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a b s t r a c t 

We introduce and demonstrate an unsupervised machine learning technique for spectroscopic analysis of 

quantitative MRI experiments. Our algorithm supports estimation of one-dimensional spectra from single- 

contrast data, and multidimensional correlation spectra from simultaneous multi-contrast data. These 

spectrum-based approaches allow model-free investigation of tissue properties, but require regularised 

inversion of a Laplace transform or Fredholm integral, which is an ill-posed calculation. Here we present 

a method that addresses this limitation in a data-driven way. The algorithm simultaneously estimates a 

canonical basis of spectral components and voxelwise maps of their weightings, thereby pooling informa- 

tion across whole images to regularise the ill-posed problem. We show in simulations that our algorithm 

substantially outperforms current voxelwise spectral approaches. We demonstrate the method on multi- 

contrast diffusion-relaxometry placental MRI scans, revealing anatomically-relevant sub-structures, and 

identifying dysfunctional placentas. Our algorithm vastly reduces the data required to reliably estimate 

spectra, opening up the possibility of quantitative MRI spectroscopy in a wide range of new applications. 

Our InSpect code is available at github.com/paddyslator/inspect. 

© 2021 The Author(s). Published by Elsevier B.V. 

This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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. Introduction 

Quantitative MRI can measure and map physical and chemical 

uantities that strongly relate to underlying tissue structure and 

unction. A convenient, and data-driven, way to analyse quantita- 

ive MRI data is to assume a population of spins with a distribu- 

ion of quantities (e.g. relaxivity, diffusivity) that are encoded in 

 one-dimensional, or multidimensional correlation, spectrum. By 

stimating such distributions, multiple microstructural components 

an be distinguished without making a-priori modelling assump- 

ions, such as fixing the number of tissue compartments. This ap- 

roach, which we refer to as quantitative MRI spectroscopy in this 

aper, has the potential to provide novel biomarkers ( Bai et al., 

014 ). Quantitative MRI spectroscopy has been demonstrated for 

ingle-contrast approaches, including T2 component analysis of 

ulti-echo relaxometry data, as has been used to image myelin 
∗ Corresponding author. 

E-mail address: p.slator@ucl.ac.uk (P.J. Slator). 

b

B  

d

ttps://doi.org/10.1016/j.media.2021.102045 

361-8415/© 2021 The Author(s). Published by Elsevier B.V. This is an open access article
 Alonso-Ortiz et al., 2015; Nagtegaal et al., 2020 ) and luminal water 

 Sabouri et al., 2017; Devine et al., 2019 ). 

Quantitative MRI spectroscopy is also an attractive technique 

or analysing MRI experiments that concurrently measure multiple 

R properties such as T1, T2, and diffusivity. By providing infor- 

ation on correlations and couplings between complementary MR 

roperties, this approach can resolve distinct microstructural com- 

artments that are indistinguishable with a single contrast. Various 

ypes of multi-contrast correlation spectroscopy have been demon- 

trated, such as relaxometry-relaxometry ( English et al., 1991 ) and 

iffusion-relaxometry ( Van Dusschoten et al., 1996 ). Several pa- 

ers have leveraged recent advances in scanner hardware to ex- 

end these ideas into imaging, in the T1-diffusion ( De Santis et al., 

016b; 2016a ), T2-diffusion ( Veraart et al., 2018; Kim et al., 2017a; 

elbourne et al., 2018; De Almeida Martins and Topgaard, 2018; 

ampinen et al., 2020; De Almeida Martins et al., 2020; Reym- 

aut et al., 2020; Gong et al., 2020 ), T1-T2-diffusion ( Benjamini and 

asser, 2017 ), T2 ∗-diffusion ( Slator et al., 2019b ), and T1-T2 ∗-

iffusion ( Hutter et al., 2018 ) domains. 
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A general continuum model for quantitative MRI spec- 

roscopy gives a Fredholm integral equation on the MR signal 

 Benjamini and Basser, 2020 ), or a Laplace transform in the spe- 

ific exponential decay case, e.g. for diffusivity or relaxivity. The 

pectrum can be estimated using regularised inversion of this in- 

egral ( English et al., 1991 ), although this is highly ill-posed. Es- 

imating spectra in each image voxel independently therefore re- 

uires unrealistically high signal-to-noise ratio (SNR). Moreover, to 

erive meaningful quantitative maps from voxelwise spectra typ- 

cally involves a procedure known as spectral integration ; see top 

anel Fig. 1 for a two-dimensional example. In spectral integration, 

he user first manually identifies regions of the spectrum (termed 

pectral regions of interest, sROI). These sROIs are typically found 

y identifying prominent features in spectra estimated from the 

ignal averaged over image regions of interest (ROIs). Scalar indices 

re then calculated by numerical integration of each voxel’s recon- 

tructed spectrum over these sROIs ( Mackay et al., 1994; Kim et al., 

017a; Benjamini and Basser, 2017 ). 

Recently, methods have been proposed for increasing the ro- 

ustness of voxelwise spectral fits, utilising marginal distributions 

 Benjamini and Basser, 2016 ) or spatial regularisation ( Kim et al., 

017a ). These methods can improve inversion stability and thus 

ive more meaningful quantitative maps. However, inherent limita- 

ions remain. In particular, they rely on ad-hoc choices of regular- 

sation terms and manually defined sROIs. A recent technique au- 

omatically identifies these spectral integration regions ( Pas et al., 

020 ), but restricts to rectangular and non-overlapping sROIs, de- 

ends on a user-defined threshold value, and still requires voxel- 

ise spectral estimation. 

Here we present a method which addresses these limitations 

n a data-driven way. It simultaneously estimates a canonical basis 

f spectral components for a whole image (or a data set compris- 

ng multiple images), and the voxelwise weighting factors of each 

omponent. We build on previous work that exploits data redun- 

ancies in nuclear magnetic resonance (NMR) datasets, including 

a) COmponent REsolved (CORE) NMR ( Stilbs et al., 1996 ) - a tech-

ique for analysing Fourier Transform Pulsed-Gradient Spin-Echo 

FT-PGSE) data sets that has also been applied to NMR images 

 Stilbs, 1998 ) - and (b) our previously published discrete InSpect 

lgorithm ( Slator et al., 2019a ). We hence derive a technique that 

stimates a set of underlying spectra and corresponding maps of 

heir relative contributions in each voxel. This allows us to capture 

mooth changes in assignment to spectral components across the 

mage, rather than forcing hard categorisation of pixels into a small 

et of components, which discards subtle variation. Our approach 

s inspired by the fact that the MR signal comes from a multitude 

f microstructural environments, motivating the estimation of a set 

f canonical bases disentangling these environments. Moreover, the 

pectra and maps outputted by our algorithm are inherently inter- 

retable, unlike many AI - particularly deep learning - techniques 

 Castelvecchi, 2016; Lundervold and Lundervold, 2019 ). 

Unlike standard inversion approaches, the InSpect algorithm in- 

roduced here exploits the large amount of information shared 

mong voxels, dramatically reducing the SNR required for stable 

nversion, hence enabling quantitative MRI spectroscopy in a wide 

ariety of new situations. The method provides a natural lower- 

imensional representation enabling standard downstream anal- 

sis of images without manual division of the spectral domain 

into sROIs) or image segmentation (into image ROIs). Fig. 1 vi- 

ualises the existing voxelwise method (top panel) and our pro- 

osed InSpect algorithm (bottom panel) side-by-side. In this paper 

e demonstrate InSpect by estimating multidimensional correla- 

ion spectra from combined T2 ∗-diffusion data, but we emphasise 

hat our algorithm is applicable to data of any dimension. 

The paper proceeds as follows: we first describe the assump- 

ions underlying the continuous InSpect algorithm, then derive the 
2 
terative optimisation algorithm. We demonstrate InSpect first in 

imulations, then on in-vivo diffusion-relaxometry placental MRI 

ata. Our Matlab (The MathWorks, Natick, MA) implementation of 

nSpect is available at github.com/paddyslator/inspect. 

. Methods 

.1. Related methods 

InSpect is based on a continuum model, which assumes that 

ingle voxels contain spins with a spectrum of MR properties. For 

 general n-dimensional multi-contrast MRI experiment the voxel 

ignal is 

( t t t ) = 

∫ 
. . . 

∫ 
F ( ω 

ω ω ) K( t t t , ω 

ω ω ) d ω 1 . . . d ω n (1)

here t t t is a vector of experimental parameters which are varied to 

ield contrast in intrinsic MR properties ω 

ω ω , via the specific form of 

he kernel K( t t t , ω 

ω ω ) . F is the n -dimensional spectrum over ω 

ω ω , i.e. the

istribution of these values across all spins. For example, in two- 

imensional T2 ∗-diffusivity (or T2-diffusivity) imaging, t t t = (b, T E ) , 

he b-value and echo time (TE); ω 

ω ω = (ADC, T ∗
2 
) , the apparent diffu- 

ion coefficient and T2 ∗; K( t t t , ω 

ω ω ) = exp (−T E /T ∗
2 
) exp (−bADC) is the

ernel; and F is the T2 ∗-ADC spectrum. 

The standard approach for estimating the spectrum from a 

eneral n- dimensional quantitative MRI experiment, following 

 Menon and Allen, 1991; English et al., 1991; Ronen et al., 2006 ),

roceeds as follows. Equation (1) is first discretised onto an n- 

imensional grid, with lengths defined by the user-defined vector 

 ω ω ω = (N ω 1 , . . . , N ω n ) . This gives the following signal expression 

( t t t ) = 

N ω 1 ∑ 

l 1 =1 

· · ·
N ω n ∑ 

l n =1 

F ( ω 

ω ω (l 1 , . . . , l n ) ) K ( t t t , ω 

ω ω (l 1 , . . . , l n ) ) . (2) 

By choosing an ordering of the elements of the n-dimensional 

rid coordinates, the signal for all MR encodings in the experiment 

an thus be written in matrix form 

 = KF (3) 

here S is a column vector, length N s , of the signals at each MR

ncoding, K is an N s by 
∏ n 

l=1 N ω l matrix of discretised kernel val- 

es, and F is an 

∏ n 
l=1 N ω l length column vector of spectrum values. 

he spectrum F is then calculated with regularised non-negative 

east squares 

 = arg min 

F ≥0 

‖ KF − S ‖ 

2 
2 + α‖ F ‖ 

2 
2 . (4) 

y solving Equation (4) in each voxel, the spectrum can be es- 

imated across a whole image. Volume fraction maps are then 

roduced by numerically integrating voxelwise spectra over user- 

efined sROIs, ( Kim et al., 2017b; Benjamini and Basser, 2017; 

ackay et al., 1994 ), see top panel Fig. 1 . However low SNR can

ead to noisy spectrum estimates and hence poor spatial maps. 

CORE NMR is an existing method that produces spatial maps by 

haring information across voxels and hence increases the effective 

NR. CORE assumes a fixed number of components across an image 

 Stilbs, 1998 ) (or equivalently an NMR spectra ( Stilbs et al., 1996 )).

n particular, for the two-dimensional combined T2-D imaging ap- 

lication ( Stilbs, 1998 ), assuming M components, the signal for a 

ingle MR encoding in voxel n is 

 n (b, T E ) = 

M ∑ 

m =1 

z nm 

exp (−T E /T 2 m 

) exp (−bADC m 

) (5) 

here z nm 

is the weighting of component m in voxel n, and T 2 m 

,

DC m 

are the single-valued MR properties (i.e. not spectra) for each 
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Fig. 1. Schematic comparison of voxelwise integration and InSpect for spectral estimation from combined T2 ∗-diffusion data. Top panel: derivation of volume fraction maps 

from multi-contrast MRI using spectral integration. In spectral integration, spectral regions of interest (sROI) are manually identified, typically by examining spectra calculated 

from the signal averaged across image ROIs. Spectra are also calculated for every image voxel. Volume fraction maps are thus calculated by integrating the voxelwise spectra 

in the sROIs. Bottom panel: Illustration of InSpect applied to multi-contrast MRI. The algorithm simultaneously infers a set of M canonical spectral components (e.g. F 1 to F 4 , 

these examples here have single modes but they can equally be multimodal) and their corresponding voxelwise weightings. 

3 
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omponent. Similarly to Equation (3) the signal for all MR encod- 

ngs in voxel n can be written in vector form as 

 n = 

M ∑ 

m =1 

z nm 

exp (−T E /T 2 m 

) exp (−b ADC m 

) (6) 

here T E and b are column vectors, length N s , of the MR encoding 

arameters. The CORE method optimises the component weight- 

ngs for all voxels, { z n 1 , z n 2 , . . . , z nM 

} N n =1 , and global MR properties,

 2 m 

and ADC m 

in this case, using least squares fitting. 

.2. InSpect model 

Our InSpect algorithm automates spectral mapping, and under- 

akes data-driven inversion of the Fredholm integral (or Laplace 

ransform). Rather than naively fitting spectra to each voxel in- 

ependently, the algorithm learns a data-driven low-dimensional 

epresentation consistent with the whole image, see bottom panel 

f Fig. 1 for a visualisation. 

The first element of the representation is a pre-specified num- 

er, M, of canonical spectral components, { F 1 , F 2 , . . . , F M 

} , i.e. In-

pect infers spectra of MR properties, rather than the single values 

f CORE. These spectral components can consist of a single mode 

or peak ) as in the examples in Fig. 1 , or can have multiple modes.

ach spectral component has a corresponding voxelwise weight in 

ach N image voxels. Again the weighting of component m in voxel 

 is denoted z nm 

, so that the full set of voxelwise weights is 

 n = { z n 1 , z n 2 , . . . , z nM 

} N n =1 , where 0 < z nm 

< 1 . (7)

ote that we relax the condition that these spectral component 

eights must sum to 1 (as used in ( Slator et al., 2020 )) to allow

or overall changes in scale across voxels. 

The signal from each voxel, S n , is described by the continuum 

odel of Equation (1) , with the effective spectrum in each voxel n 

iven by the weighted sum of the canonical spectral components 

 (z n ) = 

M ∑ 

m =1 

z nm 

F m 

(8) 

here z n = { z nm 

} M 

m =1 
are the component weights for voxel n . The

iscrete model for a single voxel is therefore given by rewriting 

quation (3) 

 n = K F (z n ) (9) 

nd we consider Gaussian noise on the observed signal 

 n ∼ N 

(
K F (z n ) , σ

2 
n I 

)
. (10) 

he log-likelihood across the whole image is therefore 

og π({ S n } N n =1 | F 1 , F 2 , . . . , F M 

, z n , { σ 2 
n } N n =1 ) = 

N ∑ 

n =1 

log N 

(
S n ; K F (z n ) , σ

2 
n I 

)
(11) 

here N (x ;μ, �) is the multivariate normal PDF with mean μ
nd covariance matrix �. Note that we assume all observations 

n a voxel have the same variance, i.e. the covariance matrix 

s σ 2 
n I. For simplicity we denote the log-likelihood log π(D | θ ) , 

here D = { S n } N n =1 is the full single- or multi-constrast quantita- 

ive MRI dataset (either a single scan or set of scans), and θ = 

F 1 , F 2 , . . . , F M 

, { z n 1 , z n 2 , . . . , z nM 

} N 
n =1 

, { σ 2 
n } N n =1 

}
are the model pa- 

ameters to be inferred by InSpect. 

.3. InSpect inference algorithm 

Here we present the InSpect inference algorithm and provide 

ome intuition behind it. The full derivation is given in Supple- 

entary Material. The inference algorithm seeks the parameters 
4 
that maximise log π(D | θ ) . In practice, we estimate σ 2 
n directly 

rom the data, e.g. for a T2 ∗-diffusion experiment we estimate by 

alculating the empirical variance of the volumes with b = 0 and 

he lowest TE, and we use the same approach for lower or higher 

imensional datasets. The canonical spectral components, F m 

, and 

oxelwise maps, { z n 1 , z n 2 , . . . , z nM 

} N 
n =1 

are iteratively optimised by 

equentially maximising as follows 

1. Initialise the canonical spectral components { F 1 , F 2 , . . . , F M 

} , by

calculating the mean spectrum across the whole image, then 

assigning the M biggest separate peaks as the initial spectral 

components. (Naturally, other initialisation strategies are possi- 

ble.) 

2. Initialise the spectral weights for all voxels { z nm 

} N 
n =1 

, given 

{ F 1 , F 2 , . . . , F M 

} 
3. Update F m 

for some m by solving Equation (12) below 

4. Update { z nm 

} N 
n =1 

, subject to 
∑ M 

m =1 z nm 

= 1 by solving 

Equation (13) for all voxels 

5. Repeat steps 3 and 4 until all voxelwise weights have converged 

according to some tolerance value, or the maximum iteration 

number is reached. 

The update equations are 

 m 

= arg min 

F m ≥0 

∥∥∥∥∥
N ∑ 

n =1 

(K z nm 

) F m 

−
N ∑ 

n =1 

( 

S n − K 

( ∑ 

m � = n 
z nm 

F m 

) ) 

∥∥∥∥∥
2 

2 

(12) 

or the spectral components m = 1 , . . . , M and 

 

z nm 

} M 

m =1 = arg max 
0 <z nm < 1 

log N 

(
S n ; K F ( z n ) , σ

2 
n I 

)
(13) 

or the weights in voxels n = 1 , . . . , N. Equations (12) and (13) are

olved with non-negative least squares and interior-point algo- 

ithms respectively. 

.3.1. Model selection to determine the number of canonical spectral 

omponents 

Finally, we determine the number of canonical spectral compo- 

ents, M. In this paper, we use the Bayesian information criterion 

BIC) to guide the choice of M, with a view to automating this pro- 

ess in future iterations of InSpect. For an InSpect run with fixed 

, the BIC is 

IC = k log n − 2 log π(D | ̂  θ ) (14) 

here k = (M − 1) N + M 

∏ M 

m =1 N ω m is the number of parameters,

 = NN s is the number of observations, and log π(D | ̂  θ ) is the max-

mised value of the log likelihood function, i.e. at the last step 

f the inference algorithm. The value of M which produces the 

owest BIC best explains the data, although we emphasise that 

ther considerations, such as interpretability and prior microstruc- 

ural knowledge, are also important when choosing the number of 

anonical spectral components. 

. Experiments 

.1. Placenta diffusion-relaxometry data 

We demonstrate InSpect using previously published placen- 

al T2 ∗-diffusion data ( Slator et al., 2019b ). Whilst this is two- 

imensional multi-contrast data, we again emphasise that InSpect 

s a general method that is also applicable to single- and higher- 

imensional datasets. The protocol has 66 diffusion-weightings 

ranging from b = 5 to 1600 s mm 

−2 , including six b = 0

olumes) and 5 TEs (78, 114, 150, 186, 222 ms) for a total of 

30 contrast-encodings. Other acquisition parameters were FOV = 

00 × 320 ×84 mm, TR = 7 s, SENSE = 2.5, halfscan = 0.6, resolu-

ion = 3mm 

3 . We considered 13 scans from 12 women, of whom 
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Table 1 

Participant details. 

Participant ID GA at scan (weeks) Cohort 

1 23.72 Control 

2 23.86 Control 

3 25.43 Control 

4 25.72 Control 

5 26.14 Control 

6 26.72 Control 

7 27.14 Control 

8 28.29 Control 

9 28.86 Control 

10 34.43 CH 

11 27.7 PE + FGR 

12 (scan 1) 30.71 CH 

12 (scan 2) 34.14 CH + PE 

GA - gestational age, PE - pre-eclampsia, 

CH - chronic hypertensive, FGR - fetal growth restric- 

tion 
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 were categorised as healthy controls, two had chronic hyperten- 

ion in pregnancy, and one had pre-eclampsia (PE) with additional 

etal growth restriction (FGR). One participant with chronic hyper- 

ension was scanned two times, four weeks apart, and developed 

uperimposed pre-eclampsia by the second scan (see Table 1 for 

ull participant details). An ROI comprising the whole placenta and 

he adjacent section of uterine wall was manually segmented on 

ll images. 

There are two main approaches possible when applying InSpect 

o a dataset with multiple scans: run on each MRI scan indepen- 

ently and find separate canonical spectra and mappings for each; 

r run on all scans simultaneously and estimate a common set 

f spectra. The best approach will depend on the specific appli- 

ation. One important consideration is the extent to which one 

ants to probe within-image heterogeneity, as opposed to across- 

mage differences. In this paper our aim is to gain an initial idea 

f typical placental T2 ∗-ADC spectra, and their spatial distributions, 

cross healthy and unhealthy tissue. We therefore run InSpect on 

he data for all patients simultaneously - i.e. fitting to all images 

ointly, estimating a common set of spectral components across all 

articipants. We ran InSpect, including calculating the BIC, for all 

hoices of the number of components from M = 2 to M = 10 . We

erminated the algorithm when voxelwise spectral weight maps 

ad converged to within a tolerance of 10 −3 , or after five iterations 

ere completed. 

.2. Simulations 

We also tested InSpect on simulated diffusion-relaxometry data. 

our synthetic canonical spectral components - informed by ob- 

erved placental spectra ( Slator et al., 2019b ) - were first defined 

first columns, Fig. 2 ). We next defined ground truth voxelwise 

eights on a 50-by-50 image (i.e. 2500 voxels total, see third 

olumns in Fig. 2 ). Given these we simulated diffusion-relaxometry 

cans as 

 n (b, T E ) = K F (z n ) = K 

( 

M ∑ 

m =1 

z nm 

F m 

) 

(15) 

sing the same b-values and TEs as the placental data. We nor- 

alised each voxel’s data so that the mean of the volumes with 

 = 0 and the lowest TE equalled 1. We added Rician noise with SNR

rom 50 to 400 - this is comparable to the placenta data where 

e calculated SNRs ranging from 50 to 200. We ran InSpect for 

ll choices of the number of components from M = 2 to M = 8 on

hese scans. Equivalently to the placenta case, we terminated the 

lgorithm when the weights had converged to within a tolerance 
5 
f 10 −3 , which typically took around three iterations for the sim- 

lated data. We also fit voxelwise T2 ∗-ADC spectra to all scans by 

olving Equation (4) , with α set to 0.01 using the L-curve method 

 Hansen, 1992 ). We hence derived spectral volume fraction maps 

y integrating voxelwise spectra in four regions of T2 ∗-ADC space 

i.e. sROIs) as in ( Mackay et al., 1994; Kim et al., 2017a; Benjamini

nd Basser, 2017 ). We chose these sROIs based on the ground truth 

omponents, which we note would not be possible on real data. 

. Results 

Figs. 2 and 3 demonstrate InSpect applied to simulated 

iffusion-relaxometry images, and Figs. 4 , 5 and 6 present the si- 

ultaneous InSpect run on all participants’ placental MR images. 

ig. 7 displays how InSpect parameters in the placenta change over 

estation. 

Figs. 2 and S1 demonstrate that InSpect dramatically outper- 

orms the voxelwise approach on simulated data. At all noise lev- 

ls InSpect captures the core features of the maps, and more ac- 

urately recovers the ground truth than voxelwise maps. There is a 

odest diagonal artifact in component 1 and 2 InSpect maps, most 

oticeable at lower SNRs, which arises because of the large differ- 

nce in component 3 and 4 weightings on either side of this line 

lightly biasing component 1 and 2 weight estimation. At SNR = 400 

Fig. S1) InSpect maps are almost identical to the ground truth, 

hereas the voxelwise spectral integration maps remain somewhat 

oisy. InSpect also accurately recovers ground truth spectral com- 

onents (first columns, Fig. 2 ), we emphasise that it is not possi- 

le to automatically recover these components using the standard 

oxelwise approach - rather corresponding regions of the spectral 

omain are manually defined. 

Fig. 3 shows that the BIC correctly suggests that choosing M = 4 

omponents best explains the simulated data at all noise levels, 

xcept for one anomaly at SNR = 50 where M = 6 has a very slightly

ower BIC value. 

Fig. 4 shows that InSpect with M = 7 components had the low- 

st BIC value for the placenta scans, demonstrating that this choice 

s optimal in an information theoretic sense. We emphasise that 

his is not necessarily the “best” choice - a smaller choice of M

ay make the InSpect algorithm output more readily interpretable 

n practice. 

Figs. 5 and 6 display the seven-component InSpect run on all 

articipants’ placental MR images simultaneously. The first col- 

mn in Fig. 5 shows the canonical spectral components (which are 

hared across all participants), and the remaining columns show 

he corresponding weighting maps. The seven canonical spectral 

omponents have distinct characteristics and - even though the 

lgorithm imposes no direct anatomical analogue for any of the 

omponents - the corresponding maps identify clear anatomical 

tructures which are consistent across control placentas, and show 

lear differences in dysfunctional placentas. This suggests that the 

anonical spectral components are potentially identifying distinct 

issue environments, and that those tissue environments could be 

alient to placental dysfunction. 

Given the observed spatial patterns and corresponding canon- 

cal spectral component characteristics in placental data, we can 

ake initial speculations about the microstructural and microcir- 

ulatory environments associated with each component, although 

e emphasise that whilst some signal components appear to latch 

n to specific tissue structures, they cannot be fully interpreted in 

his way as nothing in the InSpect algorithm guarantees this spe- 

ific mapping: 

• Components one, two and three all consist of a single spectral 

peak with ADC close to free water. In weighting maps, com- 

ponent one appears more prominent in the uterine wall, com- 
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Fig. 2. InSpect applied to simulated images for two noise levels. For each SNR, the InSpect output is presented in columns 1–2: inferred spectral components (green-yellow 

peaks, column 1), and corresponding voxelwise weights (column 2). Column 3: ground truth voxelwise weights; ground truth spectral components (red dots in column 1) 

have fixed T2 ∗-ADC values of (0.05, 0.0 0 02), (0.06, 0.0 03), (0.07, 0.05) and (0.08 ms, 0.2 mm2/s). Column 4: maps obtained by numerical integration (within blue regions of 

column 1) of voxelwise spectral fits (we set α = 0 . 01 for these fits, following ( Hansen, 1992 )). Columns 5 and 6: difference and mean square errors between ground truth 

and inferred maps. See Fig. S1 for corresponding maps for simulations with higher SNR. (For interpretation of the references to colour in this figure legend, the reader is 

referred to the web version of this article.) 

6 
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Fig. 3. Bayesian information criterion for InSpect run on simulations for various choices of M, the number of canonical spectral components. For clarity the y-axis is limited 

to between 10 6 and 10 7 . Simulation parameters as Fig. 2 . 

Fig. 4. Bayesian Information Criterion for InSpect run on all placenta scans for var- 

ious choices of M, the number of canonical spectral components. Fits with lower 

BIC values explain the data better. 
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ponent two appears in the areas surrounding placental lobules, 

and component three appears in the centre of placental lobules. 

These observations are consistent with these components rep- 

resenting freely diffusing water in the uterine wall, septa, and 

lobules respectively. 
• Component four has a single peak with low ADC and low T2 ∗, 

and its maps show high weighting in areas of maternal tissue. 

This is consistent with this component representing water with 

lower oxygen saturation and diffusion hindered by tissue struc- 

tures, potentially the maternal venous system. 
• Component five has a single peak with low ADC and high T2 ∗, 

and is spatially prominent in lobular patterns within the pla- 

centa. These observations are consistent with this component 

representing water with high oxygen saturation whose diffu- 

sion is hindered, such as oxygenated maternal blood percolat- 

ing through convoluted intervillous space (e.g. ( Dellschaft et al., 

2020 )). 
• Component six has two peaks with ADC much higher than free 

water, and reasonably high T2 ∗. It is spatially prominent in the 

uterine wall. This suggests that this component reflects mater- 

nal blood perfusing in maternal vasculature. 
• Component seven has two peaks with ADC higher than free wa- 

ter, and is spatially prominent in lobular patterns in the pla- 

centa. This suggests that this component reflects fetal blood 

perfusing in fetal vasculature. 

To make an initial assessment of InSpect’s ability to quantify 

nd predict changes during development and disease, we plotted 
7 
he mean canonical spectral component weightings in the placenta 

nd uterine wall ROI for all participants across gestation ( Fig. 7 ). 

Given our speculative assignments of components to tissue en- 

ironments, the trends we observe are consistent with known pla- 

ental structure changes across gestation and in disease: 

• Component three (“free water in placental lobules”) and 

component five (“maternal blood in intervillous space”) de- 

crease over gestational age; this is consistent with termi- 

nal villi growth shrinking the size of maternal blood pools 

( Jackson et al., 1992 ). 
• The perfusion-associated components six and seven both de- 

crease over gestational age. This is consistent with the observed 

decrease in diffusion MRI-derived perfusion fraction over gesta- 

tional age ( Slator et al., 2018b; Anderson et al., 2020 ). 
• Component four (“maternal venous system”) is significantly 

higher in dysfunctional placentas compared to controls, poten- 

tially reflecting lower blood oxygenation ( Derwig et al., 2013; 

Sinding et al., 2016; 2017; 2018; Ingram et al., 2017; Hutter 

et al., 2019; Ho et al., 2020 ). 
• Component six (“perfusing maternal blood”) is significantly 

lower in dysfunctional placentas compared to controls, poten- 

tially reflecting reduced perfusion ( Derwig et al., 2013; Sohlberg 

et al., 2014; 2015; Anderson et al., 2020 ). 

. Discussion 

We introduce and demonstrate InSpect, a data-driven algo- 

ithm for continuous mapping of spectral components in single- 

r multi-contrast quantitative MRI experiments. The approach ad- 

resses key limitations of traditional approaches, which are unsta- 

le with standard MRI noise levels and require manual spectral la- 

elling to obtain parametric maps. Specifically, InSpect exploits the 

edundancy in spectral variation across individual (or groups of) 

mages, and automates mapping of spectral components. 

On simulated data we show that InSpect dramatically outper- 

orms the standard voxelwise approach, even when the total num- 

er of voxels is relatively small compared to a typical clinical scan 

 Fig. 2 ). On placental diffusion-relaxometry MRI data InSpect maps 

learly show anatomical structures ( Figs. 5 and 6 ). These maps and 

he properties of their corresponding spectral components reveal 

ome association of InSpect components with known tissue struc- 

ures. These associations are consistent with the observed patterns 

cross gestation ( Fig. 7 ), and reveal insights that are consistent 

ith known placenta microstructure and microcirculation proper- 

ies, in healthy controls and participants with pregnancy complica- 

ions. 
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Fig. 5. Seven-component InSpect run on 13 placenta diffusion-relaxometry scans. The leftmost boxes display the canonical spectral components, shared across all 13 par- 

ticipants. The remaining boxes show the corresponding component weighting maps for 6 of the 13 scans, with each column displaying a single participant’s maps (see 

Fig. 6 for the remaining 7 maps). Two participants had been diagnosed with a pregnancy complication at scan time (red outline). Note that the final columns of this Figure 

and Fig. 6 display maps for the same participant, scanned twice, four weeks apart. See ( Slator et al., 2019b ) for corresponding maps calculated with a voxelwise spectral 

approach. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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Components one, two, and three have very similar spectral 

roperties - a single peak with ADC close to free water - but maps

hat are prominent in the uterine wall, septa, and lobules respec- 

ively. Compared to component one, component two has a slightly 

ower ADC, this is consistent with the higher ADC values typically 

een in the uterine wall (e.g. ( Slator et al., 2019b )). Component 

hree has a slightly higher T2 ∗ than component one, this is con- 

istent with the higher T2 ∗ values seen in the centre of the lobule- 

ike structures (e.g. ( Hutter et al., 2019 )). These observations sug- 

est that although their spectra appear very similar, these three 

omponents could encode subtle microstructural changes affecting 

he diffusion of free water across the uterine wall, septa, and lob- 

les. 
8 
Components six (“perfusing maternal blood”) and seven (“per- 

using fetal blood”) both have two peaks with ADC above free 

ater, although component six peaks have markedly higher ADCs 

han seven. Component six is prominent in the uterine wall, 

hereas component seven is prominent in the placenta. These ob- 

ervations are consistent with the higher values seen in the uterine 

all in ADC maps ( Slator et al., 2018a; 2019b; Hutter et al., 2019 ).

he possibility that these maps could separately quantify maternal 

nd fetal circulations, similarly to ( Melbourne et al., 2018; Augh- 

ane et al., 2020 ), has potential applications in identifying placen- 

al insufficiency. 

Components three (“lobule free water”), four (“maternal venous 

ystem”), and six (“perfusing maternal blood”) show the clearest 
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Fig. 6. InSpect maps for 7 participants from the seven-component InSpect run on 13 placenta diffusion-relaxometry scans. Each row displays maps for a single canonical 

spectral component - see first column of Fig. 5 for the corresponding spectra. Columns display the maps for a single scan. Note that the final column in Figs. 5 and 6 display 

maps for the same participant, scanned twice. 
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ifferences in dysfunctional placentas, likely indicative of pathol- 

gy, and are hence promising for predicting and diagnosing preg- 

ancy complications. However, we need to increase participant 

umbers, particularly by scanning healthy controls across a wider 

istribution of gestational ages, in order to fully evaluation the pre- 

ictive and diagnostic power of these metrics. 

Whilst it is tempting, as we have speculated above for the pla- 

enta, to think of InSpect components as representing distinct “tis- 

ue types”, there are many potential inaccuracies and uncertainties. 

he relationship between the two will likely be disrupted by var- 

ous effects, and so we emphasise again the need for caution in 

ieu of any direct validation of these links. We also emphasise that 

e cannot definitively know the spatial scales of these structures. 

hey could be bulk “tissue types” that contain multiple microstruc- 

ural compartments, e.g. maternal placenta, fetal placenta; or more 
9 
pecific “tissue compartments”, e.g. intracellular, extracellular, fe- 

al blood, maternal blood. The scale of the mapped structures will 

epend on the number of InSpect components - less components 

ill tend to output maps of tissue types consisting of multiple 

issue compartments, whereas more components will disentangle 

hese tissue types into single tissue compartments. The long-term 

ope is that InSpect components are close enough to specific tissue 

tructures that they can reveal pathology with greater specificity 

han indices that do not attempt to disentangle tissue types. 

.1. Relationship to other methods 

InSpect offers a new way of mapping single- or multi- 

imensional quantitative MRI data that is complementary to exist- 

ng methods based on spatial regularisation ( Kim et al., 2017a ) or 
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Fig. 7. Scatterplot of mean values of spectral component weightings in placenta and uterine wall ROI against gestational age. Square markers indicate the single participant 

who was scanned twice. 
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arginal distributions ( Benjamini and Basser, 2016 ). Unlike these 

ethods, InSpect does not require manual identification of sROIs to 

btain parametric maps, avoiding this problem through data-driven 

egularisation. CORE NMR ( Stilbs et al., 1996; Stilbs, 1998 ) was a 

uccessful first attempt at regularisation of similar inverse prob- 

ems in a data-driven way. Whilst InSpect and CORE share concep- 

ual similarities, we note the following advances and novelties: 

• CORE infers single fixed values for the underlying MR prop- 

erties of each component, InSpect infers spectra across these 

properties. This allows InSpect to capture components with 

more complex diffusion, relaxation, or diffusion-relaxation pro- 

files than a single fixed value, which can reflect more intricate 

tissue environments. 
• InSpect can automatically select the number of spectral compo- 

nents, whereas CORE uses a fixed number of components. 
• As opposed to CORE, InSpect uses a general log-likelihood for- 

mulation. This framework accommodates more accurate MRI 

noise models, e.g. Rician, in future. 
• The differences in model formulation lead to different optimisa- 

tion procedures. InSpect uses a modified EM algorithm to infer 

component spectra (M-step) and their associated weightings (E- 

step). On the other hand, CORE uses a multi-level least squares 

optimisation to infer the global MR properties (top level) and 

component weightings (lower level). 

Our method is also comparable to blind source separation (BSS) 

echniques (e.g. Kim et al. (2015) and Molina-Romero et al. (2018) ). 

he main advantage of InSpect over BSS is that we incorporate a 

ell-defined basic MRI model, allowing us to explicitly reconstruct 

ignal components that we can associate with distinct tissue com- 

artments. However, BSS would be more appropriate when explicit 

ignal models are unknown or inaccurate. 
10 
Moreover, InSpect is complementary to image denoising tech- 

iques, such as Marchenko-Pastur distribution-based principal 

omponent analysis (MP-PCA) ( Veraart et al., 2016 ), which has 

een shown to improve voxelwise mapping of multi-exponential 

elaxometry data ( Does et al., 2019 ). This PCA-based denoising 

echnique could be adapted in future to spectral mapping of quan- 

itative MRI data by using an InSpect-like kernel instead of MP. 

In future, we will undertake an extensive comparison of all 

hese techniques, whilst carefully considering how to compare 

ethods fairly as this is not a clearly defined standalone task - so 

he optimal technique will depend on the specific application. 

.2. Limitations and future work 

There are limitations to our algorithm in its current form 

hat motivate potential improvements. Firstly, although we demon- 

trated choosing the number of canonical spectral components by 

unning InSpect with several values of M, then determining the fi- 

al M with the BIC, this approach may not be optimal in all cases. 

unning InSpect with fewer components is less computationally 

xpensive and post-processing will be simpler, although it is not 

mmediately clear which approach is better for interpretation. To 

xplore this, we plotted output from all InSpect runs on the pla- 

ental data with M = 2 to M = 6 components (Figs. S2 to S6 in

upplementary Material). We note that for InSpect runs with less 

han six components (i.e. Figs. S2 to S5, and also ( Slator et al.,

020 ) where we used four components) there are not two clearly 

eparated perfusion components. Therefore, for these fits, it is not 

ossible to putatively assign two components to maternal and 

etal perfusion, as for components six and seven in the seven- 

omponent fit. Moreover, in runs with lower M we typically re- 

over spectral components which have multiple peaks, so likely 
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onsist of multiple tissue microenvironments, whereas for M = 7 

ost components have a single peak, so are more likely to repre- 

ent a single microstructural environment. In this sense the seven- 

omponent run is easier to interpret. However, it may be the case 

hat less than seven components are sufficient to make the nec- 

ssary diagnostic or prognostic observations from the data - we 

ill test this hypothesis extensively in future. We will also explore 

ther ways of selecting the number of components, such as quan- 

ifying the distance between estimated maps (or spectra) with an 

ppropriate image (or distribution) similarity measure then thresh- 

lding in order to set an upper limit on M, and model selection 

ia cross validation. Users may also have a fixed number of target 

icrostructural compartments in mind, so it may be beneficial to 

eave the possibility of manually defining M. 

In this study, we show that InSpect spectral components appear 

o be associated with distinct anatomical features in the placenta. 

n future, depending on the specific application, we could constrain 

he spectra to ensure sensitivity and specificity to anatomical fea- 

ures of interest. Another option is to incorporate a Markov random 

eld (similar to ( Marinescu et al., 2019 )) into the weighting maps 

o make it more likely that anatomical features are picked up. 

Here we ran InSpect on groups of placental MRI scans simulta- 

eously. This is the obvious approach for group studies since the 

omponents need to be consistent across images/individuals, but 

ay average over some important within-individual features. In fu- 

ure we will compare to individual scan fits, with focus on which 

pproach best differentiates controls from disease. This choice also 

mpacts on downstream analysis, for example if a dataset is ex- 

ended, it may not be straightforward to compare InSpect results 

or the extended dataset with the original dataset (in the group 

tting case). There is hence scope for substantial further work to 

ssess the consistency of components and model selections across 

ifferent instances of datasets - a bootstrap or cross-validation 

nalysis would likely be very informative. 

Since it assumes a high level of redundancy across images, In- 

pect will likely latch onto the strongest spectral components and 

ay miss important components that appear in only a small num- 

er of voxels. This could potentially be addressed by running In- 

pect with a varying number of spectral components - inferring 

ggregate information from the fits with few components and finer 

etails from the many component fits, or alternatively by optimis- 

ng a different objective function that strongly emphasises regions 

f the image that are poorly reconstructed. 

Our algorithm assumes that underlying spectral components 

re fixed. We tested the robustness of InSpect to voxelwise vari- 

tions in ground truth spectra by running simulations with ad- 

itional noise. Specifically, we introduced voxelwise normally- 

istributed perturbations to the ADC and T2 ∗ values of the four 

ynthetic canonical spectral components seen in Figs. 2 and S1. 

igs. S7 and S8 display the resulting maps, which are noisier but 

till recover the salient structures, and show that InSpect still dra- 

atically outperforms the voxelwise approach. In future we will 

xplore more general approaches for increasing InSpect’s robust- 

ess to voxel-by-voxel noise, such as hierarchical modelling that 

xplicitly accounts for variation in the MR properties of the under- 

ying spectra. 

Although we applied to two-dimensional T2 ∗-diffusion data in 

his paper, our InSpect formulation is agnostic to the dimension- 

lity. Applying the framework to single-contrast quantitative MRI 

s particularly attractive, since there are applications in many tis- 

ue types and imaging modalities. Our approach could enable sig- 

ificantly improved mappings compared to voxelwise model fit- 

ing methods. For example, the framework is immediately appli- 

able to spectral analysis of multi-echo T2 relaxometry for myelin 

ater imaging in the brain ( Alonso-Ortiz et al., 2015; Nagte- 

aal et al., 2020 ), and luminal water imaging in the prostate 
11 
 Sabouri et al., 2017; Devine et al., 2019 ). Whilst we focused 

n diffusion-relaxometry experiments, InSpect also generalises to 

ther multidimensional spectral techniques, such as the range of 

diffusion-X” spectral techniques ( Callaghan, 1991 ), relaxometry- 

elaxometry ( English et al., 1991 ), and diffusion exchange spec- 

roscopy ( Benjamini et al., 2017; Breen-Norris et al., 2020 ). 

InSpect reduces the SNR necessary to estimate and map spec- 

ral features using continuum models and quantitative MRI data. 

he minimum SNR limit for data reconstruction could be further 

owered by accounting for Rician noise. The method can hence un- 

erpin novel scanning methods for obtaining new data, by leverag- 

ng the SNR gain to reduce scanning times and/or improve spatial 

esolution, ultimately increasing the likelihood of translating quan- 

itative MRI spectroscopy to clinical applications. 

. Conclusion 

We present a data-driven approach for quantitative MRI data 

nalysis, and demonstrate its ability to quantify placental dysfunc- 

ion. InSpect exploits within-image redundancies to simultaneously 

stimate a set of canonical spectral components and their mapping 

cross images, offering significant advantages over typical single- 

nd multidimensional spectrum estimation methods. The method 

akes quantitative MRI spectroscopy possible in a wide range of 

ew application areas across tissue types and imaging modalities. 
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