NEW TECHNIQUES FOR THE
AUTOMATIC REGISTRATION OF
MICROWAVE AND OPTICAL
REMOTELY SENSED IMAGES

by

Paul Maxwell DARE

Submitted for the degree of
Doctor of Philosophy
at the

University of London

b
UCL

Department of Geomatic Engineering

University College London
Gower Street
London WCI1E 6BT

April 1999



%

%

&

). 101&%-1)

5
(
67+"893
&
(
8<'
3/3 $

*

T #

%/ & 0

" H4 " H#
3
; (
3
4
‘s 4

%

"85



ABSTRACT

Remote sensing is a remarkable tool for monitoring and mapping the land and ocean
surfaces of the Earth. Recently, with the launch of many new Earth observation
satellites, there has been an increase in the amount of data that is being acquired, and the
potential for mapping is greater than ever before. Furthermore, sensors which are
currently operational are acquiring data in many different parts of the electromagnetic
spectrum. It has long been known that by combining images that have been acquired at
different wavelengths, or at different times, the ability to detect and recognise features
on the ground is greatly increased. This thesis investigates the possibilities for

automatically combining radar and optical remotely sensed images.

The process of combining images, known as data integration, is a two step procedure:
geometric integration (image registration) and radiometric integration (data fusion).
Data fusion is essentially an automatic procedure, but the problems associated with
automatic registration of multisource images have not, in general, been resolved. This
thesis proposes a method of automatic image registration based on the extraction and
matching of common features which are visible in both images. The first stage of the
registration procedure uses patches as the matching primitives in order to determine the
approximate alignment of the images. The second stage refines the registration results
by matching edge features. Throughout the development of the proposed registration
algorithm, reliability, robustness and automation were always considered priorities.
Tests with both small images (512x512 pixels) and full scene images showed that the

algorithm could successfully register images to an acceptable level of accuracy.
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Chapter 1 INTRODUCTION

1.1 Data integration
Data integration is fast becoming a cornerstone of remote sensing. The ability to

accurately recognise features on the Earth’s surface relies heavily on the quality and the
nature of the im'ages used to map those features. Although Earth observation sensors are
becoming ever more sensitive, it is not always sufficient to use only one type of sensor
to map a particular area on the ground; if all the features in that area are to be mapped
accurately, then images from different sensors may be required. The process of
combining images from different sensors in this way is known as data integration. A
consequence of the integration of data sets from multiple sensors is increased spatial,
spectral and temporal resolution, increased reliability, and reduced ambiguity (Keys et
al., 1990; Rogers and Wood, 1990).

Nowadays, with the number of Earth observation satellites increasing at a phenomenal
rate, the acquisition of images from a multitude of sensors is not a significant problem.
Furthermore, developments in geographical information systems (GIS) mean that spatial
and temporal analysis of images is becoming far easier. However, a bottleneck in the
processing chain still exists between the acquisition and interpretation of multiple
images — this is the geometric and radiometric processing of images which needs to take
place so they can be compared and analysed in a common reference frame (Dowman,

1998).

Data integration describes the complete process of merging images from different
sources in order to create a single data set that can be used for analysis of features in the
merged image. Data integration does not only refer to combining data from different
sensors — it also covers integrating data acquired by the same sensor, but at different
times, in other words, temporal data integration as opposed to multisensor data
integration. The two main steps in the data integration processing chain (shown in figure

1.1) are the registration of the images to the same reference frame (image registration),

13



and the fusion of the point values in the images that correspond to the same area on the
ground (data fusion) (Pohl and van Genderen, 1998). Although only the geometric
correction component of the data integration procedure is relevant to this research, a
description of some data fusion techniques have been included in this chapter for

completeness.

Image acquisition from multiple sensors l

Geometric integration: image registration

Data integration

= o= =43 =

Radiometric integration: data fusion

Interpretation of merged data set I

Figure 1.1 Data integration processing chain

Data integration can have a number of applications in fields as diverse as medical
imaging, remote sensing, and robot vision. However, since research over the years has
often been application oriented, many of the techniques developed have become
application specific. This study is only concerned with the merging of remotely sensed
images (images of the Earth acquired from airborne or spaceborne sensors) and

therefore concentrates solely on research done in the field of Earth observation.

Remotely sensed Earth observation images have been available for a number of
decades. Initially, images were acquired by cameras mounted on aircraft, but as the
technology developed, new types of image acquisition systems were invented. Electro-
optical devices, known as scanners, were developed, which are able to acquire optical
images electronically without the need for photographic film — the images being stored
digitally in a solid state memory device. Developments in radar technology led to radar
imaging systems such as side looking airborne radar (SLAR) and synthetic aperture
radar (SAR). In the early 1970s many of these different sensors were taken into low
Earth orbit on board satellites and the first spaceborne remotely sensed images were
acquired. This wide variety of different sensors means that images of the Earth can be
acquired in mar‘l’zbdifferent wavelengths. This is extremely important since atmospheric

absorption limitsArange of wavelengths of electromagnetic radiation which can be used

14



%

%

8

%

%

%

%

%

%



%

%

&

&#'

%



transformed images are expressed in ground co-ordinates (since this is the co-ordinate

system of the map), so in this case the images have been rectified.

Although rectification removes the geometric effects of orientation from images, this is
not the only type of distortion present in images. Other distortions are due to sensor
anomalies, atmospheric refraction and terrain. All these different distortions seriously
compromise the geometry of the image, and if accurate measurements are to be made
from the image, then these distortions have to be eliminated. The process of removing
terrain and sensor distortions is called orthorectification (Wolf, 1983), and is described

in more detail in § 2.2.

Not all images have to be registered with each other in order to be merged; some groups
of multiple images are acquired in a common frame of reference. The pixels making up
these images can therefore be merged with each other without the need for image
registration. These are images that are simultaneously acquired by the same sensor at
the same time, the only difference between them being that they have been acquired in
different parts of the electromagnetic spectrum. However, this is the exception to the
rule, and in general images that have been acquired by the same sensor but at different
times, or by different sensors, have to be registered before pixels can be merged. The
accuracy of that registration will directly affect the quality of the data fusion, and

ultimately the usefulness of the final data set.

1.3 Data fusion
Data fusion is the merging of point measurements from images that are in the same

reference frame. It is not necessary that the data points being merged have been
acquired by different sensors, only that they come from different images. There are
numerous different ways of combining point measurements to highlight different
aspects of the images in the final merged data set, but three commonly used techniques
are (Pohl, 1996):

O arithmetic combination,;
O statistical combination; and

O colour combination.

Arithmetic combination of data sets is simply the combination of pixel values from
multiple input images using some function or formula to give a new output pixel value.

Addition and multiplication operations can be used to enhance characteristics of the

17













































































































































































































































































































































































































































































































































































































































































































































































































































