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ABSTRACT

Traditional methods for the assessment of drug delivery concentrate on the analysis
of the absorption process, however, more recent techniques have enabled the actual release
rates of the drugs to be determined. Direct evaluation of the release rate in vivo is not
practical, as such an approach would be excessively invasive, therefore information about
the in vivo release process must come from the manipulation of other data. Two methods
in particular (Maximum Entropy and Deconvolution) have the ability to provide
information about the whole time course of release and can separate the in vivo release

process from that of absorption.

The Maximum Entropy approach and various deconvolution algorithms were
examined for stability to data noise and their ability to predict correctly both the form and
values of unknown release rates. This examination was made using pseudo-experimental
data, so that the true form of the unknown release rate was known prior to analysis, and
using clinical data arising from the administration of controlled release metoprolol tablets.
A comparison was made of all the methods tested to find the optimal method for the

assessment of in vivo release.

The results obtained showed that no one method is optimal for all aspects of the
assessment of drug release, but that the method of choice is dependent on the information
required. The Maximum Entropy method was shown to be preferred when the aim of the
assessment was the study of the in vivo release rate as a function of time. However, if a
less in depth assessment is required (eg the calculation of MDT or the fraction of dose
released vs time) then there was no advantage shown to the use of the more complex

methods and one of the simpler deconvolution algorithms becomes the method of choice.
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1 INTRODUCTION
1.1 THE IMPORTANCE OF THE RATE OF DRUG DELIVERY

1.1.1 The Definition of Drug Delivery

The process of drug delivery can be represented in two different ways. Firstly, the
delivery process can be regarded as the rate at which drug, from an extravascular source,
reaches the systemic circulation (normally referred to as the absorption rate) or secondly
it can be regarded as the rate at which drug is released from the extravascular source,
which, in the case of an oral dosage form would represent the in vivo drug release rate.
The term drug delivery can therefore be used to represent both the rate of drug absorption
and the rate of in vivo drug release.

Frequently the absorption rate of a drug has been used to correlate in vivo drug
release characteristics with in vitro drug release characteristics for a particular dosage
form. However this implies that the release rate of drug from the dosage form is the rate
limiting step and hence the absorption rate is an accurate reflection of the in vivo release
rate. This may not always be the case and if the desired result of the evaluation of drug
delivery is an in vivo-in vitro correlation then the in vivo release rate is the ideal function

to use for that correlation.

1.1.2 Controlled Release Products and Drug delivery

There has been an increasing number of specialised pharmaceutical dosage forms
developed with the specific aim of controlling the rate of entry of the drug they contain
into the systemic circulation, these are known as Controlled Release (CR) dosage forms.
These products are designed to retard the absorption rate to produce a low, steady
concentration-time profile, by controlling the rate at which the drug is released from the
dosage form. Because of this, the overall quality of a CR dosage form is critically
dependant on its ability to control drug release in vivo. Therefore in their assessment, the
biopharmaceutical characteristics of a CR product are very important.

Drugs for which it is desirable to produce a CR product are those which have a
narrow therapeutic window, those with a short half life or those whose administration is

likely to be long term. For the first of these the CR product will minimise the difference



Chapter 1 : Introduction 35
between peak and trough concentrations which will not only minimise the occurrence of
side-effects, but will also provide better clinical control for the patient. For the second,
a CR product will enable the frequency of dosage required to be reduced and will
therefore increase patient compliance, ideally by enabling the dosage form to be

administered on a once daily basis.

1.1.3 Evaluation of the Delivery Process

Traditional methods of assessment of delivery rates concentrate on the analysis of the
absorption process, however more recent techniques have enabled the actual release rates
of drugs ir vivo to be estimated. Several reviews of methods for calculating the delivery
rates of drugs have been published (Tucker 1983 , Cutler 1986, Firsov and Piotrovskii
1986a,b and Tucker and Jackson 1989) and provide a good overview of current methods
available.

Direct evaluation of either the absorption rate or release rate of the drug in vivo is not
practical, as such an approach would be excessively invasive, therefore information about
the delivery process must come from manipulation of other data. Assessment of the
absorption/release process falls into two categories, those which give a single piece of
information about the processes being considered (point values) and those which provide

information about the whole time course of the process.

1.1.3.1 Single Point Values
The traditional point values used in the assessment of the biopharmaceutical
characteristics of dosage forms are C,,, , T,,,; » AUC and F,. More recently moments
have been used to describe the mean transit/residence characteristics of a dosage form
and a further modification of this in the form of the Centre of Gravity of

concentration curves has been proposed.

(@) AUC and F,
The AUC (Area under the curve) gives a value for the total amount of drug
absorbed during the whole absorption process. The bioavailability F, is a

dimensionless term which expresses the fraction of the administered extravascular
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dose which is absorbed. The bioavailability can be expressed as an absolute value,
F, =CZUC/D, (where D is the extravascular dose administered) or as a relative value
when the performances of two dosage forms are being compared. The main drawback
to the calculation of the bioavailability by this method lies in the accuracy of

calculating the area under the curve.

) C,.andT,,

Following an extravascular dose of a drug the plasma concentration will pass
through a maximum some time after the dose is administered. The magnitude of the
concentration at this maximum is C_,, and the time at which it occurs is T,,. These
two values can give some indication of the rate of absorption as the earlier T,,,
occurs the greater the absorption rate.

Although extremely simple there are two disadvantages involved in the use of
Cpex and T,,,,. These are that
a) they depend to some extent on the disposition process of the drug and
b) when applied to CR products, problems occur as the exact position and value

of C,,, is often difficult to determine.

This problem occurs because the desired consequence of the dosage form design is

to produce plasma concentration- time profiles that are both low and steady.

(c) Moments

A more recent advance in the use of single values in pharmaceutical analysis
are statistical moments. These have been extensively reviewed in the literature
(Yamaoka et al. 1978, Cutler 1987, Gillespie and Veng-Pederson 1985a and Wagner
1988), although there has been some confusion between the definition of the terms
used and the equations used in their evaluation in linear systems. The statistical
moments are used to estimate the mean transit times of a drug for various processes,
eg the Mean Residence Time (MRT) or the Mean Absorption Time (MAT). The
advantage of using moments instead of C,,, and T,,, are twofold, they provide more
information about the delivery process than C,,, and T,,, and their values are

independent of the disposition process.
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More recently it has been proposed (Veng-Pederson and Tillman 1989) that a

fuller description of the bioavailability of a drug in the body could be provided if the
Centre of Gravity of the blood level curve was used instead of just the Mean
Residence Time. The Centre of Gravity consists of two values one of which is the
Mean Residence Time the other is a corresponding co-ordinate on the concentration
axis. Taken together they form a more complete characterisation of the absorption

rate.

1.1.3.2 Time Course Analysis
There are many more possible approaches when the evaluation of the whole
time course of drug delivery is considered. These include mass balance methods,
prescribed forms to represent the absorption process, deconvolution methods and the
most recent method proposed - the maximum entropy approach. Of these various
approaches only the deconvolution and maximum entropy methods can separate the

release process from that of absorption.

(a) Mass Balance Methods

These methods are based on the assumption that the cumulative amount of drug
absorbed is equal to the sum of the cumulative amount excreted and the amount
remaining in the body. The well known Wagner-Nelson method (Wagner and Nelson
1963) assumes that there is no distribution of drug to the tissues (ie a one
compartment model) and this assumption restricts the usefulness of the method.
Wagner (Wagner 1974) adapted his original method for use with a two compartment
model in certain prescribed situations dependant on the relative values of the rate
constants in the two compartment model.

The Loo-Riegelman method (Loo and Riegelman 1968) was originally proposed
for a two compartment model, but data from an intravenous dose was mandatory for
its evaluation (Wagner 1975). It was later shown (Vaughan and Dennis 1980) that the
method was not restricted to a two compartment model but was valid for any multi-

compartmental model.
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Despite the limitations imposed by the simplicity of the approach and the
confinement into compartmental modelling the mass balance methods do offer one

advantage, they make no assumptions about the form of the absorption process itself.

(b) Prescribed Form for the Absorption Process

These include a variety of methods ranging from curve fitting in which the form
of the absorption is set (maybe as a result of in vitro dissolution studies) and included
into the disposition equations which are known. The parameters of the absorption
process are then optimised by least squares fitting.

In other methods the absorption rate is assumed to be first order, and the
absorption rate constant k, is estimated. In one method k, is estimated based on a
fitting around the maximum point of the concentration time profile (Saunders and

Natunen 1973).

(c) Deconvolution Techniques

Deconvolution as a method of calculating absorption rates was proposed as
early as 1961 (Silverman and Burden 1961) since which time a wide variety of
differing algorithms have been proposed for the deconvolution process. Unlike the
previous methods discussed deconvolution can be made to differentiate between the
absorption process as a whole and the process of in vivo drug release from the dosage
form. However at least one other set of data, from either an iv or oral bolus dose, is

mandatory for use as a reference in the deconvolution process.

(d) Maximum Entropy Technique

This is the most recent of all the techniques proposed for the evaluation of the
delivery process. It is a technique which has been widely used in other fields eg for
image resolution, and has been adapted for use in pharmacokinetics (Charter and Gull
1987). It the most conceptually complex of all the techniques mentioned here and
there has been much scepticism about its potential use in pharmacokinetics. The

theory behind this approach will be discussed more fully in chapter 5.
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1.2 THE USE OF DECONVOLUTION IN PHARMACOKINETICS

Deconvolution algorithms have been used in the analysis of pharmacokinetics as early
as 1961 (Silverman & Burden 1961), Rescigno and Segre (Rescigno & Segre 1966) were
already using one method of deconvolution before Loo and Riegelman proposed their
‘novel’ method for calculating the absorption rates of drugs (Loo & Riegelman 1968).
Despite the fact that the method has been in existence for so many years deconvolution
is still not regarded as a routine tool for pharmacokinetic analysis. This may be because
of the numerical complexity of many of the algorithms proposed for the evaluation of
deconvolution or perhaps because the previous needs of biopharmaceutical analysis have
been met by the more simple methods discussed in previous sections, and there has
therefore been no incentive to develop its use.

However, with the increasing number of Controlled Release products becoming
available a much greater depth of knowledge about the release process is required and
deconvolution methods have been increasingly used to analyze the biopharmaceutical
characteristics of new dosage forms.

Deconvolution is only one example of what is called a Linear Systems Approach to
the analysis of pharmacokinetic data. Although the emphasis used in the previous section
implied the use of deconvolution as a tool to evaluate the in vivo drug delivery rate, it
should be stressed that the Linear Systems Approach to pharmacokinetic analysis, and
deconvolution itself, are much more versatile and can be used to evaluate a wide range

of other pharmacokinetic properties.

1.2.1 Linear Systems Approaches

Linear Systems Theory, like many other techniques used in pharmacokinetics, is not
native to the subject. It originated approximately 100 years ago (Siegel 1988), when it was
developed by Oliver Heaviside to describe the behaviour of electrical circuits and
transmission lines. A review of Linear and Non-linear Systems Approaches was presented
by Veng-Pederson (Veng-Pederson 1988a,b) in which he discussed the advantages of the

approach, the definitions on which it is based, various misconceptions involved in its use
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and the variety of uses to which it could be applied in pharmacokinetics. His review was
met with various levels of reception (Siegel 1988, Boxenbaum 1988 and Metzler 1988)
but still provides a good overview of the use of Linear Systems Approaches in
pharmacokinetics.

A review of Linear Systems Analysis presented by Cutler (Cutler 1978c) is more
specific for the applications of deconvolution than system approaches in general. Linear
Systems Approaches have also been used in the analysis of pharmacodynamic data and
several papers have been published to this effect (Veng-Pederson and Gillespie 1988 and
Smolen 1976a,b). Its use in this direction may eventually lead to effective correlation of

drug release directly to its pharmacological action.

1.2.2 Definition of a Linear Systems Approach

The definition given by Veng-Pederson in his review (Veng-Pederson 1988a) is that
a Linear System Approach is one which models the general linear property of a system
without modelling specifically any pharmacokinetic processes involved in that property.
Although this seems a cumbersome definition it is useful to demonstrate the basic
philosophy of the system approach, which is to use the fewest, least restrictive
assumptions necessary to reach a specific objective.

This philosophy applies to the deconvolution technique as well and most of the
advantages and disadvantages of deconvolution as a tool for pharmacokinetic analysis
stem from this philosophy. With regard to the use of deconvolution to evaluate release
rates this means that the disposition processes of the drug in question need not be
modelled specifically (unlike the Loo-Riegelman method in which the micro-constants of
the disposition process must be known in advance and the model is assumed to be

compartmental) as long as the overall disposition effect can be represented accurately.

1.2.3 Definition of Deconvolution
The definition of deconvolution is based on an equation known as the convolution
integral (1.1). '
R(t) = fW(t-e)I(e)de (1.1)
0
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R(t) = The Response Function
W(t) = The Weighting Function
I(t) = The Input Function

I(t) The Input rate is defined as the rate at which the substance of interest enters
the system being studied at a point P. This input could derive not only from an
extravascular source (a drug delivery system) but could also represent the
production of a metabolite in vivo.

R(t) The Response function is the response produced at a point Q in response to the
input I(t) at point P. The response function could be a plasma concentration
time profile, a urinary excretion rate or even a pharmacological action which
has been shown to be linearly related to the input rate.

W(t) The Weighting function is the response produced at point Q when a unit
amount of the substance of interest is introduced to point P at t=0 (ie a bolus
unit dose).

The process of convolution is the prediction of the response function when the input
and weighting functions are known. Deconvolution is the inverse process, it is the
prediction of the input rate when the response and the weighting functions are known (or
the prediction of the weighting function when the response and input functions are
known).

What precisely the three functions just defined will represent will depend on where
the point P is situated. If the point P is the venous circulation the input function will
represent the rate at which the substance appears in the general circulation, if the point
P is the gastrointestinal tract then the input rate is the rate at which the substance becomes
available for absorption. Therefore by changing the point of administration of the
weighting function the input function could represent either the absorption rate or the in
vivo drug release rate.

Before deconvolution can be used as a tool, the system in question must be shown
to be linear in the property to be analyzed. The verification of system linearity is

performed using the superposition principle.
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1.2.4 The Superposition Principle
The superposition principle can be stated as follows (Thron 1974) :

if R,(t) is the system response to I,(t) and
R,(t) is the system response to I,(t) and
a and b are arbitrary constants then
aR,(t) + bR,(t) is the response to input al (t) + bl,(t)

The implication of this principle in pharmacokinetics is that the input must not affect
the characteristic behaviour of the system (the weighting function). Non-linearity in
pharmacokinetic processes will be introduced by the presence of such features as
Michaelis-Mentan kinetics, extensive plasma protein binding or induced enzymatic
metabolism. Time-dependant processes will not actually introduce non-linearity into the
system, however the amount of data required to enable the time-dependant processes to
be modelled exactly would be prohibitive in a practical situation. Therefore, the time-
independence of the system becomes a practical, if not theoretical, requirement.

The principle of superposition can be easily tested by plotting the dose-normalised
concentration curves of several different doses (with the same release characteristics). If
the system is linear the curves will superimpose. A second way of testing for non-linearity
is to compare the sum of plasma profiles following different inputs (eg. iv and oral) with
the plasma profile produced when the two inputs are given simultaneously, once again the
curves should superimpose.

Deconvolution can still be applied to systems which are known to be non-linear if it
can be shown that they obey the principle of superposition over the dose ranges

considered.

1.2.5 Applications of Deconvolution
1.2.5.1 Calculation of Absorption Rates
If the weighting function is determined by administration of a unit iv bolus dose
and the response function is obtained by the administration of an oral dosage form
then, by definition, the input function obtained by deconvolution will be the

absorption rate as a function of time.
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1.2.5.2 Calculation of in vivo Release Rates

If instead of using an iv bolus dose to generate the characteristic behaviour of
the system (weighting function), an oral bolus (ie solution) is used instead then the
input function obtained following deconvolution of the response to an oral dosage
form will represent the in vivo drug release rate. This could then be used to correlate
in vivo and in vitro drug release rates which would be especially valuable for

Controlled Release products.

1.2.5.3 Calculation of Bioavailability
If the input rate obtained by deconvolution represents the absorption rate then

the integral of this rate with respect to time will be the cumulative amount of drug

absorbed. The asymptote of this curve, divided by the dose administered will
represent the bioavailability of the dosage form.

The traditional method of calculating the bioavailability is to use the AUC
value, however there are several disadvantages to using this method.

(1) A large number of points are needed in the post-absorptive phase and, since the
number of samples which can be taken in pharmacokinetic studies is usually
restricted, this leads to few points in the absorption stage where the best
information about the absorption process will be found.

(2) The tail-end points used to calculate the elimination rate constant, and hence
the tail area of the curve, are always the lowest and will therefore contain the
largest degree of measurement error. This makes determination of the correct
elimination rate more difficult.

(3) The tail-end samples may still contain some absorption processes, especially for
products which have slow absorption rates, therefore the elimination rate

constant obtained from these points may not be the true value.

When deconvolution is used to estimate the bioavailability most of these
disadvantages are avoided. Few data points are required in the post-absorptive phase,
and once the abSmption is complete then the cumulative input profile will level off

and the bioavailability can be calculated. No estimate of the elimination rate is
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needed and less reliance is placed on the later time points.

1.2.5.4 Calculation of in vivo Metabolic Rates

If the concentration of metabolite in the body following the introduction of a
unit amount of that metabolite is used to represent the weighting function, and the
concentration of metabolite following the administration of an oral dosage form is
measured, then deconvolution of these two functions will give the rate of formation

of the metabolite in vivo ie. the rate of metabolism of the parent drug.

These are only some of the possible uses of deconvolution and, with the exception

of the last example, are those which are pertinent to the evaluation of drug delivery.

Others are mentioned in the review articles quoted previously (Veng-Pederson 1988a,b

and Cutler 1978c).

1.2.6 The Advantages of Deconvolution Techniques

(1) The techniques are based on as few assumptions about the system as possible and

(€))

should therefore be intrinsically more simple to use that other methods. The functions
involved are represented in the most general way possible and when the function has
to be represented by a model an empirical equation such as a polynomial or

polyexponential is usually chosen.

The use of specific models has the drawback that, the more a model is expanded to
be as realistic as possible , the more insignificant the values of the individual
parameters become. Because the aim of any modelling involved in deconvolution is
function approximation rather than parameter estimation, then, the statistical

significance assigned to individual parameters is unimportant.

1.2.7 The Disadvantages of Deconvolution Techniques

(D

In representing a system in the simplest possible way the total effect of individual
processes are lumped together and differentiation of the individual underlying kinetics

processes is often not possible.
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(2) Although the function approximations have fairly simple mathematical forms the
deconvolution algorithms used to evaluate the data may themselves be mathematically

very complex.

1.3 DECONVOLUTION ALGORITHMS

Deconvolution methods can be broadly divided into two categories, numerical
deconvolution and non-numerical deconvolution. The non-numerical methods involve
approximation of the unknown input function with some form of empirical equation while

the numerical methods impose little or no structure on the form of the input function.

1.3.1 Numerical Methods

The numerical methods are typified by their simplicity of approach. They can be used
solely on experimental data provided that the data is supplied with a common time
interval. All the methods included in this section are based on a numerical approximation
of the convolution integral and vary only slightly from one another with the exception of

the linear trapezoidal method.

1.3.1.1 Point-Point Method

This method was originally described as an empirical formula (Chiou 1980) but
was shown to be an actual deconvolution method and to be identical to that used by
Rescigno and Segre (Vaughan 1981). In the point-point method the input function
I(t), instead of being a continuous function, is represented by a series of instantaneous
impulses so that any input which occurs in the interval t, - t; is assumed to take place
at't, where t, = (t,, + t)/2. The input function is now represented by a delta function
(equation (1.2)) where f; is the cumulative amount of input over the interval t, ;- t; and

3(t-t,) is a delta function.

If the equation for the input function is substituted in equation (1.1) (the convolution

integral) equation (1.3) is obtained, where R(t,) is the value of the response function
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I(t) = Y £3(t-1)
i=1
where 8@ -7) = 0 for t#7, 1.2)
= 1 for t¢=7
n = number of impulse inputs

att=t,. |

The response at t, is equal to the sum of the responses due to the preceding n-1
impulses plus the response due to the nth impulse. If equation (1.3) is re-written to
express this, then f, can be separated from the rest of the summation (equation (1.4))
and re-arrangement of this gives an expression for f,, the amount of input in the nth
interval (equation (1.5)).

t
n

R(z) = ¥ fﬁS(G—DW(tn-G)dO

i=1 %
where 8©®-F)W(t,-0)=0 for 6 # T, 1.3
R(1,) =3 fW(t, -T)
i=1
n-1
R() = YW, -T) +fW(, - T) a4
i=1
R(tn) B ;f;W(t” - Tx) (1.5)

L= =
W(t, -t)

The input rate can be represented by a staircase function I(t) = Xi_,I, where I, = £/(t, ;-
t.), one advantage is that if the analytical form of the weighting function is known

then the method can be used on data which do not have a common time interval.



Chapter 1 : Introduction 47
1.3.1.2 Area-Area Method

In this method the input function I, is assumed to be constant over the time

interval t,, - t, and therefore the input function is again represented by a staircase

function. If there are n of these time intervals then the response function at t=t, can

be calculated using equation (1.6) (Firsov and Piotrovskii 1986a), which is a

modification of the convolution integral for a staircase input function.

R(t) = E IifW(tn - 0)do (1.6)

Re-arrangement of equation (1.6) to solve for I(t,) will give equation (1.7),

which is very similar to equation (1.5) used in the point-point method.

t Ll
let W, = [W(s,-0)d0 = [ Wadr
n n-1
R(tn) = Z Iin = Zliwm' + Iann
i=1 i=1
n-1
R(,) - 3 IV,
- i=1
L, = W (1.7)

nn

The input rate at any interval I is dependant on the input rate calculated for the
preceding n-1 intervals, this is true for all the numerical methods in this section. The
difference between the area-area method and the point-area method lies in the method
of calculating the integral W, For the area-area method the integral W, is
approximated by a rectangular function, centred about the mid-point of the integration
interval. The formula used to calculate the integral is given in equation (1.8). When
this formula is substituted into the expression for I, given by equation (1.7), equation

(1.9) is produced.
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(¢, + 1)
ni (ti - ti—l)W[tn - —12—]

W. =
. bt (1.8)
if ~ =1 then
2

W, = (- )W(E, - 1)

n-1

R@) -y LW(t -1)@ -t.)
; 1 (1.9)

I, =

W(tn - t—n)(tn - tn-l)

If f, is the amount of input in the interval t - t; then L, = f, / (t; - t.).
Substituting I, for f, and I, for f; in equation (1.9) then re-arranging will give an
expression for f, (equation (1.10)) which is identical to the equation produced for the

point-point method.

n-1

. R(t) - ;ﬁw(’n -T) (1.10)
" W(t -T)

Therefore the point-point and area-area methods are equivalent when the integral, W, is

represented by a rectangular function.

1.3.1.3 Point-Area Method

Like the area-area method the input function is assumed to be constant over the
time intervals t; ;- ;. The original method (Vaughan and Dennis 1978) was essentially
similar to the area-area method, and like it was based on equation (1.4). The real
difference between the two methods lies in the way in which the integral W, is
estimated. Unless the integral W, is approximated in some way then the weighting
function must be known analytically so the integral W,; can be calculated for any i
and any n, and this is the point-area method. A method using a known
polyexponential to represent the weighting function was developed (Iga et al 1986)
so that equation (1.7) could be evaluated for experimental data at non-equal time

intervals.
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If the data have a common time interval, At, then equation (1.7) can be
modified accordingly to give equation (1.11). Where R, is the value of the response

function at n.At. However some method for calculating the integral is still required.

n-1
? w

nn

When the integrals are approximated by a rectangular function then the method
becomes equivalent to the area-area and point-point methods. This is the approach
used by Langenbucher in his applications of the point-area algorithm (Langenbucher
1982). He used the value of the function at the mid-point of the time interval
multiplied by the time interval to represent the integral W,,. If \?—Vi is the value of W(t)
at the mid-point of the interval t_, - t; then the integral W, = W,,_i+l.At. This integral
can be substituted into equation (1.11) to give equation (1.12) which is that initially

proposed by Langenbucher. When a common time interval is used then W, = W,

and this can also be substituted into equation (1.12).

n-1
R,/At - ‘2_1: LW., . (1.12)
I =
! w,

1

1.3.1.4 Linear Trapezoidal Method

In a later method (Langenbucher and Moller 1983a,b) proposed that the linear
trapezoidal method for numerical deconvolution was preferable to the point area
method. He stated that the accuracy of this method was comparable with the point-
area algorithm but, although the formulae were more complicated , the fact that the
method could be applied directly to the data points without having to transpose them
to their mid-point or area values made the method preferable.

In this method the value of the response function at t=t, is calculated using
equation (1.13) Where I, = I(i.At) , W, = W(i.At) and R; = R(i.At). At is the common

time interval for the data points of the functions. Re-arranging equation (1.13) gives
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an expression for I, (equation (1.14)).

X - LW, + LW, E‘ W (1.13)
n 2 -
n-1
1 2R /At - LW, - 2):1 LW, (1.14)
n T W

0

Using equation (1.14) it is impossible to evaluate I, at n=1. The method of
estimating this initial value depends on the initial value of the weighting function at
t=0. If W(0) > 0 (eg iv bolus) then I, is calculated from the initial slope of the
response functions according to equation (1.15) and subsequent values of I, calculated

using equation (1.14).

2R, - R, /2
, = 5 where R, = By

If the initial value of the weighting function is W(0) = 0 (eg oral bolus dose)
then a different equation must be used to calculate all the I, (equation (1.16)) and in

this case only n-1 of the data points can be transformed into their equivalent L.

n-2
R/At -~ IW, /2 - Y LW, 2R, (L16)
I, = = i=l where I = tVll’

1 1

Therefore, depending on the form of the weighting function (either iv or oral
bolus dose), one of two sets of formulae are used to calculate the deconvolved input

function.

1.3.1.5 Inequality Constrained Least Squares Deconvolution

This method is much more computationally complex than the other numerical
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deconvolution methods but is based on the point-area method and equation (1.7) is
again the basic equation for the method (Verotta 1989) but constraints are placed on
the possible values of L. Possible constraints include conditions such as I, be non-
negative and monotonically decreasing. If equation (1.6) is rewritten as a matrix
equation where R is a vector with elements R, containing the experimental response
values, I is a vector with elements I, containing the estimated values of the input rate,
E is a vector of errors between the experimental response function and the estimated
response function from the current vector I and W is the matrix of the weighting

function, then equation (1.17) is obtained.

R = WI+E E = R-WI
r w, 0 0. 0 -
(1.17)
where W = Wa Wa
W W - W ]

The optimal value for the vector I can be found by minimising the sum of
squares criterion (SS) according to equation (1.18), where T represents the transpose

of the matrix or vector in question.

SS ETE

(R -WIT (R - WI) (1.18)

R™R - 2R™WI + I"TWTWI

Because the SS criterion is only dependant on I through the last two terms, the
least squares problem can be re-stated as follows - Minimise the quadratic function -
2R™WI + I"W™WI subject to CI = 0 , where the n x m matrix C contains the
coefficient conésponding to the m linear inequality constraints.

The method is computationally very complex but, with the exception of the

constraints, it imposes no structure on the unknown input function.
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1.3.2 Non-Numerical Methods

1.3.2.1 Cutler’s Prescribed Input Method

The method was originally developed (Cutler 1978a) in an attempt to produce
a deconvolution method which was more stable for use with noisy data than the
numerical methods mentioned previously. It is based on the following theory. The
form of the input function is assumed to be known, perhaps from in vitro dissolution
studies or from a theoretical model. This equation for the input rate is incorporated
into the convolution equation and its parameters optimised according to a least
squares criterion.

The current best guess for the parameters of the input function are convolved
with the known weighting function to give estimated values for the response function
at times corresponding to the experimental data points obtained for the response
function. The degree of closeness of these estimated parameters is found through the
residual sum of squares, which is the sum of the squared differences between the
actual and estimated response function values. As the parameters of the input function
approach the true values the residual sum of squares decreases and the best estimate
of the parameters is found by minimising the residual sum of squares.

The method is much more stable to noisy data than the numerical methods and
if parameter optimisation is the aim of the deconvolution process then the method is
valuable. However, if the desired outcome is to obtain information about the form and
value of the input function itself, then the use of this method is limited as it imposes

a pre-defined form upon the input function.

1.3.2.2 Cutlers’s Method of Orthogonal Polynomials

In this method, the input function I(t) is represented by a polynomial of
unknown degree, but is still based on the least squares criterion of the previous
method (Cutler 1978a). In order to avoid the ill-conditioning often associated with the
fitting of functions to polynomials a method involving the use of orthogonal
polynomials was introduced (Cutler 1978b).

In this method, both the weighting and the input functions are represented by
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polynomials. The degree of the polynomial representing the input function is
increased until the improvement seen in the residual sum of squares is not large
enough to justify the inclusion of an extra term. Cutler intended this method to be a
preliminary method of identifying the possible form of the input function since
polynomials can be used to approximate a wide range of functions. The form
identified from this method could be used as the prescribed input form in the previous

method.

1.3.2.3 Veng-Pederson’s Polyexponential Method

All the various deconvolution methods proposed by Veng-Pederson are based
on an equation which is an exact mathematical solution to the deconvolution problem
of determining the input rate when the weighting function is represented by a
polyexponential and the response function is approximated by an arbitrary function
(Veng-Pederson 1980a).

The first method proposed approximated the response function with an adaptive
least squares cubic spline technique (Veng-Pederson 1980b). The method was
compared with Cutlers method of orthogonal polynomials using the data proposed by
Cutler (Cutler 1978b) and no significant difference was found between the two
methods except when the form of the input function was the cube root dissolution
equation. In the latter case the cubic spline technique was shown to be superior.

The cubic spline method was later adapted (Veng-Pederson 1980c) to a simple,
more easily implemented approach, since the cubic spline approach was regarded as
being computationally very complex. This adaptation was based on the approximation
of both the wéighting and response functions by polyexponential functions. A
condition of the method was that all the coefficients of the polyexponential describing
the weighting function were positive, i.e. the weighting function had to be from an
iv bolus dose. A computer program was given to evaluate the input function based
on these approximations.

This new method was again compared with Cutler’s orthogonal polynomial
method and no significant difference was found between the two methods.

A later modification of the program (Gillespie and Veng-Pederson 1985b)
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extended its range so that there were no restrictions on the sign of the coefficients of
the polyexponential representing the weighting function, enabling an oral bolus

solution to be used as the weighting function.

1.3.2.4 Veng-Pederson’s Polynomial Method

This method is also based on the equation derived to evaluate the input function
when the weighting function is represented by a polyexponential. However, in this
method, the unknown input function is represented by a polynomial, whose
coefficients are linearly related to the values of the response function (Veng-Pederson
1980d).

Because of this linear relationship the values of these coefficients can be found
easily by linear regression when the equation of the weighting function is known. The
unknown input is fitted to polynomials of increasing degree until no improvement of
fit is found, judged by some statistical criterion. The input function is then
represented by that polynomial.

Veng-Pederson again compared his method with that of Cutler’s orthogonal

polynomials and found no significant difference between them on the data tested.

1.3.2.5 System Identification Methods

The method presented by Vajda et al (1988) is similar to that presented by
Veng-Pederson, representing both the weighting and response functions by
polyexponentials. Instead of fitting polyexponentials to the functions using non-linear
fitting techniques, the response and input functions are approximated by differential
equations whose parameters are estimated by a direct integral (DILS) method which
involves only linear regression.

The process involves two steps, system identification and input evaluation.
System identification involves fitting differential equations of increasing order until
no significant improvement is seen. The weighting function is then obtained from this
equation. The input evaluation step uses the weighting function previously evaluated
to represent an input function in identifying a second linear system, whose weighting

function represents the original unknown input function.
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The method has a supposed advantage over Veng-Pederson’s method in that it
involves only two evaluation steps not three and it uses linear instead of non-linear

regression.

1.4 AIMS AND OBJECTIVES

There is a wide range of deconvolution algorithms available, as can be seen from the
preceding sections, but little information about which method is to be preferred if
deconvolution is to be used as a tool to assess drug delivery rates. Generally numerical
algorithms, although very simple both to apply and to understand, are extremely sensitive
to noise in the data. This could in theory, limit their use in practical situations. The non-
numerical methods are computationally very complex and a greater effort is required to
understand the underlying principles. However the extra effort may be compensated by
an increase in stability to data noise.

One great advantage of deconvolution as a tool in the evaluation of drug release is
its ability not only to give information about the whole time course of the delivery process
but also its ability, with a suitable weighting function, to evaluate the rate of in vivo drug
release.

If deconvolution can be shown to predict accurately both the form and the values of
the in vivo release rate, then deconvolution would become the ideal method for
quantifying the in vivo release characteristics of controlled release products. This prompts

the following questions :

» To what degree is the output of the deconvolution process a good reflection of the
true input rate ?

» To what extent does the predicted input rate, achieved through deconvolution, depend
on the quality of the initial data ?

«  What criteria affect the choice of the deconvolution algorithm ?

+  What additional complications to the use of deconvolution are encountered when the

algorithms are used to evaluate real clinical data ?
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*  Can deconvolution be used to provide an in vivo-in vitro correlation in the evaluation
of clinical data ?
e Is the method of Maximum Entropy in any way superior to the deconvolution

methods for estimating the release characteristics of a dosage form ?

With these questions in mind the following objectives were set.

(1) To investigate a range of deconvolution algorithms for their stability to data noise.

(2) To investigate a range of deconvolution algorithms for their ability to predict
correctly the form of unknown input functions, and the effect of data noise on this
ability.

(3) To investigate the accuracy of various deconvolution algorithms at predicting the
bioavailability or the fraction of dose released from a dosage form.

(4) To use the various algorithms selected to analyze actual clinical data to highlight any
problems to the use of the various algorithms in a practical situation.

(5) To investigate the stability of the maximum entropy method to increasing levels of
data noise.. |

(6) To investigate the ability of the maximum entropy method to predict the form of
unknown input functions.

(7) To evaluate actual clinical data using the maximum entropy method for comparison

with the various deconvolution techniques.

Four deconvolution algorithms were selected, from those described previously, to
cover a range from the numerically very simple to the computationally complex.

From the numerical methods, the trapezium method proposed by Langenbucher was
chosen. This method was selected because its output is a set of point values at the end of
each time interval, making comparison with other methods easier. It has also already been
used in the evaluation of drug delivery of oxprenolol Oros preparations (Langenbucher
and Mysicka 1985) and bacampicillin microcapsule suspensions (Nicklasson et al 1984).

The second method chosen is an adaptation of the first, in which the weighting
function is smoothed, by curve fitting, prior to deconvolution. This method was chosen

to examine the possibility that smoothing one function would improve the performance
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of the numerical algorithm, and has been termed the semi-numerical method.

The third method chosen was one of the polynomial methods. The Veng-Pederson
method was chosen instead of the Cutler method simply because it represented the
weighting function with a polyexponential, which is considered preferable when
approximating drug concentration curves.

The fourth method was Veng-Pederson’s method of polyexponentials, which was
considered similar to the system identification method, but was selected because it was
simpler to implement and had already been used for the analysis of cimetidine (Veng-
Pederson 1981).

Cutler’s method of prescribed inputs was excluded by its definition as it imposes,
prior to deconvolution, a known form on an unknown input function.

The four deconvolution algorithms mentioned above were used in the stated
objectives and further details of these four algorithms are given in chapter 2.

The clinical data used for evaluation came from administration of three different

Metoprolol CR tablets which were deconvolved with an oral solution.
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2 METHODS

The various methods presented in this chapter are tools with which the objectives, set
out at the end of the previous chapter, can be undertaken. Because many of the methods
are used repeatedly, but often in differing circumstances, this chapter is designed as a
reference section, to be used in conjunction with the later chapters.

The chapter includes a much more detailed description of the four chosen
deconvolution methods (section 2.2), some of which require the use of either linear or
non-linear regression, the details of which are given in section 2.1.

In order to examine the accuracy of the release rates predicted by the deconvolution
algorithms, and the stability of these algorithms to noise, the true release rate must be
known a priori. Therefore the true release rate must be used as a starting point in the
generation of pseudo-experimental data, which when deconvolved will (if the
deconvolution is perfect) yield the original release rate. The methods for the calculation
of the response function from the desired release rate and weighting function are described
in section 2.3, together with the means of adding noise to the data generated in this
fashion.

The various other methods included here are used in different places throughout the
following chapters and should be referred to as the need arises. The theory of the
Maximum Entropy technique and details of the method are presented in a separate

chapter.

2.1 REGRESSION SUBROUTINES
2.1.1 Non-Linear Least Squares Curve Fitting

The method used for non-linear curve fitting was that proposed by Marquardt and is
known as the Levenburg-Marquardt method.

It is based on finding the parameters of a user defined function which minimise the

x* merit function (Press et al 1988a) as shown in equation (2.1).

2
PO) = z": y; = yx.,p) 2.1)

i=1 Wt‘.
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where p is the vector of parameters to be estimated
y; is the experimental value at data point i
y(x,p) is the estimated value of y at the same point x as y; using the current
best estimate of the parameters
n is the number of data points

wt; is the weight assigned to data point i.

The method is based on combining two well known non-linear parameter estimation
techniques - that involving inversion of the Hessian matrix (the Hessian matrix holds the
second derivatives of the x* value w.r.t. each estimated parameter value at each data point)
and the steepest descent method. When the y* value is far from the minimum then the
steepest descent method is used but this is changed to the inverse-Hessian method when
the %* value is close to the minimum, thus making the method converge more rapidly.

The method was implemented using two subroutines mrqmin() and mrqcof() (Press
et at 1988a). The program required a user supplied subroutine to evaluate the function
whose parameters were to be estimated, and that function’s first derivatives w.r.t. its
parameters. The subroutine expon() was used to calculate any polyexponential of degree

ma/2 and its first derivatives.

expon(x, a, y, dyda, ma)
float x, a[], *y, dyda[l;

int ma;
{
int i;
*y = 0.0;

for(i=1 ; i<=ma ; i +=2){
*y = a[i]*exp(-afi+1]*x);
dydafi] = exp(-a[i+1]*x);
dyda[i+1] = -a[i]*x*exp(-a[i+1]*x);

The weights assigned to each data point should be the standard deviation of that data
point so that the squared value is weighted inversely as its variance. However, with

experimental data the true variance is rarely known, so the squared value was weighted
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inversely with the square of the experimental value, i.e. wt; = y; (Boxenbaum et al 1973).
This assumes that the variance of y, is proportional to y? and although not the only

weighting scheme for pharmacokinetic data it is one of the most common.

2.1.2 Linear Least Squares Regression
The basic requirement of parameter estimation by linear regression is that the
equation to be fitted is linear in the parameters to be estimated i.e. it is in the form of the

equation given below.

y(x) = Y pfi(x) 2.2)
k=1

where p, are the parameters to be estimated and f (x) are arbitrarily fixed functions of x
known as the basis functions. Like the non-linear curve fitting methods the values of the
parameters chosen are those which minimise the % merit function as given by equation
(2.1).

When the ¥* value is at a minimum the first derivatives of > w.r.t each of the
parameters p will be 0. This gives a series of normal equations for &y*/0p,,
3x*/8p,,....8)*/dp,, which can be solved by Gauss-Jordan elimination (Press et al 1988b).
In order to avoid the problems associated when normal equations become close to singular
a technique called Singular Value Decomposition (SVD) was used (Press et al 1988c) to
find the minimum % value. Although SVD can be slower than solving linear equations
by Gauss-Jordan elimination, its great advantage is that it theoretically cannot fail.

Like the non-linear least squares method the weights chosen are the experimental
values y, for each data point. The subroutines used require only one user supplied routine
to evaluate the basis functions at any value x. For a general polynomial the following

subroutine fpoly() was used, where np is the degree of polynomial.

void fpoly( x, p, np)
float x, p[];
int np;
{ . -
int j;
pl1] = 1.0;
for(j=2 ; j<=np ; j++) plj] = plj-11*x;
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2.2 DECONVOLUTION ALGORITHMS

2.2.1 Numerical Deconvolution

The input function was calculated directly from the data according to the algorithms
given for the linear trapezoidal method (Langenbucher and Moéller 1983a). The algorithms
are based on equations (1.14), (1.15) and (1.16) of section 1.3.1.4 and are designed to give

a stepwise progression through the calculation (equations (2.3) and (2.4)).

F W(@©) =0

I, = QR/ADW,

I, = R,/At - IW,/2)W, (2.3)
I, = RJ/At - IW,2 - W)W,

L, = RIAt ~I,WL2 ~ LW, | — . = I,_ W)W,

¥  wo >0

I, = (2R, - R,/D)/W At

I, = 2QR,/At - I W, [2)IW, (2.4)
I, = 2RJAt - IW,[2 - LW)/IW,

I, = 2RJAt - IW,/2 = IW, | = = I,_W)IW,

The weighting and response function data was required to be at a constant time
interval, At, prior to deconvolution. Any data not already having a constant time interval
was interpolated using a cubic spline interpolation subroutine (Press et al 1988d) which
has been shown to give a better function approximation than linear or log-linear
interpolation methods (Yeh and Kwan 1978), especially for data with rapid changes in
curvature or widely spaced data points.

If the weighting function did not arise from the administration of a unit dose then the
values of the weighting function were normalised (by division by the dose administered)
prior to deconvolution. The interpolated data was then processed according to equations

(2.3) and (2.4) to give a vector I, whose elements hold the values I,, where [, is the value
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of the input function at t=i.At.

The cumulative input was calculated from the vector I, by numerical integration using
the trapezoid formula to estimate the area under the input function - time curve. This
gives an equation for the cumulative fraction input (CFI, = CFI(i.At)) shown by equation
(2.5) and the cumulative percentage input (PCT; = PCT(i.At)) shown by equation (2.6)

where D, is the dose administered to produce the response function.

"o+ L
Ly dirhid,, 2.5)
Do i=1

CFI, = CFI(nAt) >

PCT, = PCT(nAt) (2.6

]
>
-~

2.2.2 Semi-Numerical Deconvolution

Prior to deconvolution the experimental data for the weighting function, W,(t), was
fitted to a polyexponential equation of the form given in equation (2.7), where tlag is the
time lag associated with the data and A, and ¢ are the coefficients and exponents of the
polyexponential ( if W(0) = 0O then X}_|A; = 0). The curve fitting was performed using a

non-linear least squares curve fitting routine described previously (section 2.1.1).

n
W@ = Y A
i=1

where (t - tlag), 0 for t < tlag 2.7)

(t - tlag) fort > tlag

and o > 0

If the data for the weighting function was obtained by administration of a non-unit
dose then the weighting function was normalised prior to deconvolution by dividing by

the actual dose administered, D, to give equation (2.8).
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i=1

The equation for the weighting function (2.8) was used to generate data at constant
intervals, At, for use in the deconvolution process. The experimental data for the response
function was interpolated at the same interval, At, (using the cubic spline interpolation
routine described previously) prior to deconvolution with the weighting data produced by
equation (2.8). The estimated input function produced was a vector I, with elements I,
which represent the values of I(t) at t = i.At. The cumulative fraction input and cumulative

percentage input were calculated according to equations (2.5) and (2.6) respectively.

2.2.3 Polynomial Deconvolution

Prior to deconvolution, the experimental data for the weighting function, W (t),
following administration of a dose D, was fitted to a polyexponential equation given by
equation (2.9) using a non-linear least-squares curve fitting routine (section 2.1.1 ).
Equation (2.95 was normalised to give equation (2.10) by division by the dose

administered, D.

W, = E Ae™ (2.9
i=1
W = LY ae 2.10)
D i3

The unknown input function, I(t), was represented by a polynomial of unknown

degree, m+1, and unknown coefficients C; (equation (2.11)).

I = Zm:Cjtf (2.11)
j=0

If the Laplace transform of the convolution integral is taken then equation (2.12) is
the result, where R(s) is the Laplace transform of the response function R(t), W(s) is the

Laplace transform of the weighting function W(t) and I(s) is the Laplace transform of the
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input function I(t).

If the Laplace transforms of the equations representing the weighting function
(equation (2.10)) and the input function (equation (2.11)) are taken, then equations (2.13)
and (2.14) are obtained respectively.

R(s) = W(s).(s) (2.12)
W) = = A (2.13)
i=1 (S + al)
I(s) = 2"‘:_0_11_' (2.14)
jeo si*!

Multiplication of equations (2.13) and (2.14) give the Laplace transform of the

response function (equation (2.15)) and the inverse transformation of this equation gives

1 - A = CJj!

R(s) = — P (2.15)
) Dl s+o) j=20 sl
R@® IZm)C "fj A | pitte E( 1)1'-*“5"‘ (2.16)
o — gl c— - e ' + - [ ¢
D i3 i’ =1 o k=0 k!

an algebraic expression (equation (2.16)) for the response function R(t). A full derivation

of equation (2.16) is given in Appendix A.

Equation (2.16) forms the basis of Veng-Pederson’s polynomial method of
deconvolution, however, it is unable to accommodate for any time lag present in the
weighting function data. In theory, the weighting function is the response to an
instantaneous input and there, therefore, should be no time lag. However, in practical
situations there may often be a small, but distinct, delay especially when an oral solution
is being used to produce the weighting function, as the drug must be absorbed from the
GI tract and pass through the liver before its presence will be noticed. Because of the

need to accommodate for a time lag in the weighting function equation (2.16) was re-
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derived using equation (2.7) to represent the weighting function.

The experimenﬁal data for the weighting function W (t) was therefore fitted to
equation (2.7) using the non-linear curve fitting routine described in section 2.1.1. The
equation was then normalised to give equation (2.8) by division by the dose administered,
D. Equation (2.8) can be re-written (2.17) to include a unit step function whose purpose

is to ’turn on’ the weighting function after t=tlag.

W (@)

_115 H(t - tlag) Y Ae™" "9
i=1

(2.17)

where H(t - tlag) = 0 for t < tlag

1 for t = tlag

The Laplace transform of this new weighting function, W(s), is shown in equation
(2.18). When equation (2.18) is multiplied by the Laplace transform of the input function
(equation (2.14)) a revised expression for the Laplace transform of the response function
is obtained (2.19) and inverse transformation of this gives a new expression for the
response function R(t) which can accommodate a time lag in the weighting function

(equation (2.20)).

W(s) = E i (2.18)

g A A M Cj!
Rs) = £ i i/ (2.19)
D 31 (s +a)jo s/*!

Al .
R@® = —H(t - tlag)z CJI i (_1)]+1e-1!'(t-llag)

+1
= o (2.20)
k=j o (t tlag)*

G

A full derivation of equation (2.20) is given in Appendix A. It can be seen that
equation (2.20) is linear in the coefficients C; and can therefore be re-written in a

simplified form as equation (2.21).
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(2.21)

R@®) = Y C9 where
j=0

n

1 s A i -o(t - tla, o -
. —H@ - tag) 'S [(~1y*1e™¢ e -1yt
) 5 ( g)JEOF1 (-1y kg( Y

i=1 i

af (¢t - tlag)t
k!

D>
]

The linear regression program (Press et al 1988¢) based on singular value
decomposition, described previously, (section 2.1.2 ) was used to solve for the unknown
coefficients C;. Starting at m=1, the coefficients C; were solved for using linear regression,
m was then increased and the process repeated until the decrease in the residual sum of
squares for the regression was insufficient to justify the inclusion of an additional term
in the polynomial, as judged by the F Test (section 2.4.1).

The cumulative fraction input and the cumulative percentage input were calculated
from the algebraic integration of the selected polynomial, according to equations (2.22)

and (2.23) respectively, where D, is the dose given to produce the response function.

m Ct'*!

CFIt) = LY (2.22)
D, j+1
m C.tit!

pcrey = 0y T 2.23)
D, j%o j+1

2.2.4 Polyexponential Deconvolution

The experimental data for the weighting function obtained after administration of a
bolus dose D was fitted to equation (2.9) by a non-linear least squares fitting routine
(section 2.1.1). Analytical deconvolution, if the weighting function is represented by a
polyexponential, as in equation (2.9), has been shown to lead to equations (2.24) and
(2.25) (Gillespie and Veng-Pederson 1985b).

PCT®) = K, [KR(® + K,[R@) du + y xR()] (2.24)
0
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I() = D [KR(®) + K,R@®) + ¢(t)*R(®)] (2.25)
R(t) is the response function, R/(t) is the first derivative of the response function and D
is the dose administered to produce the weighting function. All the other expressions
within the two equations are constants derived from the values of the coefficients and

exponents of the equation fitted to the weighting function.

In order to make the equations applicable to oral weighting functions, alternative
definitions of certain terms must be used when the initial value of the weighting function
is zero (i.e. when the weighting function used arises from an oral bolus dose). The
definitions of the terms used in equations (2.24) and (2.25) are given in equation (2.26),

(2.27) and (2.28). D, is the dose given to produce the response function.

K, = K, = K Y a0,
i=1

n- D)

1-
° & 100D 2.26)
KS = K2 - ; 7 K4 = D (
_Jrey wo) = 0 A WO = O
ko = {R’(t) wo =0 % = Ao wo -0

The parameters { g, v, } for {i=1 to i= n-1} are obtained from the n-1 roots of the
polynomial Q(x) shown in equation (2.27), where ¥, are the n-1 roots of the polynomial.
These parameters are then used to calculate @(t) and y(t) as shown in equation (2.28).

n

) A.-H(% + X)
i1

.
[}

o)

i=1
J#*i

(2.27)

n

n-1
and g = K JI@ +e) /I -7
j=1

j=1

i

The roots of the polynomial Q(x) were calculated using two subroutines, laguer() and
zroots(),which are based on Laguerr’s root finding methods (Press et al 1988f). The

subroutines used needed to be able to converge for both real and complex roots since it
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n-l-io ”'l'io geYI
PN = g+ Y g w@® = gr+ Y T
i=1 i=1 i
. _ JO WO+ 0 _]0 W@O) # 0
where iy, = {1 W) = 0 and g, { g, WO =0

(2.28)

was possible that the roots of Q(x) could be complex, and u, and v, in equations (2.30)
and (2.31) are complex numbers. The advantage of Laguerr’s method is that it is

computationally very simple and is guaranteed to converge from any starting point.

RO = YLbe™™ + 20
i=1

(2.29)

The experimental data representing the response function is fitted to equation (2.29)

using the non-linear least-squares method described in section 2.1.1. Incorporation of

equation (2.29) into equations (2.24) and (2.25) results in expressions for the input rate,

1(t), and the cumulative percentage input, PCT(t), given by equations (2.30) and (2.31).
L,

PCT(?) = wu, + Zuie'”‘("“ t o2t

i=1

(2.30)
L-i
D J -v(t-4)
I = — u(-v)e t =2t
® 00 2 (-v) A
where L = m+n-1
(2.31)
_ Bi i=1,2,...,m
Vi T {"Yz-m i=m+1,m+2,.,L-i
B { b, W) #0
i —b,.B‘. wW@o) =0
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K4B K - E - n-l-lo gj gO - 1’2’ 9m
w =4 | B H B g
m B.
K, i“’” z;'y J*B i=m+1l,m+2,.,L-i
i-m J= i-m
! (2.31) cont.
, = PCT(=) = 1
Y @/o)

i=1

Once all the constants in equations (2.30) and (2.31) have been calculated from the
constants and coefficients of the polyexponentials used to represent the weighting and
response functions then the input function (I(t)) and the cumulative percentage input

(PCT(t)) can be calculated directly from equations (2.30) and (2.31).
2.3 GENERATION OF PSEUDO-EXPERIMENTAL DATA

Based on the convolution integral (equation (2.32)), different equations were assigned
to the weighting (W(t)) and input (I(t)) functions and these were used to calculate the
response function R(t). Once the response function had been calculated, noise was then
added to both the weighting and response functions, which were then used as input data
for the various deconvolution algorithms, to produce a predicted value for the input

function, I(t).

R() = f W (t-0)I(8)d0 (2.32)

2.3.1 Equations Assigned to the Weighting and Input Functions
The weighting function was always represented by a polyexponential of the form
shown in equation (2.33).

The input function was assigned one of three forms :
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Wo = YA (2.33)

i=1

(a) A first order release process as shown in equation (2.34)

I(t) = Dke-k: (234)

Where D is the dose given, k is the first order rate constant and t is time.
(b) A zero order release process which becomes first order after time t, as shown in

equation (2.35).

It) = k,-H@ -t)k, + H@t - t)D ke~ ¥ (2.35)

Where D, is the dose remaining at t., k, is the zero order rate constant, k is the first order
rate constant and H(t-t,) is the unit step function which has a value of 0 at t < t. and 1
att 2 t.

(c) An input function, defined not by an equation, but only by a set of points to allow

greater flexibility in representing the input function for more unusual profiles.

2.3.2 Calculation of the Response Function

When the input function is in the form (a) or (b) specified in section (2.3.1), then the
response function can be calculated algebraically by evaluation of the convolution integral.
However, when the input function is numerical, as for (c) in section (2.3.1), the response

function must also be calculated numerically.

2.3.2.1 Input Form (a)

When the input function is represented by a monoexponential, as shown in
equation (2.34) and the weighting function is represented by a polyexponential as
shown on equation (2.33), then the response function can be calculated through
evaluation of the convolution integral (equation (2.32)). This is done by taking
Laplace transforms of the weighting and input functions to give equations (2.36) and

(2.37), where W(s) is the Laplace transform of the weighting function and I(s) is the
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Laplace transform of the input function. Multiplication of these equations according
to the equation R(s) = W(s).I(s) gives the Laplace transform of the response function

(equation (2.38)).

W = Y (2.36)
i=1 § + Q

Is) = SD+ "k 2.37)

R = Dk y_4 (2.38)

s+kizis +q

Taking the inverse transformation of equation (2.38) gives an expression for the
response function, R(t), shown in equation (2.39), a full derivation of this equation

is given in Appendix B.

(% - e
R = kD A - 7 (2.39)
O = kY A=)

Equation (2.39) can then used to generate values for the response function, for any

set of parameters, at any time t.

2.3.2.2 Input Form (b)

The weighting function was again represented by a polyexponential as given by
equation (2.33) and the Laplace transform of the weighting function W(s) is shown
in equation (2.36). The input function I(t) was represented by equation (2.35) and its

Laplace transformation shown in equation (2.40).

I(s) = ﬁ - e"‘s.ﬁ e 0, (2.40)
s s s+ k

Multiplication of equation (2.40) with equation (2.36) give an expression for the

Laplace transform of the response function R(s) as shown in equation (2.41).
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R(s) = il E

s.1s+a S i1 8 +Q s+kiis+a

(2.41)

Inverse transformation of equation (2.41) gives an expression for the response
function R(t) as shown in equation (2.42), see Appendix B for a more detailed

derivation.

A -t
R(t) = EE e-a: _ koH(t _ t) E—(l -a.(t c))

i=1 "

A
+ H(t - t)kD E_k (e "% - g1

i=1 i

(2.42)

This equation can be used to produce values for the response function at any time t

and for any set of parameters chosen.

2.3.2.3 Input Form (c)

In this form, the input function is represented solely by a set of data and the
response function can therefore not be calculated algebraically. Instead the discrete
form of the convolution integral was used to calculate the response data, which was
presented in its iterative form by Langenbucher and Méller 1983 (equation (2.43)),
where W; is the value of the weighting function at t= i.At, I, is the value of the input

function at t = i.At and R, is the value of the response function at t = i.At.

R, =0
R, = AW 2 +IW,[2)At (2.43)
R, = AW, 2 +IW, _, +.+1 W, +IW,/[2)At

The weighting function was again represented by a polyexponential and this
equation was used to generate the weighting function at the required interval, At, for

input into equation (2.43).
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2.3.3 Addition of Noise to the Data

Noise was added to the required data sets using a subroutine GOSDDF from the NAG
libraries. This subroutine returns a random number from a normal distribution, with a
mean and standard deviation specified by the user. In this case the mean was set to zero
and the standard deviation (SD) set as shown below :

| SD = x.y; / 100
where  x = the percentage noise required
y; = the experimental value to which the noise is added
The value returned by GOSDDF was added to the experimental value to create the

new value which contained the desired amount of noise.

2.4 STATISTICAL METHODS
The statistical tables used for all statistical tests are those by Rohlf and Sokal, 1981.
2.4.1 F Test
The F test was used to test whether or not the weighted sum of squares was
sufficiently different between two models, with p and q parameters, to justify the inclusion
of additional terms in the equation (Boxenbaum et al 1973).
F = (WSS, - WSS). df) /(WSS .(df, - df))) df, > df,
where WSS, = weighted sum of squares obtained with p parameters
WSS, = weighted sum of squares obtained with q parameters
df, = n-p (n = number of data points)
df, = n-q degrees of freedom in the numerator
df, - df, = degrees of freedom in the denominator
The value of F calculated from the equation above was compared with a value taken
from a table of F values at p = 0.05, with df, degrees of freedom in the numerator and
df, - df, degrees of freedom in the denominator.
If the calculated value of F was less than that obtained from the table then there was
no significant difference between the two models and the model with p parameters was

accepted.
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2.4.2 t Test

The t test can be used to test the significance of the deviation of a sample parameter
from a standard value (Sokal and Rohlf 1981a). The t, value for a sample is determined
according to equation (2.44) where Y is the sample mean, Y, is the standard value to

which the mean is to be compared and SEM is the standard error of the sample mean.

_ Y-y (2.44)

t _
) SEM

The null hypothesis for the test is that the sample mean is equal to the standard value. The
value of tis compared to the critical value of t,,,, from the tables, where « is the
probability level chosen to be significant (in most case a = 0.05) and n is the number of

samples. If t; < t,,;, then the null hypothesis is accepted.
2.5 STATISTICAL MOMENTS

2.5.1 Mean Dissolution Time (MDT)

The Statistical Moment theory is based on the primary assumption that the movement
of drug molecules within the body is a stochastic process and therefore the time any one
drug molecule takes to complete a process is a random variable. If the cumulative
distribution function of this variable is represented by the function, F(t), then F(t) is the
probability that a molecule has completed the process being studied by time t. The
Probability Density function of a random variable, whose cumulative distribution function
is represented by F(t), is f(t) (Cutler 1987), where £(t) is the differential of F(t), (equation
(2.45)).

- dF(1) 2.45
f(e) p (2.45)

The mean value of the random variable is given by the integral of the first moment
of its probability density function (equation (2.46)). The Mean Dissolution time can be

calculated as follows.
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MT = Itf(t)dt IrdF(t’) dt

d (2.46)

where MT is the Mean Time of the variable

The dissolution-time curve represents a statistical cumulative distribution process,
therefore the probability, P, that at a time t any one particle has dissolved is equal to the
fraction dissolved at time t divided by the total fraction which will dissolve (Tanigawara

et al. 1982) and this is shown in equation (2.47).
P = F(t) = *L
m, (2.47)

m_ = mass dissolved at time t = o  m = mass dissolved at t =t

Substituting this equation for F(t) in equation (2.46) gives equation (2.48), the integral
from -eo to 0 in equation (2.48) will be zero since the dissolution process is assumed to

start at t=0.

8

R
m, dt

t.dm
MDT = ft.f(t) dt = Tnl- ft._;"t;dt = m = "m

[}

oo

Equation (2.48) can be expressed as a discrete summation which can be used to
evaluate both the ir vitro and in vivo Mean Dissolution Time. This summation is shown
in equation (2.49), where t; is the mid-point of two successive time intervals, Am, is the

amount released during this interval and m,, is the total quantity released.

MDT = M (2.49)

m

©0

Equation (2.49) can be used to calculate the values of the Mean Dissolution Time for
the in vivo dissolution rate from the input rate provided by the deconvolution algorithms,
and for the in vitro dissolution rate from the cumulative fraction released as a function of

time. If the input rate itself is used, then equation (2.49) has to be adapted slightly to give
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equation (2.50) and this is used instead.

MDT = Y ud,, +1)Ae/2
" (2.50)

oo

where [, is the input rate at t = i.At

To obtain the correct MDT value the upper limit in the summation must be infinity.
In practice this is not possible and the MDT can only be determined up to the last time
point used, without some form of extrapolation. It has been shown that, when the final
value of the dissolution rate is 5% of its maximum value, then the difference between the
true MDT and that determined up to this last time point, is 10% (Yamaoka et al 1978).
Therefore in the following chapters the MDT will always be shown as MDT,,, where t
is the time up to which it has been calculated. In this case m_ in equations (2.49) and
(2.50) will become m,, where m, is the mass dissolved at t, and the summations in these

equations will have an upper limit of t,.
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3 COMPARISON OF DECONVOLUTION METHODS USING PSEUDO-
EXPERIMENTAL DATA

In this chapter each of the four deconvolution algorithms were tested with pseudo-
experimental data , the aim being to examine the ability of the four algorithms (described
in detail in section 2.2) to predict the true form and values of an input function whose
form and values were set prior to deconvolution.

Three different forms of input functions were used, and these were chosen to reflect
plausible release rate profiles which might arise following the administration of a dosage
form.

The first form chosen was to let the input function represent a first order release
process, in which the rate of drug release is dependant on the amount of drug remaining
in the dosage form. First order release is assumed to occur with most "normal” tablets,
once disintegration of the tablet has occurred.

The second form chosen was to use an input function comprising of two parts. An
initial zero order process during which the release rate is constant and independent of all
other factors and this continues up until a time t,, after which the release rate becomes
first order. This input function represents an idealised release profile for a controlled
release product, the majority of which aim to produce zero order release over a specified
time period. As a further test of the deconvolution algorithms the transition from zero to
first order release occurs suddenly at t=t, producing a sharp change in the release profile
(input rate) which would not be seen in vivo . In subsequent sections this input form will
be designated as the zero order release function.

The third form chosen for the input function was a more realistic release rate profile
for a controlled release product in which the initial rate of release is zero, then rises
rapidly to reach a plateau phase during which release is zero order. After a certain time
interval this plateau phase decays slowly into a first order process. In subsequent sections
this form of the input function will be designated as the controlled release input
function.

The input function, in one of these three forms, was convolved with a triexponential

weighting function represented by equation (3.1), to produce values for the response
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function (see section 2.3.2). The weighting function was given one negative coefficient,
(-2), in order to mimic the type of profile which would arise after administration of an
oral bolus solution, i.e. it would have an initial value of zero. In this way the input
function produced by the deconvolution represents a hypothetical release rate and not an

absorption rate.

W@ = -2e +e"+e G.D

Various levels of noise were added to the values of both the weighting and response
data (section 2.3.3) fo produce pseudo-experimental data which were then processed by
each of the four deconvolution algorithms. For each of the different forms of input
function two separate examinations were made. Firstly the effect on the predicted input
rate, from one data set, due to increasing levels of added noise and secondly the effect on
the mean predicted input rate produced by deconvolution of multiple data sets containing

a constant level of noise.

Time True.Input True Weighting True Response
Function I(t) Function W(t) Function R(t)
0.05 1.0858 0.5170 0.0166
0.10 0.9825 0.7756 0.0530
0.15 0.8890 0.8868 0.0959
0.20 0.8044 0.9159 0.1386
0.30 0.6586 0.8644 0.2110
0.40 0.5392 0.7690 0.2615
0.60 0.3614 0.5936 0.3081
0.80 | 0.2423 0.4670 0.3100
1.00 0.1624 0.3745 0.2899
1.20 0.1089 0.3037 0.2607
1.40 0.0730 0.2475 0.2287
1.60 0.0489 0.2022 0.1973
2.00 0.0220 0.1354 0.1422

Table 1 : Weighting Function data produced by W(t) = -2¢'® + ¢ + ¢, Input Function Data produced
from I(t) = 1.2¢® and Response Data produced from Convolution of the Weighting and Input Functions
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3.1 MONOEXPONENTIAL INPUT FUNCTION
The input function was represented by the following equation (3.2) where D, is the

dose administered and k is the first order rate constant.
I(®) = kD,e ke (3.2)

The values used for the constants were k = 2.0 and D = 0.6 so that the equation for the
input function becomes I(t) = 1.2¢™®. The weighting function used was that shown in
equation (3.1), and these two equations were used to produce the values shown in Table
1 where the response function data was produced by convolving the weighting and input

functions according to the procedure given in section 2.3.2.

3.1.1 Increasing Levels of Added Noise
3.1.1.1 Method

Noise levels of 1, 5 and 10% were added to the values of the weighting and response
functions shown in Table 1 using the NAG subroutine GOSDDF (see section 2.3.4). The
data sets produced following the addition of noise are shown in Tables C(1a) and C(1b)
in appendix C.

The true data and the data sets containing the added noise were then processed
through each of the four deconvolution algorithms (section 2.2) according to the details
for each given in the sections below. The weighting and response data were fitted to
polyexponentials of the form shown in equation (3.3) using the non-linear curve-fitting
routine described in section 2.1.1. The number of terms in the exponential was increased

sequentially and the data re-fitted until there was no significant reduction in the residual

W) = YA (33)
i=1

sum of squares as judged by the F test (section 2.4.1) at P=0.05 and n=13. The parameters
obtained from the curve fitting of the weighting and response data are shown in Tables

2(a) and 2(b) respectively.
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1 -2.0000 -2.0006 -1.5478 -2.1365 -3.5620
A, 1.0000 1.0006 0.5573 1.0487 2.9420
A, 1.0000 1.0000 0.9905 1.0878 0.6220
o, 10.0000 9.9982 11.6021 9.2226 6.1112
a, 5.0000 5.0004 3.9029 5.3127 3.6964
o, 1.0000 1.0000 0.9972 1.0388 0.6943

Table 2(a) : Parameters obtained following Curve-fitting of Weighting Data, shown in Table C(1a), to a
Polyexponential with Constants A, and Exponents o,

(a) Numerical Deconvolution

An interpolation interval of 0.05 was used for the spline interpolation of both

weighting and response data prior to deconvolution.

Parameters 0% Noise 1% Noise || 5% Noise || 10% Noise

Added Added Added Added

. -1.0261 -1.0414 -1.1477 -1.9246

2 0.2119 0.2000 0.3069 1.0314

3 0.8142 0.8414 0.8408 0.8932

o, 2.9260 2.8465 3.0684 3.5102

o, 10.7707 11.2968 8.8962 5.5215

o, 0.8589 0.8696 0.86020 0.9224

Table 2(b) : Parameters obtained following Curve-fitting of Response Data, shown in Table C(1b), to a
Polyexponential with Constants A, and Exponents c.

(b) Semi-Numerical Deconvolution

The response data was interpolated as for the numerical deconvolution. The
parameters in Table 2(a) were used to generate the data for the weighting function
at a time interval of 0.05 and these were used together with the interpolated response

function for input into the semi-numerical deconvolution algorithm.
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(¢) Polynomial Deconvolution

The parameters from Table 2(a) were used to represent the weighting function
data, the dose administered was 0.6 (see equation (3.2)), and together with the
response data, these formed the input for the polynomial deconvolution method (see
section 2.2.3).

The optimal polynomial to represent the input function was selected using the
F test (section 2.4.1) on the residual sum of squares associated with that polynomial
at P= 0.05 and n=13. The selected polynomials for each data set are shown in Table
3. These were then used to generate the values of the input function, and the integrals
of these polynomials were used to generate the values of the cumulative fraction input

(CFI).

% Noise

Added to Selected Polynomial for the Input Rate I(t)
Data
0% I(t) = 1.199 - 2.380t + 2.282¢ - 1.306t> + 0.428t* - 0.061¢°
1% I(t) = 1.155 - 1.933t + 1.186t* - 0.254¢
5% I(t) = 1.093 - 1.454t + 0.500¢*
10% I(t) = 1.104 - 1.517t + 0.535¢%

Table 3 : Selected Polynomials produced by Polynomial Deconvolution on Data (from Table C(1)) with

Increasing Levels of Added Noise

(d) Polyexponential Deconvolution

The parameters from Table 2(a) were used to represent the weighting function
and those from Table 2(b) used to represent the response function and these two sets
of parameters were used as input into the polyexponential deconvolution algorithm

(section 2.2.4).

3.1.1.2 Results

For all the deconvolution methods the input rates and the cumulative fraction input

(CFI) produced with data for 1% added noise were so close to those produced with the

error free data that they were indistinguishable and have therefore been omitted from the

graphs shown in Figures 1-8.
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(a) Numerical Deconvolution

The input rates produced by numerical deconvolution with increasing levels of
added noise are shown in Figure 1 and the cumulative input as a fraction of the total
dose administered are shown in Figure 2.

As can be seen from the graphs the numerical deconvolution methods works
well on error free data, and the results produced are indistinguishable from the true
input rate and the cumulative fraction input. However, as the level of noise increases,
the input rate produced by the numerical deconvolution begins to oscillate widely
achieving considerable negative values, which, if the input function truly represented
the in vivo drug release rate, would be physiologically impossible. At some points the
oscillations produce estimated input rate values which are triple the true values.

The picture presented by the cumulative fraction input, (CFI),is slightly
different, as the level of added noise is increased the input rates produced at the 5
and 10% noise level do show some oscillation but to a much lower degree than the
input rate itself. The estimations of the total fraction released for all error levels are

close to the true value.

(b) Semi-Numerical Deconvolution

The input rates produced by semi-numerical deconvolution are very similar to
those produced by numerical deconvolution and, like the numerical method, the semi-
numerical algorithm works very well on error free data (Figure 3) producing values
indistinguishable from the true values. However, the method (like the numerical
method) produces severe oscillations with higher levels of noise.

The CFI’s (Figure 4) are also very similar to those produced for the numerical
deconvolution. The CFI produced with 0% and 1% noise are indistinguishable from
the true CFI, but as the level of added noise increases the CFI produced begins to
oscillate. Like the numerical deconvolution the oscillations are much less than for the
input rate values themselves and the final estimation of the total fraction released is

very close to the true value.
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Figure 1 : Input Rates produced by Numerical Deconvolution for the Monoexponential

Input Function with Increasing Levels of Error added to both the Weighting and

Cumulative Input (Fraction of Total Dose)

Figure 2 : Cumulative Input produced by Numerical Deconvolution for the
Monoexponential Input Function with Increasing Levels of Error added to both the

Response Functions
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Figure 3 : Input Rate produced by Semi-Numerical Deconvolution for the
Monoexponential Input Function with Increasing Levels of Error added to both the
Weighting and Response Functions.
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(c) Polynomial Deconvolution

The input rates and CFI's (Figures 5 and 6 respectively) produced by this
method show little variation with increasing levels of data noise and at all levels of
noise the predicted input rate is very close to the true value. With error free data the
input rate produced is indistinguishable from the true input rate and even at higher
noise levels there is little divergence. At no point does the input rate become negative
and there is no oscillation in the rate predicted, however the input rate does begin to
diverge at the extremes of the time range over which deconvolution was performed.

The predicted CFI’s exhibit the same features as the predicted input rates. The
CFI produced with error free data are indistinguishable from the true CFI, and all the
predicted CFI’s are very close to the true values and little variation is seen with

increasing levels of noise.

(d) Polyexponential Deconvolution

In both the estimated input rate and CFI there is little change in the predicted
values with increasing levels of noise (Figures 7 and 8) and all the results produced
are very close to the true values. The input rate and CFI produced with error free data
are almost identical to the true values. There is no oscillation in the estimated input
rate and at no time does this rate become negative. The estimation of the total

fraction released for all noise levels is very close to the true value.

3.1.1.3 Percentage Difference between Predicted and True Values

For each of the data sets shown in Figures 1-8 the percentage difference between the
true value and the predicted value for each point was calculated in the following way.

The percentage difference for the input rate was calculated as the absolute value of
the difference between the calculated input and the true input, divided by the true input
at t=0 and multiplied by 100, i.e.

%diff 1(t) = | Calc. 1(t) - True 19 | * 100/ 1.2
where 1.2 is the exact value of the input rate at t=0
The percentage difference for the cumulative fraction input was calculated as the

calculated fraction minus the true fraction multiplied by 100.
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%diff fraction input = | calc. value - true value I * 100

Each data set comprised 39 values over a time range of 0 to 1.9 at intervals of 0.05,

which was the output from the deconvolution algorithms. The percentage differences, once

calculated, were averaged for each data set and the mean and standard error of the means

for these values are shown in Table 4 for the estimated input rate values and Table 5 for

the estimated fraction input values.

Noise Level in original Data
Numerical 0.31 (0.177) | 1.57 (0.261) 17.1 (6.30) 32.8 (5.50)
Semi-Numerical 0.30 (0.180) | 2.48 (0.401) 18.2 (6.84) 24.0 (4.40)
Polynomial 0.03 (0.005) | 0.72 (0.105) 3.04 (0.33) 3.25 (0.36)
Polyexponential 0.30 (0.030) | 0.36 (0.053) | 0.68 (0.092) 1.65 (0.03)

Table 4 : Mean Percentage Difference for Input Rate Values shown in Figures 1,3,5 and 7 for
Increasing Levels of Added Noise. The S.E.M. values are shown in Parentheses (n=39).

Noise Level in original Data
DecTo‘)x;Ilel?lftion 0% 1% % 10%
Numerical 0.212 (0.012) | 0.85 (0.073) 2.15 (0.237) 3.72 (0.518)
Semi-Numerical 0.285 (0.010) | 1.05 (0.111) 2.35 (0.259) 3.41 (0.370)
Polynomial 0.008 (0.001) | 0.35(0.032) 1.15 (0.121) 1.39 (0.146)
Polyexponential 0.161 (0.020) | 0.495 (0.020) | 1.50 (0.198) 1.74 (0.217)

Table 5 : Mean Percentage Difference for Cumulative Fraction Input Values shown in Figures 2,4,6 and
8 for Increasing Levels of Added Noise. The S.E.M. values are shown in Parentheses (n=39).

The mean values shown in the tables reflect what has already been shown in Figures

1-8. The mean percentage difference values for the input rates for all of the deconvolution
algorithms are very small when there is little or no noise present in the data, however as
the level of noise is increased the mean percentage difference jumps dramatically for the

numerical and semi-numerical methods at the 5 and 10% noise levels (see Table 4) and
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is much greater than the level of noise originally added to the data. The mean %difference
for the polynomial ahd polyexponential methods at these higher noise levels remains low
and is always lower than the level of noise added to the original data, indicating that these

methods are much more stable to data noise.

The mean percentage differences obtained for the CFI’s are much lower for all
deconvolution methods, at all noise levels, than those obtained for the input rate. All of
these mean values are of the same order as the level of noise added to the original data
(see Table 5). The numerical and semi-numerical methods have slightly higher mean
values than the polynomial and polyexponential methods at the greater noise levels, but

these are stili well below the level of noise added.

3.1.2 Constant Level of Noise Added to Ten Data Sets
3.1.2.1 Method

In this second part the level of added noise was set at 10% and ten different random
data sets were generated by using the addition of noise to the true weighting and response
values shown in Table 1 using the NAG subroutine GOSDDF (section 2.1.1). The ten data
sets thus produced are shown in Tables C(2) and C(3) in Appendix C.

Each of the data sets was fitted to an equation of the form given in equation (3.3)
using the non-linear least-squares fitting routine (section 2.1.1). The number of terms in
the polyexponential was sequentially increased until there was no significant improvement
in the residual sum of squares as judged by the F test at P=0.05 and n=13 (n is the
number of data points). The parameters produced from this fitting are shown in Tables 6

(Weighting Function) and 7 (Response Function).

The ten data sets produced were then processed through each of the four

deconvolution algorithms (section 2.2) according to the details given below.

(a) Numerical Deconvolution
The interpolation time used was again 0.05, and both weighting and response

data was interpolated prior to deconvolution.
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Parameters
Subject A A A u % %

1 -1.0583 1.0583 14.7831 1.0103

2 -1.2167 1.2167 13.1451 1.1509

3 -1.2764 1.2764 11.3284 1.2370

4 -1.2244 | 1.2244 14.8374 1.1877

5 -1.2888 1.2888 12.6102 1.1787

6 -1.4136 1.4136 13.6901 1.2980

7 -2.2218 | 0.7759 1.4459 10.2161 0.7469 5.3961
8 -1.2805 1.2805 14.2763 1.2403

9 -1.1364 | 1.1364 16.2309 1.1238
10 -1.2704 1.2704 12.5863 | 1.18836

Table 6 : Parameters Obtained following Curve-fitting of the Weighting Data, shown in Table C(2), to a
Polyexponential with Constants A; and Exponents ¢.

Parameters
Subject A As As . % %
1 -1.8094 1.1699 0.6365 4.3187 6.1635 0.7038
2 -1.1629 0.1900 0.9729 2.8527 15.4793 | 1.0416
3 -10.0574 | 10.0574 1.3925 1.2853
4 -10.0259 | 10.0259 1.4518 1.3307
5 -3.2794 1.2192 2.0602 2.4069 3.8828 1.2581
6 -5.0043 5.0043 1.3878 1.1899
7 -0.9191 0.1920 0.7271 3.1552 15.9445 | 0.7938
8 -1.7884 1.0874 0.7010 3.7424 5.3098 0.7360
9 -10.0691 | 10.0691 1.3254 1.2230
10 -10.0368 | 10.0368 1.3911 1.2831

Table 7 : Parameters obtained following Curve-fitting of Response Data, shown in Table C(3), to a

Polyexponential with Constants A; and Exponents o
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(b) Semi-Numerical Deconvolution

The parameters from Table 6 were used to generate values for the weighting
function at intervals of 0.05 and these, together with the response function data
(interpolated at t=0.05), were used as input into the semi-numerical deconvolution

algorithm.

(c) Polynomial Deconvolution

The parameters from Table 6 were used to represent the weighting function, the
dose administered for the response function was 0.6 (see equation 3.2) and the values
in Table C(3) were used for the response function. The data were then processed
according to the polynomial deconvolution method (section 2.2.3) and the optimal
polynomial to represent the input function was selected using the F Test (section
2.4.1) at P=0.05 and n=13. The selected polynomials are shown in Table 8 and these
were used to calculate the input rate, I(t), and their integrals used to calculate the

cumulative fraction input.

Subject Selected Polynomial for the Input Rate
1 I(t) = 1.1807 - 1.6038t + 0.5571t
2 I(t) = 1.1020 - 1.5061t + 0.5130¢
3 I(t) = 1.2915 - 2.7201t + 2.1382¢ - 0.5610t°
4 I(t) = 1.0592 - 1.2708t + 0.3924¢
5 I(t) = 0.9961 - 1.1645t + 0.3482¢
6 I(t) = 0.8132 - 0.9638t + 0.3208¢
7 I(t) = 1.1428 - 1.4920t + 0.4864¢
8 I(t) = 1.0750 - 1.7373t + 1.1332¢ - 0.2675¢
9 I(t) = 1.0508 - 1.3739t + 0.4794¢
10 I(t) = 1.4164 - 3.5604t + 3.2853¢ - 0.9767¢

Table 8 : Selected Polynomials produced by Polynomial Deconvolution on Data from Tables C(2) and C(3).

(d) Polyexponential Deconvolution

The parameters from Table 6 were used to represent the weighting function and
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those from Table 7 used to represent the response function and together these formed
the input into the polyexponential deconvolution algorithm.

Following deconvolution the mean and standard error of the mean over the ten
data sets were calculated for the input rate and the cumulative fraction input (CFI)
for each deconvolution method. The estimated fraction of dose released (Fg) produced
for each data set was calculated by taking the maximum value reached in the
cumulative fraction input profile. For each input rate produced the Mean Dissolution

Time (MDT) was calculated according to the method described in section (2.5.1).

3.1.2.2 Results
For each deconvolution method the mean input rate and mean cumulative fraction
input for the ten data sets were plotted together with the standard error of the mean values

(S.E.M.) and these are shown in Figures 9-12.

(a) Numerical Deconvolution

The mean input rate (n=10) produced for the numerical deconvolution shows
considerable oscillation and the SEM values associated with it are very large (Figure
9). The oscillations are smaller than those shown by individual data sets, but are still
unacceptably high.

The mean CFI is much closer to the true value, showing little oscillation. The

SEM values are much smaller than those for the mean input rate.

(b) Semi-Numerical Deconvolution

The results produced for the semi-numerical deconvolution method (Figure 10)
are very similar to those produced for the numerical deconvolution method (Figure
9). The mean input rate (n=10) still shows a marked degree of oscillation although
to a lesser extent than the individual data and the SEM values are still large
especially at the earlier time points.

The mean CFI is very close to the true value and the SEM values associated

with the cumulative profile are much smaller than those for the mean input rate.
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(c) Polynomial Deconvolution
The mean input rate and mean cumulative fraction input (n=10) produced by
polynomial deconvolution are shown in Figure 11. The mean input rate is very close
to the true value with the greatest difference between the two occurring at either end
of the interval over which deconvolution was performed. The SEM values associated
with the mean input rate are small showing that the method produces consistently
good estimates of the true input rate.
The mean. CFlI is very close to the true value and the SEM values associated

with it are small.

(d) Polyexponential Deconvolution

The mean input rate and mean cumulative fraction input produced by
polyexponential deconvolution are shown in Figure 12. The mean input rate produced
is very close to the true rate at the later time points, however the input rate estimated
for the initial time points is consistently underestimated by the method. The deviation
from the true values is still not large, compared with the numerical and semi-
numerical methods, but it is apparent.

The mean CFI is very close to the true value and the SEM values associated
with it is very small, showing the consistency of the estimates produced by this

method.

3.1.2.3 Estimated Fraction Released F,

The estimated fraction of dose released for each subject and each deconvolution
method are shown in Table 9, together with the mean fraction released (l_’R), the standard
deviation (SD) and the standard error of the mean (SEM) for each deconvolution method.

The mean fraction released produced for each of the deconvolution methods was
compared with the true value of 0.978 using the t-test (section 2.4.2) at a probability level
of P=0.05 and 9 degrees of freedom. The value of 0.978 is the fraction of dose released
at t=1.9 calculated form the integral of I(t) = 1.2¢®. The t, values were calculated
according to the equation given below, the mean and SEM values were taken from Table

9:
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t, = F - 0.978 / SEM

where Fj is the mean fraction released.

98

The values of t; calculated for each of the four deconvolution methods were as

follows
Numerical Deconvolution t, = 1.238
Semi-Numerical Deconvolution t = 1.129
Polynomial Deconvolution t. = 1.301
Polyexponential Deconvolution t, = 0.694
Subject Numerical N\i;?rii;: o Polynomial explz(r)llgr;tial

1 1.063 1.033 1.052 1.042

2 0.917 0.935 0.923 0.908

3 0.993 1.005 1.008 1.033

4 1.077 1.062 1.032 0.925

5 0.962 0.980 0.982 0.988

6 0.908 0.882 0.910 0.920

7 0.993 0.992 0.992 0.987

8 1.028 1.032 1.045 1.045

9 1.110 1.060 1.040 1.075

10 1.002 1.010 1.010 0.992

Mean 1.005 0.999 0.999 0.992

SD 0.0662 0.0561 0.0494 0.0584

SEM 0.0221 0.0187 0.0165 0.0195

Table 9 : Fraction of Dose Released predicted by Four Deconvolution Algorithms for a Release Rate of
I(t) = 1.2¢’* with 10% Noise added to both Weighting and Response Functions

The value of t; taken from the tables at P=0.05 and 9 degrees of freedom (t, 5., is
2.26. All the t; values calculated for the deconvolution methods are less than the critical

value taken from the table, therefore there is no significant difference between the mean

fraction released predicted by any of the deconvolution algorithms and the true value.
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3.1.2.4 Mean Dissolution Times

The Mean Dissolution Times (MDT) calculated, from the input rates predicted by the
deconvolution methods, according to the method described in section 2.5.1, were
calculated for each subject and each method. These MDT values, together with the mean,
standard deviation (SD), and standard error of the mean (SEM) for each method, are
shown in Table 10.

. . Semi- [ poy-
Subject Numerical Numerical Polynomial Exponential
1 0.483 0.456 0.481 0.467
2 0.382 0.424 0.420 0.402
3 0.502 0.497 0491 |  0.498
4 0.427 0.459 0.496 “ 0.544
5 0.469 0.477 0.470 0.460
6 0.548 0.573 0.608 0.537
7 0.428 0.404 0.417 0.407
8 0.490 0.535 0.540 " 0.550
9 0.492 0.528 0.557 0.522
10 0.453 0.443 0.419 0.491
Mean 0.467 0.480 0.488 0.490
SD 0.0468 0.0533 0.0634 0.0559
SEM 0.0156 0.0178 0.0213 0.0186

Table 10 : Mean Dissolution Times Estimated for the Input Rates produced by Four Deconvolution
Algorithms for a Release Rate of I(t) = 1.2¢ with 10% Noise added to both Weighting and Response
Functions.

The mean MDT produced for each of the deconvolution methods was compared with
the true value using the t-test (section 2.4.2) at a probability level of P=0.05 and 9 degrees
of freedom. The MDT of a monoexponential release is the reciprocal of the rate constant
(Yamaoka et al 1978) therefore the MDT of the input rate should be 0.5. However, the
MDT value is only calculated up to t=1.9 and therefore the true MDT,_,, is 0.4634,

calculated according to equation (2.49) in section 2.5.1. The t, values were calculated
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according to the equation given below, the mean and SEM values were taken from Table
10 :
t, = MDT - 0.4634 / SEM
where MDT is the mean MDT.

The values of t; calculated for each of the four deconvolution methods were as follows

Numerical Deconvolution t, = 0.231
Semi-Numerical Deconvolution t, = 0.933
Polynomial Deconvolution t, = 1.155
Polyexponential Deconvolution t, = 1.430

The value of t, taken from the table t, 5, for P=0.05 and 9 degrees of freedom was
2.26. All the t, values calculated for the MDT values of the four deconvolution methods
were less than the critical value of 2.26. Therefore there is no significant difference
between the estimates of MDT calculated from the input rates produced from the four

deconvolution methods and the true value at the 0.95 probability level.

3.1.3 Discussion

Using data with no added noise, or very low levels of added noise, all the
deconvolution methods were able to predict accurately both the shape and the values of
the true input function.

When data containing a greater degree of noise was used the input rate predicted by
the polynomial and polyexponential methods was still very close to the true values and
showed the correct shape. However, the numerical and semi-numerical methods fail, at
the higher noise levels, to show any form at all in the input rate. Instead, the predicted
values oscillated widely about the true input rate, even becoming negative at some points.

The cumulative fraction released (CFI) profiles produced by the deconvolution
methods are very close to the true values. The polynomial and polyexponential methods
show little change in CFI with increasing noise levels, but the numerical and semi-
numerical methods show a small degree of oscillation at the higher noise levels.

At the higher noise levels the best approximations to the form and value of the true
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input function are shown by the polynomial and polyexponential deconvolution
algorithms, with very little difference apparent between these two methods. This picture

is confirmed when the mean results (n=10) at a noise level of 10% are considered.

The polyexponential and polynomial deconvolution algorithms both correctly predict
the true form of the input function and show very small SEM values, indicating that these
algorithms are not influenced by the fluctuations in the data which are due to the added
noise. Of these two algorithms the polynomial method approximated the true input rate
at the earlier time points better than the polyexponential.

In this case representing the input function by an empirical function (polynomial or
polyexponential) enables the predicted rate to be smooth while still reflecting the form of
the true input function.

For all the deconvolution algorithms the mean CFI’s show a form that is very close
to the true form, although those produced by the polynomial and polyexponential methods
are smoother. Despite the apparent differences in the input rate produced by the different
algorithms there is no significant difference between the estimated values of either the
fraction of dose released (Fg) or the Mean Dissolution Time (MDT) and their true values,

as judged by the t test at P=0.05 with 9 degrees of freedom.

3.2 ZERO ORDER RELEASE FUNCTION

The input function was represented by the following equation (3.4)

I = k, t<t
(34)
= D ke t>1
where t. is the point of change from zero to first order

D, is the dose remaining at t = ¢,
k, is the zero order rate constant  and

k is the first order rate constant

The values used were k = 2.5, k, = 0.5, t, = 0.8 and D, = 0.2, so that equation (3.4)
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becomes I(t) = 0.5 for t < t, and I(t) = 0.5e>°*"® for t > t.. The weighting function used
was that used in the previous sections and shown in equation (3.1). Equations (3.4) and
(3.1) were used to produce values for the input and weighting functions respectively.
Equation (3.4) was convolved with equation (3.1), according to the procedure given in

section 2.3.2., to produce values for the response function.

Time True Input True Weighting True Response
Function I(t) Function W(t) Function R(t)
0.05 0.5000 0.5170 0.0072
0.10 0.5000 0.7756 0.0237
0.15 0.5000 0.8868 0.0447
0.20 0.5000 0.9159 0.0674
0.30 0.5000 0.8644 0.1123
0.40 0.5000 0.7690 0.1531
0.60 0.5000 0.5936 0.2209
0.80 0.5000 0.4670 0.2735
1.00 0.3033 0.3745 0.3037
1.20 0.1839 0.3037 0.2967
1.40 0.1116 0.2475 0.2696
1.60 0.0677 0.2022 0.2356
2.00 0.0249 0.1354 0.1698

Table 11 : Weighting Function data produced by W(t) = -2¢' + ¢ + ¢*, Input Function Data
produced from I(t) = 0.5 for t < 0.8 and 0.5¢*“*® for t > 0.8 and Response Data produced from
Convolution of the Weighting and Input Functions

The values produced for the input, weighting and response functions are shown in Table

11.

3.2.1 Increasing Levels of Added Noise
3.2.1.1 Method
Noise levels of 1,5 and 10% were added to the true values of the weighting and

response functions, shown in Table 11, using the NAG subroutine GOSDDF (see section
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2.3.3). The data sets produced following the addition of noise are shown in Table C(4a)
and C(4b) in Appendix C.

The true data and the data sets containing the different levels of noise were processed
through each of the four deconvolution algorithms according to the details given below.
The weighting and response data were fitted to a polyexponential of the form shown in
equation (3.3) according to the details given in section 3.1.1.1. The parameters obtained
following the curve-fitting of the data in Tables C(4a) and C(4b) are shown in Tables
12(a) and 12(b).

Parameters True Values || 0% Noise 1% Noise | 5% Noise || 10% Noise

Added Added Added Added

A, -2.0000 -2.0006 -2.0116 -1.2420 -1.4030

A, 1.0000 1.0006 1.0109 1.2420 1.4030

A, 1.0000 1.0000 1.0007

o 10.0000 9.9982 9.9882 14.0558 13.7110

o, 5.0000 5.0004 5.1283 1.1856 1.2974

o 1.0000 1.0000 1.0073

Table 12(a) : Parameters obtained following Curve-fitting of Weighting Data, shown in Table C(4a), to
a Polyexponential with Constants A, and Exponents o.

Parameters 0% Noise 1% Noise | 5% Noise || 10% Noise
Added Added Added Added
A, -28.1615 -23.3057 -26.8012 -18.5205
A, 13.8768 16.6959 16.6498 8.9789
A, 14.2847 6.6090 10.1514 9.5416
o, 1.9151 1.8063 1.9047 1.9783
o, 2.2861 1.5470 1.6032 1.5100
o 1.5500 2.4516 2.3923 2.4061

Table 12(b) : Parameters obtained following Curve-fitting of Response Data, shown in Table C(4b), to a
Polyexponential with Constants A; and Exponents ¢;.
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(a) Numerical Deconvolution
An interpolation interval of 0.05 was used for the spline interpolation of both

weighting and response data prior to deconvolution.

(b) Semi-Numerical Deconvolution

The response data was interpolated as for the numerical deconvolution. The
parameters in Table 12(a) were used to generate the data for the weighting function
at a time interval of 0.05 and these were used together with the interpolated response

function for input into the semi-numerical deconvolution algorithm.

(c) Polynomial Deconvolution

The parameters from Table 12(a) were used to represent the weighting function
data, and together with the response data, this formed the input for the polynomial
deconvolution method (see section 2.2.3).

The optimal polynomial to represent the input function was selected using the
F test (section 2.4.1) on the residual sum of squares associated with that polynomial
at P= 0.05 and n=13. The selected polynomials for each data set are shown in Table
13. These were then used to generate the values of the input function, and the
integrals of these polynomials were used to generate the values of the cumulative

fraction input (CFI).

% Noise
Added to Selected Polynomial for the Input Rate I(t)
Data
0% I(t) = 0.5538 - 1.0238t + 4.4847t* - 6.9707t + 4.1013t* - 0.8248¢°
1% I(t) = 0.5687 - 1.1447t + 4.9884t> - 7.7548¢> + 4.6082t* - 0.9394¢°

5% I(t) = 0.3863 + 1.0067t - 1.7035t* + 0.5881t’
10% I(t) = 0.4294 + 0.4382t - 0.8772¢* + 0.2882¢°

Table 13 : Selected Polynomials produced by Polynomial Deconvolution on Data (from Table C(4))
with Increasing Levels of Added Noise
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(d) Polyexponential Deconvolution

The parameters from Table 12(a) were used to represent the weighting function

and those from Table 12(b) used to represent the response function and these two sets

of parameters were used as input into the polyexponential deconvolution algorithm

(section 2.2.4).

3.2.1.2 Results
The input rates and the cumulative fraction input’s (CFI) produced for each level of

added noise and each deconvolution method are shown in Figures 13-20.

(a) Numerical Deconvolution

The input rates produced by numerical deconvolution are shown in Figure 13
and the cumulative fraction released shown in Figure 14. When the data is error free
the input rate produced follows the true input rate very closely, coping very well with
the abrupt change from zero to first order at t=0.8, however, when noise is added to
the data oscillations begin to appear in the input rates produced.

At the 1% noise level these oscillations are small and the profile still reflects
the zero order and first order portions of the input rate, also the point of change from
zero to first order is shown clearly. With 5% noise in the data the oscillations are
even more pronounced and the deconvolution method fails to show the true form of
the input rate. At the 10% noise level these oscillations become even more severe and
more frequent enabling little structure at all to be seen in the input rate profile and
very little information to be derived from it.

When the CFI profiles are examined, the picture presented is much more stable.
Both the error free data and that containing 1% noise produce profiles which are very
close (if not identical in the case of the error free data) to the true CFI.

The CFI produced from data containing 5% noise agrees well with the true CFI
up until t=1.2 where it begins to diverge before rejoining the true profile at the later
time points. The CFI produced from data containing 10% noise agrees well with the
true CFI at the early time points but begins to diverge from the true profile at t=0.7.

The CFI remains lower than the true profile by a considerable margin for the rest of
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Figure 13 : Input Rates produced by Numerical Deconvolution for the Zero Order
Input Function with Increasing Levels of Error added to both the Weighting and
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the time course.

(b) Semi-Numerical Deconvolution

The input rate and cumulative fraction input (CFI) profiles produced by semi-
numerical deconvolution are shown in Figures 15 and 16 respectively. The results
produced are very similar to those seen with the numerical deconvolution.

When the data contains no noise the input rate produced is very close to the
true value, even at the point of abrupt change from zero to first order. When noise
is added to the data, the input rate produced begins to oscillate. These oscillations are
very small at the 1% noise level, which still gives a good approximation to the true
input rate, but get larger at the 5 and 10% noise levels, which show a marked degree
of oscillation. The oscillations produced at the 10% noise level, however, are not as
severe as those seen for numerical deconvolution at an equivalent level of noise.

The CFI profiles produced by semi-numerical deconvolution are also very
similar to those produced by numerical deconvolution. In data with no noise or with
a 1% noise level, the predicted CFI’s are very close to the true values. In the case of
the noise free data the CFI produced is almost identical to the true profile.

In data with 5% noise the early part of the profile follows the true profile very
well but divergence from the true profile is seen at the later time points. The CFI
produced from data with 10% noise added to it shows a divergence away from the
true profiles much earlier than at the 5% level and that divergence becomes greater

at the late time points.

(c) Polynomial Deconvolution

The input rates and CFI’s produced by polynomial deconvolution are shown in
Figures 17 and 18.

The input rates produced at all noise levels, including those produced from error
free data, have difficulty in representing both the straight portion of the profile and
the abrupt change from zero to first order processes at t=0.8. All the profiles
produced diverge at either end of the time course over which the deconvolution was

performed, but there is no clear increase in divergence away from the true input rate
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in the profiles produced from data with an increasing level of added noise.

The CFI’s produced from noise free data are almost identical to the true profile
and the CFI produced from data with 1% noise is a very close to the true profile.
When data with 5% noise is used the CFI shows good agreement with the true values
over the earlier part of the profile but diverges from the true values at the later time
points. This picture is repeated with the profile produced from data with 10% noise,

but the divergence from the true value is greater and begins at an earlier point.

(d) Polyexponential Deconvolution

The input rates and CFI’s produced by polyexponential deconvolution are
shown in Figures 19 and 20.

The input rates produced are very similar in both shape and values for the noise
free data and all the different levels of added noise, except at the 10% noise level
when the values differ although the shape of the profile remains the same. In all cases
the input rates produced fail to cope with the abrupt change from zero to first order
processes, and approximate the linear portion of the profile poorly.

The CFI profiles produced from noise free data and data containing a either a
noise level of 1 or 5% are very close to the true values. However, the CFI profile
produced from data containing 10% noise shows a marked divergence from the true

profile at the later time points.

3.2.1.3 Percentage Difference between Predicted and True Values
For each of the data sets shown in Figures 13-20 the percentage difference between
the true value and the predicted value for each point was calculated in the following way.
The percentage difference for the input rate was calculated as the absolute value of the
difference between the calculated input and the true input, divided by the true input at t=0
and multiplied by 100, i.e.
%diff I(t) = | Calc. I(t) - True I(H) | * 100/ 0.5
where 0.5 is the exact value of the input rate at t=0
The percentage difference for the cumulative fraction input was calculated as the

calculated fraction minus the true fraction multiplied by 100.
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%diff fraction input = | calc. value - true value | * 100

Each data set comprised 39 values over a time range of 0 to 1.9 at intervals of 0.05,

which was the output from the deconvolution algorithms. The percentage differences, once

calculated, were averaged for each data set and the mean and standard error of the means

for these values are shown in Table 14 for the estimated input rate values and Table 15

for the estimated fraction input values.

Noise Level in original Data
De;):l%zl?lf:ion 0% 1% % 10%
Numerical 1.14 (0.327) | 3.30 (0.463) | 13.79 (1.599) [ 27.91 (4.13)
Semi-Numerical 1.13 (0.317) | 3.36 (0.484) | 14.08 (1.601) | 22.14 (2.814)
Polynomial 2.94 (0.376) 3.87 (0.446) 8.74 (0.993) 6.20 (1.107)
Polyexponential 6.38 (0.855) | 6.70 (0.834) 7.01 (1.039) 8.32 (1.331)

Table 14 : Mean Percéntage Difference for Input Rate Values shown in Figures 13,15,17 and 19 for
Increasing Levels of Added Noise. The S.E.M. values are shown in Parentheses (n=39).

When the mean percentage difference for the input rates are examined (Table 14) the
following can be seen. With error free data, or at the 1% noise level, the numerical and
semi-numerical methods have a smaller mean percentage difference than the polynomial
method and a considerably smaller value than the polyexponential method. This situation
becomes reversed at the higher noise levels where the mean percentage differences for the
numerical and semi-numerical methods become much greater than those for the
polynomial and polyexponential methods, and a great deal larger than the level of noise
added to the original data.

The mean percentage difference’s for the polynomial and polyexponential methods
at the higher noise levels are slightly higher than those at the low noise levels but are still
of the same order as the amount of noise added to the original data. There is a slight
anomaly in the fact that the mean percentage difference for the polynomial deconvolution
method at the 5% noise level is greater than that for the 10% noise level. This can be

explained by the rapid divergence of the estimated rate from the true value at the later
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time points (Figure 17) and the poor approximation of the first order portion of the input
rate profile, for the 5% noise level. These deviations, which are not seen at the 10% level

make the mean percentage difference higher than expected.

Noise Level in original Data

Deiﬁil?iion 0% 1% % 10%
Numerical 0.318 (0.014) | 0.71 (0.046) 1.84 (0.198) 5.61 (0.543)

Semi-Numerical 0.314 (0.014) | 1.21 (0.088) 1.99 (0.282) 6.19 (0.599)
Polynomial 0.222 (0.026) | 1.48 (0.165) 2.15 (0.249) 5.69 (0.522)

Polyexponential 0.892 (0.084) | 1.21(0.140) | 2.052 (0.191) | 6.17 (0.578)

Table 15 : Mean Percentage Difference for Cumulative Fraction Input Values shown in Figures 14,16,18
and 20 for Increasing Levels of Added Noise. The S.E.M. values are shown in Parentheses (n=39).

The figures in Table 15 show the mean percentage difference (SEM) for the CFI's.
There is very little difference seen between any of the four deconvolution methods and
all the methods show mean percentage differences which are less than, but of the same
order, as the level of noise added to the original data. No one method shows any clear

superiority at any noise level.

3.2.2 Constant Level of Noise Added to Ten Data Sets
3.2.2.1 Method

In this second part the level of added noise was set at 10% and ten different random
data sets were generated by using the addition of noise to the true weighting and response
values shown in Table 11 using the NAG subroutine GOSDDF (section 2.3.3). The ten
data sets produced from this are shown in Tables C(5) and C(6) in Appendix C.

Each of the data sets was fitted to an equation of the form given in equation (3.3)
using the non-linear least-squares fitting routine (section 2.1.1). The number of terms in
the polyexponential was sequentially increased until there was no significant improvement
in the residual sum of squares as judged by the F test at P=0.05 and n=13 (n is the

number of data points). The parameters produced from this fitting are shown in Tables 16
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(Weighting Function) and 17 (Response Function).
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Parameters
Subject A A A % % %
1 -1.0583 1.0583 14.7831 1.0103
2 -1.2167 1.2167 13.1451 1.1509
3 -1.4511 1.4511 9.7698 1.3730
4 -1.2241 1.2241 14.8374 1.1877
5 -1.2916 1.2916 12.6102 1.1787
6 -1.2704 1.2704 12.5863 1.1836
7 -1.4036 1.4036 13.6901 1.2980
8 -2.2218 0.7759 1.4459 10.2161 0.7469 5.3961
9 -1.2670 1.2670 14.2703 1.2403
10 -1.1304 1.1304 16.2309 1.1238

Table 16 : Parameters Obtained following Curve-fitting of the Weighting Data, shown in Table C(5), to
a Polyexponential with Constants A; and Exponents ¢,

The ten data sets produced were then processed through each of the four

deconvolution algorithms (section 2.2) according to the details given below.

(a) Numerical Deconvolution
The interﬁolation time used was again 0.05, and both weighting and response

data was interpolated prior to deconvolution.

(b) Semi-Numerical Deconvolution

The parameters from Table 16 were used to generate values for the weighting
function at intervals of 0.05 and these, together with the response function data
(interpolated at t=0.05), were used as input into the semi-numerical deconvolution

algorithm.

(c) Polynomial Deconvolution
The parameters from Table 16 were used to represent the weighting function,

the dose administered for the response function was 0.6 (see equation 3.4) and the
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Parameters
Subject A As As . % %
1 -29.996 15.008 14.988 1.963 2.325 1.598
2 -49.985 25.059 24.926 1.850 2.106 1.587
3 -4.841 4.266 0.575 3.552 3.959 0.604
4 -39.896 19.960 19.936 1.779 2.041 1.506
5 -49.962 25.097 24.865 1.963 2.242 1.677
6 -49.950 24.801 25.149 1.821 1.572 2.055
7 -13.203 6.345 6.858 1.692 2.145 1.244
8 -13.257 6.770 6.487 1.814 2.247 1.329
9 -7.336 3.383 3.953 1.781 2.410 1.190
10 -19.990 9.864 10.036 1.872 2.287 1.450

Table 17 : Parameters obtained following Curve-fitting of Response Data, shown in Table C(6), to a
Polyexponential with Constants A; and Exponents .

Subject Selected Polynomial for the Input Rate

1 I(t) = 0.3182 + 1.6288t - 2.4118¢* + 0.7808¢’

2 I(t) = 0.5931 -2.0587t +9.9043t> -16.6218t* +10.8846t* -2.4459¢°
3 I(t) = 0.3857 - 1.1217t - 2.0002¢* + 0.7325¢

4 I(t) = 0.5018 - 0.0203t - 0.1436¢

5 I(t) = 0.3728 + 1.3254t - 2.2464¢* + 0.8001¢’

6 I(t) = 0.5189 + 0.2486t - 0.7193¢* + 0.2424¢’

7 I(t) = 0.3700 + 0.3118t - 0.2909¢

8 I(t) = 0.4892 + 0.1712t - 0.2862t

9 I(t) = 0.4423 + 0.1277t - 0.2121¢

10 I(t) = 0.4231 + 0.8158t - 1.3189¢ + 0.4177¢°

Table 18 : Selected Polynomials produced by Polynomial Deconvolution on Data from Tables C(5) and
C(6).

values in Table C(6) were used for the response function. The data were then

processed according to the polynomial deconvolution method (section 2.2.3) and the

optimal polynomial to represent the input function was selected using the F Test
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(section 2.4.1) at P=0.05 and n=13. The selected polynomials are shown in Table 18
and these were used to calculate the input rate, I(t), and their integrals used to

calculate the cumulative fraction input.

(d) Polyexponential Deconvolution
The parameters from Table 16 were used to represent the weighting function
and those from Table 17 used to represent the response function and together these

formed the input into the polyexponential deconvolution algorithm.

Following deconvolution the mean and standard error of the mean over the ten
data sets were calculated for the input rate and the cumulative fraction input (CFI)
for each deconvolution method. The estimated fraction of dose released (Fg) produced
for each data set was calculated by taking the maximum value reached in the
cumulative fraction input profile. For each input rate produced the Mean Dissolution

Time (MDT) was calculated according to the method described in section (2.5.1).

3.2.2.2 Results
For each deconvolution method the mean input rate and mean CFI for the ten data
sets were plotted together with the standard error of the mean values (S.E.M.) and these

are shown in Figures 21-24.

(a) Numerical Deconvolution

The mean input rate (n=10) and mean cumulative fraction input produced by
numerical deconvolution are shown in Figure 21. The mean input rate shows two
distinct features; firstly it has great difficulty in approximating the zero order portion
of the profile, the consequence of this appears as oscillations in the predicted input
rate over this portion of the profile. The second feature is the good approximation
shown by the method of the first order portion of the curve, however the SEM values
associated with the whole profile are very high. At some points the input profiles
associated with individual subjects become negative, although this does not appear

in the mean input rate.



Chapter 3 : Comparison of Deconvolution Methods using Pseudo-experimental Data 117

- 1.0 -
: [
Q ]
£

0.8
()]
n ]
(o]
O 0.6 -
"5 J
S 0.4 - Error Bars show S.EM.
ﬁ ] —— True Fraction of Dose
S 021~ | ----- Mean Fraction Input
LL =

(o]
1.00
i ——— True Input Rate

— oy 1T ]----- Mean Input Rate
= ]
()] % Error Bars show S.EM.
w 0.50
o
- 4
3
Q 0.25 -
=

0.00

T '[ -1 [ ) l ) ] T |
0 04 0.8 1.2 1.6 2.0

Time

Figure 21 : Mean results produced by Numerical Deconvolution for the Zero Order
Input Function on 10 Data Sets with 10% Noise added to the Weighting and Response
Functions
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In contrast the mean CFI is very close to the true profile and the SEM values

are much lower than those for the corresponding inp'ut rate.

(b) Semi-Numerical Deconvolution

The mean input rate (n=10) and the mean CFI produced by semi-numerical
deconvolution are shown in Figure 22. Like the numerical method the semi-numerical
method shows two features. The first is the difficulty shown in approximating the true
input over the zero order portion of the profile and the second is the generally good
approximation to the first order portion of the curve. The SEM values over the whole
of the predicted input rate are large, and like the numerical method some of the
individual input rates contain negative values.

The mean CFI predicted by semi-numerical deconvolution is very close to the
true profile, despite the deviations apparent in the input rate and has much smaller

SEM values than those for the corresponding input rate.

(c) Polynomial Deconvolution

The mean input rate (n=10) and the mean CFI produced by polynomial
deconvolution are shown in Figure 23. The mean predicted input rate shows a very
smooth profile, which fails to cope with the abrupt change from zero to first order
in the true input rate. However, the input rate does show a generally constant rate
over the first portion of the profile and a smoothly declining later portion which
follows the true input rate very closely. The predicted input rate begins to diverge
during the last few points and the SEM values which had been consistently small
begin to rise.

The mean CFI profile agrees very closely with the true CFI, the SEM values
are extremely small and the only slight deviation from the true profile occurs

immediately following the point of change from zero to first order release.

(d) Polyexponential Deconvolution
The mean input rate (n=10) and the mean CFI produced by polyexponential

deconvolution are shown in Figure 24. The mean input produced has a very smooth
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Figure 22 : Mean results produced by Semi-Numerical Deconvolution for the Zero
Order Input Function on 10 Data Sets with 10% Noise added to both the Weighting
and Response Functions
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Figure 23 : Mean results produced by Polynomial Deconvolution for the Zero Order
Input Function on 10 Data Sets with 10% Error added to both the Weighting and
Response Functions
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profile and has very small SEM values associated with it, however, the method fails
to cope with the abrupt change from zero to first order seen in the true profile. The
predicted profile shows a somewhat constant portion at the start of the profile, this
is then followed by a smoothly declining phase which follows the shape of the true
profile well over the later time points.

The mean CFI follows the true profile very well, except over the period which
is associated with the change in the input rate from zero to first order. In this area the
predicted values underestimate the true values, however, by the later time points the
two profiles are again in good agreement. The SEM values over the whole profile are

very low.

3.2.2.3 Estimated Fraction Released Fy
The estimated fraction of dose released for each subject and each deconvolution
method are shown in Table 19, together with the mean fraction released (I_*‘R), the standard

deviation (SD) and the standard error of the mean (SEM) for each deconvolution method.

The mean fraction released produced for each of the deconvolution methods was
compared with the true value of 0.979 using the t-test (section 2.4.2) at a probability level
of P=0.05 and 9 degrees of freedom. The value of 0.979 is the fraction of dose released
at t=1.9 calculated form the integral of I(t) = 0.5 for t < 0.8 and I(t) = 0.5¢>%**® for t >
0.8. The t; values were calculated according to the equation given below, the mean and
SEM values were taken from Table 19 :

t = Fg - 0.979 / SEM
where I_?R is the mean fraction released.

The values of t, calculated for each of the four deconvolution methods were as

follows
Numerical Deconvolution t, = 2.000
Semi-Numerical Deconvolution t, = 1.655
Polynomial Deconvolution t. = 2.206

Polyexponential Deconvolution t, = 0.952
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Subject Numerical Nusr(relgll'ii-c o Polynomial expl:(r)llgl; tial

1 0.983 0.983 0.975 0.980

2 1.005 1.002 1.057 0.998

3 0.977 0.973 0.982 0.938

4 0.983 0.987 0.985 0.997

5 0.972 0.962 0.978 0.955

6 0.965 0.967 0.972 0.978

7 1.032 1.085 1.008 1.017

8 0.977 0.967 1.018 0.973

9 1.043 1.025 0.985 0.993
10 1.050 1.057 1.043 1.058
Mean 0.999 1.001 1.000 0.989
SD 0.032 0.042 0.030 0.033
SEM 0.010 0.033 0.010 0.011

Table 19 : Fraction of Dose Released predicted by Four Deconvolution Algorithms for a Release Rate
of I(t) = 0.5 for t < 0.8 and I(t) = 0.5¢>**® with 10% Noise added to both Weighting and Response
Functions

The value of t; taken from the tables at P=0.05 and 9 degrees of freedom (t; g5 is
2.26. All the values calculated for the deconvolution methods are less than this critical

value, therefore there is no significant difference between the mean fraction released

predicted by any of the deconvolution and the true value.

3.2.2.4 Mean Dissolution Times

The Mean Dissolution Times (MDT) calculated from the input rates predicted by the
deconvolution methods, according to the method described in section 2.5.1, were
calculated for each subject and each method. These MDT values, together with the mean,
standard deviation (SD), and standard error of the mean (SEM), for each method, are
shown in Table 20.

The mean MDT produced for each of the deconvolution methods was compared with

the true value using the t-test (section 2.4.2) at a probability level of P=0.05 and 9 degrees
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Subject " Numerical Nusrfl:;ii-c o Polynomial Ex;i:;llgr; tial

1 0.560 0.543 0.545 0.601

2 0.629 0.639 0.587 0.662

3 0.661 0.682 0.707 0.709

4 0.643 0.656 0.648 0.692

5 0.633 0.638 0.657 0.623

6 0.605 0.629 0.634 0.642

7 0.691 0.730 0.693 0.769

8 0.570 0.586 0.510 0.630

9 0.634 0.671 0.655 0.727
10 0.626 0.654 0.657 0.669
Mean 0.625 0.643 0.629 0.672
SD 0.039 0.051 0.063 0.052
SEM 0.012 0.014 0.020 0.016

Table 20 : Mean Dissolution Times Estimated for the Input Rates produced by Four Deconvolution
Algorithms for a Release Rate of I(t) = 0.5 for t < 0.8 and I(t) = 0.5¢**°® for t > 0.8 with 10% Noise
- added to both Weighting and Response Functions.

of freedom. The MDT value was calculated up to t=1.9 using the method described by

equation (2.49) in section 2.5.1, giving a MDT,_, , of 0.6320. The t, values were calculated

according to the equation given below, the mean and SEM values were taken from Table

20 :

t, = MDT - 0.6320 / SEM
where MDT is the mean MDT.

The values of t; calculated for each of the four deconvolution methods were as follows

Numerical Deconvolution

Semi-Numerical Deconvolution

Polynomial Deconvolution

Polyexponential Deconvolution

t, = -0.583
t = 0.786
t = -0.150
t = 2.500
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The value of t; taken from the table t; s, for P=0.05 and 9 degrees of freedom was
2.26. All the t, values calculated, except that for the polyexponential method, for the mean
MDT values of the four deconvolution methods were less than the critical value of 2.26.
Therefore there is no significant difference between the estimates of MDT calculated from
the input rates produced from the numerical, semi-numerical or polynomial deconvolution
methods and the true value at the 0.95 probability level, but the mean MDT produced
following polyexponential deconvolution is significantly different (0.05 > P > 0.01) from

the true value.

3.2.3 Discussion

The simpler numerical and semi-numerical deconvolution algorithms, which do not
approximate the input rate with an empirical function, produced good reflections of the
true input rate when the original data contained little or no additional noise. They succeed
in showing both the zero order and first order portions of the release profiles and cope
very well with the abrupt change from one to the other. However at the higher noise
levels both these deconvolution algorithms become unable to show, with any clarity, the
true shape of the input rate. The oscillations they produce at these higher noise levels
makes interpretation of any underlying form difficult.

The polynomial and polyexponential deconvolution algorithms show consistent results
despite the increasing noise levels in the initial data. However, because their
implementation requires that the unknown input rate be represented by an empirical
function (a polynomial and polyexponential respectively) they are unable, as might be
expected, to reflect the abrupt change from zero to first order characteristics of the true
input rate. Because both of these empirical formulae produce smooth profiles they have
some difficulty mimicking the zero order constant release which both methods portray as
a broad curve which declines rapidly when the first order portion of the input rate is
reached.

As expected, the cumulative fraction released (CFI) profiles for all the deconvolution
methods at all noise levels are much closer to the true values than their corresponding rate
profiles. The only divergence is seen at the highest level of noise, but this divergence is

seen for all the methods, however the numerical and semi-numerical CFI profiles do not
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follow the true shape of the CFI as closely as those produced by polynomial or
polyexponential deconvolution.

When the ability of the different algorithms to predict the input rate at a constant
noise level of 10%, over 10 data sets, is examined the following is seen. The polynomial
and polyexponential methods are much more stable to data noise and produce smooth
input rate profiles, unlike the numerical and semi-numerical methods where sharp changes
in the input rate can‘ still be seen in the mean data.

The polynomial and polyexponential methods fail to show the point of change from
zero to first order with accuracy. For the polynomial methods, the predicted input rate
agrees well with the true rate on either side of this point, and reflects the declining
portion of the curve very well, and the underestimation of the input rate around the point
of change is not large.

The polyexponential method, however, underestimates the input rate near the point
of change by a marked degree, so that a reflection of this underestimation appears in the
CHI profile. The polyexponential method does not show the presence of a constant rate
in the early time points of the input rate as well as the polynomial method, nor does it
agree as well with the declining input rate in the first order portion.

The numerical and semi-numerical methods show too much oscillation to enable
either of them to show clearly the true shape of the input rate profile. There is little
difference between the two methods themselves, despite the prior smoothing, by curve
fitting, involved in the semi-numerical approach.

The mean CFI profiles produced by all the methods are similar despite the differences
seen in the mean input rate profiles. The only real difference is seen in the
polyexponential method, which underestimates the CFI in the region following the abrupt
change in the input rate.

The fraction released (Fy) and Mean Dissolution Time (MDT) estimated for the
numerical, semi-numerical, polynomial and polyexponential methods showed no
significant difference to the true values, as judged by the t test at P=0.05 with 9 degrees
of freedom, except for the MDT calculated for the polyexponential method which was
significantly different (0.05 > P > 0.01) from the true value. That there is no significant

difference in the fraction released is not surprising since it is estimated from the CFI
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profiles which were shown to be very similar. The lack of difference between the
calculated MDT values and the true values is perhaps more surprising since it is

calculated from the estimated input rate values themselves.
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3.3 CONTROLLED RELEASE INPUT FUNCTION

The input function (I(t)) was represented by a set of data, unlike the previous two
input forms which have been represented by equations, because of this the response
function could not be calculated algebraically and was calculated numerically according
to equation (2.43) given in section 2.3.2.3. The total dose administered was found by
calculating the area under the input function time curve between zero and t=2.3, which
was the last time point. The dose D, calculated in this manner was 0.7344 and this was
used as the dose administered to produce the response function.

The weighting function used was that shown previously in equation (3.1), this
equation was used to generate values for the weighting function which were used as input
to the algorithm shown in equation (2.43) to produce values for the response function. The

true values for the weighting, input and response function are shown in Table 21.

Time True Input True Wcighting True Response
Function I(t) Function W(t) Function R(t)
0.05 0.2000 0.5170 0.0000
0.10 0.3000 0.7756 0.0052
0.15 0.3800 0.8868 0.0155
0.20 0.4500 0.9159 0.0303
0.30 0.4950 0.8644 0.0696
0.40 0.5000 0.7690 0.1125
0.60 0.5000 0.5936 0.1886
0.80 0.5000 0.4670 0.2480
1.00 0.5000 0.3745 0.2948
1.20 0.4500 0.3037 0.3307
1.40 0.3030 0.2475 0.3462
1.60 0.1840 0.2022 0.3314
2.00 0.0680 0.1354 0.2591

Table 21 : Weighting Function data produced by W(t) = -2¢'® + ¢ + ¢, Input Function Data
represented by the controlled release input function and Response Data produced from Convolution of
the Weighting and Input Functions
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3.3.1 Increasing Levels of Added Noise
3.3.1.1 Method

Noise levels of 1, 5 and 10% were added to the values of the weighting and response
functions shown in Table 21 using the NAG subroutine GOSDDF (see section 2.3.3). The
data sets produced following the addition of noise are shown in Tables C(7a) and C(7b)
in appendix C.

The true data and the data sets containing the added noise were then processed
through each of the four deconvolution algorithms (section 2.2) according to the details
for each given in the sections below. The weighting and response data were fitted to
polyexponentials of the form shown in equation (3.3) using the non-linear curve-fitting
routine described in section 2.1.1. The number of terms in the exponential was increased
sequentially and the data re-fitted until there was no significant reduction in the residual
sum of squares as judged by the F test (section 2.4.1) at P=0.05 and n=13. The parameters
obtained from the curve fitting of the weighting and response data are shown in Tables

22(a) and 22(b).

A, -2.0000 -2.0000 -1.7981 -1.2744 -1.4263
2 1.0000 1.0000 0.7681 1.2744 1.4263

A, 1.0000 1.0000 1.0300

o, 10.0000 10.0000 10.5985 12.5635 9.7969
a, 5.0000 5.00002 4.9262 1.1641 1.2741
o, 1.0000 1.0000 1.0193

Table 22(a) : Parameters obtained following Curve-fitting of Weighting Data, shown in Table C(7a), to
a Polyexponential with Constants A; and Exponents 0.

(a) Numerical Deconvolution

An interpolation interval of 0.05 was used for the spline interpolation of both

weighting and response data prior to deconvolution.
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remees | O ied | Added | Added | Added
1 -9.8055 -36.8026 -49.8613 -49.5733
A, 4.8383 17.9685 25.2009 25.0369
A, 4.9372 18.8341 24.6604 24.5364
o, 1.6009 1.5461 1.5279 1.6145
o, 1.0395 1.8442 1.7686 1.8782
O3 2.1653 1.2673 1.2844 1.3520

Table 22(b) : Parameters obtained following Curve-fitting of Response Data, shown in Table C(7b), to a
Polyexponential with Constants A, and Exponents o,

(b) Semi-Numerical Deconvolution

The response data was interpolated as for the numerical deconvolution. The
parameters in Table 22(a) were used to generate the data for the weighting function
at a time interval of 0.05 and these were used together with the interpolated response

function for input into the semi-numerical deconvolution algorithm.

(c) Polynomial Deconvolution

The parameters from Table 22(a) were used to represent the weighting function
data, the dose administered was 0.7344 (see equation (3.2)), and together with the
response data, these formed the input for the polynomial deconvolution method (see
section 2.2.3).

The optimal polynomial to represent the input function was selected using the
F test (section 2.4.1) on the residual sum of squares associated with that polynomial
at P=0.05 and n=13. The selected polynomials for each data set are shown in Table
23. These were then used to generate the values of the input function, and the
integrals of these polynomials were used to generate the values of the cumulative

fraction input (CFI).
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% Noise
Added to Selected Polynomial for the Input Rate I(t)
Data
0% I(t) = -0.0354 + 4.631t - 15.1332¢ + 23.7452¢> - 18.8496t* +7.1923¢
- 1.0489t°
1% I(t) = 0.0240 + 3.3106t - 8.246t* + 9.5137¢ - 5.1436t* + 1.0224¢
5% I(t) = 0.1694 + 1.2665t - 1.2951¢* + 0.3223¢t>
10% I(t) = 0.1284 + 1.5259t - 1.5768t* + 0.3971¢°

Table 23 : Selected Polynomials produced by Polynomial Deconvolution on Data (from Table C(7))
with Increasing Levels of Added Noise

(d) Polyexponential Deconvolution

The parameters from Table 22(a) were used to represent the weighting function
and those from Table 22(b) used to represent the response function and these two sets
of parameters were used as input into the polyexponential deconvolution algorithm

(section 2.2.4).

3.3.1.2 Results
The input rates and the cumulative fraction input’s (CFI) produced for each level of

added noise and each deconvolution method are shown in Figures 25-32.

(a) Numerical Deconvolution

The input rates produced by numerical deconvolution are shown in Figure 25
and the cumulative fraction released shown in Figure 26. The input rate produced
from deconvolution of noise free data is indistinguishable from the true input rate,
however when noise is added to the initial data oscillations begin to be produced in
the predicted input rate. These oscillations are small for data containing 1% added
noise, where the predicted input rate is still close to the true values, but at the higher
noise levels, and towards the later time points they become too large to enable the
form of the input function to be reliably defined.

The CFI’s produced for all levels of noise are very close to the true values at

the earlier time points, however deviations from the true values are seen at the 5 and
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Figure 25 : Input Rates produced by Numerical Deconvolution for the Controlled
Release Input Function with Increasing Levels of Error added to both the Weighting
and Response Functions
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10% noise levels at the later time points.

(b) Semi-Numerical Deconvolution

The input rate and CFI's profiles produced by semi-numerical deconvolution
are shown in Figures 27 and 28 respectively. The input rate produced by semi-
numerical deconvolution on noise free data is indistinguishable from the true input,
however when noise is added to the original data oscillations begin to appear in the
predicted input rate. These oscillations are small for the 1% noise level but become
much larger at the higher noise levels, making interpretation of the form of the input
rate very difficult.

The CFI’s produced by semi-numerical deconvolution are very close to the true
values at the earlier time points, however deviations from the true values are seen at

the later time points for data containing 5 and 10% noise.

(c) Polynomial Deconvolution

The input rates and CFI profiles produced by polynomial deconvolution are
shown in Figures 29 and 30. The input rate predicted from noise free data agrees very
well with the true input rate, as does that produced from data containing 1% noise,
both of which correctly show the initial input rate to be zero and the existence of the
linear portion in the input rate. At the 5 and 10% noise levels the predicted profiles
show the same general shape as the true profile but fail to estimate correctly the
initial input rate or to show the full extent of the linear portion of the input rate.

The CFI profiles produced at all levels of noise agree well with the true profile
at the earlier points. At later time points the profiles for the 5 and 10% noise levels

diverge from the true profiles.

(d) Polyexponential Deconvolution

The input rates and CFI profiles produced by polyexponential deconvolution are
shown in Figures 31 and 32. The input rates produced by polyexponential
deconvolution approximate the true profile badly at all noise levels and even with

noise free data. The estimated input rates agree very well with the initial time points
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Figure 27 : Input Rate produced by Semi-Numerical Deconvolution for the Controlled
Release Input Function with Increasing Levels of Error added to both the Weighting
and Response Functions.
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Figure 29 : Input Rates produced by Polynomial Deconvolution for the Controlled
Release Input Function with Increasing Levels of Error added to both the Weighting
and Response Functions.
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but all profiles fail to show the length of the linear portion of the true input rate and
they approximate the declining phase of the profile equally badly. However all the
profiles show the initial input rate to be zero and there is little change of the
predicted input rates with increasing levels of noise.

The CFI profiles’ show good agreement with the true profile at all noise levels
during the early time points, however at the later time points all the profiles show

divergence away from the true values.

3.3.1.3 Percentage Difference between Predicted and True Values

For each of the data sets shown in Figures 25-32 the percentage difference between
the true value and the predicted value for each point was calculated in the following way.
The percentage difference for the input rate was calculated as the absolute value of the
difference between the calculated input and the true input, and multiplied by 100, i.e.

%diff I(t) = | calc. I(t) - True I(t) | * 100

The percentage difference for the cumulative fraction input was calculated as the

calculated fraction minus the true fraction multiplied by 100.
%diff fraction input = ’ calc. value - true value l * 100

Each data set comprised 39 values over a time range of 0 to 1.9 at intervals of 0.05,
which was the output from the deconvolution algorithms. The percentage differences, once
calculated, were averaged for each data set and the mean and standard error of the means
for these values are shown in Table 24 for the estimated input rate values and Table 25

for the estimated fraction input values.

Noise Level in original Data

Dec'lz))rlll\)ril?lftion 0% 1% % 10%
Numerical 0.18 (0.040) 1.64 (0.195) 6.74 (0.915) | 7.114 (1.207)

Semi-Numerical 0.18 (0.041) 1.68 (0.201) 6.60 (0.900) 8.58 (1.365)
Polynomial 0.74 (0.124) 1.65 (0.180) 3.47 (0.483) 4.28 (0.396)

Polyexponential 431 (0.401) | 4.22 (0.378) 4.41 (0.472) 4.62 (0.506)

Table 24 : Mean Percentage Difference for Input Rate Values shown in Figures 25,27,29 and 31 for
Increasing Levels of Added Noise. The S.E.M. values are shown in Parentheses (n=39).
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When the mean percentage difference for the input rates are examined (Table 24) the
following can be seen. With error free data, or at the 1% noise level, the numerical, semi-
numerical and polynomial methods have a considerably smaller mean percentage
difference than the polyexponential method which has a large percentage difference at the
low noise levels. At the higher noise levels of 5 and 10% the mean percentage difference
values for the numerical and semi-numerical deconvolution methods increase sharply
while that of the polynomial method increases only slightly at the higher levels showing
that the method is less susceptible to data noise. The percentage difference for the
polyexponential method varies little, if at all, with the increase in error levels and the

percentage difference associated with the higher noise levels is small.

Noise Level in original Data
Dec;[c;)r,ll\)/i)l?iion 0% 1% % 10%
Numerical 0.11 (0.006) | 0.22 (0.035) 1.03 (0.161) 1.58 (0.257)
Semi-Numerical 0.11 (0.005) | 0.21 (0.033) 1.20 (0.201) 1.77 (0.293)
Polynomial 0.46 (0.022) | 0.42 (0.045) 1.41 (0.177) 3.44 (0.418)
Polyexponential 1.02 (0.131) | 0.98 (0.119) 1.60 (0.245) 2.04 (0.209)

Table 25 : Mean Percentage Difference for Cumulative Fraction Input Values shown in Figures 26,28,30
and 32 for Increasing Levels of Added Noise. The S.E.M. values are shown in Parentheses (n=39).

The figures in Table 25 show the mean percentage difference (SEM) for the CFI’s.
There is very little difference seen between any of the four deconvolution methods and
all the methods show mean percentage differences which are less than, but of the same
order, as the level of noise added to the original data. The exception is the
polyexponential method (on error free data) which shows a mean percentage difference
larger than the other methods whose value is very low for the error free data. No one

method shows any clear superiority at any noise level.
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3.3.2 Constant Level of Noise Added to Ten Data Sets
3.3.2.1 Method

In this second part the level of added noise was set at 10% and ten different random
data sets were generated by using the addition of noise to the true weighting and response
values shown in Table 21 using the NAG subroutine GOSDDF (section 2.3.3). The ten
data sets produced from this are shown in Tables C(8) and C(9) in Appendix C.

Each of the data sets was fitted to an equation of the form given in equation (3.3)
using the non-linear least-squares fitting routine (section 2.1.1). The number of terms in
the polyexponential was sequentially increased until there was no significant improvement
in the residual sum of squares as judged by the F test at P=0.05 and n=13 (n is the
number of data points). The parameters produced from this fitting are shown in Tables 26

(Weighting Function) and 27 (Response Function).

Parameters
Subject A A A o %
1 -1.1810 1.1810 13.9631 1.0969
2 -1.2915 1.2915 11.9909 1.1412
3 -1.1643 1.1643 16.7531 1.0861
4 -1.0419 1.0419 15.2997 1.0001
5 -1.1828 1.1928 14.8537 1.1056
6 -1.2897 1.2897 11.5267 1.1937
7 -1.3277 1.3277 12.8574 1.2384
8 -1.2456 1.2456 12.4204 1.1559
9 -1.1930 1.1930 14.2910 1.1551
10 -1.4263 1.4263 9.7969 1.2741

Table 26 : Parameters Obtained following Curve-fitting of the Weighting Data, shown in Table C(8), to
a Polyexponential with Constants A; and Exponents o,

The ten data sets produced were then processed through each of the four

deconvolution algorithms (section 2.2) according to the details given below.

(a) Numerical Deconvolution

The interpolation time used was again 0.05, and both weighting and response
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data was interpolated prior to deconvolution.

140

Parameters
Subject A A A * % %
1 -50.1675 | 25.4009 | 24.7666 1.5894 1.8548 1.3270
2 -50.1583 | 25.0958 | 25.0625 1.4894 1.7247 1.2555
3 -54.2925 | 25.6869 | 28.6056 1.5222 1.7838 1.2937
4 -41.6910 | 19.7336 | 21.9574 1.4705 1.7602 1.2167
5 -54.1195 | 26.5609 | 27.5586 1.6303 1.9086 1.3700
6 -43.3911 | 25.8120 | 17.5791 1.5502 1.7667 1.2394
7 -41.7453 | 23.2964 | 18.4489 1.5778 1.8156 1.2812
8 -41.8064 | 23.0972 | 18.7092 1.4445 1.6653 1.1720
9 -50.7336 | 25.5932 | 25.1404 1.4812 1.7242 1.2391
10 -47.9828 | 33.6078 | 14.3750 1.4437 1.5889 1.1045

Table 27 : Parameters obtained following Curve-fitting of Response Data, shown in Table C(9), to a

Polyexponential with Constants A, and Exponents .

(b) Semi-Numerical Deconvolution

The parameters from Table 26 were used to generate values for the weighting

function at intervals of 0.05 and these, together with the response function data

(interpolated at t=0.05), were used as input into the semi-numerical deconvolution

algorithm.

(c) Polynomial Deconvolution

The parameters from Table 26 were used to represent the weighting function,

and the values in Table C(9) were used for the response function. The data were then

processed according to the polynomial deconvolution method (section 2.2.3) and the

optimal polynomial to represent the input function was selected using the F Test

(section 2.4.1) at P=0.05 and n=13. The selected polynomials are shown in Table 28

and these were used to calculate the input rate, I(t), and their integrals used to

calculate the cumulative fraction input.
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Subject Selected Polynomial for the Input Rate

1 I(t) = 0.2012 + 0.8042t - 0.4912t*

2 I(t) = -0.1718 +7.5070t -25.3365t* +34.3906¢> -20.0947t* + 4.1876¢°
3 I(t) = 0.1657 - 0.9778t - 0.5894¢

4 I(t) = 0.0606 + 1.9906t - 2.0362t> + 0.5361t’

5 I(t) = 0.0341 + 2.3848t - 2.7299¢* + 0.8088t’

6 I(t) = 0.1342 + 1.3533t - 1.4133¢ + 0.3767¢

7 I(t) = 0.1061 + 1.8142¢ - 2.2686t* + 0.7374¢’

8 I(t) = 0.2291 + 1.1696t - 1.3546t* + 0.4010¢°

9 I(t) = 0.1279 + 1.4156t - 1.3509¢* + 0.3239¢°

10 I(t) = 0.2903 + 0.5770t - 0.4933¢* + 0.0816¢°

Table 28 : Selected Polynomials produced by Polynomial Deconvolution on Data from Tables C(8) and
C(©9).

(d) Polyexponential Deconvolution
The parameters from Table 26 were used to represent the weighting function
and those from Table 27 used to represent the response function and together these

formed the input into the polyexponential deconvolution algorithm.

Following deconvolution the mean and standard error of the mean over the ten
data sets were calculated for the input rate and the cumulative fraction input (CFI)
for each deconvolution method. The estimated fraction of dose released (Fg) produced
for each data set was calculated by taking the maximum value reached in the CFI
profile. For each input rate produced the Mean Dissolution Time. (MDT) was

calculated according to the method described in section (2.5.1).

3.3.2.2 Results
For each deconvolution method the mean input rate and mean cumulative fraction
input for the ten data sets were plotted together with the standard error of the mean values

(S.E.M.) and these are shown in Figures 33-36.
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(a) Numerical Deconvolution
The mean input rate (n=10) and mean CFI profile produced by numerical
deconvolution are shown in Figure 33. The mean input rate predicted by numerical
deconvolution shows the form of the true input rate well over the initial increase in
input rate, as well as over the linear portion of the profile. The predicted profile fails
show the smooth decline in the true input rate over the later time points and instead
begins to show a degree of oscillation. The SEM values associated with the predicted
input rate are large, showing the degree of variability in results produced by the
additional error in the data.
The mean CFI produced by the numerical deconvolution is very close to the
true profile and the SEM values associated with it are very small. The only slight
deviation from the true profile occurs during the declining phase of the input rate

when the true rate is approximated least well.

(b) Semi-Numerical Deconvolution

The mean input rate (n=10) and the mean CFI profile produced by semi-
numerical decoﬁvoluﬁon are shown in Figure 34. The mean input rate predicted by
semi-numerical deconvolution shows the general form of the input rate up to the end
of the linear portion fairly well, however the method fails to approximate the
declining phase of the input rate with any degree of accuracy. The SEM values
associated with the predicted input rate profile are large showing the influence of the
additional error on the performance of the deconvolution algorithm.

The mean CFI however, is a very good approximation of the true profile and
has very small SEM values associated with it. Like the numerical deconvolution, the
only slight deviations from the true profile are seen during the declining phase, when

the input rate is poorly approximated.

(c) Polynomial Deconvolution
The mean input rate (n=10) and the mean CFI profile produced by polynomial
deconvolution are shown in Figure 35. The mean input rate predicted by polynomial

deconvolution gives a reasonably good approximation to the true input rate but
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Figure 33 : Mean results produced by Numerical Deconvolution for the Controlled
Release Input Function on 10 Data Sets with 10% Noise added to the Weighting and
Response Functions
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Figure 35 : Mean results produced by Polynomial Deconvolution for the Controlled
Release Input Function on 10 Data Sets with 10% Error added to both the Weighting
and Response Functions



Chapter 3 : Comparison of Deconvolution Methods using Pseudo-experimental Data 146

-~ 1.0 - prii
3
Qa .
£
0.8
o
v i
o]
0 06
[T
5 i
c 0.4 -
o Error Bars show S.EM.
= i
o .
S 02 True Fraction of Dose
(18 il L |----- Mean Fraction Input
o
1.00 -~ True Input Rate
1T ==-=- Mean Input Rate
0.75 - Error Bars show S.E.M.
C
£ 050 - Sihdes >
o
- i
3
Q 0.25
=
0.00 —
T T T T ' T T T T 1
(o] 0.4 0.8 1.2 1.6 2.0
Time

Figure 36 : Mean results produced by Polyexponential Deconvolution for the
Controlled Release Input Function on 10 Data Sets with 10% Error added to both the
Weighting and Response Functions



Chapter 3 : Comparison of Deconvolution Methods using Pseudo-experimental Data 147

marked deviations to the true input rate are seen at either end of the time course over
which deconvolution was performed. The method fails to show that the initial value
of the input rate is zero and the predicted input rate begins to deviate markedly
towards the end of the time period considered. The linear portion of the true input
rate appears more as a broad, gentle curve in the mean predicted rate and because of
this the predicted rate underestimates the true rate at either end of the linear portion.
The SEM values associated with the predicted rate are very small except at the late
time points (where the predicted input rate begins to diverge from the true rate) when
they begin to increase.

The mean CFI is a very good prediction of the true values and there is little
deviation seen from the true profile. The SEM values associated with the predicted

CFI are very small.

(d) Polyexponential Deconvolution

The mean input rate (n=10) and the mean CFI profile produced by
polyexponential deconvolution are shown in Figure 36. The mean input rate predicted
by polyexponential deconvolution does not approximate the true rate with any degree
of accuracy. The initial rising rate is shown very well, however the linear portion of
the true input rate cannot be seen in the predicted rate, where the input rate is first
overestimated then underestimated. The method fails also to show correctly the
declining phase of the true input rate and during the late time points the input rate
is overestimated. The SEM values associated with the predicted input rate are very
small.

The mean CFI is a fair approximation to the true profile but it alternately
overestimates and underestimates the true profile and the final estimation of the CFI
is overestimated. Like the input rate the SEM values associated with the profile are

small.

3.3.2.3 Estimated Fraction Released F,
The estimated fraction of dose released for each subject and each deconvolution

method are shown in Table 29, together with the mean fraction released (ER), the standard
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deviation (SD) and the standard error of the mean (SEM) for each deconvolution method.

Subject Numerical N:rfgfi_c al Polynomial expzc:nlgr; dal
1 0.972 0.979 0.963 0.991
2 0.931 0.929 0.936 0.942
3 0.987 0.981 0.957 1.010
4 1.077 1.089 1.100 1.076
5 0.953 1.046 1.057 1.051
6 0.943 0.954 0.957 0.958
7 0.944 0.953 0.973 0.925
8 1.040 1.037 1.051 1.005
9 1.039 1.047 1.052 1.058
10 0.947 0.993 1.006 0.991
Mean 0.983 1.001 1.005 1.001
SD 0.051 0.051 0.056 0.050
SEM 0.016 0.016 0.018 0.016

Table 29 : Fraction of Dose Released predicted by Four Deconvolution Algorithms for the Controlled
Release Input Rate with 10% Noise added to both Weighting and Response Functions

The mean fraction released produced for each of the deconvolution methods was

compared with the true value of 0.970 using the t-test (section 2.4.2) at a probability level
of P=0.05 and 9 degrees of freedom. The value of 0.970 is the fraction of dose released

at t=1.9 calculated form the integral of the controlled release input rate. The t, values were

calculated according to the equation given below, the mean and SEM values were taken

from Table 29 :

t, = F, - 0.970 / SEM

where F; is the mean fraction released.

The values of t; calculated for each of the four deconvolution methods were as

follows

Numerical Deconvolution

Semi-Numerical Deconvolution

t,= 0.813
t. = 1.938
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Polynomial Deconvolution t,= 1.944

Polyexponential Deconvolution t, = 1.938

The value of t; taken from the tables at P=0.05 and 9 degrees of freedom (ty 454 is
2.26. All the values calculated for the deconvolution methods are less than this critical
value, therefore there is no significant difference between the mean fraction released

predicted by any of the deconvolution methods and the true value.

3.3.2.4 Mean Dissolution Times

The Mean Dissolution Times (MDT) calculated from the input rates predicted by the
deconvolution methods, according to the method described in section 2.5.1, were
calculated for each subject and each method. These MDT values, together with the mean,
standard deviation (SD), and standard error of the mean (SEM), for each method, are
shown in Table 30.

Subject Numerical N:;r:rii-cal Polynomial Ex;orgr-l ial

1 0.829 0.860 0.832 0.863

2 0.824 0.834 0.861 0.877

3 0.808 0.786 0.784 0.889

4 0.864 0.886 0.870 0.864

5 0.831 0.841 0.849 0.838

6 0.779 0.850 0.882 0.888

7 0.884 0.896 0.918 0.874

8 0.888 0.888 0.906 0.905

9 0.872 0.884 0.892 0.911
10 0.808 0.915 0.891 0.935
Mean 0.839 0.864 0.869 0.884
SD 0.037 0.038 0.039 0.028
SEM 0.012 0.012 0.012 0.009

Table 30 : Mean Dissolution Times Estimated for the Input Rates produced by Four Deconvolution
Algorithms for the Controlled Release Input Rate with 10% Noise added to both Weighting and
Response Functions.
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The mean MDT produced for each of the deconvolution methods was compared with
the true value using the t-test (section 2.4.2) at a probability level of P=0.05 and 9 degrees
of freedom. The MDT value was calculated up to t=1.9 using the method described by
equation (2.49) in section 2.5.1, giving a MDT,_, ; of 0.827. The t, values were calculated
according to the equation given below, the mean and SEM values were taken from Table

30 :

t, = MDT - 0.827 / SEM
where K'IDT is the mean MDT.

The values of t, calculated for each of the four deconvolution methods were as follows

Numerical Deconvolution t, = 0.167
Semi-Numerical Deconvolution t, = 3.083
Polynomial Deconvolution t, = 3.500
Polyexponential Deconvolution t, = 6.333

The value of t, taken from the table t, 5., for P=0.05 and 9 degrees of freedom was
2.26. The t, value calculated for the MDT value for the numerical deconvolution method
was less than the critical value of 2.26. Therefore there is no significant difference
between the estimates of MDT calculated from the input rate produced from the numerical
deconvolution method and the true value at the 0.95 probability level. The t, values
produced for the other three methods are all greater than 2.26 showing the differences are
significant at the 95% probability level. The deviation from the true values is significant
at the 95% probability level (0.05 > P > 0.01) for the semi-numerical method, at the 99%
level (0.01 > P > 0.001) for the semi-numerical method and at the 99.9% level (P <
0.001) for the polyexponential method.

3.3.3 Discussion
The simpler numerical and semi-numerical algorithms (which do not approximate the
input rate with an empirical function) and the polynomial algorithm (which approximates

the input function with a polynomial) all provide good predictions of the true input rate
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when the initial data is error free or contains very low levels of added noise. When more
noise is added to the data the numerical and semi-numerical methods become unstable,
and very little can be interpreted from the input profiles seen. The profile is more stable
when the mean input rate is considered, but both algorithms are very susceptible to data
noise.

The change seen in the predicted input rate profile for the polynomial algorithm at
the higher noise levels is less drastic. The predicted profile is still close enough to the true
values that its general form can be seen, and the algorithm itself is very stable to data
error (as shown by the small SEM values shown in Figure 35).

The polyexponential algorithm shows little change in the predicted input rate with
increasing levels of noise (as shown by Figure 32), however at no point does it succeed
in showing the correct form of the input rate.

The cumulative fraction input profiles for all algorithms and at all noise levels show
profiles which are very close to the true values. The cumulative profiles produced by the
deconvolution algorithms are much more stable to data error than their corresponding
input rate profiles and give very good predictions of the true values.

There was no significant difference seen between the estimated fraction released (at
t=1.9) for any of the methods and the true value, however when the predicted MDT,
were examined only the numerical algorithm showed no significant difference to the true
value at t=1.9. The semi-numerical, polynomial and polyexponential algorithms all gave
significantly different mean values.

In all these three cases the MDT overestimated the true value, and a consideration of
the mean input rate profiles would suggest that this is due to the overestimation of the

input rate for the late time points, especially for the polyexponential method.

3.4 CONCLUSIONS
The work in this chapter was designed to address the first three of the objectives
given at the end of the introduction, and from the work presented in this chapter the

following conclusions can be drawn with regard to those objectives.

»  Throughout the chapter the deconvolution algorithms which used empirical formula
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to represent the unknown input rate (the polynomial and polyexponential algorithms)
are much more stable to data noise than the numerical and semi-numerical methods

which place no restriction on the form of the input rate.

o There is no advantage in smoothing the weighting function prior to numerical
deconvolution i.e. throughout the chapter there was no difference seen, in any aspect,

between the numerical and semi-numerical algorithms.

o The choice of algorithm is dependant on what information is desired from the
deconvolution process. If the aim of the deconvolution is to calculate point values
(MDT and Fy) or to look at the cumulative profiles then there is no advantage to
using any of the more complex algorithms. In fact, the numerical algorithm provide
results which are as good as (and in some cases, better than) those of the more

complex algorithms.

e Only when the aim of the deconvolution is to obtain information about the
mechanism of drug release does the choice of algorithm become important. In this
case one of the more complex algorithms should be used. The polynomial algorithm
is more flexible in approximating an unknown input function than the polyexponential
algorithm and is the method of choice for those input functions examined in this

chapter.

e None of the deconvolution algorithms which involve approximation of the input
function by an empirical function can show abrupt changes in the input rate, however
if the input rate is expected to vary smoothly then the these methods will give a good

reflection of the unknown input rate.

» The fact that little difference is seen between the methods, except when the input rate
itself is considered, is due mainly to the fact that the integration of the input rate acts
like a smoothing process and much detail apparent in the input rate is automatically

lost on conversion to the CFI.
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4 IN VIVO RELEASE CHARACTERISTICS OF CONTROLLED RELEASE
METOPROLOL

In the previous chapter the ability of the four deconvolution algorithms at predicting
the form and values of different input rates was examined using pseudo-experimental data,
together with their ability to cope with varying levels of additional noise in the source
data. The aim of the work presented in that chapter was to meet the first three of the
objectives stated at the end of the introduction, and the discussion presented at the end
of chapter three covers the degree to which these objectives were achieved.

This next chapter is concerned with objective four, that is to use the four different
deconvolution algorithms to analyze actual clinical data with the aim of highlighting any
problems which may arise when deconvolution is used in a practical situation. In this next
chapter the four deconvolution algorithms will be used to analyze the in vivo drug release
characteristics of metoprolol from three different controlled release tablets, using the
plasma concentrations following administration of a bolus solution of 95mg metoprolol

succinate as the weighting function for the deconvolution process.

After the deconvolution has been performed the resulting release rate profiles and
cumulative fraction released profiles will be used to characterise the release process
through consideration of the following parameters :

(a) The shape and characteristics of the dissolution rate and the cumulative fraction

released profiles themselves

(b) The Fraction of Dose Released, Fy

(c) The estimated MDT in vivo for all subjects

(c) Invitro - in vivo correlation using MDT;,, ,,,, vs MDT,, ..., Plots

The examination of the differences in these characteristics produced by the different
algorithms will show any differences in the values which arise due to the instability of the
deconvolution algorithms themselves.

The clinical data used in this chapter has been supplied by AB Hissle, Mdlndal,
Sweden and further details of the study particulars are given by Sandberg et al (1991).
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4.1 DETAILS OF THE CLINICAL DATA

The clinical data obtained are the results of a single dose study of controlled release
metoprolol. The study was an open label, five way, cross-over design, with the study
drugs given in randomised order to ten healthy male volunteers aged between 20 and 29
(mean 24) and weight 70-86kg (mean 78). Each subject received a single dose of each of
the five treatments shown below :

(1) 1V solution of Metoprolol Tartrate 10mg

(2) Oral solution of Metoprolol Succinate 95mg/100mls

(3) CR Tablet A of Metoprolol Succinate 95mg

(4) CR Tablet B of Metoprolol Succinate 95mg

(5) CR Tablet C of Metoprolol Succinate 95mg

The treatment days were separated by wash out periods of at least five days and each
CR tablet was administered with 200mls of water and the oral solution was administered
with 100mls water. The plasma concentrations arising from the solution and the three

controlled release tablets are shown in tables D(1)-D(4) in Appendix D.

4.2 DETAILS OF THE CONTROLLED RELEASE TABLETS

The three controlled release tablets are all multiple-unit controlled release systems
(Sandberg et al 1988) which consist of several hundred small pellets of metoprolol
succinate coated with a non-disintegrating polymeric membrane. The pellets are
compressed with inert excipient granules to form tablets. These tablets disintegrate rapidly
releasing the pellets, which act as individual dosage forms, releasing their drug at a
constant rate.

The rate of release of the multiple-unit dosage form is controlled by the thickness of
the membrane coating each pellet. The three metoprolol CR tablets have in vitro release

rates of ~7%/hr, ~5.7%/hr and ~3.3%/hr for CR A, CR B and CR C respectively.

4.3 IN VITRO DISSOLUTION STUDIES

The in vitro dissolution testing was performed using a USP apparatus 2 (rotating
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paddle) at 37°C with paddle speeds of 50, 100 and 150rpm and at pH’s of 1.2, 4.0 and
6.8. The mean results (n=6) are shown in Tables D(5)-D(7) in Appendix D. The rate of
drug release for all three formulations was shown to be insensitive to changes in either

agitation or pH.

4.4 JUSTIFICATION OF LINEARITY

In order to justify the use of deconvolution in a practical situation the system under
study must be shown to be linear, i.e. the disposition kinetics of metoprolol must be
shown to be linear. Metoprolol is eliminated largely by the mono-oxygenase system of the
liver (Regérdh and Johnsson 1980) and therefore there is a possibility of Michaelis-
Menton kinetics, if the metabolism is saturable, and hence non-linearity. However Kendall
et al (1977) showed that the half-life of metoprolol is not influenced by the dose within
the usual therapeutic dosage range and that the bioavailability of single oral doses is
constant over the normal dose range (but may increase with higher doses above that).

On this evidence the system can be assumed to be linear in the dose region being
used. However, if the nature of the dosage forms (i.e. that they are controlled release)
affects the rate of metabolism or the bioavailability then the linearity of the system will

be violated.

45 METHOD

Each of the three metoprolol CR tablets was analyzed by each of the four
deconvolution algorithms described in detail in section 2.2. Prior to deconvolution the
plasma concentrations for each subject following administration of the oral solution were
fitted to a polyexponential equation, of the form shown in equation (4.1), using the non-
linear least squares curve-fitting routine described in section 2.1.1. C(t) is the plasma

concentration at time t.

C@®

0 for t < tlag

n

=Y A" fort > tlag

4.1)

i=1

n-1
where A, = Y A

=1

-
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The parameters obtained following this curve fitting are shown in Table 31. These
parameters (or the plasma concentrations themselves) were used as the weighting function
in the deconvolution process. In this manner the input rate produced by the deconvolution
will represent the in vivo drug release rate of metoprolol from the three controlled release
tablets.
As can be seen from Table 31, in all subjects except subjects 6 and 9 there is a small

but distinct delay before metoprolol appears in the plasma. The parameters from Table 31

Subject tlls'i" (1:’11 pr‘zzol 1! (}:‘2‘ pméi 1! l(lxi
1 0.407 1.1832 0.4450 0.3444
2 0.222 4.9451 0.9558 0.0881
3 0.215 6.4748 0.2718 0.3036 0.8508 7.4107
4 0.235 4.6577 1.0948 6.1370 0.7150 0.2856
5 0.262 2.5349 1.5854 3.1252 0.5826 0.2273
6 0.000 1.1441 1.0759 0.0738
7 0.226 6.7113 0.4740 9.2367 0.4740 0.2224
8 0.316 1.5042 2.8105 1.8170 0.9304 0.2754
9 0.000 2.7057 0.6191 0.2628
10 0.055 2.5293 7.3607 2.8072 0.9276 0.1316

Table 31 : Parameters obtained by Curve Fitting Plasma Concentrations following administration of
Metoprolol Solution 95mg(shown in Table D(1)) to a polyexponential equation (shown in equation
4.1)).

were be used to represent the solution data (as the weighting function) in the semi-
numerical, polynomial and polyexponential algorithms. However,the polyexponential
algorithm does not allow for the existence of any time delay in the weighting function and
therefore, for the polyexponential algorithm, the parameters in Table 31 were used without

the time lag, since in most cases this value was very small.

4.5.1 Deconvolution Details
The thirty separate data sets shown in Tables D(2)-D(4) were each deconvolved using

each of the four deconvolution algorithms described in section 2.2, according to the
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specific details for each method given in the sections below. The doses for the oral
solution and the CR tablets were converted to pmoles prior to their incorporation (if

required) into any deconvolution algorithm.

Following deconvolution, the release rate profiles were examined. Any subject whose
profile showed consistently negative values after a certain time point was assumed to have
had complete release from the controlled release tablet administered at that time point. In
any subject where release was considered complete before the 30hr time span then the
release rates following the time point at which release was complete were set to zero and

the cumulative fraction released profile stopped at that point.

4.5.1.1 Numerical Deconvolution

The plasma concentration values following administration of the oral solution
and each of the three metoprolol CR tablets (CR A, CR B and CR C) for each subject
were interpolated by cubic spline interpolation at time intervals of 0.5 hrs. The
interpolated data was used as input to the numerical deconvolution algorithm to
produce an estimated profile of the release rate of metoprolol with time for each
subject and each of the CR tablets. Following deconvolution, the cumulative fraction
released as a function of time was calculated according to the details given in section

2.2.1.

4.5.1.2 Semi-Numerical Deconvolution

The parameters shown in Table 31 were used to represent the solution data and
were used to generate plasma concentration values at 0.5hr intervals. These
concentrations were used as the weighting function for the deconvolution of the CR
tablets. The plasma concentrations for each subject, following administration of the
CR tablets, were interpolated at 0.5hr intervals and the interpolated data, together
with the weighting data, were used as input into the deconvolution algorithm.
Following deconvolution, the cumulative fraction released as a function of time was

calculated according to the details given in section 2.2.2.
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4.5.1.3 Polynomial Deconvolution
The parameters in Table 31 were used to represent the oral solution data and
were used as the weighting function for the polynomial deconvolution algorithm.
These parameters, together with the data shown in Tables D(2)-D(4), were used as
input into the polynomial deconvolution algorithm. The unknown release rate
(umol/hr) was represented by a polynomial, the number of terms in the polynomial
was increased sequentially until the inclusion of additional terms gave no significant
improvement as judged by the F test (section 2.4.1) with n=15 at P=0.05. The release
rate of the CR tablets is then represented by this selected polynomial and the
cumulative amount released was represented by its integral. Following deconvolution
the cumulative fraction released as a function of time was calculated according to the

details given in ‘section 2.2.3.

Subject p£$1 It s pnl?gl I !
1 10.4820 0.1892 0.4820 0.1361
2 -5.9183 0.1411 5.9183 0.1178
3 101300 0.3981 0.1300 0.1653
4 01140 0.5292 0.1140 0.0508
5 36155 0.2555 3.6155 0.2311
6 207210 0.2891 0.7210 0.0398
7 101225 0.5409 0.1225 0.0606
8 -4.9854 0.2039 4.9854 0.1855
9 101606 0.4939 0.1606 0.0787
10 207990 0.2440 0.7990 0.0778

Table 32 : Parameters obtained following Curve Fitting of Plasma Concentrations from Metoprolol
CR A (Table D(2)) to a polyexponential (equation 4.1)

4.5.1.4 Polyexponential Deconvolution

The parameters in Table 31 were used to represent the solution data for each
subject, with the exception of the time lag value. The plasma concentrations for each
of the metoprolol CR tablets (Tables D(2)-D(4)) were fitted to a polyexponential

equation of the form of that shown in equation (4.1) using the non-linear curve-fitting
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techniques described in section 2.1.1. The number of terms in the equation was

increased until there is no significant improvement seen as judged by the F test with

n=15 and P=0.05.
Subject prﬁél I z}l pgél I (1):-21 pmlzi I! 1?3
1 13156 | 01217 | 05896 | 00940 | 07260 | 0.1273
2 -10.1208 | 0.1286 | 10.1208 | 0.1197

3 01565 | 01297 | 0.1565 | 0.0832

4 1100324 | 01109 | 100324 | 0.109

5 04040 | 0.1865 | 04040 | 0.1036

6 05420 | 01899 | 05420 | 0.0287

7 00579 | 06011 | 00579 | 00172

8 02660 | 02347 | 02660 | 0.0762

9 00710 | 06332 | 00710 | 00242

10 09667 | 01363 | 09667 | 0.0737

Table 33 : Parameters obtained following Curve Fitting of Plasma Concentrations from Metoprolol
CR B (Table D(3)) to a polyexponential (equation 4.1)

Subject tlag h prﬁoll . a, h'! pﬁzl . o, h!
1 1.0 -0.8580 0.0583 0.8580 0.0540
2 1.0 -4.9978 0.0270 4.9978 0.0236
3 1.0 -0.9413 0.0671 0.9413 0.0637
4 0.0 -4.9978 0.0589 54.9978 0.0577
5 1.0 -1.0620 0.0525 1.0620 0.0465
6 0.0 -10.0000 0.0310 10.0000 0.0289
7 1.0 -0.4705 0.0342 0.4705 0.0252
8 0.0 -0.0825 0.1128 0.0825 0.0113
9 1.0 -1.9960 0.0200 1.9960 0.0183
10 1.0 -4.8090 0.0495 4.8090 0.0456

Table 34 : Parameters obtained following Curve Fitting of Plasma Concentrations from Metoprolol
CR C (Table D(4)) to a polyexponential (equation 4.1)
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The parameters obtained following the curve fitting of the data for CR A, CR

B and CR C are shown in Tables 32, 33 and 34 respectively.
These parameters were used to represent the response function for CR A,CR
B and CR C respectively in the polyexponential deconvolution algorithm. Following
deconvolution the cumulative fraction released as a function of time was calculated

according to the details given in section 2.2.4.

4.5.2 Calculation of the Fraction of Dose Released, Fy

The fraction of dose released at 30hrs was calculated by taking the maximum value
reached in the cumulative fraction released profile, produced by each of the deconvolution
algorithms. This value was calculated for each subject and for each of the three different

tablets.

4.5.3 Calculation of Mean Dissolution Time in vivo , MDT

The MDT was calculated according to the method described in section 2.5.1 and was
calculated up to the last data point at 30hrs. The mean dissolution time (MDT,,) was
calculated and not the true value, (MDT,), since the aim of the calculation was to
compare deconvolution methods, therefore no extrapolation was required. When the
release was completed before the 30hr time interval the true MDT and MDT,, are the

same, only in the case of incomplete release will the two values differ.

4.6 RESULTS

The mean (n=10) release rate (umol/hr) and mean fraction of dose released for each
CR tablet together with the SEM values are shown in Figures 37-40 and are described in
detail below. The emphasis has been placed on the similarities and differences produced

in the profiles due to the different deconvolution algorithms.

4.6.1 Mean in vivo Release Rates
4.6.1.1 Similarities

All the deconvolution methods show the same general features in the mean in
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Figure 37 : Mean Results (n=10) produced by Numerical Deconvolution of Three

Controlled Release Metoprolol 95mg Tablets
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vivo release rates predicted for each tablet. All the tablets have an initial period of
rapid release over the first few hours, with the initial release rate of CR A being
higher than that of CR B , which is in turn higher than that of CR C. This ranking
would be expected since CR A has the highest in vitro release rate and CR C the
lowest.

Also, all the methods show that at later time periods the release rates become
reversed with the release rate of CR C being much greater than that of CR A and CR
B while the release rates of CR A and CR B are very close but that of CR B is
slightly greater than that of CR A.

Apart from the initial rapid release, all the methods show that the release rate
of metoprolol from CR B and CR C is fairly constant over a large portion of the time

scale.

4.6.1.2 Differences

The only real difference in the general features of the release rate shown by the
four deconvolution methods is shown by the polynomial deconvolution method, where
the release rate towards 30hrs becomes minimal. The other three methods all show
that the release rate for CR C is still about 3-4pmol/hr at the end of the time span,
suggesting release is still occurring at this late time period.

The other striking differences between the profiles are the smoothness of their
predicted release rates and the size of the SEM values. The profiles predicted by the
numerical and semi-numerical methods are very variable especially over the initial
time periods where the rate of change of the release rate is most rapid, also the form
of the release rate, seen clearly in the polynomial and polyexponential methods, is
much more difficult to discern. The SEM values of the four methods at the later time

periods, where the rate of change of release rate is small, are very similar.

4.6.2 Mean Cumulative Fraction Released Profiles
The CFI profiles produced by the different methods were so similar they have been

plotted on a separate graph (Figure 41) to enable a better comparison to be made.



Chapter 4 : In vivo Release Characteristics of Controlled Release Metoprolol

Fraction of Dose Released Fraction of Dose Released

Fraction of Dose Released

Figure 41 : Fraction of Dose Released predicted by Four Deconvolution Methods

1.00 -
CR Tablet A
075 - ATt BEEEEETT
0.50 P
74
4
,.;"' ———— Numerical Deconvolution
025 - ,’l ————— Semi~Numerical Deconvolution
/’ -------- Polynomial Deconvolution
'/I --------------- Polyexponential Deconvoituion
0 T T T T ¥ T T T T T T 1
[+} 5 10 15 20 25 30
100 1 CR Tablet B
0.75 4
0.50 -
Numerical Deconvolution
025 ,_,'_.-"' ————— Semi—Numerical Deconvolution
,,"{' Polynomial Deconvolution
_.;’J Polyexponential Deconvoltuion
4
[} v T T T T T T T T T Y 1
0 5 10 15 20 25 30
1:00 1 CR Tablet C
Numerical Deconvolution
075 4 ————— Semi~Numerical Deconvolution
'''''''' Polynomial Deconvolution g
//_f:' _:..-"-,--l-
""""""""" Polyexponential Deconvoltuion P
050 | 25
rnnﬁsﬁ"
0.25 4 B -
0 T T T T T T T T T T T ]
0 5 10 15 20 25 30

Time / Hours

for Three Metoprolol CR Tablets

166



Chapter 4 : In vivo Release Characteristics of Controlled Release Metoprolol 167
4.6.2.1 Similarities

All the methods show the same general form for the profiles for the three CR

tablets and that the SEM values are similar for each tablet and for each algorithm. All

the algorithms show that at all times the fraction of dose released from CR A is

greater than that from CR B which is in turn greater than that from CR C. All the

methods also show that the release from CR A is completed well before 30hrs, that

from CR B at nearly 30hrs and that the release from CR C is still continuing at

30hrs.

4.6.2.2 Differences

The only difference apparent is that only three of the deconvolution algorithms
show an inflexion in the profile for CR C between 10 and 15hrs. At this point the
release from CR C becomes more rapid and the gradient of the cumulative profile
increases. This feature is not shown by the polyexponential deconvolution algorithm
because the release rate predicted by this method does not show the decrease (around
Shrs) in release rate prior to its subsequent increase which is shown by other

methods.

4.6.3 Estimated Fraction of Dose Released, Fy

The estimated fraction of dose released, calculated at 30hrs, for all subjects, all CR
tablets and all methods is shown in Table 35, together with the mean and SEM values for
each CR tablet and each deconvolution method.

The values in Table 35 were analyzed by a model I, two way ANOVA (Sokal and
Rohlf 1981b). However, prior to this, analysis of the homogeneity of the variances for the
twelve different groups of data was performed using Hartleys F,,, test for homogeneity
of variances (Sokal and Rohlf 1981c), since the assumption of the homogeneity of
variances is implicit in the analysis of variance.

Hartley’s F,,, test uses a statistic that is the ratio of the largest to the smallest of the
sample variances. The statistic calculated should be less than the value obtained from an
F,.; table of critical values for a samples and n-1 degrees of freedom, where a is the

number of separate samples (in this case 12) and n is the number of values in each
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Deconvolution . Semi- . Poly-

Tablet | Subject Numerical Numerical Polynomial exponential

1 1.06 1.07 1.02 1.05

2 0.82 0.90 0.81 0.79

3 0.62 0.62 0.51 0.55

4 0.73 0.82 0.75 0.71

5 0.62 0.67 0.60 0.67

CR A 6 1.01 0.95 0.91 0.72

7 0.81 0.80 0.72 0.76

8 0.93 1.00 0.89 0.99

9 0.83 0.83 0.72 0.75

10 1.01 1.03 0.96 1.03

Mean 0.84 0.87 0.79 0.80

SD 0.158 0.150 0.161 0.167

SEM 0.050 0.047 0.051 0.053

1 1.01 1.12 1.08 1.10

2 0.58 0.61 0.55 0.56

3 0.94 0.91 0.83 0.69

4 0.47 0.52 0.47 0.42

5 0.71 0.76 0.72 0.74

CRB 6 0.86 0.83 0.78 0.83

7 0.73 0.72 0.67 0.70

8 0.85 0.91 0.81 0.87

9 0.79 0.79 0.70 0.73

10 0.88 0.90 0.85 0.85

Mean 0.78 0.81 0.75 0.75

SD 0.164 0.170 0.169 0.184

SEM 0.052 0.054 0.053 0.058

1 0.71 0.71 0.69 0.70

2 0.66 0.68 0.66 0.73

3 0.64 0.63 0.57 0.56

4 0.49 0.54 0.46 0.45

5 0.57 0.59 0.60 0.59

CRC 6 0.62 0.62 0.61 0.66

7 0.69 0.69 0.63 0.62

8 0.62 0.66 0.64 0.68

9 0.65 0.65 0.59 0.58

10 0.74 0.77 0.67 0.70

Mean 0.64 0.65 0.61 0.63

SD 0.072 0.064 0.065 0.085

SEM 0.023 0.020 0.021 0.027

Table 35 : Estimated Fraction of Dose Released, Fy, in ten subjects, predicted for Three CR Metoprolol

Tablets (CR A,CR B and CR C) by Four Deconvolution Methods.
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sample. When the data in Table 35 was tested using Hartley’s test an F,, value of 82.68
was obtained, the critical F,,, value for 12 samples and 9 degrees of freedom was 10.7
(P=0.05) showing the value of F_, is clearly significant and the variances of the samples
are not homogeneous.

The data in Table 35 where therefore transformed by conversion to their log values.
Hartley’s test for uniformity of variance was then repeated using the log values. The F,,,,
value obtained in this case was 6.5 which, when compared to the critical F_,, value for
P=0.05, a=12 and n=10 (10.7) was not significant showing that the sample variances are
now homogeneous and ANOVA can now be applied.

The logs of the values in Table 35 were analyzed by a model I, two way ANOVA
and the results from this analysis are shown in Table 36, where SS is the sum of squares,
MS is the Mean Sum of Squares (SS/df) and df are the degrees of freedom associated

with each SS value.

Source of Variation df SS MS F
Deconvolution Methods 3 0.0253 0.00844 1.2114 ns
CR Tablets 2 0.2577 0.1289 18.50 ***
Interaction 6 0.0014 0.00023 0.0330 ns
Error 108 0.7522 0.00697
Total 119 1.0366
Foossion = 223 Foosaim =313 Foogim =494 Foooim = 767  Fopsoo = 2.74

Table 36 : ANOVA table for log Transforms of the Estimated Fraction Released data (shown in Table
35) for different Metoprolol CR tablets and Deconvolution methods. (Model I - two way)

Although the results of the ANOVA show a significant difference between the
estimated fraction released for each tablet (P < 0.001), there is no significant difference

seen between the values estimated by different deconvolution methods. This result

confirms the results presented in chapter three.

4.6.4 Mean Dissolution Time, MDT,,
The MDT;, at 30hrs calculated for each subject, each method and each tablet are
shown in Table 37 together with mean (n=10), standard deviation (SD) and standard error

of the mean (SEM) for each tablet and deconvolution method.
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Deconvolution . Semi- . Poly-

Tablet | Subject Numerical Numerical Polynomial exponential

1 733 7.33 7.66 7.90

2 5.40 6.41 4.69 4.60

3 4.08 4.03 4.69 4.84

4 8.68 9.35 9.46 9.66

5 3.03 3.97 3.31 3.22

CR A 6 8.35 6.77 6.98 6.34

7 8.92 8.61 8.58 8.40

8 5.81 6.25 5.67 5.37

9 7.97 8.08 7.91 7.04

10 6.95 6.91 6.87 6.50

Mean 6.65 6.77 6.58 6.39

SD 2,01 176 1.95 1.95

SEM 0.636 0.556 0.616 0.616

1 10.74 11.06 11.18 11.42

2 5.30 5.81 4.84 5.05

3 11.16 10.77 11.14 11.39

4 9.82 10.44 10.31 10.79

5 7.94 8.46 8.35 8.25

CRB 6 10.05 9.01 9.10 8.76

7 11.70 11.49 11.67 11.53

8 8.92 9.28 8.92 9.04

9 11.25 11.34 11.46 11.16

10 8.43 8.53 8.71 8.89

Mean 9.53 9.62 9.57 9.63

SD 1.95 1.77 2.08 2.06

SEM 0.616 0.558 0.657 0.651

1 14.28 14.48 13.87 14.70

2 14.33 14.44 13.73 14.95

3 14.12 13.89 13.40 13.34

4 13.73 14.17 14.52 14.09

5 14.30 14.40 13.74 14.64

CRC 6 13.20 12.97 13.29 13.47

7 16.01 15.89 16.02 15.95

8 13.98 14.14 14.56 14.30

9 16.49 16.54 16.93 16.58

10 12.74 12.91 13.48 13.76

Mean 14.32 14.38 14.35 14.68

SD 1.15 1.13 1.22 0.96

SEM 0.362 0.357 0.384 0.302

Table 37 : Estimated Mean Dissolution Time MDT,, (hrs), in ten subjects, predicted for Three CR
Metoprolol Tablets (CR A,CR B and CR C) by Four Deconvolution Methods.
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The values in Table 37 were to be analyzed by a model I, two way ANOVA.
However, prior to this, analysis of the homogeneity of the variances for the twelve
different groups of data was performed using Hartley’s F_,, test for homogeneity of
variances (Sokal and. Rohlf 1981c). When the data in Table 37 was tested using Hartley’s
Hartley’s test an F,,, value of 4.69 was obtained, the critical F,,, value for 12 samples
and 9 degrees of freedom was 10.7 (P=0.05) showing the value of F,,; is not significant
and the variances of the samples are homogeneous.

The values in Table 37 were then analyzed by a model I, two way ANOVA and the
results from this analysis are shown in Table 38, where SS is the sum of squares, MS is
the Mean Sum of Squares (SS/df) and df are the degrees of freedom associated with each
SS value.

Source of Variation df SS MS F
Deconvolution Methods 3 0.188 0.063 0.021 ns
CR Tablets 2 1250.8 625.4 213.4 ***
Interaction 6 1.470 0.245 0.084 ns
Error 108 316.5 2.931
Total 119 1568.958
Fooseion = 223 Foosaion = 313 Fonaion =494 Fogniaion = 767 Foosaion = 2.74

Table 38 : ANOVA table for the Mean Dissolution Time data (shown in Table 37) for different
Metoprolol CR tablets and Deconvolution methods. (Model I - two way)
Although the results of the ANOVA show a significant difference between the
estimated MDT,, for each CR tablet (P < 0.001), there is no significant difference seen

between the values of the MDT,, estimated by different deconvolution methods.

4.6.5 In vivo - in vitro Correlation using MDT values

The mean MDT,, values calculated for the different deconvolution algorithms (shown
in Table 37) were plotted against the MDT;, ..., values, for different dissolution conditions,
calculated from the dissolution data shown in Tables D(5)-D(7) in Appendix D and
presented previously by Sandberg et al (1991). These in vitro MDT values are shown in
Table 39.
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For each set of values plotted the following parameters were calculated : the gradient,
the Y intercept and the correlation coefficient (r). These values are shown in Table 40 for

each deconvolution method and each set of different dissolution conditions.

Dissolution Formulation

Conditions CR A CR B CR C
pH 1.2 / 100 rpm 48 8.4 13.6
pH 4.0 / 100 rpm 5.7 8.8 13.7
pH 6.8 / 100 1pm 53 8.6 13.8
pH 6.8/ 50 rpm 5.7 8.6 14.1

Table 39 : In vitro MDT (hrs) calculated for three Metoprolol CR Tablets from data shown in Tables
D(5)-D(7)

Deconvolution Algorithm
Dissolution
Conditions Numerical Nusr(:lr:rii.cal Polynomial expl:zlgr;tial
pH | Gradient 0.8751 0.8684 0.8855 0.9441
toe || Y tercept | 23491 2.4993 2.2560 1.7993
rpm r 0.9992 0.9992 0.9996 0.9998
pH | Gradient 0.9604 0.9531 0.9716 1.0357
o0 || Y Intercept | 1.1384 1.2978 10333 0.4974
rpm r | 09999 0.9999 0.9999 0.9999
pH | Gradient 0.9040 0.8971 0.9146 0.9749
%8 | Y Intercept | 1.8194 1.9735 17221 1.2315
| pm r 0.9998 0.9999 0.9999 0.9999
[ oH | Gradient 0.9076 0.9007 0.9177 0.7997
65'3 Y Intercept |  1.5750 1.7305 1.4793 0.9758
ypm r 0.9994 0.9995 0.9990 0.9988
r = the XY correlation coefficient

Table 40 : Parameters obtained following Linear Regression of MDT,, ,,,, against the MDT,, ..., for
Three Metoprolol CR Tablets.
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The values presented in Table 40 show that all the deconvolution methods give very
good in vivo - in vitro correlations for all the dissolution data. The critical values of the
correlation coefficient, r, for n=3 (1 degree of freedom) are 0.997 for P=0.05 and 1.00 for
P=0.01. All the correlation coefficients shown in Table 40 are greater than 0.997,
therefore there is a significant correlation between the MDT;, ,,,,, and the MDT,, ., , P <
0.0s.

Although the correlations obtained for different deconvolution methods (for the same
dissolution conditions) are all good, the values of the gradient and the Y intercept differ
between the different methods. The greatest difference between these values is seen, for

all dissolution conditions, to lie between the polyexponential and the other three methods.

4.7 DISCUSSION

All the deconvolution methods predicted that the release of metoprolol was still
occurring from all the CR tablets after 20 hours and still occurring from the CR tablet C
after 30 hours. Since metoprolol is similarly absorbed between the pylorus and the rectum
and will be absorbed wherever it is released (Godbillon et al 1985) then it is possible that
both release and absorption are still occurring in the colon even at these late time points.

The initial rapid release seen in CR tablets A and B may be due to the presence of
crushed pellets within the tablet, following compression during the tableting process.
These crushed pellets possess no controlled release properties since the polymeric
membrane is no longer intact, therefore they will release their content rapidly. This period
of rapid release may well be overestimated by the polynomial and polyexponential
methods (which estimate it to be about 5 hours) because of their inability to cope with
sudden changes in the release rate, which was demonstrated with the simulated data in
chapter 3.

The different release rate predicted by the polyexponential algorithm for CR C is
probably due to the poor approximation of the plasma concentrations by the selected
polyexponential. The plasma values for CR C appeared to indicate that the peak plasma
concentrations lay between 14 and 24 hours when no samples were taken, as a
consequence of this the parameters obtained by curve fitting approximated poorly to the

plasma curves (unlike those for CR A and CR B which reflected their plasma curves very
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well). This poor approximation of the plasma concentrations for CR tablet C is only
important for the polyexponential method, as this is the only method which uses function
approximation of the response function, therefore the discrepancy in the predicted release
rate for this method is probably due to poor parameter estimates.

The additional complication for the polyexponential method was the existence of a
time lag in the solution data. For the metoprolol CR tablets, ignoring this time lag made
no discernable difference in the release rate values produced, perhaps because the time lag
in most subjects, was very small.

There was no significant difference found between the values predicted for either the
MDT;, or the total fraction of dose released, F; using the different deconvolution
algorithms. All the methods gave Fy values of less than one, suggesting incomplete release
from the CR tablets. However, since the weighting function is from administration of a
solution and a majo_r portion of the release (and absorption) is occurring in the colon
where the drug, contained in the solution, may never have reached, there is another
possible explanation. This is that the assumption of linearity has been violated.

This could occur in two ways, firstly if there was no absorption from the colon, this
would appear in the deconvolution as a predicted lack of release. This cannot be valid in
the case of metoprolol as it has been shown (Godbillon et al 1985) to be well absorbed
from the colon. The other possibility is that the rate of release of metoprolol affects the
rate of its metabolism, this would be an example of the input function affecting the
weighting function. This is possible for metoprolol since it has a high first pass
metabolism and it has been suggested (Sandberg et al 1991) as the reason for the apparent
lack of release, especially from CR C.

The third possibility is that the release was actually incomplete, however

deconvolution itself will give no way of distinguishing between these various possibilities.

It is apparent from Table 40 that any of the deconvolution methods could be used to
provide a good in vivo - in vitro correlation, but that the exact correlation will vary with
the deconvolution method used and the in vivo MDT predicted from an in vitro
dissolution test will be slightly different depending on which method was used for the

original correlation.
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4.8 CONCLUSIONS

The aim of this chapter was to highlight any problems to the use of deconvolution
in a practical situation, and although in no case was deconvolution by any of the
algorithms impossible, some problems were encountered.

The existence of a time lag in the data used for the weighting function may prohibit
the use of the polyexponential algorithm, although this was not the case for the metoprolol
data since the time lags were so small.

The quality of the data is important for the accuracy of the deconvolution methods.
When the data is less than perfect, as for CR C where the peak of the plasma profile was
poorly described, then the parameters obtained following curve fitting do not give good
approximations of the true profiles, and this inaccuracy is carried forward into the
deconvolution process.

The final point is that care should be taken in the interpretation of the results
produced by deconvolution, especially when solution data is being used as the weighting
function for a controlled release product. There is a possibility in such cases that the
linearity of the system may be violated either by lack of absorption from the distal regions

of the gastrointestinal tract or by a change in metabolism due to the rate of drug release.
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5 MAXIMUM ENTROPY IN THE ESTIMATION OF IN VIVO DRUG
RELEASE / ABSORPTION RATES

The application of Maximum Entropy is the most recent and perhaps the most
sophisticated of all the techniques used to evaluate the rates of release / absorption of
drugs. This chapter aims to provide an introduction to the method and to elaborate on the
principle upon which the technique is based, together with details of the calculations
involved. The subsequent two chapters aim to evaluate the technique using pseudo-
experimental data then use it in a practical situation to analyze the clinical Metoprolol

data used in chapter 4.

Using Maximum Entropy to evaluate the in vivo release/absorption rates of drugs
theoretically has advantages over the deconvolution techniques. Firstly, like the simpler
deconvolution algorithms, it makes no assumptions about the form of the input function
it aims to approximate. Therefore, any structure present in the predicted input function
must be due to evidence present in the data itself.

Secondly, like the more complex deconvolution algorithms which involve
approximation of the unknown input rate by empirical functions, the predicted input rate
is a smooth function enabling a clear picture of the unknown release/absorption rates to
be seen. Therefore, potentially Maximum Entropy combines the best features of all the
deconvolution methods.

To be able to understand the application of the Principle of Maximum Entropy to the
evaluation of rates of release or absorption, it is first necessary to understand something
about Bayesian inference. For this reason the first few sections in this chapter aim to
cover the basic principles of Bayesian inference, these are followed by sections which
cover the background of the development of the equations used to represent entropy. In
the latter sections of the chapter the Bayesian techniques are combined with those of
Maximum Entropy to show the evaluation of drug release rates through the employment

of both techniques.
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5.1 THE APPLICATION OF BAYESIAN METHODS

5.1.1 Basis of Probability Theory
Cox (1946) derived the basic product and sum rules for probability theory based on
the requirements of consistency. These are as follows :
P(A,B) = P(A). P(B|A)
= P(B). P(A|B)
and P(A + B) = P(A) + P(B) - P(A,B)
where  P(A,B) is the join probability of both A and B being true.
P(A) is the probability of A being true.
P(B|A) is the probability that B is true given that A is true.
P(B) is the probability that B is true.
P(A |B) is the probability that A is true given that B is true.
P(A + B) is the probability that either A or B is true (if A and B are mutually

exclusive the third term vanishes).

These two rules form the basis of Bayesian reasoning and probability theory which

are concerned with the process of inference, which is discussed in section 5.1.2.
5.1.2 Inference and Inverse Probability

The process of inference is the opposite to that of deductive reasoning. Suppose there
is an hypothesis h, some new data D and any previous information, I, then the process
of inference would reason along the lines of - given the new data D and any previous
information, I, what can be inferred about the hypothesis h? The concept of inference is
sound but it must be amenable to transplantation into a practical situation, i.e. how can

inferences be made quantitatively.

This is where the rules of probability theory become useful, and inference must be
examined in terms of the conditional probabilities of our hypothesis together with the new

data. In other words,‘ the value P(h|D.,I,), which is the probability of the hypothesis given
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the new data D, and any previous information possessed, (I;), must be examined. This is
known as the invers_e probability because the reasoning process goes from the observed
data to the hypothesis.

If the first of Cox’s rules is restated in terms of the hypothesis h and the data D then
the equation becomes

P(h,D | 1)

P(h|L). P(D|hL)
PM|L). P(ID,)

Rearrangement of this gives us Bayes’ Theorem :

P(h[D,I) = P(l|ly. P(D|h,Ip / P(D[Ip) (5.1)

The equation used for Bayes Theorem deserves some elaboration. The term P(h|L)
is known as the prior probability, it represents the existing state of knowledge before the.
new data is taken into account. P(D |h,L) is the likelihood and can be calculated from the
data itself, it is a measure of how close the data, D, fits the hypothesis. The expression
P(D|1,) is known at the evidence and can also be calculated from the data. P(h|D,L), the
quantity of interest, is known as the posterior probability and is the probability of the
hypothesis h after consideration of the new data D. Having defined the various terms of
Bayes equation it can seen that the essence of Bayesian inference is the revision of the
hypothesis h in light of the new data D. Bayesian analysis on its own is already used in

biopharmaceutical research (Louis 1991) to analyze data from multi-centre clinical trials.

Equation (5.1), as can be seen, goes some way to quantifying the process of inference
but if this equation is to be used in practical situations then a way must be found to
represent the initial state of knowledge about the hypothesis h, i.e. we must find a way
to assign a prior probability distribution to the hypothesis h.

To do this the technique of Bayesian inference must be combined with that of

Maximum Entropy.
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5.2 MAXIMUM ENTROPY

The Principle of Maximum Entropy is a method of assigning values to a distribution.
The entropy of a distribution represents of a measure of ignorance and, by selecting the
distribution which maximises this value, a distribution is obtained which contains only

structure for which there is evidence.

5.2.1 The Origins of the Maximum Entropy Equation

It should be stated initially that the entropy which forms the basis of this technique
is not thermodynamic entropy with which most people are at least partially familiar. It is
instead what is called information theory entropy which is an entirely different concept.
The confusion arises because the equation used to represent the information entropy is
very similar to that used to calculate the thermodynamic entropy in certain physical

situations.

The original equation was proposed by Shannon (1948) whilst he was working on the
theory of communication processes. In his article Shannon proposed that : if in a
communication process the message M, is assigned a probability P, then the entropy

S(P) represented by equation (5.2) gives a measure of "information."

S(P,) = - Z(P,)log(P,) (5.2)

Although not stated by Shannon, Jaynes (1983) surmised that the quantity S(P,) must
represent, not a measure of information, but the degree of ignorance possessed by the
communications engineer when designing the equipment through which the message was
to be sent. If this is so then, the probabilities assigned to individual messages M, cannot
be measurable frequencies (which is the more normal interpretation of the term
probability), instead they are a means of describing a state of knowledge about the system.
The distribution of P; which maximises the entropy S(P,) (subject to any constraints
imposed by the prior knowledge) will provide the least informative probability distribution

subject to that previous knowledge. This is the Principle of Maximum Entropy.
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5.2.2 Assigning Probability Distributions with Maximum Entropy

Suppose the hypothesis, h, is the value of a parameter and the estimate of this
parameter is to be updated in the light of new data, D, using Bayes Theorem. To do this
the probability distribution of the possible parameter values is needed. If the parameter
h can have any value h, between h, and h, then the entropy of the distribution can be
represented as shown in equation (5.3), where P(h,;|L) is the probability of the parameter

value being equal to h;.

S(h) = -znjp(h,.uf) log P(h, |I,) (5.3)
i=1

Suppose that the only prior knowledge is that the sum of the individual probabilities
must total one, as shown in equation (5.4).

1-YPGIL) = 0 (54)

i=]l

If this equation is incorporated into the basic entropy equation, equation (5.5) is
obtained (Bretthorst 1990).
- - - (5.5
Sth) = - ZP(h,. |1) log P (h,|1) + B, |1 - E P(h |1L)
i=1 i=1
where B, is a Lagrange multiplier
When the value of S(h) is a maximum the partial derivatives 5S(h)/5P(h;|I) and

3S(h)/8B, are equal to zero. The values of the unknown probabilities can be determined
by solving the n+1 equations for P(h,|I;) and B;.

When nothing is known about the possible value of the parameter except that the
probability distribution is normalised, the Maximum Entropy approach yields a uniform
distribution. However, if there is some reason to suspect that the parameter has a
particular value, then this knowledge can be incorporated into the constraints on the

entropy term and will therefore be taken into account when assigning the distribution.
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5.2.3 Application of Maximum Entropy to other Distributions

We have shown in the last section how the principle of Maximum Entropy can be
used to assign a probability distribution. However, using the Principle of Maximum
Entropy to assign values to a distribution, can be used on distributions other than those
of probability.

The probability distribution can, by definition, be described as a normalised positive
additive distribution. It is positive in the sense that P, > 0 , additive in the sense that the
overall probability is equal to the sum of the probabilities of its constituent parts and
normalised because the sum of these probabilities is 1. The probability distribution is only
one member of a family to which the Principle of Maximum Entropy can be applied, in
fact, the principle can be applied to any positive additive distribution even when non-
normalised, and Shannon’s equation can be adapted for this generalisation. One example
of a positive additive distribution (PAD) would be the intensity of light as a function of
position.

Suppose there is a PAD h which is a function of x then the Principle of Maximum
Entropy can be used to find the most probable distribution h(x), subject to any constraints
imposed by previous knowledge about the PAD h(x). Skilling (1989) showed that a
generalisation of Shannon’s equation to any PAD led to the following equation (5.6),

where d; is the measure assigned to cell i, and h(x) is represented by a vector h.

S(hd) = Z(h, - d, - hlog (h/d,)) (5.6)

In practice the vector d is used to hold the default values for the distribution h to
which h will tend in the absence of any knowledge about the distribution. Skilling (1989)
showed that the most probable value for the vector h could be found by maximising its
entropy S(h,d) as given by equation (5.6). Equation (5.6) can be extended to represent the

continuous function h(x) as follows.

S(hd) = S(h(x) - d@) - h(x) log Zg; ) (5.7)
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By using the Principle of Maximum Entropy in the form of equation (5.6) the most
probable value of any PAD can be assigned.

5.24 Positive Additive Distributions in Pharmacokinetics

In the previous sections, the use of the Principle of Maximum Entropy to assign the
most probable values to a distribution has been discussed. There appears to be little
application, so far, to pharmacokinetics in general, or prediction of drug release rates in
particular. However, if the process of drug absorption is examined it can be seen that the
rate of drug absorption is, in fact, a positive additive distribution since it can be regarded
as the distribution of the times each individual molecule takes to be absorbed.

This is not a new concept and has been used extensively to justify the use of
statistical moments in pharmacokinetic analysis (Riegelman and Collier 1980). In the same
way the rate of drug release from a dosage form can be regarded as a distribution of the
time which each individual molecule takes to leave the dosage form and reach the site of
absorption, and is therefore also a PAD.

Although the use of Maximum Entropy in pharmacokinetics is still not obvious, the
potential for application is now apparent since the Principle of Maximum Entropy can be
applied to PAD’s and the absorption and release rates of drugs can both be regarded as
PAD’s.

5.3 COMBINING MAXIMUM ENTROPY AND BAYESIAN INFERENCE
Perhaps at this point, the end objective of the inference should be restated, this is to

calculate the posterior probability distribution for our vector h. To do this the prior

probability distribution and the likelihood must be calculated and the product of these

used to find our posterior probability distribution, according to equation (5.1).

5.3.1 Representing the Prior Probability Distribution

At first glance the two previous sections seem to be totally divorced from each other,
however they are drawn together when the problem remaining at the end of the first
section is considered. How is the prior probability distribution of the hypothesis h to be

represented?
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Suppose the hypothesis was not a single value or even a theory, but was in fact a
distribution represented by a vector h, then the hypothesis is now, in effect, the values
held by the elements of the vector h.

In section 5.2 a method of representing the most probable values for a positive
additive distribution by maximising its entropy according to equation (5.6) was shown.
If the hypothesis h is not just a vector but a vector which is both positive and additive,
then in effect the hypothesis h is a PAD and the Principle of Maximum Entropy can be
used to assign the most probable values to the vector h, subject to any constraints imposed
by our prior knowledge of h.

This will give the most probable vector of h but will still not give the prior
probability distribution (P(h|L)) for the vector h. However, Skilling (1989) states that
the prior probability distribution P(h|I) must be some unknown but monotonically

increasing function of the entropy S(h,d) of the vector h (equation (5.8)).

P(h) = ®(S(h,d)) (5.8)

where @ is an unknown monotonically increasing function

He went on to show that ®(S(h,d)) = exp(agS) where o is some constant, and the
full expression for the prior probability distribution of h, P(h|d) is of the form shown in
equation (5.9) (Skilling 1989).

Phld) = exp (o, S(hd))
Z(0g) (5.9)
where Z,(0) = [dn exp (-0 S (hid))

The prior probability distribution is now determined almost completely and the only
unknown parameter remaining in the expression is 0. This cannot be evaluated a priori
and must be determined during the analysis. 0y is known as the regularising parameter,

the reason for which will become apparent later.
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5.3.2 Representing the Likelihood
The likelihood can be expressed as follows (Gull 1989)
P(Dlh) = &Xp (-L(h))

ZL
(5.10)

where  Z, fd”Dexp(—L(h))

and N number of cells in vector A

If the errors are Gaussian and independent then L is related to the * value but in
many cases the noise may not be well determined, and it is better to leave equation (5.10)

in its more general form.

5.3.3 Combining The Prior and Likelihood
The combined probability of the vector h and the data D can be expressed by Cox’s
product rule as shown previously in equation (5.1). Because the values of d and oy are

needed to be known then they must be included in equation (5.1) to give equation (5.11).

P(h,D|ctg,d) = P(h |0, d).P(D |h) (5.11)
= P(D). P(h|D,0,d)
therefore P(h|D,0,d) = P(h |0t,d).P(D |h) (5.12)

P(h[D,ag,d) =< Z, " Zg" exp (0xS(h,d) -L(h))

From equation (5.12) it can be seen that the posterior probability distribution is
proportional to Z; ' Z¢" exp (0zS(h,d) -L(h)) and the best estimate of h is one which will
maximise the entropy of the posterior probability distribution (P(h|D,0,d)), which also
happens to be one which maximises the value Q in equation (5.13) (Gull 1989).

Q = 0S(h,d) - L(h) . (5.13)

Therefore, the vector h found by maximising the value of Q, represents the revision

of the hypothesis h in light of the new data.
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5.34 The Regularising Parameter o,

If equation (5.13) is examined then it can be seen why o, is called the regularising
parameter since it controls the emphasis given to the entropy and the likelihood. When
O is large then the entropy term predominates and the vector h will be close to its model.
If o is small then the vector h will tend to fit to the errors in the experimental data and

the likelihood predominates.

5.3.5 Historic vs Classic Maximum Entropy

In the historic Maximum Entropy approach (Gull and Skilling 1984) the practice was
to set O so that the ® value was set to the number of independent data points in the data
D. In this event, the vector h could be found by maximising the entropy S(h,m), subject
to the constraint %%(h) = N (where N was the number of independent data points).

Using Bayesian analysis, Gull (1989) showed that the value of o should be selected
so that a measure -20S should be equal to the number of good singular values contained
in the data or the number of degrees of freedom associated with the entropy. The term -
20,8 is an expression of the amount of structure produced in the reconstruction. This
approach is called the classic Maximum Entropy approach and is regarded as the superior
approach since the optimal value for o has been found through Bayesian analysis and is

not an ad hoc value.

In summéry, the essence of the approach is that the values given to the
vector h are those which maximise the entropy of the posterior probability
distribution (found by finding the maximum value of Q), which itself is
found through the calculation of the likelihood and the prior probability

distribution.

5.4 MAXIMUM ENTROPY TECHNIQUES IN PHARMACOKINETICS
5.4.1 A Statement of the Problem
In the previous three sections the use of Maximum Entropy techniques for the

reconstruction of a vector representing a positive additive distribution has been described.
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In the section on the occurrence of PAD’s in pharmacokinetics, it was stated that both the
absorption and release rate of drugs can be regarded as PAD’s. Perhaps the best approach
to this section is a restatement of the information covered in previous sections from the
viewpoint of pharmacokinetics.

The objective is to find the release rate of a drug from a dosage form following
administration of that dosage form to a patient. If, after administration of the dosage form,
blood levels are taken, then a set of data can be obtained which is directly related to the
release rate of the drug from the dosage form.

Given this set of data, it is possible to make some inference about the release rate of
the drug. To do this it is necessary to return to Bayes Theorem (equation (5.1)) and

redefine its variables in terms of the current problem.

If the rate at which the drug is released from the dosage form is I(t), a continuous
function, which is represented by a vector I (where I, is the proportion of the dose
released in the period (i-1)At to i.At, and At is the time interval of the elements of the
vector I), and the set of data resulting from administration of the dosage form is
represented by the vector D, then the objective is to find the most probable values of the
vector I to represent the release rate of the drug, using information obtained from the data

D.

Charter and Gull (1987) proposed a method based on the Historic Maximum Entropy
approach to calculate the absorption rate of a drug. This has since been superseded by the
Classic Maximum Entropy approach whose application to drug absorption rates has been
described in more recent papers by Charter (1990 and 1991).

In section 5.3.3 it was shown that the optimum value for a PAD could be found by
maximising the value of Q in equation (5.13). In order to do this, the entropy and the

likelihood terms must first be calculated.

5.4.2 Calculation of the Entropy
The entropy of a PAD represented by a vector f can be assigned using equation (5.6).
S(f.d) = (£ - d, - flog(f/d) (5.14)
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where d represents the estimate of the distribution f before the start of the analysis.
Charter (1990) showed that the PAD f is not equivalent to the input rate I in which we

are interested, but can be related to it (see section 5.4.4).

5.4.3 Calculation of the Likelihood
If the errors in the data D are Gaussian, then the likelihood is essentially the chi
squared statistic (Charter 1990).

LD = 2 = 12(R-D)'V(R,-D) (5.15)
where V is the covariance matrix known to within a scaling factor o and R, = R,(t) are
the predicted data. The predicted data must be calculated in two stages, firstly the
distribution f must be transformed to the input rate I, which must then be used to

calculated the predicted plasma concentration R..

5.4.4 Calculation of Predicted Data
5.44.1 Prediction of the Input Rate from f
Charter (1990) showed that it was physically unrealistic to have an input rate
I which contained discontinuities. He justified this through a consideration of the
number of diffusive processes any one molecule being absorbed must undergo. The
consequence of this is that the input rate is constructed by creating a "blurred"”

version of the underlying distribution f according to equation (5.16).

I(t) = fC(x,t YAx) dx (5.16)
0

The operator C(x,t) which performs the "blurring” process is called the Intrinsic

Correlation Function (ICF) (Charter 1991).

5.4.4.2 Calculation of Predicted Data from Input Rate

If the kinetics of the drug in question are linear in the dose range being
considered, then the blood concentration after administration of the dosage form can
be calculated by convolution of the input rate I with the weighting function. The
weighting function is the plasma concentration time profile obtained following

administration of a unit bolus dose of the drug in solution given orally. Such profiles
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can generally be represented in pharmacokinetics by an equation of the following

form.

W(t) = 35, Ae™
(5.17)

]

|
M
Ly
S

where A

n =1 i

This equation is used in the convolution process to calculate R (f).

5.4.5 The Intrinsic Correlation Function

Charter (1990) showed that the degree of pre-blur incorporated into the ICF is
controlled by a single parameter, and the characteristics of the ICF are such that the width
of the blur produced with any given value of this parameter increases with time. The
incorporation of the ICF into the method gives one more parameter to be determined - the
width of the ICF. In practice this width is chosen to maximise the value of the term
logprob returned by memsysS5 at convergence. The value of the ICF width is not absolute
and if a plot of logprob vs ICF width is broad then the choice of the ICF width is not

obvious and many choices may be equally as good.

5.5 PRACTICAL IMPLEMENTATION

Only two sets of data are required for the practical implementation of the Maximum
Entropy approach, these are the parameters obtained following curve fitting of the
weighting data to a polyexponential and the plasma concentration values following
administration of the dosage form for which the release rate is to be estimated. This data
is used as input into the MAXENT program for use by the main module, memsysS5.

Certain parameters can be varied by the user, these include the ICF width, the number
and width of the vector elements and the initial default values for the vector 1. Further
details of the constfuction of the control files can be found in the MADAME users
manual.

The default values for the vector are usually set to a constant which is the reciprocal

of the number of vector elements, however, as long as the default values are reasonable
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they have little effect on the final estimated release rate. Changing the width and number
of vector elements changes the smoothness of the profile produced but does not greatly
affect the shape of the predicted release rate, the choice of both number and width are a
matter of personal preference. The ICF, as mentioned previously, performs a smoothing
function, and this more than any other factor can influence the shape of the predicted
release rate, runs should be performed at several ICF widths to provide some indication

of how the change in ICF width may affect the shape of the predicted release rate.
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6 EVALUATION OF MAXENT USING PSEUDO-EXPERIMENTAL DATA

The aim of the work presented in this chapter is to meet objectives (5) and (6) given
at the end of chapter one. That is to (a) investigate the stability of the Maximum Entropy
method to increasing levels of noise in the source data, and (b) investigate the ability of
the Maximum Entropy method to predict the form of unknown input functions, both of
these objectives to be obtained using pseudo-experimental data.

The application of Maximum Entropy to predict the input function will, in future, be
termed MAXENT. As in chapter 3, three different forms of input function were used to
examine the deconvolution methods and these three forms were the same as those used
previously. These were the :

(a) Monoexpénential Input Function

(b) Zero Order Release Function

(c) Controlled Release Input Function

The weighting function used in all cases was a triexponential equation with one
negative coefficient (see equation (3.1)). In all cases the pseudo-experimental data used
for the input, weighting and response functions was the same as that used in chapter 3 for
the equivalent form of input function.

As in chapter 3, two examinations were made. Firstly the effect on the predicted input
rate, from one data set, due to increasing levels of added noise and secondly, the effect
on the mean predicted input rate produced by MAXENT from multiple data sets

containing a constant level of added noise.

6.1 MONOEXPONENTIAL INPUT FUNCTION

The input function was represented by I(t) = 1.2e¢%, the weighting function by
equation (3.1) and the response function calculated by convolution of the input and
weighting functions according to the procedure given in section 2.3.2. This gives the true

data for the input, weighting and response functions shown in Table 1.
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6.1.1 Increasing Levels of Added Noise
6.1.1.1 Method

Noise levels of 1,5 and 10% were added to the values of the weighting and response
functions shown in Table 1 using the NAG subroutine GO5DDF (section 2.3.3) to give the
data for the weighting and response functions shown in Tables C(la) and C(1b) in
Appendix C.

The weighting data (Table C(1a)) was fitted to a polyexponential of the form shown
in equation (3.3) using the non-linear curve fitting routine described in section 2.1.1. The
number of terms was increased sequentially and the data re-fitted until there was no
significant reduction in the residual sum of squares as judged by the F test (section 2.4.1)
at P=0.05 and n=13 (n is the number of data points). The parameters obtained following
curve fitting are shown in Table 2(a).

The data in Table C(1b) was analyzed by MAXENT using the details shown. The
parameters from Table 2(a) were used to represent the weighting function in the
MAXENT program and the dose used for the response function was 0.6. The optimal
value of the ICF was found to be 0.16, this optimal value was found by performing
several runs over a range of ICF values and recording the values of logprob (see section
5.4.5) returned by the program. The optimal value of the ICF was that which
corresponded to the maximum value of logprob.

The vector used to represent the input function contained 50 elements each with a
time width of 0.05. The analysis was repeated using 80 elements with a width of 0.025

but no improvement in definition was seen.

6.1.1.2 Results

Both the input rate and the cumulative fraction input (CFI) produced by MAXENT
from data with 1% added noise were so close to those produced from error free data as
to be indistinguishable and have therefore been omitted from the graphs. The input rates
produced by MAXENT with increasing levels of added noise are shown in Figure 42 and
the cumulative input as a fraction of the total dose shown in Figure 43.

As can be seen from Figure 42, the estimated input rates produced by MAXENT are

all very similar, and all are very close to the true input rate. The only discrepancies occur
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at the very early time points, but even here the differences between the estimated and
true values are very small.

The CFI profiles like the input rates are all very close to the true value and show very
little change with increasing levels of noise. All the profiles show the correct shape of

both profiles very well.

6.1.1.3 Percentage Difference between Predicted and True Values
For each of the data sets shown in Figures 42 and 43 the percentage difference
between the true value and the predicted value for each point was calculated in the
following way. |
The percentage difference for the input rate was calculated as the absolute value of
the difference between the calculated input and the true input, divided by the true input
at t=0 and multiplied by 100, i.e.
%diff t) = | Cale. I(t) - True 1) | * 100 / 1.2
where 1.2 is the exact value of the input rate at t=0
The percentage difference for the cumulative fraction input was calculated as the
calculated fraction minus the true fraction multiplied by 100.
%diff fraction input = Icalc. value - true valuel * 100
Each data set comprised 39 values over a time range of 0.05 to 1.95 at intervals of
0.05, which was the output from MAXENT. The percentage differences, once calculated,
were averaged for each data set and the mean and standard error of the mean for these
values are shown in Table 41 for the estimated input rate values and Table 42 for the

estimated fraction input values.

Noise Level % JI 0% 1% 5% 10% |
Mean _" 1.27 1.38 1.75 1.81 |
|

SD 1.35 1.39 2.44 1.71
SEM || 0.217 0.224 0.390 0.273

Table 41 : Mean Percentage Difference for Input Rate Values shown in Figure 42 for Increasing Levels
of Added Noise.
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I Noise Level % 0% 1% 5% 10% I

[ Mean 0.083 0.242 1172
| SD 0.052 0.114 0.437
| SEM 0.008 0.018 0.069

Table 42 : Mean Percentage Difference for Cumulative Fraction Input Values shown in Figure 43 for
Increasing Levels of Added Noise.

All the percentage difference values are very small, both for the input rates and for
the CFI’s and at the higher noise levels the mean percentage differences are well below
the level of noise added to the original data. When the mean values calculated for the
input rate and CFI’s produced by MAXENT are compared with those produced by the
deconvolution algorithms for the equivalent input function (Tables 4 and 5) it can be seen
that MAXENT produces lower mean percentage differences at the higher noise levels than
all but the polyexponential algorithm, and the mean percentage differences are comparable

with this method.

6.1.2 Constant Level of Noise Added to Ten Data Sets
6.1.2.1 Method

The noise level for all the data sets was set to 10%, and ten data sets were generated
by addition of noise to the weighting and response function data shown in Table 1 using
the NAG subroutine GOSDDF (section 2.3.3). The ten data sets produced are shown in
Tables C(2) and C(3) in Appendix C.

The data sets shown in Table C(2) were fitted to a polyexponential equation of the
form shown in equation (3.3) using the non-linear least-squares fitting routine (section
2.1.1). The number of terms in the polyexponential was sequentially increased until there
was no significant improvement in the residual sum of squares as judged by the F test
(section 2.4.1) at P=0.05 and n=13. The parameters obtained following curve-fitting are
shown in Table 6.

The ten data sets were then processed using MAXENT according to the details given
below. The parameters from Table 6 were used to represent the weighting function for the

data sets, the dose administered for the response function was 0.6. The optimal ICF value



Chapter 6 : Evaluation of MAXENT using Pseudo-Experimental Data 195
was found to be around 0.4, in practice a value of 0.4 was used and the vector used to
represent the input function contained 50 elements with a width of 0.05.

Following the application of MAXENT the mean and standard error of the mean for
the ten data sets were calculated for the predicted input rates and the predicted CFI’s. The
estimated fraction of dose released, Fy, was calculated for each data set by taking the
maximum value reached on the CFI profile, up to and including t=1.9 to enable
comparison with the results produced by the deconvolution algorithms.

For each input rate the MDT,, was calculated according to the method given in
section 2.5.1 using equation (2.49) since the output vector from MAXENT holds the

fraction of dose released per vector element.

6.1.2.2 Results

The mean input rate and mean cumulative fraction input for the ten data sets were
plotted together with the standard error of the mean values (S.E.M.) and these are shown
in Figure 44.

The mean input rate shown in Figure 44 is a good reflection of the true input rate,
however it consistently overestimates the input rate at the later time points and the input
rate for the first few time points is also poorly approximated. The SEM values associated
with the mean input rate are very small, showing the consistency of the method in coping
with the noise present in the data. )

The mean CFI profile also gave a good approximation to the true profile with only
slight deviations seen from the true profile at the later time points. Like the mean input
rate the SEM values associated with the CFI profile are very small.

When the mean profiles shown in Figure 44 were compared with the corresponding
profiles produced for each of the deconvolution algorithms (Figures 9-12) the following
was observed. The mean input rate produced by MAXENT was a better reflection of the
true input rate than either of those produced by numerical or semi-numerical
deconvolution, was similar to that produced by polyexponential deconvolution (except at
the later time points) but is poorer than that produced by the polynomial deconvolution
algorithm, which gave a very good reflection of the true profile.

The CFI profiles are very similar for both MAXENT and all the deconvolution
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methods, however of all the profiles, that produced by polynomial deconvolution

approximated the true CFI most closely.

6.1.2.3 Estimated Fraction Released Fy
The estimated fraction of dose released, Fg, at t=1.9, for each subject produced by
MAXENT are shown in Table 43, together with the mean fraction released (I_zx), the

standard deviation (SD) and the standard error of the mean (SEM).

Subject | Fx I Subject | Fr I

1 1.062 6 0.900

2 0.944 7 1.032

3 1.002 8 1.045

4 1.049 9 1.035 "

5 1,005 10 0.982 |
Mean 1006  SD 0.0513 SEM 0.0162 |

Table 43 : Fraction of Dose Released predicted by MAXENT for a Release Rate of I(t) = 1.2¢* with
10% Noise Added to both Weighting and Response Functions

The mean fraction produced (1.006) was compared with the true value of 0.978 using
the t-test (section 2.4.2) at a probability level of P=0.05 and 9 degrees of freedom. The
value of 0.978 is the fraction of the dose released at t=1.9 calculated from the integral of
I(t) = 1.2, The t, value was calculated according to the formula given below, the mean
and SEM values were taken from Table 43.

t, = Fy - 0.978 / SEM
where I—*“R is the mean fraction released.

The value of t; calculated for MAXENT was (1.006 - 0.978) / 0. 0162 = 1.728.

The value of t, taken from the tables at P=0.05 and 9 degrees of freedom (t; g5y Was
2.26, since the calculated value of t; is less than the critical value taken from the tables
there is no significant difference between the mean fraction released predicted by

MAXENT and the true value at the 95% probability level.











































































































































































































































































































































































