-on

An illegal log-on occurs 
when a hacker successfully 
logs onto the network and/or 
network management 
workstation.

(16) Appropriate actions must be taken in 
response to an illegal log-on.

Types of
breach
responses

Three actions may be taken 
in response to security 
breaches.

(17)

(18) 
(19)

The user's password may be changed.

Attempts may be made to trace the hacker.
The user identification may be disabled if the 
user cannot be contacted to verify the status 
of a security breach event.

Figure AD-4 : Domain of Design Discourse Description for the
MacPassword™ Application (DoDD(MPASS))

Personal computer security management
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DoDD(MPASS) Table

Node Description No. Relations

Personal The personal computer (1) Security management involves searching
computer owner is responsible for logged usage information.
security
management

managing its security. (2) The objective is to ensure that personal 
files are accessed only by the owner.

Users There are three categories of 
users.

(3)

(4)

(5)

A hacker is an unauthorised user who 
attempts to break into the computer system.
The owner is an authorised user, responsible 
for ensuring computer system security.
A guest is an authorised user who may 
access files selected at the owner's discretion.

Hacker A hacker is an illegal user 
who is intent on breaking 
into the computer system.

(6) A hacker may be responsible for two types 
of security breach : illegal log-on (9); and 
failed log-on (10).

Owner The owner is responsible for 
securing the computer

(7) A failed log-on can be attributed to a 
password mis-type by the owner.

system and for taking 
actions on a security breach.

(8) The owner has a password to access the 
computer system.

Types of There are two types of (9) An illegal log-on is a successful attempt by
security
breach

security breach.

(10)

a hacker at breaking into the computer 
system.

A failed log-on is an unsuccessful attempt 
by either a hacker or the owner at accessing 
the computer system.

On the basis of key target system characteristics, a relevant sub-set of the above 

DoDD(ext) descriptions is selected and synthesised. The sub-set is then extended at 

the Statement of User Needs Stage to generate a Domain of Design Discourse 
Description for the target system.
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Annex E : An Illustration of the JSD*(HF) Method using the Recreation Facility 

Booking System (Adapted from Lim et al. 1992)3

The Recreation Facility Booking System supports two main activities, namely:

(a) it allows authorised users to make advance bookings of recreation 

facilities on a first-come-first-served basis;
(b) it permits the checking of all bookings made during the current day, and 

up to a week in advance.

The design scenario of the case-study is a re-design of the Recreation Facility 

Booking System, i.e. a variant design scenario. The motivation for the re-design is 
to provide more effective support to users.

The simplicity of the Recreation Facility Booking System is exploited presently to 
illustrate the stage-wise products of the method.

(D The Extant Systems System Analysis Stage 

The objective of this stage is two fold:

(a) to generate background information for design, e.g. capturing details of 

the current system. The information of interest includes current user needs 

and problems, the current task, existing design features and rationale, etc.;

(b) to assess extant design characteristics that may potentially be recruited to 

the target system.

In addition to supporting target system design, the acquired extant systems

3  The paper was written in mid-1990. A revised version was submitted for publication around 
March 1991. Although the present version is a revision of the 1991 version, minor differences 
with the latest version of the method (described in Chapters Nine to Eleven) were retained for 
comparison.
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information may subsequently support assessments of possible transfer of learning 
by end users from the extant system to the target system (both positive and negative 

transfer effects). An account of the high level processes for achieving these 

objectives follows.

To initiate extant system analysis, appropriate extant systems are identified on the 
basis of key target system characteristics extracted from the initial statement of 
requirements (collated from the client's brief and contractual documents). Extant 

design information is then elicited from various end-user groups using 'off-the- 

shelf elicitation techniques, e.g. structured interviews, unobtrusive observations, 

etc. As a guide, an acceptable level of task description should satisfy two rules of 

decomposition, namely:

(a) the resulting description should be understood by designers and end-

users;
(b) task decomposition should be terminated only when an acceptable
Probability of failure x Cost (or P x C) criterion is reached (Duncan, 1974).

In most cases, the information would be elicited from various sources, e.g. from 
different end-users and literature sources. Thus, a set of generic descriptors should 

be derived to organise sensibly the information from these sources, i.e. 'building 

blocks' that are common across the sources have to be identified. For this purpose, 
the generification procedures suggested by Johnson and Johnson (1987); and 

Johnson, Johnson and Russell (1988), have been adapted for the JSD*(HF) 

method.4 In addition, device dependent characteristics have to be removed by 
abstraction to facilitate subsequent comparisons between extant and target system 

designs. To this end, extant system descriptions should be abstracted to a 

sufficiently high level to reveal the logic underlying their designs. However, the 

level of abstraction need not be homogenous throughout the structured diagram 

description. In particular, to preserve information on extant design features that are 

potentially relevant to the design of the target system, the level of abstraction may 
be deliberately lower for specific parts of the description.

4 See also Footnote 5.
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Since the information derived from extant systems analysis contributes to 
subsequent stages of the JSD*(HF) method, it is processed into products that 
correspond in scope and format to products of these stages (see later). Thus, an 

appropriate account of extant systems information is facilitated. Depending on the 

prevailing design circumstances (e.g. in the case of variant design similarity 

between extant and target systems is expected to be high), products derived at the 
Extant Systems System Analysis Stage may range from the extant task description, 

and generalised task model to the full JSD*(HF) complement In other words, a full 

complement of descriptions would include the system task model, user task model, 
interface model, interaction task model and display design descriptions (see Figure 

8-1). (Note that the extant task description is a dynamic representation of task 

execution. Other products will be characterised later). In addition to the prevailing 

design circumstances, the extent to which extant systems analysis is undertaken 

depends largely on the designer's familiarity with the system domain, i.e. how well 

defined the target system is.

Superficially, the outputs of this stage may seem to support only variant design 
(which incidentally accounts for the vast majority of system development projects, 
see Rouse and Boff, 1987) as opposed to 'original' or 'novel' design. Thus, it 

should be emphasised that the method is not limited to variant design. Together 
with the procedures of the Generalised Task Model and Composite Task Model 

Stages, 'original' or 'novel' design is also supported (see later).

Products of extant systems analysis are documented using a combination of text, 

JSD* structured diagram notation and design information tables. Figure AE-1 

shows an extant task description for the case-study, described using JSD* 
structured diagram notation. Further information on the nodes and leaves of the 

description are expanded in an accompanying table as shown in Table AE-1.
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Table AE-1 : Extant Task Description Table for the Recreation
Facility Booking System

Node Description and Observations Design Implications and Speculations

Book a
squash
court

The user can book recreation facilities and 
check previous reservations.

Booking
body

The user inputs booking parameters one at 
a time in the following sequence : day & 
date, facility type and playing time. Long 
search time requiring many search cycles.

Poor design of search tasks. Should 
adopt conjunction rather than 
sequential search for day & date, and 
playing time parameters.

Choose 
playing 
day & 
date

The user may consult a diary before 
deciding on a recreation day & date. High 
proportion of 'quit' actions at this stage. 
The design does not allow the user to 
confirm inputs before computer 
implementation.

Provide a separate 'confirm’ step to 
permit user checking.

....etc.

The Figure and Table will now be described in greater detail. Figure AE-1 shows 

the interactive task imposed on users of the current Recreation Facility Booking 
System. Essentially, users are required to select booking parameters sequentially 
(i.e. day and date, time slot, recreation type) by navigating a cursor over available 

parameter values. These values are matched iteratively by the user against a diary of 

appointments. Problems with the current design are documented as shown in Table 

AE-1. In particular, overly long trial-and-error matching was observed and 

attributed to the limited amount of information that could be presented on an eight- 
line LCD screen. Lessons learnt from extant systems analyses are then carried 
forward to the next stage of JSD*(HF) design.
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(II) The Generalised Task Model Stage

The objectives of this stage comprise the following:

(a) to generate predominantly device independent descriptions5 that 

support comparative mapping and evaluation between extant design features 

and target system requirements. Thus, abstracted extant task descriptions 

derived in the preceding design stage are synthesised into a 'Generalised 
Task Model of the extant system or X  (termed a GTM(x) description).^ 

On the basis of a GTM(x) description, appropriate extant designs may be 
ported to the target system;

(b) to expose new and/or salient characteristics destined for the target 

system by extracting a 'Generalised Task Model of the target system or Y  

(termed a GTM(y) description) from the statement of requirements. Thus, 

the scope and conceptual structure of the target system is characterised. On 
the basis, extant systems (part or whole) may be identified for analysis. For 
instance, GTM(y) may indicate that authorisation to use the recreation 

facilities is to be controlled by booking system access. Access control 

design is thus included in the extant systems survey, e.g. control by identity 
cards (current system design); passwords (related system design); and 
magnetic strip-cum-personal identification number (related system design).

The two generalised task models are carried forward to the Composite Task Model 

Stage where desirable and compatible elements of GTM(x) are synthesised with 

GTM(y) on the basis of the statement of user needs (see later). The result is a 

composite task model of the target system. Note that the generalised task models

5  The extent of abstraction to device independence is determined by how dissimilar extant 
system characteristics are from key target system characteristics. The selected level must be 
sufficiently high to reveal semantic and logical requirements of the task (as opposed to device 
dictated requirements, e.g. particular keystrokes), and still retain specific extant system information 
cf interest to the design of the target system.

 ̂Synthesis of abstracted task descriptions is only necessary if more than one extant system had 
teen analysed, e.g. if both related and current systems had been analysed. If the current system is 
tie only system analysed, then GTM(x) is the same as the GTM(current system).
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could provide an early indication of the extent of training required by target system 
users (corresponding to the complexity of GTM(y)), and the transfer of learning 

that may arise (corresponding to the extent of porting from GTM(x)).

The products of the Generalised Task Model Stage are documented using JSD* 

structured diagram notation. A case-study example will not be given since a 

generalised task model is essentially similar in nature to a composite task model (an 

example of which is shown in Figure AE-3).

(IIP The Statement of User Needs Stage

The purpose of the Statement of User Needs Stage is to augment the initial 

statement of requirements in respect of user needs for the target system. Thus, 

conclusions drawn from analysing extant designs are summarised with respect to 
the user. Enhancements of the initial statement of requirements may comprise the 
following:

(a) identification of user problems with the extant system;
(b) a summary of the rationale, requirements and constraints underlying the 
extant design. Such a summary supports a deeper analysis of user problems 
and needs. In addition, it supports the identification of promising extant 

designs for porting to the target system. The latter objective is thus 

consistent with Newman's (1988) suggestion on maximising the re-use of 

established user interface styles;

(c) a more explicit expression of design criteria (such as performance 

requirements) for obviating the problems in (a), and for upgrading or 

extending existing design solutions identified in (b).

The resulting JSD*(HF) description constitutes a human factors view of target 

system requirements.

As an example, end-user problems and potential design solutions such as those 

documented in Table AE-1 may be analysed and assessed against target system
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requirements. Thus, it may be concluded that better search functions should be 

provided on the target Recreation Facility Booking System. Alternatively, a larger 

display screen may be specified as a prerequisite for faster and less onerous 
selection of a suitable booking slot (a larger screen would support conjunctive 
search since booking information on more than one booking parameter could be 

displayed at each user-computer transaction). These user requirements are then 

collated textually to generate a SUN(y) description (not shown for the case-study).

In addition to SUN(y), a second product is derived at the Statement of User Needs 

Stage. The product, termed a Domain of Design Discourse or DoDD(y) description, 
establishes the domain semantics required for interpreting design and task concepts 
associated with the target system. For instance, the domain of the Recreation 
Facility Booking System may be characterised as the assignment of temporal rights 

over a recreation facility. Figure AE-2 shows how the relationship between 

DoDD(y) entities may be described explicitly using a semantic net.7 In this way, a 
textual account of the nodes and relations of the semantic net is detailed in a separate 
table (see Figure AE-2).

These two products of the Statement of User Needs Stage constitute the design 
basis that subsequently supports and constrains the generation of target system 
solutions. For instance, conditions for selecting and synthesising particular 

generalised task model descriptions at the Composite Task Model Stage would be 

defined by SUN(y) and DoDD(y).

(TV) The Composite Task Model Stage

The objective of this stage is to establish a conceptual foundation for target system 
design. In particular, it defines the basis on which an appropriate functional design 

may be advanced. To this end, on-line and off-line tasks** are identified (this step

7 The notation was adopted for convenience. Alternative notations may also be suitable.
** On-line and off-line tasks correspond to tasks which are supported and unsupported by the 
computer system respectively.
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Figure AE-2 : Domain of Design Discourse Description for the

Target Recreation Facility Booking System (DoDD(y))
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15).

is termed task allocation) prior to a separation of the on-line task components into 

interactive and solely computer tasks (this step is commonly referred to as function 

allocation). These objectives are achieved as follows :

(a) a sub-set of GTM(x) is synthesised with GTM(y). The sub-set 

represents promising and compatible extant system(s) designs that satisfy 

the design basis defined at the Statement of User Needs Stage. The result of 

the synthesis is a preliminary composite task model of the target system 

termed CTM(y). To support stage-wise evaluation, iterative design, and 

post-implementation modifications and maintenance, additional notes on the 

composite task model are documented as shown in Table AE-1, e.g. 

insights associated with design features selected from GTM(x) and specific 
design constraints described by GTM(y);

393



(b) the preliminary composite task model is decomposed further to facilitate 
task allocation. Thus, a satisfactory level of description is derived iteratively 
with step (c) below. Note that the decomposition should comply with the 

design basis established at the Statement of User Needs Stage;

(c) on-line and off-line tasks are demarcated in the composite task model. 

Off-line tasks are indicated by grey envelopes (see Figure AE-3);
(d) interactive and automated tasks (i.e. solely computer tasks) are then 

decided in respect of the on-line task. The allocated functions are indicated 

on the structured diagram as H: and C: actions respectively (see Figure 
AE-6).

Figure AE-3 shows a CTM(y) description for the case-study. The shaded portion 

describes status checks to determine whether a user is authorised to make bookings. 

On positive verification, the user can then proceed to match recreation facility, day 
and time preferences with available booking slots. Booking processes for both 

successful and unsuccessful outcomes are thus described by CTM(y). On the basis 

of such a description, an appropriate task allocation may then be decided. In the 
context of the case-study, booking decisions are designated as off-line tasks since 
the selection criteria are too varied among users (i.e. largely indeterminate). These 
tasks are indicated by grey envelopes as shown in Figure AE-3.

Two other aspects need to be highlighted in respect of the Composite Task Model 

Stage, namely:

(a) design iterations should be expected between the Statement of User 

Needs and Composite Task Model Stages. For instance, any modification to 
either SUN(y) or CTM(y) (e.g. arising from user feedback) would 

necessitate such iterations. In some instances, wider design implications 

may also be involved (see (b) overleaf). A case-study illustration follows. 
During initial design, it was assumed that user problems with the current 

system would be alleviated by displaying more booking information on a 

larger screen. Although this solution would improve system performance, 

the client may later decide on providing better computer support for 

checking previous reservations. Since computer-assisted search could
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support both the task of checking present booking availability and previous 

reservations, previous design specifications concerning the provision of a 
richer information display on a larger screen would be superseded. Iteration 

around the Statement of User Needs, Composite Task Model, and System 

and User Task Model Stages (see later) is thus required to update their 
design descriptions;

(b) the first design inter-dependency between the streams of the JSD* 

method occurs at the Composite Task Model Stage (see Figure AE-4). The

Figure AE-3 : Composite Task Model for the Target Recreation
Facility Booking System (CTM(y))
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inter-dependency intersects the latter JSD*(HF) stage with the Modelling 

Stage of the JSD*(SE) stream. At these stages, JSD*(SE) and JSD*(HF) 

design concerns are expected to overlap. Thus, design information of 

common interest should be shared. To this end, the information inter­

dependency should, at a minimum, be determined by information 

requirements of the JSD*(SE) Modelling Stage. The minimum is set on the 

basis that information captured in the JSD*(HF) stream would not be 

relevant to JSD*(SE) design in its entirety. For instance, JSD*(SE) 

designers would not be interested in low level user requirements at this 
stage.9

Generally, products of the Composite Task Model, Statement of User 

Needs and Modelling Stages would be discussed between JSD*(HF) and

Figure AE-4 : Design Inter-dependencies between Software
Engineering and Human Factors Streams of the JSD* Method

JSD*(HF)

Statement of 
User Needs

Composite 
Task ModelJSD*(SE) 

Stream k
Specification

I Model I
System and User Task Model

H =
System 

Task Model
User Task 

Model

9 This assertion follows because the JSD method does not explicitly address user requirements 
capture and documentation. In particular, the JSD Model is not concerned with user tasks (unlike 
JSD*(HF) products derived at this stage).
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JSD*(SE) designers.10 In particular, design information on object and 

action attributes, user needs and problems, system events, user task 

semantics and expected user task support, is shared and discussed. The 
result of the discussions is the specification of a Functions List to define 
the scope of target system design. The list is essentially a tabular description 

of the initiating trigger, end result and performance characteristics of 

functions to be supported by the system.

Presendy, the case-study example described in (a) above is taken further to illustrate 

inter-dependency requirements between the JSD* design streams. In this case, the 
delayed introduction of additional functional support would not affect the JSD*(SE) 

model if an appropriate system scope was defined originally, i.e. actions and 
attributes of the modelled entity would remain unchanged. However, the additional 

functions would have to be accommodated at the Functions Stage of the JSD*(SE) 

stream. Thus, the original Functions List would have to be updated to account for 
the changes. In addition, a design iteration should be performed to update all 

JSD*(HF) products that are affected by the changes.

Having agreed on a Functions List, on-line and off-line tasks of the CTM(y) 
description are updated accordingly by JSD*(HF) designers. The description is 

then decomposed further at the next stage of the method.

(V) The System and User Task Model Stage

Three design concerns are addressed at this JSD*(HF) stage, namely :

(a) on-line and off-line components of CTM(y) are decomposed further to 
support function allocation. Bearing in mind appropriate contributions from 

extant systems analysis and the JSD*(SE) stream (see (b) and (c) below),

10 A wider scope of design discussions and information sharing is not precluded at this inter­
dependency point. Indeed, wider discussions may be undertaken to pre-empt the design information 
requirements of the JSD*(SE) Functions Stage.

397



on-line components are decomposed to yield the system task model of the 

target system (i.e. STM(y)). In other words, the system task model re­
describes the on-line task in terms of lower level human and computer 

tasks. Functional design of the target system is then pursued via the system 

task model.

Meanwhile, off-line components of the composite task model are collated 

into a single description termed the user task model of the target system (i.e. 
UTM(y)). In other words, the model comprises a summary of tasks that are 

unsupported by the computer. In many cases, the user task model is not 

decomposed further (see later).

Figure AE-5 illustrates graphically how the CTM(y) description for the 

case-study is decomposed and documented using JSD* structured diagram 

notation. The primary product of the decomposition, namely STM(y), is 
detailed in Figure AE-6. This Figure shows that the STM(y) description 

essentially comprises high level cycles of human-computer interaction, e.g. 
computer prompts and user inputs.

As regards off-line tasks, it was decided that further decomposition would 
not be necessary since the user interface design for the present case-study, 
would not be influenced significantly by such tasks. Consequently, off-line 

tasks were collated directly into a UTM(y) description (see Figure AE-5). In 

other cases, UTM(y) may be decomposed further to support job design, 

e.g. when both STM(y) and UTM(y) descriptions have to be assessed to 

determine whether the combined workload is acceptable;

(b) suitable sub-sets of extant system descriptions (specifically STM(x) and 

UTM(x)) are selected and incorporated in accordance with GTM(x) and 

SUN(y). For the case-study, it was decided that two booking scenarios 

from the current system would be accommodated. The scenarios 

characterise the requirements of the following user groups :

(i) users whose time for recreation is tightly constrained;
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(ii) users whose time for recreation is flexible. For such users, 

booking preference is concerned only with recreation type and day.

These user characteristics should be accommodated when the recruitment 

and enhancement of extant designs are considered. As an illustration, 

consider the design of search-and-match functions to support recreation 

booking. To accommodate the requirements of (i) above, the search 

function would have to support the location of specific booking slots. Thus, 
the design is required to prompt the user for a complete input of booking

Figure AE-5 : Decomposition of CTM(y) into STM(y) and UTM(y)
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parameters (comprising time band, recreation type, and day of desired 
booking). As for the requirements of (ii) above, the search function would 

have to support the checking of booking availability by recreation type and 
day.

Following the above considerations, it may be concluded that current 

system designs which prompt disparate user input of recreation type and 

day (i.e. one input per interaction cycle) are irrelevant to target system 

design. An explanation of the conclusion follows. Disparate input was 
assumed for the current system to minimise the information that has to be 

displayed on each screen. The latter constraint was imposed by the client's 

selection of an eight-line LCD screen. To accommodate the constraint (on 
the current system) without lowering unacceptably the chances of offering 
suitable booking slots to the user, booking parameters had to be organised 

sequentially to support a stage-wise convergence scheme. Since the 

hardware constraints no longer apply for the target system, more booking 
information may be displayed on each screen to support multiple user 

selections. Thus, a multi-variate search function may be introduced. In other 
words, users may specify conjunctions of booking parameters to tightly 
constrain the booking information retrieved by the computer. Consequently, 

current system designs that support stage-wise convergence are no longer 
relevant. However, other extant designs such as booking input and 

confirmation prompts may still be ported to the target system (if 

appropriate);

(c) design information of common interest is shared at this inter-dependency 

with the Functions Stage of JSD*(SE) stream (see Figure AE-4). At this 

stage, both streams of the JSD* method are concerned largely with 
functional decomposition. As such, the functions list (defined at the 

previous inter-dependency) would not be specific enough to ensure that a 

convergent design is derived by both JSD* streams. Thus, more specific 

design information has to be shared and agreed between JSD*(HF) and 

JSD*(SE) designers. In particular, the design information to be shared
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would comprise the following :

(i) JSD*(HF) design information -- STM(y) description of human- 

computer interaction cycles and sequencing of functional supports;

(ii) JSD*(SE) design information — descriptions of input and output 

streams, JSD function and model processes, and the input sub-system 

(contributes to the design of error and feedback messages at later 

stages of the JSD*(HF) method).

Following discussions on the above design descriptions, a common pool of 

information is adopted to ensure design convergence. In addition, close 

contact should be maintained between JSD* streams to avoid unnecessary 
design iterations when JSD*(HF) and JSD*(SE) specifications are 

integrated.

For a case-study of this design inter-dependency, the reader is referred to 
Section IV where an example concerning the checking of previous bookings 
was described.

The scope of the System and User Task Model Stage may now be summarised. A 
STM(y) description is derived to define the high level human-computer interactions 
required by the on-line task. Taking due account of the design basis defined at the 

Statement of User Needs Stage, device level design is then pursued via STM(y). In 

this respect, pertinent characteristics of UTM(y) should also be noted (e.g. 

information exchanges with STM(y)) since they could contribute to job and user 

interface design, e.g. the content and format of information displays; the 

requirement for speech input devices arising from off-line task demands; combined 

workload assessments; etc.

(VO The Interaction Task Model Stage

The objective of this stage is to specify the device level inputs implicated by the 

interactive task. In particular, the product of this stage, namely ITM(y), is an
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'idealised' description of the user inputs required to advance the interactive task. On 

the basis of such a description, potential user errors are then considered at a later 

design stage (refer to Section VIII).

ITM(y) is derived by decomposing the H: leaves of the STM(y) description 

(corresponding to user actions -  see Figure AE-7). The resulting description is 

expressed in terms of the following :

(a) object and action primitives of the chosen user interface environment (if 
any);

(b) basic keystrokes of the designated hardware.

ITM(y) should be described at a level easily understood by design team members 

and end-users. For instance, the ITM(y) description for the case-study is terminated 
at the level of mouse clicks (instead of further decomposition into a mouse-down 
followed by a mouse-up — see Figure AE-8), since the Macintosh interface style 
was assumed to be understood by all concerned.

As with earlier JSD*(HF) products, ITM(y) is documented using the JSD* 

structured diagram notation.

To derive an appropriate level of ITM(y) description, design iterations within the 

stage and across succeeding stages may be necessary. An appropriate description 

is required to support later grouping of ITM(y) leaves into coherent or meaningful 
sub-tasks. Each of these groups are annotated on ITM(y) as a 'bubble' containing a 

screen number, e.g. Screen 1 or S1 in Figure AE-8. The annotation constitutes part 

of an overall scheme to inter-link products of the Design Specification Phase of 

the JSD*(HF) method (see Figure 8-1). Specifically, the ITM(y) description is 

linked with products of the Display Design Stage. Thus, user inputs are linked with 
dynamic screen actuations (to present functional supports, and error and help 

messages to the user -  see later) in accordance with the interactive task context

A case-study illustration of the inter-linkages follows. An inspection of Figures
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AE-8 and AE-11 reveals that the bubble labelled 'S2.5' (or Screen 2.5) appears in 

both ITM(y) and the dialogue and inter-task screen actuation description (refer to 

Section VIII for a detailed account). The appearance of Screen 2.5 across these 

products implies the following scenario: an illegal input is detected by the computer 

when an unauthorised user enters an invalid identification number and clicks on the 
'Okay' button. Thus, screen 2.5 with error message 2 (denoted as 'Screen 2.5 — 
em 2' in Figure AE-11) is displayed by the computer.

To complete the specifications for the scenario, the content of error message 2 or 

em 2 is described in the message index (Figure AE-10) as 'Invalid personal i.d.'

Figure AE-7 : Deriving ITM(y) by Decomposing Human (H:) Leaves 

of STM(y) on the Basis of the Domain of Design Discourse 
Description and the Chosen User Interface Environment
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Similarly, the design of screen 2.5 is determined by referring to another JSD*(HF) 

product which describes its composition and layout pictorially (see Figure AE-12 

for a description of Screen 1). Finally, the behaviours of screen components are 

specified in a set of JSD*(HF) descriptions termed the interface model or IM(y) 

descriptions. These descriptions are discussed in greater detail in the next Section.

Figure AE-8 : Interaction Task Model for the Target Recreation

Facility Booking System (ITM(y))
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rVTD The Interface Model Stage

The objective of this stage is to specify the behaviour and changes in appearance (if 

any) of bespoke screen objects, e.g. object responses to user inputs and changes in 

states of representation and real world entities. Screen objects originating from the 

chosen user interface environment (if any) need not be described since they may be 

assumed to be understood by design team members. The product of this stage is a 

set of interface model descriptions or namely IM(y).

IM(y) descriptions are derived by decomposing the C: leaves (i.e. computer 

actions) of STM(y) (see Figure AE-9). The decomposition should be consistent 

with the context established by the domain of design discourse description. 

Contextual consistency also applies when a secondary conceptual framework (such 

as a user interface metaphor) and/or a particular user interface environment is 
adopted, e.g. the adopted metaphor should be compatible with the system domain. 
To support later assessment of such concerns, the design decisions and rationale 
should be documented.

A case-study example of a structured diagram description of IM(y) is shown in 

Figure AE-9. The Figure illustrates how changes in the states of an abstract screen 

object OBJ (attributed to actions P and Q) may be linked to its appearance changes 
(pictorial descriptions). Thus, icon design falls within the scope of the Interface 

Model Stage.

IM(y) descriptions are carried forward to the Display Design Stage to support 

screen composition. Links with the dialogue and inter-task screen actuation 

description may also occur since action leaves of particular IM(y) descriptions 

constitute triggers for screen actuations. A case-study example of such a link was 

described in Section VI, i.e. a mouse click on the 'Okay' button object was linked 

to the actuation of Screen 2.5.

Presently, the products derived at the Display Design Stage are described.
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Figure AE-9 : Deriving IM(y) by Decomposing Computer (C:)
Leaves of STM(y) on the Basis of the Domain of Design Discourse 

Description and the Chosen User Interface Environment
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(VHP The Display Design Stage

At this stage, preceding JSD* design descriptions are drawn together to complete 

the specification of a software user interface design. In particular, the JSD*(HF) 

stream contributes IM(y) and ITM(y) descriptions, while specifications of the JSD 

input sub-system and output contents of information function processes are 

contributed by the JSD*(SE) stream. On the basis of these descriptions, the 
following specifications are addressed:

(a) the content of error, feedback and help messages. These specifications

407



are described by a message index (Figure AE-10);
(b) the context for triggering error, feedback and help messages. These 
specifications are described by a dialogue and inter-task screen actuation 

description (Figure AE-11);
(c) the composition and layout of screen displays. These specifications are 

described by screen layout diagrams11 (Figure AE-12). A dictionary is also

Figure AE-10 : Inter-Linkages between Products of the Display

Design Stage
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11 Screen layout diagrams may be drawn on paper (scale or dimensioned drawings) or prototyped 
using a computer-based tool (e.g. Prototyper™). Although paper-based documentation of the 
message index and screen layout diagrams may be superseded by such tools, it is emphasised that 
the dictionary of screen objects, interface model descriptions, and the dialogue and inter-task screen 
actuation description should still be documented explicitly. Thus, the requirement for 
comprehensive documentation to support design evaluation and maintenance is satisfied.
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included to provide a textual account of objects in each screen diagram 

(Table AE-2).

The Dialogue and Inter-Task Screen Actuation Description (DITaS AD(y)) describes 

how screen actuations are set against the interactive task context described by 

ITM(y). In other words, it specifies when particular computer functions and 

messages should be presented to support interactive task performance.12 Wider 

linkages between DITaSAD(y) and other JSD*(HF) products (namely interface 

model descriptions, message index and screen layout diagrams) have already been 

described in Section VI.

Figure AE-12 : A Pictorial Screen Layout Description for the Target 

Recreation Facility Booking System

WELCOME 
to UCL's Recreation Facility  

Booking S ystem
If you are a member of th i s  College you can use th i s  s y s te m  to 

book the following f a c i l i t i e s  a t  the  spec i f ied  hourly ra tes :

1. Squash Courts £2.00
2. Snooker Tables £2.50

(  >1 r  a

Quit System B ig OK
v  j L A

Specified bg Kee Yong Lim 
Im plemented by Dick Lloyd Thomas

12 The objective of DITaSAD(y) is not the description of all possible screen transitions. For 
instance, transient changes in the appearances of objects (these are described by IM(y)), screen 
refresh and scrolling actions, etc., are excluded from its scope.
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Table AE-2 : Dictionary of Screen Objects for the Target Recreation
Facility Booking System (Screen 1)

Screen Object Description Design Attributes

Okay button 

......etc.

The user clicks this button to 
indicate that the welcome message 
and membership requirements are 
understood.

..... etc.

On input, the computer displays 
Screen 2 to prompt the user to 
input an identification number.

......etc.

To summarise, structured diagrams, tables and pictorial diagrams are used to 

document the dialogue and inter-task screen actuation description, message index 

and screen layout respectively. These products of the Display Design Stage, 

together with ITM(y) and IM(y), comprise JSD*(HF) specifications of a user 
interface design. 13 The specifications are discussed with JSD*(SE) analysts.14 
Amalgamated JSD*(HF) and JSD*(SE) specifications are then implemented in

13 The potential for wider applications of JSD*(HF) products should be noted. For instance, 
products derived between the Generalised Task Model and Interaction Task Model Stages (inclusive) 
could support the design of training programmes and user manuals. Specific applications of each 
JSD*(HF) product have already been indicated in the paper, e.g. job design would be supported by 
system and user task model descriptions. Further account of the relationships between JSD*(HF) 
products and existing human factors design 'topics' is excluded, since the main objective of the 
present research is the specification of JSD*(HF) descriptions to support system design.
14 In view of the current training of human factors designers and the notation adopted by the 
method, the amalgamation of JSD*(HF) with JSD*(SE) specifications should be undertaken by 
JSD analysts. The assertion is consistent with the design roles currently assumed by human factors 
designers and software engineers.
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accordance with the JSD method.15’ 16 Late evaluation17 follows and 'final' 

design modifications (if any) are accommodated accordingly.

The above account completes a stage-wise illustration of the JSD*(HF) method.

To conclude, the JSD*(HF) method contributes to system development as follows :

(a) it specifies an explicitly structured human factors design process. Thus, 

the scope of human factors support is extended throughout the system 

design cycle. In addition, a structured design conception would support 
better project management since it encourages an explicit accommodation of 

human factors by the design agenda;

(b) it identifies explicit intersections between Human Factors and Software 
Engineering design analysis and specification. Thus, early, timely and 

contextually relevant human factors input is facilitated.

15 Computer-based support for implementing JSD*(HF) specifications would be desirable.
16 A detailed account of human factors input to JSD implementation is excluded from the present 
research. However, it may be expected that human factors input would be confined largely to the 
specification of additional feedback displays to accommodate particular JSD implementations. For 
instance, additional feedback would be necessary if an implementation involves longer than 
expected transient response times. Wider human factors input is not envisaged because the 
transformation of JSD* specifications implicated by JSD implementation, is a well regulated and 
mechanistic process. In addition, the transformations, by definition, would not alter the external 
behaviour implied by the specifications (see Zave, 1984).
17 Late evaluation was excluded from the present research for the following reasons:

(a) human factors input to late evaluation is already well established. Indeed, off-the-shelf 
evaluation techniques are readily available for recruitment to the JSD*(HF) method;
(b) the primary objective of the research is to address the 'too-little-too-late' problem of 
human factors input to system development. Thus, the focus of the research is on the 
development of human factors support for earlv as opposed to later stages of system 
design, i.e. to support design analysis  and specification, rather than design 
implementation and evaluation.
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