UCL Discovery
UCL home » Library Services » Electronic resources » UCL Discovery

Opportunities for the State-of-the-Art Production of LIB Electrodes—A Review

Bryntesen, SN; Strømman, AH; Tolstorebrov, I; Shearing, PR; Lamb, JJ; Stokke Burheim, O; (2021) Opportunities for the State-of-the-Art Production of LIB Electrodes—A Review. Energies , 14 (5) , Article 1406. 10.3390/en14051406. Green open access

[thumbnail of Shearing_Opportunities for the State-of-the-Art Production of LIB Electrodes_VoR.pdf]
Preview
Text
Shearing_Opportunities for the State-of-the-Art Production of LIB Electrodes_VoR.pdf - Published Version

Download (7MB) | Preview

Abstract

A sustainable shift from internal combustion engine (ICE) vehicles to electric vehicles (EVs) is essential to achieve a considerable reduction in emissions. The production of Li-ion batteries (LIBs) used in EVs is an energy-intensive and costly process. It can also lead to significant embedded emissions depending on the source of energy used. In fact, about 39% of the energy consumption in LIB production is associated with drying processes, where the electrode drying step accounts for about a half. Despite the enormous energy consumption and costs originating from drying processes, they are seldomly researched in the battery industry. Establishing knowledge within the LIB industry regarding state-of-the-art drying techniques and solvent evaporation mechanisms is vital for optimising process conditions, detecting alternative solvent systems, and discovering novel techniques. This review aims to give a summary of the state-of-the-art LIB processing techniques. An in-depth understanding of the influential factors for each manufacturing step of LIBs is then established, emphasising the electrode structure and electrochemical performance. Special attention is dedicated to the convection drying step in conventional water and N-Methyl-2-pyrrolidone (NMP)-based electrode manufacturing. Solvent omission in dry electrode processing substantially lowers the energy demand and allows for a thick, mechanically stable electrode coating. Small changes in the electrode manufacturing route may have an immense impact on the final battery performance. Electrodes used for research and development often have a different production route and techniques compared to those processed in industry. The scalability issues related to the comparison across scales are discussed and further emphasised when the industry moves towards the next-generation techniques. Finally, the critical aspects of the innovations and industrial modifications that aim to overcome the main challenges are presented.

Type: Article
Title: Opportunities for the State-of-the-Art Production of LIB Electrodes—A Review
Open access status: An open access version is available from UCL Discovery
DOI: 10.3390/en14051406
Publisher version: https://doi.org/10.3390/en14051406
Language: English
Additional information: This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited
Keywords: Battery electrode; drying techniques; solvent chemistry; lithium-ion battery
UCL classification: UCL
UCL > Provost and Vice Provost Offices > UCL BEAMS
UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Engineering Science
UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Engineering Science > Dept of Chemical Engineering
URI: https://discovery.ucl.ac.uk/id/eprint/10124143
Downloads since deposit
193Downloads
Download activity - last month
Download activity - last 12 months
Downloads by country - last 12 months

Archive Staff Only

View Item View Item