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Abstract— This paper refines a physically-inspired model
governing the dynamic motion of a vehicle. We present a
method used to perform experimental parameter calibration,
and then use this model to build an observer (an extended
Kalman filter). Experimental results with a robotic vehicle fitted
with a prototype kit focus on recovering the truthful real-world
information in the context of systematic errors (a faulty wheel
encoder sensor), randomly occurring errors (a faulty ultrasonic
sensor) and simplifying model assumptions (e.g. usage of two
identical motors). We show that our model-based approach
is able to perform reasonably well even under these extreme
circumstances.

I. INTRODUCTION

In our previous works [1], [2], we have developed a
model-based control algorithm for safely driving a semi-
autonomous robotic vehicle (a commercial electric powered
wheelchair converted into a research platform). The proposed
control design was based on stochastic dynamic program-
ming. As expected with this type of approach, the quality
of the control law is highly dependent on how representative
the plant model is with respect to the real world phenomena.
The more reliable the plant model, the better the control law
performs in the real world. The same mechanical dynamics
model of a nonholonomic unicycle-type robot moving on a
horizontal or inclined plane can be used not only for control
design, but also for defining an observer as we will show in
this paper.

The contributions of this article are as follows. In contin-
uation of our previous work [1], here we further elaborate
upon the plant model by performing experimental parameter
identification. Up until now, we had only been working with
nominal (theoretical) parameters and simulations, whereas in
this article we work with real world experimental data. This
improves the reliability of the model, which will then be used
for state estimation (sensor data filtering). Our contribution
is in the internal model used for the chosen model-based
observer. We chose to use an extended Kalman filter (EKF)
[3], [4], although many other options are open, e.g. the
simplified kinematic model [5]; particle filter [5], [6, §6.7],
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[3]; Bayesian filter [3]; the explicit complementary filter [6,
§3.4].

In our work, the filtered sensor data is then used as
input to the assist-as-needed (terminology according to [7])
or shared control (terminology according to [8]) algorithm.
More generally, it is a semi-autonomous control solution well
adapted to the needs of the impaired people. This is used
for designing mobility assistance systems for navigation in
environments with static obstacles, which is still an active
field of research [9].

This paper is organized as follows. Section II is theoretical,
presenting the mathematics of an internal model. Section III
is dedicated to the instrumentation of the vehicle. Results
from both previous sections are used in the implementation
of an EKF in section IV, and the paper ends with Conclusions
in section V.

II. MODELING

A. Velocities: Consistent with notations in the literature
[10], we use v for linear velocity and ω for angular velocity.
At any given instant t, the vehicle is either: (i) standing
still (v = 0,ω = 0), or (ii) moving in a straight line (v 6=
0,ω = 0), or (iii) turning in a circle with radius RM = v/ω

(any v,ω 6= 0) around an imaginary axis k perpendicular to
the ground. In Fig. 1, the depicted instantaneous angular
velocity vector is kω and the linear velocity vector is jv,
where the free unit vectors k = (0 0 1) and j = (0 1 0)
are expressed with respect to the inertial frame o0x0y0z0;
ω = ϕ̇ , with ϕ the angular displacement. In this work, we
use the base frame oMxMyMzM rigidly attached to the moving
vehicle. The base frame’s origin can be expressed in (with
respect to) the inertial frame as

ȯ0
M = v

(
cosϕ

sinϕ

)
(1)

where the first and second components of o0
M indicate time-

dependency along the x0-axis, and y0-axis, respectively (see
Fig. 1). The superscript “0” indicates that coordinates are
expressed in the inertial frame.

B. Plant models: The references indicated in the In-
troduction, show that rather simple plant models are being
used for model-based observers. As we aim to work with
faulty sensors, relying on more accurate model dynamics is
essential to compensate for these errors. In our previous work
[1] we have derived the dynamic equations governing the
motion of the vehicle on an inclined plane. This model made
use of nominal parameters (given in [1]) and we showed
in simulation that the overall behavior was consistent with
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Fig. 1: View from above: circular trajectory of the moving
vehicle when setting the linear velocity v> 0 and the angular
velocity ω > 0

our expectations. In the continuation of that work, here we
rewrite the system of equations in a way that it: (i) allows for
experimental linear parameter identification; (ii) can be used
for model-based state estimation. Two distinct but equivalent
system forms will be used for that purpose, both explained
in the following two sections.

C. The (Y,θ) form: It is a well-known property that
mechanical systems can be written in such a way to express
linear dependency [10] on some physical lumped parameters
θ . We carried out all calculations which allowed us to rewrite
the overall dynamics in a compact form:

Y (v, v̇,ω, ω̇)θ = ιm (2)

where ιm =
(
ιm1, ιm2

)
is the vector of motors’ electric current

and, for our vehicle, the 2× 5 elements of the regressor
matrix Y (v, v̇,ω, ω̇) are:

yi1 =
r

rG

(
mw(v̇+(−1)i+1lwω̇/2)+mbv̇/2

)
yi2 =

r
rG

(
v̇+(−1)i+1lwω̇/2

)
; yi3 =

1
r rG

(
v̇+(−1)i+1lwω̇/2

)
yi4 = (−1)i+1 r

rG

ω̇

lw
; yi5 =

rG

r

(
v+(−1)i+1lwω/2

)
with row index i ∈ {1,2}; the lumped parameters vector

θ =

(
1

ηGkm

Jm

ηGkm

Iw,zz

ηGkm

Izz

ηGkm

Bm

km

)′
(3)

We refer the reader to [1], for the meaning of all these
physical parameters. Special attention is paid to the motor
torque constant km. In our model, we made the assumption
that both motors are identical, which allowed us to use the
same km for both motors. In reality, motors are slightly
different and this motivated us to experimentally identify

separately each motor torque constant kmi with i = 1,2.
One method was to use the input-output power balance: the
output mechanical power (torque τmi multiplied by shaft’s
angular velocity ωmi) equals the product between the in-
put electrical power (motor voltage U multiplied by motor
electric current imi) and the motor efficiency ηi. Using the
first-order approximation τmi = kmiimi, one can extract the
ratio kmi/ηi =U/ωmi. Since we cannot measure directly U
on the vehicle (a PWM signal at high frequency 20 kHz),
we will use instead the available low-pass resistor-capacitor
filtered signal VRC and limit our analysis to quasi-steady-state
behaviour, when VRC is an average value of U . Thus,

kmi/ηi ≈VRC/ωmi (4)

Results are shown, later on, in Fig. 6d. A second method
to calculating km is to use the non-invasive in situ approach
[11]. Here, the key to successful identification of km is that
the robot should move in a way that is persistently exciting
[6, §9.6].

Using experimental data (v,ω, ιm) and the relation (2), the
computed Least Squares [10] result:

θ̂ = (Y′Y)−1Yim (5)

will be biased to the actual, physical θ from (3). This is the
price to pay for applying this straightforward Least Squares
method, where we lose the physical insight of θ (a white
box model) and, instead, have to work afterwards with a
mathematical object θ̂ (a grey box model). In (5), Y and
im are formed by stacking, on top of each other, associated
experimental data measurements (samples) taken at various
time instants.

In order to effectively compute θ̂ numerically in (5),
we needed to: (i) apply zero-phase digital filtering on the
acceleration signal; (ii) arbitrarily increase the numerical
precision1 beyond double such as to avoid singularity of the
matrix Y′Y.

D. The ODE form: We have converted the system
dynamics into the following ODE form:(

v̇
ω̇

)
=

(
a3 0
0 a4

)(
v
ω

)
+

(
a1 a1
a2 −a2

)
ιm (6)

where positive parameters a1 and a2, as well as negative
parameters a3 and a4 explicitly depend on θ from (3): see
their explicit formulas in Appendix VI. Actually, one can use
the experimentally identified θ̂ from (5) when computing a1
to a4. In (6), it is interesting to notice that dynamics of v
and ω are uncoupled from one another.

E. A static obstacle: A straightforward calculation of
the equation of motion for a static obstacle as perceived by
a moving frame is:

ṗM
o =−S(kω)pM

o −
(

1
0

)
v, with S(kω) =

(
0 −ω

ω 0

)
(7)

The vector kω was depicted in Fig. 1. This formula allows
for a physical interpretation where the first term in (7),

1Implemented in Matlab using Symbolic Math Toolbox’s functions dig-
its() and vpa()



(a) Supervisory Control is disabled during 10 seconds: 4 obstacles, numbered
in chronological order, were hit and run through
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Fig. 2: View from above: Vehicle’s trajectory with driver
demanding constant velocities (i.e. fixed joystick position),
in an environment with obstacles. Initial, starting position is
where the driver is sitting (same for both figures).

namely S(kω)pM
o = kω × pM

o [10] expresses the tangential
linear velocity component caused by the rotating vehicle
(this is not to be confused with vector jv). The minus
sign in front of the first term indicates that if the vehicle
rotates in one direction (e.g. clockwise), then the static
vehicle is perceived in the base frame as moving in the
opposite direction (e.g. anti-clockwise). The second term in
(7) expresses the contribution of the linear velocity jv from
Fig. 1 which, according to its definition [1] always acts along
the xM-axis. The minus sign in front of the second term in (7)
follows the physical intuition: a moving vehicle advancing
towards a static obstacle is perceived from the base frame as
a dynamic (moving) obstacle coming towards a static vehicle.

Alternatively, an equivalent form to system (7) is [10,
§14.7.3]:

ḋM
o =−vcosθ

M
o and θ̇

M
o =−ω + v

sinθ M
o

dM
o

(8)

where dM
o is the distance to the obstacle, and θ M

o is the angle
from xM-axis to the obstacle (see Fig. 3).
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Fig. 3: View from above: Static obstacle in red situated at lo-
cation pM

o (expressed in base frame coordinates oMxMyMzM),
distance dM

o away from the vehicle, and angle θ M
o

To verify that (7) and (8) are equivalent, one can use the
change of variables:

pM
o =

(
cosθ M

o
sinθ M

o

)
dM

o and
dM

o = ||pM
o ||2

θ
M
o = arctan(pM

o (2)/pM
o (1))+nπ

where n ∈ Z.

F. Control: In this section, we created in simulation, an
artificial environment with static obstacles situated about 1
m apart from each other. An assist-as-needed Supervisory
Control [2] is used in order to illustrate the concept of safe
navigation.

Fig 2a shows the position of the wheelchair’s drive wheels
and center of mass as it makes a turn. The Supervisory
Control is disabled and the driver keeps the joystick in a
fixed position corresponding to v = 0.52 [m/s] and ω = 0.27
[rad/s], for 10 seconds: this will cause the vehicle to turn in
circle, towards the left. Notice a few obstacles were hit and
run through (they are present in the space between the two
drive wheels). Next, in Fig 2b the same conditions as earlier
mentioned are kept, except that the Supervisory Control is
now enabled. Notice that no obstacles were hit under this
condition. The total traveled distance is much less compared
to the previous case, since the vehicle reduces its velocities
gradually, according to the distance to obstacles: the closer
the obstacle, the lower the velocities. Once the obstacle
gets out of the way (e.g. the driver might acknowledge the
danger and steer the vehicle in another direction), the allowed
velocities would increase to standard operation.

Now that we have ended presenting the theoretical results,
we move on to describing the instrumented vehicle which
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Fig. 4: Wiring electrical components

will then allow us to measure some of the quantities intro-
duced in this section. Others will be reconstructed using state
estimation, as described later on, in section IV.

III. THE ELECTRICAL CIRCUIT. SENSORS

In order to provide environment awareness capabilities
to the vehicle, we needed to make a few adjustments. A
schematic electrical circuit diagram of the additional custom-
made components is given in Figs. 4a and 4b.

A. Dead reckoning using encoders: We mounted in-
dustrial wheel encoders on our test platform that are able to
provide raw odometry measurements. The turning angle (i.e.
angular displacement) of the right drive wheel ψ1, measured
in radians, is calculated from the right encoder counts (ticks)
ς1 as:

ψ1 = ς1
2π

Nec

Nep

Nmp
(9)

where each parameter is explained in Table I. A similar
formula is used to calculate the angular displacement of the
left drive wheel ψ2.

TABLE I: Parameters for odometry
Symbol Meaning Value
Nep number of teeth of a small aluminium pulley, phys-

ically connected to the encoder’s shaft, see Fig. 4a
30

Nmp number of teeth of a larger 3D-printed pulley, phys-
ically attached to the main drive wheel, see Fig. 4a

110

Nec number of counts issued by the encoder for one full
360◦ rotation of its shaft

2000

By combining together ψ1 and ψ2, we are able to compute
ϕ as depicted in Fig. 1. Moreover, using numeric differen-
tiation, it is possible to estimate (v,ω) from (6), which can
also be visualized in Fig. 1. For exact formulas, we guide
the reader to our previous work [1]. The absolute position
of the wheelchair can now be expressed in the inertial frame
using (1).

Validation: We performed indoor experiments looking at
two situations: (i) vehicle advancing forward along a linear
spatial trajectory for 10 m, and (ii) vehicle rotating 180◦. In
the first case, total traveled linear distance errors were around
4%, whereas the second case showed rotation angle errors
on ϕ around 10%. This significant decrease in performance
encouraged us to seek alternatives to improve the rotation
estimation.

B. Dead reckoning using an IMU’s gyroscope: We
used the gyroscope’s angular velocity measurement ω around
the k-axis illustrated in Fig. 1. Experimental measurements
showed better results compared to wheel encoders, as will
be shown later on, in Fig. 6b.

C. Absolute position measure using Pozyx: Pozyx Labs
developed a commercial indoor position tracking solution
[12] using a ultra-wide band chip designed and manufactured
by Decawave. Specifications indicate an accuracy within 10
cm confirmed experimentally by [5], who evaluated it for
sporting activities. Our kit consisted of 4 anchors (fixed
antennas) and one mobile tag (mobile antenna), which can
be used as a visual guide or a rough representation of the
ground truth. In particular, the mobile tag was fixed on a 20
cm wooden extension of the metal frame, high up so that: (i)
line-of-sight is kept between the anchors and the tag, similar
to the wheelchair used in [13]; (ii) antenna’s efficiency is not
mitigated by the nearby presence of metal parts [12].

D. Monitoring motors’ electric power: For online (real-
time) monitoring of electric power, we needed to measure
both electric current as well as voltage. First, for measur-
ing ιm from (6), we have mounted two identical off-the-
shelf electric current sensors: see Fig. 4b and details in
Appendix VII, Table IV. Second, the voltage is measured
using a custom-made voltage sensor, detailed below.

Motor voltage measurement: The circuit in Fig. 4b
consists of a voltage divider (resistors R1 to R4), one ca-
pacitor C for low-pass filtering the voltage and one optional
Zener diode Zd with nominal Zener voltage (i.e. knee)
Vd. The values for all these parameters can be found in



Appendix VII, Table III. They were dimensioned (chosen) so
that: (i) the overall RC low-pass filter has a cutoff frequency
of 100 Hz, signal that can be recorded in real-time using
an Arduino2; (ii) the maximum power dissipation on each
component is well within specifications. The Zener diode
is used for protecting the Arduino (which can handle an
analog input of up to 5.5 Volt according to specifications)
in case an overvoltage might occur (e.g. due to back EMF
when the vehicle runs down a slope at high speed: the
Zener diode starts operating, acting as a saturation on the
measured voltage VRCZi(t) = sat

(
VRCi(t)

)
; here we used the

subscript to indicate the individual components used to build
the electrical circuit). The Zener diode’s main drawback is
related to the knee effects (the significant increase in electric
current close to the knee). Thus, the electric current starts to
flow ahead of reaching Vd, making the theoretical voltage-
divider formula:

VRi = R2‖4Vwi/(R1‖3 +R2‖4) (10)

erroneous; Vwi is the voltage on one of the two wires
forming the motor lead connecting the power module to
the motor (with i = 1,2 standing for each wire index from
here onwards); the selected resistance values are given in
Appendix VII. The effect of adding the Zener diode along-
side the voltage divider circuit is assessed quantitatively
in Table II. There we run five steady-state measurements
using a Fluke 175 multimeter with 3 digits precision after
the decimal point. The second column is the theoretical
voltage-divider output (10). The third column shows the
experimentally measured voltage VRCi,exp across the circuit
made up of the resistance voltage divider plus the capacitor.
The fourth column indicates the voltage VRCZdi,exp across
the circuit formed by the resistance voltage divider plus
capacitor plus Zener diode. Note the effect of the capacitor
C is (theoretically) negligible for steady-state measurements.
Finally, the last column of Table II shows the relative
experimental error when adding the Zener diode:

εi = 100(VRCi,exp−VRCZdi,exp)/VRCZdi,exp

(measured in percentage) which increases as the input volt-
age Vwi increases.

TABLE II: Steady-state performance of the motor voltage
circuit

Vwi [V] VRi [V] VRCi,exp [V] VRCZdi,exp [V] εi [%]
29.2 5.119 5.101 4.684 8.2
25.6 4.488 4.473 4.331 3.2
22.0 3.857 3.840 3.806 0.9
18.4 3.225 3.210 3.204 0.2
14.8 2.594 2.579 2.578 0.0004

Dynamic model: In response to an increase of PWM
duty cycle and/or the pulses’ amplitude, a motor would start
to spin and consequently the vehicle advances. The PWM

2Note the wheelchair’s Power Module issues a 20 kHz power signal to
drive the motors, which is well beyond the recording capabilities using
analog input of an Arduino (in the order of 1 kHz).

pulses are low-pass filtered by the electric current motor
sensor, and the Arduino would sense (measure) an average
voltage VRCi(t) according to:

R‖C V̇RCi(t) =−VRCi(t)+R2‖4Vwi(t)/(R1‖3 +R2‖4) (11)

Note that in steady-state VRCi(t) = VRi from (10). Here
we assumed normal working operation where overvoltage
protection is not necessary (the voltage across the Zener
diode is well below its knee voltage). All parameters from
(11) are detailed in Appendix VII.

By combining together voltages measured on both wires
(i = 1,2 in (11)) that make up the motor lead associated to
one motor, we get:

R‖C V̇RC(t) =−VRC(t)+R2‖4 U(t)/(R1‖3 +R2‖4)

with U =Vw1−Vw2 being the difference in potential across
the two wires; VRC =VRC1−VRC2 is measured online using
the Arduinos.

Finally, the motor circuit dynamics are given by:

Lm dιmi/dt =−Rmιmi− kbωmi +U

where Lm and Rm are the motor inductance and resistance,
respectively; the back EMF constant kb has the same numeric
value as km provided standard units [10].

E. Ground loops issue: Although individual sensors’
wiring did not pose any problem, making them all work
together (integration) proved to be a challenging task. The
USB isolators in Fig 4 were the key to effectively break the
loop formed by connecting the battery’s negative terminal to
the non-isolated DC converter, then to the Arduino’s ground,
next via the USB to the RPi’s ground, and finally via the non-
isolated DC converter back to the battery’s negative terminal.

The next section is dedicated to combining benefits of two
sensors described above (the encoders and the gyroscope) in
order to improve the quality of measurements. For this we
shall make use of the internal model from section II.

IV. AN EXPERIMENT WITH AN OBSERVER

We begin this section by presenting the chosen Extended
Kalman Filter (EKF) implementation and the reasons behind
it. Next, rather than focusing on the situations where the EKF
performs well (observe asymptotic convergence towards the
real plant, as expected in theory [3], [4]), we create a more
challenging situation where inputs to EKF are faulty sensor
real world data.

Among the many successful implementations of EKF
readily available in the literature [14], we opted for the
continuous-time extended Kalman filter with asynchronous
discrete-time measurements [4, §5.3.3]. The reasons were
related to its future implementation in Robot Operating
System (ROS):
• the ability to work with input asynchronous measurements.

ROS is not a real-time system and packets coming from
sensors are published on topics as they arrive, sometimes
dropped out or lost. This should not break the EKF from
functioning. Another effective implementation is [15].



Fig. 5: View from above: trajectories in Cartesian space of
the moving vehicle according to various sensors

• its potential to upscale the publishing frequency on output
ROS topics. This relies on the prediction model during two
successive measurements, running at higher frequency than
the observations.

The internal model consists of 4 state variables: the velocities
(v,ω) with their dynamics (6); the (xM,yM)-coordinates of
one static obstacle with its motion pM

o in (7). Equivalently,
the internal model may be used instead of (xM,yM), the
dynamics of the obstacle expressed in terms of distance
and angle (dM

o ,θ M
o ) according to (8). An input to this state

estimator is the readily available motors’ electric current
vector ιm: see, e.g. Fig. 6c. The observations z = (v,ω,dM

o )
come, respectively, from the odometry, IMU’s gyroscope and
ultrasonic sensors. For initializing the EKF, we used the
datasheet containing the ultrasonic sensor’s characteristics.
This allowed us to define the initial condition for the esti-
mated states (we’ve used zero for the velocities, correspond-
ing to a standstill situation, and the most probable location
for the obstacle), and the initial value of the reconstruction
error covariance matrix. For tuning this EKF we’ve used
diagonal constant noise covariance matrices.

A. The Experiment: We defined a scenario consisting
of a succession of three tasks: advance forward 10 m, then
turn 180◦and finally go back to the initial position. These
3 tasks are clearly marked in Fig. 6. The path followed by
the advancing vehicle is illustrated by the straight red line
in Fig. 5, with the start and end point indicated using a red
square.

We decided to analyze in this paper a rather extreme
situation by using poorly calibrated odometry. Specifically,
we artificially modified the wheel encoder pulleys ratio
Nep/Nmp from (9). This created a systematic error where
the location of the vehicle is interpreted as deviating more
towards the left compared to reality: this is visible on the
blue curve in Fig. 5 and Fig. 6b. Moreover, the linear velocity
value calculated by the odometry has tendency to be lower

than reality: compare the two curves in Fig. 6a during the
first half of the recording (later on, the IMU data seems to
diverge).

B. Traveled trajectory: Two metrics were used for
assessing the behavior of various tested sensor fusion combi-
nations: (i) the visualization, in Cartesian space, of the total
traveled trajectory, and (ii) the total distance along the trav-
eled path dpath. In Fig. 5 the green curve corresponds to raw
experimental data measurements coming from two separate
sensors: we used the linear velocity v from the odometry and
the angular velocity ω from the IMU’s gyroscope around the
vertical axis (theoretically perpendicular to the ground, but
in reality close to it) of the IMU. This shows significant
improvement compared to the blue curve corresponding to
odometry-only. Finally, the black EKF curve outperforms the
others: the end (terminal) position is quite close to the begin
(start). An interesting exercise is to try to understand why the
EKF is not able to compensate for the erroneous systematic
deviation towards the left. A possible reason is that the EKF
tries to balance information coming from the sensors with
that of the internal model. One assumption used to derive the
equations of the internal model is that the vehicle uses two
identical motors (their characteristics should be identical),
which is not true in reality. In particular, while the vehicle
advances in straight line, we see in Fig. 6c that the right
motor’s electric current is higher than the left motor’s: this
might be due to increased friction in the gearbox, whereas the
internal model will interpret this as turning towards the left.
Consequently, the EKF does not have any means to correct
for the systematic deviation towards the left.

We shall end this section by mentioning a limitation of our
study: the lack of a ground truth in Fig. 5, which we hope
to overcome in future, by making use of the Pozyx system
[5] indicated in Fig. 4a.

C. Reconstructed obstacle location: In spite of the
systematic error presented above, it would be interesting
to know if this EKF is capable of reconstructing the exact
location of the static obstacle. Recall that we measure only
the distance to the obstacle dM

o and would like to estimate its
(xM,yM) coordinates, or equivalently, reconstruct the angle
θ M

o to the obstacle. In other words, this defines a virtual
sensor for (xM,yM), or θ M

o , respectively. Simulations show
that it is quite challenging to achieve this, especially for
our scenario where we don’t combine simultaneous linear
with angular motion. Consequently, these two state variables
are not sufficiently simultaneously excited. To overcome this
limitation, we use the standard deviation of the reconstruction
error to assess the confidence that the EKF has on its
estimates: they form the semi-major and semi-minor axes
of the cyan ellipse in Fig. 7. Notice this ellipse is much
wider along the yM-axis compared to the xM-axis, expressing
the fact that the estimator has less confidence in the first
estimate. For the particular time instant when the screenshot
was taken in Fig. 7, the estimated obstacle location (in green)
is significantly far away from the real obstacle (in red).

The EKF computes at each time instant the second mo-
ments σ2 = E{ε2} of the reconstructed error ε = dM

o − d̂M
o .
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(d) Parameter identification of the ratio between motor constants kmi and
motor efficiencies ηi using (4), during the quasi-steady-state motion of the
vehicle (i = 1 corresponds to the right motor; i = 2 is the left motor). The
legend indicates the sensor used to estimate the motor angular velocity
ωmi from (4), as well as which motor.

Fig. 6: Experimental data recorded with the instrumented
vehicle running (executing) the 3-tasks scenario

Fig. 7: View from above: Vehicle aware of a static obstacle:
its location was estimated with low confidence (we delib-
erately created a systematic error (a fault) on the left drive
wheel encoder’s signal)

In Fig. 8, we draw d̂M
o ± σ , thus obtaining an envelope

around the estimated signal. Note that from time to time, the
ultrasonic sensor fails to measure accurately the distance dM

o ,
situation where it outputs zero. As expected, the estimation
d̂M

o diverges locally, then recovers as soon as the measured
signal dM

o improves. Translated back into our assist-as-
needed control navigation problem, the vehicle reacts with
moderation to the presumed nearby presence of obstacles
and the driver is still in control. This result is quite positive,
compared to the more penalizing situation of using raw
data, which would make the vehicle stop (dM

o = 0 means
an obstacle was just hit).
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Fig. 8: Reconstructed distance to obstacle (red line) and as-
sociated confidence (dotted red line) using ultrasonic sensor
data (blue) that fails arbitrarily (3 times between seconds 2
and 4, and again 3 times between seconds 9 and 11)



TABLE IV: Selected electrical and mechanical components
on the sensors’ schematic diagram in Fig. 4

Component Description
DC Converter Unisolated DC-DC Step Down Converter LM2596,

max 3A
USB isolator Olimex USB Full Speed USB 2.0 Compliant Port

Isolator (Farnell Order Code: 1795095)
USB hub Startech 10-Port Industrial USB 3.0 Hub with ESD

& 350W Surge Protection
Current sen-
sor

CZH-LABS D-1085 50A electric current sensor
(based on ACS758)

Arduino Arduino Mega 2560
Raspberry Pi Raspberry Pi 3B+
Hardware
counter

2x 32 bit quadrature encoder counter [17]

Encoder left,
right

Kubler Incremental Encoder 500 ppr 6 x 12.5 mm
Shaft 5 V dc (RS part: 918-9082)

UWB Tags Ultra-wide band Developer tag [12]
2 pulleys, one
belt

Contitech Synchroflex, Timing Belt, 260 Teeth,
650mm Length X 6mm Width (RS part: 474-5218);
Aluminium Timing Belt Pulley, 6mm Belt Width x
2.5mm Pitch, 30 Tooth (RS part: 286-4581)

IMU SparkFun 9DoF Razor IMU M0 – SEN-14001

V. CONCLUSIONS
A model-based holistic approach was pursued in this pa-

per, showing both advantages but also limitations. Calibrating
a physically-inspired mechanical model against experimental
data, then integrating it into an observer improved the quality
of signal estimations. Although errors were not completely
eliminated, using these estimations as input to our assist-as-
needed algorithm provided a smooth driving experience and
a more effective balance between the driver’s intention and
the corrective action. A future application where we aim to
test the same calibrated model presented in this paper, is as
indirect measurement for motors’ torque, thus integrating it
into a cheap software torque sensor.

APPENDICES
VI. WHEELCHAIR DYNAMICS

This section provides details concerning the parameters
used in (6):

a1 = 0.5
(

r
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2
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All physical parameters, including their meaning and nomi-
nal values, are indicated in [1].

VII. DIMENSIONING ELECTRICAL COMPONENTS

The electrical circuit used to measure motor voltage from
Fig. 4b uses the electrical components from Table III. Be-
fore building a physical prototype, we checked the overall
performance using the free simulator [16].

TABLE III: Electric components used for motor voltage
measurement

Symbol Nominal value
(datasheet, color
code, etc.)

Experimentally
measured
value

Part number

R1 30 kΩ 30220 Ω RS Stock No.: 148-843
R2 6.98 kΩ 6980 Ω RS Stock No.: 683-3972
R3 3.9 kΩ 3835 Ω -
R4 820 Ω 807 Ω -
C 280 nF - -
Vd 5.1 V - RS Stock No.: 136-4856

R2‖4 = R2R4/(R2 +R4) = 723.36Ω

R1‖3 = R1R3/(R1 +R3) = 3403.13Ω

R‖ = R1‖3R2‖4/(R1‖3 +R2‖4) = 596.56Ω
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