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Abstract. The combination of non-orthogonal multiple access (NOMA)
and simultaneous wireless information and power transfer (SWIPT) con-
tributes to improve the spectral efficiency (SE) and the energy efficiency
(EE) at the same time. In this paper, we investigate the throughput max-
imization problem for the downlink multi-carrier NOMA (MC-NOMA)
system with the application of power splitting (PS)-based SWIPT, in
which power allocation and splitting are jointly optimized with the con-
straints of maximum transmit power supply as well as the minimum
demand for energy harvesting (EH). To tackle the non-convex problem,
a dual-layer approach is developed, in which the power allocation and
splitting control are separated and the corresponding sub-problems are
respectively solved through Lagrangian duality method. Simulation re-
sults validate the theoretical findings and demonstrate the superiority of
the application of PS-based SWIPT to MC-NOMA over SWIPT-aided
single-carrier NOMA (SC-NOMA) and SWIPT-aided orthogonal multi-
ple access (OMA).

Keywords: Multi-carrier non-orthogonal multiple access (MC-NOMA),
simultaneous wireless information and power transfer (SWIPT), deep
learning.

1 Introduction

With the rapid development of fifth generation (5G) and its advanced appli-
cation scenarios, the limited spectrum and energy resources are increasingly
difficult to meet the requirements for the communication system. Hence, it is
considerably significant to improve the spectrum efficiency (SE) and energy ef-
ficiency (EE). The non-orthogonal multiple access (NOMA) scheme has been
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considered as a significant technique to achieve a higher SE for 5G and the fu-
ture communication system due to the elimination of channel orthogonality [1].
Besides, NOMA technology enables the communication system to provide higher
data rate, lower latency, greater reliability and larger connectivity, etc. [2]. Thus,
NOMA has aroused great attention and the application of NOMA to other ad-
vanced techniques has also been investigated, including multiple-input multiple-
output (MIMO) [3], cognitive radio [4], multi-point cooperative relaying [5],
etc.. On the other hand, simultaneous wireless information and power transfer
(SWIPT) [6], which makes it possible to collect energy and receive information
parallelly, is viewed as an energy-efficient solution to the green communication
system. Therefore, it has attracted extensive concern in both academic and in-
dustry.

Previous studies in [7, 8] have investigated the performance comparison be-
tween NOMA and the conventional orthogonal multiple access (OMA) with the
application of SWIPT. However, most of the existing works considered the single-
carrier NOMA (SC-NOMA) systems and the performance of SWIPT-aided MC-
NOMA is still an open topic. Motivated by this conversation, we considered a
novel system which combines the spectrum-efficient MC-NOMA and the energy-
efficient SWIPT, where the total throughput maximization problem is investi-
gated with the constraints of transmit power supply and energy harvesting (EH)
requirement.

2 System Model and Problem Formulation

2.1 System Model

In this section, we focus on the downlink of MC-NOMA system with the ap-
plication of PS-based SWIPT, in which one BS communicates with K MUs via
N subcarriers (SCs). Denote the set of all MUs’ indexes and the set of all SCs’
indexes as K = {1, 2, · · · ,K} and N = {1, 2, · · · , N}, respectively. The available
bandwidth BW is equally divided into N orthogonal SCs and hence the band-
width of each SC is BWn = BW/N . Thus, the received signal of the k-th MU
via the n-th SC is given by

yn,k = hn,k

√pn,ksn,k +
∑

j∈K,j 6=k

√
pn,jsn,j

+ zn,k, (1)

where hn,k represents the channel coefficient from the BS to the k-th MU over
the n-th SC; sn,k(sn,j) indicates the data symbol transmitted from the BS to the
k-th (j-th) MU over the n-th SC, which is a random signal with the energy of
E[|sn,k|2](E[|sn,k|2]) = 1; zn,k ∼ CN (0, σ2

n,k) denotes the additive white Gaussian
noise (AWGN) to the k-th MU on the n-th SC.

At the receiving end, the received signal of the k-th (k ∈ K) MU is split
into two parts by a PS-based SWIPT scheme, where

√
ρk and

√
1− ρk are the
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Fig. 1. The system model of the downlink SWIPT-aided MC-NOMA with PS-based
receivers.

ratios of the received signal for information decoding (ID) and EH, respectively.
Thereby, the received signal for ID and EH can be respectively written as

yIDn,k = hn,k
√
ρkpn,ksn,k︸ ︷︷ ︸

Intended signal

+hn,k
∑
j∈K,
j 6=k

√
ρkpn,jsn,j

︸ ︷︷ ︸
Interference signal

+
√
ρkzn,k + zIDn,k︸ ︷︷ ︸

Noise

, (2)

yEH
n,k = hn,k

j=K∑
j=1

√
(1− ρj)pn,jsn,j +

√
1− ρkzn,k, (3)

in which zIDn,k ∼ CN (0, (σID
n,k)2) refers to the noise generated during the PS pro-

cess.
In order to reduce the interference during the ID process, the successive

interference cancellation (SIC) technique is applied by the ID receivers. Let
h̃n,k = h2n,k/σ

2
n,k denote the channel to noise ratio (CNR) for the k-th MU

over the n-th SC. In practice, the order of ID in the downlink NOMA is usually
the same as the order of the CNR. Therefore, the interference for the k-th MU
on the n-th SC can be reduced as

In,k = ρkh
2
n,k

∑
j∈K,

h̃n,j>h̃n,k

pn,j . (4)
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Accordingly, the signal to interference plus noise ratio (SINR) and the avail-
able data rate of the k-th MU on the n-th SC can be respectively given by

SINRn,k =
h2n,kρkpn,k

In,k + ρkσ2
n,k + (σID

n,k)2
, (5)

Rn,k = BWn log2(1 + SINRn,k). (6)

Moreover, the harvested energy of the k-th MU on the n-th SC can be written
as

En,k = η(1− ρk)

h2n,k K∑
j=1

pn,j + σ2
n,k

 , (7)

where η corresponds to the efficiency of the EH receivers when harvesting energy.
Hence, the achievable data rate and the available harvested energy for the

k-th MU can be respectively written as

Rk =

N∑
n=1

Rn,k, Ek =

N∑
n=1

En,k. (8)

Consequently, the total throughput of the considered MC-NOMA system
with the application of PS-based SWIPT can be expressed as

Rsum =

N∑
n=1

K∑
k=1

Rn,k =

K∑
k=1

Rk. (9)

2.2 Problem Statement

In this study, we focus on the total throughput maximization problem for our
considered PS-SWIPT aided MC-NOMA system by jointly optimizing the power
allocation and splitting control with the constraints of maximum transmit power
supply as well as the minimum EH requirement. Thus, the optimization problem
can be formulated as follows

max
ρ,p

Rsum(ρ,p) (10)

s.t. Ek ≥ Ereq, ∀ k ∈ K, (11)

0 < ρk < 1, ∀ k ∈ K, (12)

pn,k ≥ 0, ∀ n ∈ N , ∀ k ∈ K, (13)

N∑
n=1

pn,k ≤ pmax
k , ∀ k ∈ K, (14)

in which ρ = [ρ1, ρ2, · · · , ρK ]T and p = [p1,p2, · · · ,pN ]T with the component
pn = [pn,1, pn,2, · · · , pn,K ]T (1 ≤ n ≤ N). The inequality in (11) corresponds to
the minimum requirement for EH of each MU, i.e., EreqW. The inequality in (12)
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indicates that the PS ratio for each MU should be within (0, 1). The constraint
(13) ensures the non-negativity of the power allocation for the k-th MU through
the n-th SC and the constraint (14) limits the power allocation for the k-th MU

(i.e.,
∑N
n=1 pn,k) not to exceed pmax

k . Moreover, the maximum power supply of

the BS can be implied to be
∑K
k=1 P

max
k according to (14).

The throughput maximization problem formulated in (10)-(14) is non-convex
owing to the coupled multiple variables (i.e., ρ,p) and the co-channel interfer-
ence. Additionally, the aforementioned maximization problem is a widely-known
NP-hard problem, and hence it is difficult to obtain the solution directly. In
the following section, we propose a dual-layer iterative approach to tackle the
problem given in (10)-(14).

3 Algorithm Based on Lagrangian Duality

In this section, we develop the power allocation and PS control strategy for the
involved PS-SWIPT aided MC-NOMA system. Since the coupled variables ρ and
p make the original problem (10)-(14) non-convex, it is extremely tough to derive
the optimal solution directly. According to [9], for any optimization problem
involving multiple variables, it is practicable to deal with the sub-problem over
part of variables while considering the remainder as constants, and next turn
to handle the sub-problem over the remaining variables. As a result, p and ρ
are separated to develop the practical and effective solution for the considered
optimization problem.

3.1 PS Control With Fixed Power Allocation

We first consider the case where all the components of the power allocation ma-
trix p are constants. In this case, we focus on optimizing the PS ratios under the
fixed power allocation. Hence, the corresponding sub-problem can be simplified
as

max
ρ

Rsum(ρ) (15)

s.t. 0 < ρk < 1, ∀ k ∈ K, (16)

Ek ≥ Ereq, ∀ k ∈ K. (17)

According to (7), (8) and (17), ρk ( ∀ k ∈ K) is required to satisfy the
following condition

ρk ≤ 1− Ereq

η
∑N
n=1 h

2
n,k

∑K
j=1 pn,j + σ2

n,k

, ρUB
k . (18)

Considering (16) and (18) together, the optimization problem (15)-(17) is
infeasible unless

ρUB
k > 0, ∀ k ∈ K. (19)
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Proposition 1: Under the fixed power allocation p satisfying (13), (14) and
(19), the throughput maximization sub-problem given in (15)-(17) is strictly
convex with regard to ρ.

Consequently, strong duality holds between the sub-problem (15)-(17) and
its corresponding dual problem, which makes it possible to solve (15)-(17) opti-
mally by employing the Lagrangian duality based method [9]. The corresponding
Lagrangian function is formulated as

L(ρ,µ,ν,ω) =

N∑
n=1

K∑
k=1

BWn log2

(
1 +

ρkh
2
n,kpn,k

ρk(h2n,k
∑
j∈K,h̃n,j>h̃n,k pn,j + σ2

n,k) + Cn,k

)
+

K∑
k=1

µkρk

+

K∑
k=1

νk(1− ρk) +

K∑
k=1

ωk

 N∑
n=1

η(1− ρk)

h2n,k K∑
j=1

pn,j + σ2
n,k

− Ereq

 ,

(20)

in which µ = [µ1, · · · , µK ]T , ν = [ν1, · · · , νK ]T and ω = [ω1, · · · , ωK ]T are non-
negative Lagrange multipliers. More specifically, µ and ω are corresponding to
the constraint (16) while ω is pertaining to the constraint (17).

Then the Lagrange dual objective function can be accordingly written as

g(µ,ν,ω) = max
ρ
L(ρ,µ,ν,ω). (21)

Thus, the Lagrange dual problem can be modelled as

min
µ,ν,ω

g(µ,ν,ω) (22)

s.t. µ � 0,ν � 0,ω � 0. (23)

To solve the Lagrange dual problem, we first optimize the PS ratio ρ with
the given dual variables {µ,ν,ω} through gradient ascent method, and then
update the dual variables {µ,ν,ω} with the optimized ρ through well-known
sub-gradient scheme [10].

Optimizing ρ With Given Dual Variables {µ, ν, ω} We first calculate
the gradient direction of the Lagrangian function (20) regarding the PS ratio
ρk ( ∀k ∈ K), which is given as

∇ρkL =

N∑
n=1

BWn

ln 2
· An,kCn,k

(An,kρk +Bn,kρk + Cn,k)(Bn,kρk + Cn,k)

+ µk − νk − ωk
N∑
n=1

ηh2n,k K∑
j=1

pn,j + σ2
n,k

 .

(24)

Particularly, ρk can be sequentially updated according to the following for-
mula

ρk(n+ 1) = ρk(n) + ε(n)∇ρk(n)L, (25)
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where ρk(n) and ρk(n + 1) denote the ρk in the n-th and (n + 1)-th iteration
respectively, and ε(n) represents the updating step for ρk in the n-th iteration,
which is required to satisfy the following condition

ε(n) = arg max
ε
L(ρ(n+ 1),µ,ν,ω)|ρ(n+1)=ρ(n)+ε∇ρ(n)L. (26)

Process in (25) is repeated until |∇ρk(n)L| ≤ ε1 for any k ∈ K, and the optimal
PS ratio is denoted as ρ∗. Therefore, the Lagrange dual objective function in
(21) is further determined as

g(µ,ν,ω) = L(ρ∗,µ,ν,ω). (27)

Updating {µ, ν, ω} With the Optimized ρ∗ With the obtained PS ratio
ρ∗, the corresponding optimal Lagrange multipliers {µ,ν,ω} can be determined
accordingly through solving the Lagrange dual problem in (22)-(23).

Obviously, the dual problem is convex on the Lagrange multipliers {µ,ν,ω}.
Therefore, one-dimensional search scheme can be adopted to optimize the dual
variables. Nevertheless, the objective function (22) is not necessarily differen-
tiable and thus this gradient-based approach is not always feasible. Otherwise,
we apply the widely-used sub-gradient method to determine the dual variables
{µ,ν,ω}, for which the sub-gradient directions are given in Proposition 2.

Proposition 2: The sub-gradient of the Lagrange dual function regarding the
Lagrange multipliers can be respectively calculated by

∇µkg = ρ∗k, (28)

∇νkg = 1− ρ∗k, (29)

∇ωkg =

N∑
n=1

η(1− ρ∗k)

h2n,k K∑
j=1

pn,j + σ2
n,k

− Ereq. (30)

Proof: Please refer to [10] for more details. �
According to Proposition 2, the value of µk (νk, ωk) should decrease if∇µkg >

0 (∇νkg > 0, ∇ωkg > 0), and vice versa. Based on this observation, we apply
the binary search algorithm [10] to determine the optimal Lagrange multipliers
(denoted as {µ∗,ν∗,ω∗}).

The algorithms developed in 1) and 2) operate alternately until the strong
duality holds, i.e.,

Rsum(ρ∗) = g(µ∗,ν∗,ω∗). (31)

3.2 Power Allocation With Fixed PS Ratio

After obtaining the optimal solution of the PS ratio ρ∗, now we aimed at optimiz-
ing the power allocation p under the optimized ρ∗. Correspondingly, the original
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optimization problem in (10)-(14) is predigested into the following sub-problem

max
p

Rsum(p) (32)

s.t. Ek ≥ Ereq, ∀ k ∈ K, (33)

pn,k ≥ 0, ∀ n ∈ N , ∀ k ∈ K, (34)

N∑
n=1

pn,k ≤ pmax
k , ∀ k ∈ K. (35)

Proposition 3: Suppose that the process of PS in the receiving ends is al-
most idealized and the noise power for all MUs on the n-th SC is equal, i.e.,
(σID
n,k)2 → 0 and σ2

n,k = σ2
n,j = σ2

n(∀k, j ∈ K), the sub-problem (32)-(35) is
convex if the feasible domain is non-empty.

Similar to the previous section III.A, strong duality can also be guaran-
teed between the sub-problem (32)-(35) and its dual problem, and thus the
Lagrangian duality based algorithm is also employed here to optimize the power
allocation p.

Specifically, we define the relationship between the k-th MU and its decoding
order as k = π(i). The corresponding Lagrangian function for the sub-problem
(32)-(35) can be written as

L̃(p,α,β,γ) =

N∑
n=1

K∑
i=1

BWn log2

(
1 +

h2n,π(i)pn,π(i)

h2n,π(i)
∑K
j=i+1 pn,π(j) + σ2

n

)

+

K∑
i=1

αi

 N∑
n=1

η(1− ρ∗i )

h2n,π(i) K∑
j=1

pn,π(j) + σ2
n

− Ereq


+

N∑
n=1

K∑
i=1

βn,ipn,π(i) +

K∑
i=1

γi

(
pmax
k −

N∑
n=1

pn,π(i)

)
,

(36)

in which α = [α1, · · · , αK ]T , β = [β1, · · · ,βN ]T with βn = [βn,1, · · · , βn,K ]T

and γ = [γ1, · · · , γK ]T are non-negative multipliers with respect to (33), (34)
and (35), respectively.

Then, the Lagrange dual objective function is given by

g̃(α,β,γ) = max
p
L̃(p,α,β,γ), (37)

Thus, the corresponding dual optimization problem can be formulated as
follows

min
α,β,γ

g̃(α,β,γ) (38)

s.t. α � 0,β � 0,γ � 0. (39)

The proposed algorithm to solve the aforementioned problems consists of two
steps, and more specific details are developed as follows.
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Optimizing p Under Fixed Lagrange Multipliers {α, β, γ} The gradient
ascent method is employed to determine the optimal power allocation p∗. Firstly,
we analyze the gradient direction of the Lagrangian function given in (36) with
regard to the power allocation component pn,π(i), which is calculated as

∇pn,π(i)
L̃ =

BWn

ln 2
·(

h2n,π(1)

h2n,π(1)Θn,π(1) + σ2
n

+

i∑
i′=2

(
h2n,π(i′)

h2n,π(i′)Θn,π(i′) + σ2
n

−
h2n,π(i′−1)

h2n,π(i′−1)Θn,π(i′) + σ2
n

))

+ βn,i − γi +

K∑
j=1

αjη
(
1− ρ∗j

)
h2n,π(j).

(40)

On the n-th (1 ≤ n ≤ N) SC, the power allocation for each MU can be
successively updated through the following expressions

pn,π(1)(1) 99K pn,π(K)(1)︸ ︷︷ ︸
The 1-st iteration

99K pn,π(1)(t) 99K pn,π(K)(t)︸ ︷︷ ︸
The t-th iteration

→ pn,π(1)(t+ 1) 99K pn,π(K)(t+ 1)︸ ︷︷ ︸
The (t+ 1)-th iteration

,
(41)

pn,π(i)(t+ 1) = pn,π(i)(t) + ε̃(t)∇pn,π(i)(t)L̃, (42)

where t and t + 1 indicate the number of iterations and ε̃(t) represents the up-
dating step in the t-th iteration.

The process (41)-(42) for the power allocation on the n-th SC proceeds until

|∇pn,π(i)
L̃| ≤ ε3 for any 1 ≤ i ≤ K. Correspondingly, the optimal power alloca-

tion on the n-th SC is expressed as p∗n and thus p∗ = [p1∗, · · · , p∗N ]T . Then, the
dual objective function in (37) can be reformulated as

g̃(α,β,γ) = L̃(p∗,α,β,γ). (43)

Optimizing {α, β, γ} Under the Obtained p∗ Similar to the section III.A,
sub-gradient approach is employed here to tackle the optimization of Lagrange
multipliers {α,β,γ}, for which the sub-gradient directions are respectively de-
noted as follows

∇αi g̃ =

N∑
n=1

η(1− ρ∗i )

h2n,π(i) K∑
j=1

pn,π(j) + σ2
n

− Ereq, (44)

∇βn,i g̃ = pn,π(i), (45)
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∇γi g̃ = pmax
k −

N∑
n=1

pn,π(i). (46)

It is worth noting that the binary search method is also applicable to deter-
mine the optimal solution of the Lagrange multipliers here, which are denoted
as {α∗,β∗,γ∗}.

The algorithms developed in 1) and 2) are repeated alternately until the zero
duality gap is achieved, i.e.,

Rsum(p∗) = g̃(α∗,β∗,γ∗). (47)

3.3 Complete Solution for Joint Power Allocation and Splitting

Up to now, the solutions to the sub-problems for optimizing ρ and p have been
proposed in the sections III.A and III.B, respectively. Now we develop the com-
plete solution for jointly optimizing the original problem (10)-(14), which is
summarized in Algorithm 1.

Algorithm 1 Complete Solution for Joint Power Allocation and Splitting Con-
trol
1: Initialize p and stop criteria ε1, ε2, ε3, ε4,.
2: repeat
3: Step 1: optimize the PS ratio under fixed power allocation:
4: repeat
5: initialize dual variables {µ,ν,ω};
6: solve the problem (21) to obtain the optimal ρ∗ according to (24)-(25)

until |∇ρk(n)L| ≤ ε1(∀k ∈ K);
7: determine the optimal dual variables {µ∗,ν∗,ω∗} according to Proposition

2 ;
8: until Rsum(ρ∗) = g(µ∗,ν∗,ω∗).
9: Step 2: optimize the power allocation with fixed PS ratio:

10: repeat
11: initialize the PS ratio assignment as ρ∗;
12: solve the problem (37) to acquire the optimal p∗ according to (40)-(42)

until |∇pn,π(i)
L̃| ≤ ε3(∀i ∈ K);

13: determine the optimal dual variables {α∗,β∗,γ∗} according to (44)-(46);
14: until Rsum(p∗) = g̃(α∗,β∗,γ∗).
15: until Rsum(ρ∗) = Rsum(p∗).

Remark 1: The complete algorithm can be regarded as a dual-layer pro-
cess. In the inner-layer, the complexity of the gradient decent algorithm is
O(K) and the number of this loop iteration is approximately O log(1/ε21) [11];
and the complexity of the binary search method with error tolerance ε2 is
O log(1/ε22). Similarly, in the outer-layer, the computational complexity of the
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gradient algorithm method is O(NK) and the number of this loop iteration is
approximately O log(1/ε23); and the complexity of the binary search method is
O log(1/ε24). To summarize, the computational complexity of the complete solu-
tion is O(NK2 log(1/ε21) log(1/ε22) log(1/ε23 log(1/ε24)).

4 Numerical Results

In this section, numerical results are provided to evaluate the convergence per-
formance of our proposed dual-layer iterative approach and the superiority of
our considered MC-NOMA system with the application of PS-based SWIPT in
terms of throughput. Assume that the BS is located at the center of a circular cell
with a radius of 300m, within which all MUs are randomly and independently
located. The available bandwidth of the system is assumed to BW = 100MHz.
Referring to the typical 3GPP propagation setting, the channel from the BS
to the MU includes three parts, i.e., i.i.d Rayleigh block fading, Log-Normal
shadowing with standard deviation of 8 dB and path loss given by (d0d )v. In
particular, d, d0 = 2.5 and v = 3.76 indicates the propagation distance, the
reference distance and the path-loss exponent, respectively. Moreover, the power
spectrum density (PSD) of the channel noise and the additional noise generated
during PS process are set to −96dBm/Hz and −192dBm/Hz, respectively. The
efficiency of the EH circuits is supposed to η = 38%.

Firstly, we investigate the convergence performance of the developed dual-
layer iterative approach. We take a SWIPT-based MC-NOMA system with two
SCs and two MUs as an example, where the maximum power supply of the BS
and the minimum demand for EH are set to 4W and 0.01W respectively. As
shown in Fig. 2, it is evident that the proposed Lagrangian duality-based ap-
proach is gradually converged to the optimal value acquired by the exhaustive
search algorithm. This confirms our convergence analysis.

Then, performance in terms of total throughput of the proposed approach
with various constraints is investigated. We taken N = 2,K = 2 and N =
4,K = 4 for comparison. We firstly evaluate the throughput performance under
different minimum transmit power supplies. Assume that the minimum require-
ment for EH of each MU is Ereq = 0.1W and the transmit power budget varies
from 2W to 20W. It is obviously shown in Fig. 3 that the total throughput is
monotonically non-decreasing with the increase of the transmit power budget.
This is because that with the growth in the transmit power budget, the received
signal is more likely to be split to ID once the requirement for EH of each MU
is satisfied, eventually leading to an increase in the throughput. Then we eval-
uate the throughput performance under various minimum demands for EH. In
particular, it is supposed that the maximum transmit power supply is 10W and
the minimum requirement for EH varies from 0.1W to 1W. It is shown in Fig. 4
that the total throughput is monotonically decreasing as the minimum demand
for EH grows, resulting from the fact that the received signal is more likely to
be split to EH to fulfill the EH requirement and thereby the signal split to ID is
cut off. Additionally, we can conclude from Fig. 3 and Fig. 4 that our developed
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Fig. 2. The convergence behavior of the proposed Lagrangian duality-based approach.

dual-layer iterative approach outperforms the equal power allocation scheme in
terms of throughput performance.

Lastly, we examine the performance comparison in terms of total throughput
among our considered MC-NOMA with PS-based SIWPT and other schemes in
the existing studies, including MC-NOMA with TS-based SWIPT, SC-NOMA
with PS-based and OMA with PS-based. In particular, the maximum transmit
power supply and the requirement for EH of each MU are respectively sup-
posed to 10W and 0.1W, the number of SCs for two MC-NOMA schemes is
set to N = 3, and the number of MUs is assumed to K = 4. It is evidently
depicted in Fig. 5 that both SWIPT-aided MC-NOMA and SWIPT-aided SC-
NOMA is always superior to the SWIPT-aided OMA, which further confirms
that the NOMA scheme is more spectrum-efficient than the conventional OMA
scheme. More significantly, our considered PS-based MC-NOMA system outper-
forms either the TS-based MC-NOMA or the PS-based SC-NOMA. This result
demonstrates the superiority of our developed joint power allocation and split-
ting approach for the considered MC-NOMA system with the application of
PS-based SWIPT, and accordingly provides a significant direction for practical
communication system design.

5 Conclusions

In this work, we have studied the total throughput maximization problem for
the downlink MC-NOMA system with the application of PS-based SWIPT un-



Joint PS and SC in SWIPT-Aided MU-NOMA System 13

Miximum transmit power (W)
2 4 6 8 10 12 14 16 18 20

T
ot

al
 th

ro
ug

hp
ut

 (
bi

ts
/s

/H
z)

37

38

39

40

41

42

43

44

45

Proposed Lagrangian duality-based approach, N=2, K=2
Proposed Lagrangian duality-based approach, N=4, K=4
Equal power allocation scheme, N=2, K=2
Equal power allocation scheme, N=4, K=4

N=2, K=2

N=4, K=4

Fig. 3. Throughput performance of the proposed Lagrangian duality-based approach
(total throughput vs maximum transmit power).
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Fig. 5. Performance comparison in terms of throughput among different system model
- OMA, SC-NOMA, TS-based MC-NOMA and PS-based MC-NOMA, K=4

der the constraints of the maximum transmit power supply and the minimum
demand for EH. The formulated optimization problem was non-convex owing
to the coupled variables as well as the multi-user interference, and thus it was
challenging to obtain the optimal solution directly. To solve this problem, we
proposed a dual-layer iterative approach in which the coupled variables, i.e.,
the power allocation and the PS ratio assignment, were separated. Then the
corresponding sub-problems were solved by employing the Lagrangian duality-
based method. Simulation results verified the theoretical analysis of the con-
vergence performance. More importantly, it was confirmed that the considered
MC-NOMA system with the application of PS-based SWIPT outperformed other
existing schemes in terms of throughput, including MC-NOMA with TS-SWIPT,
SC-NOMA with PS-SWIPT and OMA with PS-SWIPT.
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