Duncker, Lea;
(2021)
Dynamical structure in neural population activity.
Doctoral thesis (Ph.D), UCL (University College London).
Preview |
Text
phd_thesis_Lea_Duncker_corrections.pdf Download (8MB) | Preview |
Abstract
The question of how the collective activity of neural populations in the brain gives rise to complex behaviour is fundamental to neuroscience. At the core of this question lie considerations about how neural circuits can perform computations that enable sensory perception, motor control, and decision making. It is thought that such computations are implemented by the dynamical evolution of distributed activity in recurrent circuits. Thus, identifying and interpreting dynamical structure in neural population activity is a key challenge towards a better understanding of neural computation. In this thesis, I make several contributions in addressing this challenge. First, I develop two novel methods for neural data analysis. Both methods aim to extract trajectories of low-dimensional computational state variables directly from the unbinned spike-times of simultaneously recorded neurons on single trials. The first method separates inter-trial variability in the low-dimensional trajectory from variability in the timing of progression along its path, and thus offers a quantification of inter-trial variability in the underlying computational process. The second method simultaneously learns a low-dimensional portrait of the underlying nonlinear dynamics of the circuit, as well as the system's fixed points and locally linearised dynamics around them. This approach facilitates extracting interpretable low-dimensional hypotheses about computation directly from data. Second, I turn to the question of how low-dimensional dynamical structure may be embedded within a high-dimensional neurobiological circuit with excitatory and inhibitory cell-types. I analyse how such circuit-level features shape population activity, with particular focus on responses to targeted optogenetic perturbations of the circuit. Third, I consider the problem of implementing multiple computations in a single dynamical system. I address this in the framework of multi-task learning in recurrently connected networks and demonstrate that a careful organisation of low-dimensional, activity-defined subspaces within the network can help to avoid interference across tasks.
Type: | Thesis (Doctoral) |
---|---|
Qualification: | Ph.D |
Title: | Dynamical structure in neural population activity |
Event: | UCL (University College London) |
Open access status: | An open access version is available from UCL Discovery |
Language: | English |
Additional information: | Copyright © The Author 2021. Original content in this thesis is licensed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) Licence (https://creativecommons.org/licenses/by-nc/4.0/). Any third-party copyright material present remains the property of its respective owner(s) and is licensed under its existing terms. Access may initially be restricted at the author’s request. |
UCL classification: | UCL UCL > Provost and Vice Provost Offices UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Life Sciences UCL > Provost and Vice Provost Offices > School of Life and Medical Sciences > Faculty of Life Sciences > Gatsby Computational Neurosci Unit |
URI: | https://discovery.ucl.ac.uk/id/eprint/10123907 |
Archive Staff Only
View Item |