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Abstract

We propose a general framework for modelling network data that is designed to

describe aspects of non-exchangeable networks. Conditional on latent (unobserved)

variables, the edges of the network are generated by their finite growth history (with

latent orders) while the marginal probabilities of the adjacency matrix are modeled by

a generalization of a graph limit function (or a graphon). In particular, we study the

estimation, clustering and degree behavior of the network in our setting. We deter-

mine (i) the minimax estimator of a composite graphon with respect to squared error

loss; (ii) that spectral clustering is able to consistently detect the latent membership

when the block-wise constant composite graphon is considered under additional con-

ditions; and (iii) we are able to construct models with heavy-tailed empirical degrees

under specific scenarios and parameter choices. This explores why and under which
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general conditions non-exchangeable network data can be described by a stochastic

block model. The new modelling framework is able to capture empirically important

characteristics of network data such as sparsity combined with heavy tailed degree

distribution, and add understanding as to what generative mechanisms will make

them arise.

Keywords: statistical network analysis, exchangeable arrays, stochastic block model, non-

linear stochastic processes.

MSC2010 subject classifications: 62G05,62R07,62E20, 62G20, secondary 53C20.

1 Introduction

The major problem facing modern network analysis is representing sufficient network

heterogeneity. Classically heterogeneity is not incorporated in popular models because

they are assumed exchangeable [10, 38]; e.g., the models are invariant to permutations,

and thus have no nodes that are “too extreme”. To capture additional heterogeneity

research has therefore focused on relaxing models away from standard forms of exchange-

ability [50, Borgs et al., 15], often modelling edge variables instead of formulating models

in terms of the network nodes.

Capturing more network heterogeneity requires us to pose a mechanism for the gen-

eration of non-exchangeable networks. In this paper we propose a mechanism that can

mimic temporal network growth, and is based on the popular graphon model [10, 38],

but is still able to capture additional variability. We shall call our model the ‘compos-

ite graphon model’, a special case of ‘latent order non-anticipatory graphs’, a dependent

network model class we introduce and describe in detail in Section 2. Our understanding

is encapsulated by using models of latent dependence, and we explore the performance

of standard network algorithms with data produced from such a generative model. These

networks exhibit power-law degrees and significant data heterogeneity, typical observed fea-

tures of non-exchangeability. The common types of data that could require such models

include for example citation networks [29], ecological networks [46], technological networks

such as the powergrid [40] or communications networks [17].

Mimicking the mechanism of network growth, or network evolution, to produce an

output network, is a very general idea. This idea can be said to be the genesis of other
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very popular frameworks such as the Barabasi–Albert network scheme [6], and temporal

evolution underpins the graph processes of Borgs et al. [14]. Borgs et al. [14] clarify the

complementary relationship of their models to those of [50], whose modelling framework

is nearly identical, even if their achieved results are naturally complementary. Our aim

is different: by introducing a model class that has a simple dependence parameter χn

(rather than a latent Poisson process) which then drives the degree of exchangeability

through controlling the probability of a run in consecutively generated edges, and then

understanding the effects on estimation in this setting for networks with n nodes.

Furthermore, it is important to study the application of standard network algorithms to

non-standard network data, as in practice we often cannot check if conditions of exchange-

ability are satisfied. Motivated by usage of composite likelihood in classical inference, we

develop a model with a parameter that quantifies departure from exchangeability. This

is the parameter χn > 0, quantifying the dependence strength of the latent variables.

By defining and studying the impact of χn on estimation, clustering and degree patterns

we conclude that when χn is small, the exchangability assumption is adequate even if

the true model is non-exchangeable, while the assumption is inadequate exactly when χn

approaches 1.

To be more concrete and granular, the contributions of this paper are fourfold. First,

we obtain the minimax estimator of the composite graphon model (as well as the composite

version of the stochastic block model) with the L2 loss function. Nonparametric regression

with stationary/non-stationary time series has already attracted increasing research atten-

tion; for example, see [25, 60, 54]. Our result can be considered as a network counterpart

of [26].

Second, we investigate spectral clustering for the composite stochastic block model,

which is the non-exchangeable counterpart of the existing results such as [43]. We find that

the spectral clustering algorithm is robust to certain dependence structure of edges, which

answers the question why the algorithm works well when the assumption of conditional

independence for the Stochastic Block Model (SBM) fails, for example see [44]. In addition

to in network science, spectral clustering has been applied in many scientific fields including

image analysis, data mining and speech recognition, see for instance [28] and [7], where we

do not know of any latent dependence strength.

Third, we construct a model with a heavy-tailed degree distribution by considering
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an unobserved latent order ω(·, ·) and certain dependence structure of the edge variables.

This shows a new mechanism resulted from the missing information of correlation between

edges that can produce a power law degree distribution that is not preferential attachment

model [6], [41] nor the inhomogeneous edge connection probability model [37], or dropping

the assumption of array exchangeability [51], [50].

Fourth, we establish a theoretical framework for the analysis of network data with

latent time–order non–anticipatory edge structure by developing a concept closely related

to the notion of dependence measure ([55]) in the literature of time series analysis in which

area a similar framework has been successfully set up to accommodate non-stationarity

(see for example [59]). This motivates us to develop many useful mathematical tools in

this paper.

The paper is organized as follows. Section 2 introduces our notation and basic model

structure. Section 3 introduces a dependence structure for the edges. The composite

graphon and its minimax estimator are investigated in Section 4. The composite SBM

and the spectral clustering algorithm are studied in Section 6. In Section 7 we investigate

via an example the basic behaviour of Latent time-order graphs, especially in the case

when the dependence is strong. Finally, the proofs of most results are relegated to the

supplementary material.

2 Notation and the Composite Graphon Model

For any set A, let |A| denote the cardinality of A. For a positive integer n, we write

[n] = {1, 2, ..., n}. For n–dimensional random vectors v = (vi, 1 ≤ i ≤ n) and u = (ui, 1 ≤
i ≤ n), write (vi, 1 ≤ i ≤ n)

d
= (ui, 1 ≤ i ≤ n) if v and u have the same distribution.

For two numbers i, j, denote by {i, j} the collection of i and j, e.g. {i, j} = {j, i} and

{i, i} = {i}. Whenever the notation {i, j} appears, by default we assume that i 6= j.

Let {[n], [n]} denote the set {{i, j}, 1 ≤ i ≤ n, 1 ≤ j ≤ n}. Denote by 1(·) the usual

indicator function which is one if the corresponding event is true and zero otherwise.

Write a ∧ b for min(a, b), and a ∨ b for max(a, b). For a graph with adjacency matrix

Ai,j, its marginal probability is the collection of {P(Ai,j = 1), {i, j} ∈ {[n], [n]}}. Each

Ai,j indicates the presence of an edge between node i and j, and we refer to it as an edge

variable. It is only an edge if Ai,j = 1. The joint probability of the graph adjacency
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matrix is P(Ai,j = ai,j, {i, j} ∈ {[n], [n]}) for {ai,j, {i, j} ∈ {[n], [n]}} ∈ {0, 1}N with

N = n(n − 1)/2. For fixed (i, j), we say Ai,j is a edge variable between nodes i and j.

When Ai,j = 1, we say that there is a linked edge between i and j. Let 00 = 1 as per usual.

For any vector V = (v1, ..., vd) ∈ Rd, let ‖V‖ =
√∑d

i=1 v
2
i , and ‖V‖Lp = E((

∑d
i=1 v

p
i )

1/p).

With this notation, we will describe the technical framework that we use to quantify a

network’s departure from exchangeability. We note that lack of exchangeability is a non-

property. Non-properties are notoriously hard to quantify, and are in fact not uniquely

quantifiable. A network can be non-exchangeable in more than one possible manner. Our

method of quantifying departure from exchangeability is merely a possible choice; a non-

unique and possibly an imperfect choice. It allows us to quantify that under mild forms

of non-exchangeability standard network analysis tools are still applicable and useful. We

shall start by proposing a model which allows us to adjust the degree of departure from

exchangeability.

Definition 2.1. Composite Graphon Model. We say a network with adjacency matrix A

is generated by the composite graphon model f(·, ·) with respect to a series of latent i.i.d.

random variables {ξi, 1 ≤ i ≤ n} if

(a) P(Aij = 1|ξi, ξj) = f(ξi, ξj) for some symmetric integrable function f(·, ·) ∈ [0, 1];

(b) There exists a bijective map ω(·, ·) : [n], [n] → [n(n−1)
2

], such that conditioning on

latent variables {ξi}, Bs = Aω−1(s) forms an order l Markovian chain for some l ≥ 0;

where we call l the long memory parameter, and we include the parameter dependence

strength χn which we discuss in Proposition 4.1 in detail.

The complete and rigorous definition of a composite graphon is provided in Section 4,

but we give this intuitive definition here to motivate further developments. When l = 0,

the composite graphon reduces to the usual graphon model. We say a network follows a

composite stochastic block model (composite SBM or CSBM) if the composite graphon

f(·, ·) of its adjacency matrix is block-wise constant, just like composite likelihood ignores

correlations. In fact, the likelihood of composite graphon/SBM is the composite likelihood

[49] of graphon/SBM, which motives the name of model. By varying the parameter χn

continuously we go from a standard exchangeable network, to one exhibiting increasing

dependence between the edge variables.
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3 A Graph Sequence Model and a Graph Dependence

Measure

Consider a sequence of graphs {Gn} with adjacency matrices {An}. For a series of 1 − 1

corresponding mappings ωn({·, ·}): {[n], [n]} → [N ], define the dependence measure of the

adjacency matrices w.r.t ωn({·, ·}) to be

∆n(k) := max
s∈{0,1},i,j

|P(Aωn({i,j}) = s|Fωn({i,j})−k)− P(Aωn({i,j}) = s)|, (3.1)

where Fi = (B−∞, ..., Bi), and Bωn(i,j) = Ai,j,n.

For convenience, we let Bs, s ≤ 0 follow an i.i.d. Bernoulli(1/2) law and be independent

of {Bs, 1 ≤ s ≤ N}. In our paper, we call {Bs}1≤s≤N the “ordered edge variables with

respect to ω”. Note that for a sequence of graphs, their adjacency matrices form an array

of dependent Bernoulli random variables, with the nth row of the array corresponding to

edge variables of a size n graph ordered by ωn({·, ·}). We call Ai,j edge variables, and

Bs the ordered edge variables. For each graph Gn, its edge variables behave as a time

series indexed by ωn({i, j}). The quantity produced by (3.1) is closely related to the

physical and predictive dependence measure introduced by [55] that quantifies the degree

of dependence of outputs on inputs in (nonlinear) physical systems. It is easy to compute

for many stochastic process and has been used to quantify the strength of dependence

in both stationary and non-stationary time series, see for example [60], [54] among many

others. We both introduce the dependence measure to networks, and use it to characterise

dependence in our network sequence. The dependence measure (3.1) can be tailored to

network data and is easy to calculate due to Bernoulli random variables being bounded by

unity.

In Corollary 4.1 we show that for the non-exchangeable network models built in this

paper, a uniform M ≥ 0 and a series χn exist, such that ∆n(k) ≤Mχ
|k|
n , i.e. for each Gn,

the dependence measure for its edge variables is geometrically decaying with respect to

ωn({·, ·}), which we refer to as the Geometric Convergence (GC) assumption. We refer to

χn as the dependence parameter.

Graph sequence models have been well studied in the literature. Among others, for

example, [12] studied the metrics for sparse graphs via a graph sequence model; [10] estab-

lished a graph sequence model with a scaling parameter ρn to address the sparsity issues
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for exchangeable graph model; and [38] approximated the graphon model. The minimax

rate of the estimation of sparse graphon sequence model was studied by [32] and others.

4 Latent Non-Anticipatory Order Graphs

Subsequent to this section, we omit the subscript n if this omission produces no potential

for ambiguity. We formulate the Composite Graphon Model (CGM) in this section, which

corresponds to a special case of a Latent Non–Anticipatory Order Graph, defined as per

below. We take inspiration from the non-linear Wold representation used in [55] to build

graphs that have latent dependence structure. We can generalize the composite graphon

model by the following framework.

Definition 4.1. We say G is a undirected, edge-based and finite memory Latent Non-

Anticipatory Order Graphs w.r.t. latent variables ξ = (ξ1, ..., ξn) and mapping ωn(·, ·)
if conditionally on the latent variables ξ, there exists a finite k, such that for all i, the

conditional distributions of the edge variables Bω(i,j) = Ai,j, i 6= j

P(Bi|Bi−1, ..., B−∞, ξ) = P(Bi|Bi−1, ..., Bi−k+1, ξ), (4.1)

where edge variables {Bj, j ≤ 0} correspond to the burn-in process, which could be chosen

as i.i.d. Bernoulli(1/2) independent of Bs, 1 ≤ s ≤ N . Let l be the smallest k such that

(4.1) holds. Then we say G has a memory parameter l.

The “burn-in process” (e.g. the parameter l) has little impact on the network, rather

like the starting values for a time series autoregressive (AR) model. The Latent Non-

Anticipatory Order Graph has memory parameter l and has the property that the proba-

bility of linking an edge variable relies on the past l− 1 network edge variables. Note that

there are network models such that the linkage probability of every edge variables depends

on all the edge variable generated before it. Such models are not Latent Non-Anticipatory

Order graphs. An important example is the preferential attachment model ([6]), which

we will further discuss in Remark 7.1. Recently the asymptotic normality of the affine

preferential attachment network models has been studied by [27].

Consider a latent time-order graph with memory parameter l and w.r.t. the map

ωn({·, ·}). Define Ui = (Bi, ..., Bi−l+1)T . Denote by X ∈ Rl the set of l-dimensional binary
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vectors with all entries 0 or 1. The following proposition shows that the dependence

between Ai,j and Ak,l decreases as |ωn({i, j})− ωn({k, l})| increases.

Proposition 4.1. Consider a Latent time-order graph with memory parameter l and

mapping ωn(·, ·). Assume mina,b∈X×X P(Ui = a|Ui−l = b, ξ) ≥ α′ > 0. Then uniformly for

i, k and for all ui, ui−k ∈ X , we have that for k > l,

P(Ui = ui|Ui−k = ui−k, ξ)− P(Ui = ui|ξ) = O(χkp̃),

where χ = (1− 2α′)1/l, and the latent variable ξ is defined in Definition 4.1. Take

p̃ = max
1≤s≤l−1

max
1≤i≤n

max
a
|max

b
P(Ui = a|Ui−s = b, ξ)−min

b
P(Ui = a|Ui−s = b, ξ)|.

Notice that if given ξ, l = 0 and {Bi} is an independent series, then p̃ = 0.

This proposition shows the implication of Definition 4.1. When a graph sequence model

is considered, α may in fact depend on n. In that case we shall write Ui,n for Ui. For each

n, we assume Ui,n is an order one Markov process. At this time, χ depends on n and

we denote it by χn when it is important to emphasise the size-dependent relationship. In

this article we assume that χn < 1. When χn → 1, p̃ will be strictly bounded away from

zero. Hence χn can be regarded as a proxy of dependence strength. By a straightforward

argument using the Markov property, we have the following corollary:

Corollary 4.1. Under the conditions of Proposition 4.1, we have that

∆n(k) = max
1≤i≤N,
bs∈{0,1},

1−k≤s≤i−k

|P(Bi = bi|Bs = bs, s ≤ i− k, ξ)− P(Bi = bi|ξ)| = O(χk), (4.2)

where χ is defined in Proposition 4.1.

If |χ| ≤ 1 − ε for some ε > 0, then we say the latent time-order graph sequence is

short-range dependent w.r.t. ω({·, ·}). In this case equation (4.2) implies a geometric

decay of P(Bi = bi|Bs = bs, s ≤ i − k, ξ) − P(Bi = bi|ξ) in k. This shows a stronger link

with an AR(1) process where the term P(Bi = bi|Bs = bs, s ≤ i − k, ξ) plays the role of

conditional expectation of an observation on another observation k steps ahead from an

AR(1) process.
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Definition 4.2. (Composite graphon model) A Latent time-order graph is a composite

graphon model with respect to i.i.d. latent variables ξi if

θi,j := P(Ai,j = 1|ξ1, ..., ξn) = fn(ξi, ξj), i 6= j (4.3)

for some symmetric function fn(·, ·). If in addition fn(·, ·) is block-wise constant in the R2

plane, then we call (4.3) a composite stochastic block model (composite SBM). We shall

omit the subscript n when no confusion can arise.

The parameter of interest in (4.3) is independent of the mapping ω(·, ·). This fact is

crucial for estimating the composite graphon model without estimating ω(·, ·). Indeed,

model (4.3) is quite flexible, including the usual graphon model as its special case. We

then present a general pseudo algorithm for constructing the composite graphon model

with memory parameter l. For ω({·, ·}), define ω−1 : [N ] → {[n] × [n]} as ω−1(k) =

{{i, j}, ω({i, j}) = k}. For any series ξi, i ∈ Z, denote by ξ{i,j} = {ξi, ξj} for short. From

the generative pseudo–algorithm Algorithm 1, we see that the joint distribution of the

edge variables of the composite graphon model, as well as dependence strength χn, is fully

determined by the following (infinite dimensional) parameters:

(i) f(ω−1(i)), 1 ≤ i ≤ N ,

(ii) P(Bi = 1|Ui = ui, ξ) for 2 ≤ i ≤ N , ui ∈ {0, 1}i−(i−l+1)∨1 with constraints (4.4) for

2 ≤ i ≤ N .

In the classic case, the first of these specifications is solely via the graphon function, while

specification in (ii) breaks the model exchangeability, and so makes the model more flexible.

We recover the classic graphon model when P(Bi = 1|Ui = ui) = P(Bi = 1) = f(ω−1(i)).

For any composite graphon model (4.3), we define its associated composite graph as follows.

Definition 4.3. We say G̃ is a composite graph with respect to a composite graphon

model G from (4.3) and with respect to i.i.d. latent variables zi following U(0, 1), if (i)

V (G) = V (G̃) where V (G) (or V (G̃)) is the vertex set of G (or G̃), and if (ii) P(Ãi,j =

1|ξ) = f(ξi, ξj) where Ãi,j is the edge variables of G̃ and (iii) conditioning on ξi, 1 ≤ i ≤ n,

the edge variables {Ãi,j, 1 ≤ i < j ≤ n} are independently distributed.
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Algorithm 1 Generative Pseudo Algorithm

1: Generate ξ1, ..., ξn. Calculate f(ξi, ξj).

2: For given ω, we first generate B1 as P(B1 = 1|ξ) = f(ξω−1(1)).

3: Generate B2 by two parameters P(B2 = 1|B1 = 1, ξ) and P(B2 = 1|B1 = 0, ξ), which

satisfies that f(ξω−1(2)) = P(B2 = 1, B1 = 1) + P(B2 = 1, B1 = 0), where

P(B2 = 1, B1 = 1|ξ) = f(ξω−1(1))P(B2 = 1|B1 = 1, ξ),

P(B2 = 1, B1 = 0|ξ) = (1− f(ξω−1(1)))P(B2 = 1|B1 = 0, ξ).

By using P(B2 = 0|B1, ξ) = 1 − P(B2 = 1|B1, ξ), in step 2 we have constructed a

two-dimensional multivariate Bernoulli model (B1, B2).

4: for i = 1 to N − 1 do

5: Generate Bi+1 by parameters P(Bi+1 = 1|Ui = ui, ξ) which satisfy the following

constraints:

P(Bi+1 = 1|ξ) = f(zω−1(i+1)) =
∑
ui

P(Bi+1 = 1|Ui = ui, ξ)P(Ui = ui|ξ), (4.4)

for ui ∈ {0, 1}i−((i−l)∨1), where P(Ui = ui|ξ) could be obtained by the (i+ 1− ((i− l+

1) ∨ 1))-dimensional multivariate Bernoulli model generated in previous iteration.

6: end for with output B1, B2, ..., BN .
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The composite graphon f(·, ·) is the limit of the composite graph in the sense of [35].

For any simple graph F with vertex set V (F ), the integral of composite graphon f(·, ·) on

V (F ) corresponds to a homomorphism density (see the definition in Section 5.2.2 of [35])

of F in the composite graph.

Our model connects to the graph limit and convergence in the language of [35] in a

marginal way similar to the “composite” concept in the classic statistics literature, see for

instance [49]. Furthermore, [15] introduces a latent birth time concept, which is similar

to our latent order concept in that it is also temporal. The differences lie in the fact that

their latent birth time is for each vertex, while our latent order is for each edge variable,

and more fundamentally, lie in the procedure that they drop this latent birth time in their

final step to make the model exchangeable such that the labels carry no information while

our model is not exchangeable by assuming the information of the labels is missing. As a

consequence, [15] involves additional cost for the exchangeability.

Throughout the paper, we shall focus on the composite graphon model given in (4.2).

For α ∈ (0, 1] and a sufficiently large constant M , we define the Hölder class

Hα(M) : = {f : |f(x, y)− f(x′, y′)| ≤M(|x− x′|+ |y − y′|)α, x ≥ y, x′ ≥ y′,

f symmetric} ,

for all x ≥ y, x′ ≥ y′. We consider the following scenarios:

(A) f(·, ·) is a block-wise constant symmetric function, or

(B) f ∈ Fα(M), where Fα(M) = {0 ≤ f ≤ 1 : f ∈ Hα(M)}.

Under (A), our model reduces to the composite stochastic block model (composite SBM).

Under (B), the composite graphon f(·, ·) is smooth and estimable. The smoothness is

assumed by for example [26], [32], [38], [1] (which assumes α = 1) among others.

4.1 Inhomogeneity of the Composite Graphon Model

In this subsection, we explore the inhomogeneity introduced by conditional dependence via

studying examples of composite SBM with memory parameter 1. The memory parameter

is given by Definition 4.1. Note that the memory parameter 0 corresponds to the classical

stochastic block model.
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4.1.1 Inhomogeneity introduced by communities

We first consider the composite SBM with fixed k communities constructed as follows.

Define the map γ : [n] → [k], which assigns n nodes into k different groups. Define

γ̃ : {[n] × [n]} → {[k] × [k]} as γ̃(i, j) = {γ(i), γ(j)}. We shall construct a composite

SBM such that the edge variable connection probability depends on its previous edge

variable with respect to latent (and unobservable) map ω. For this purpose, let q, l be the

numbers such that {q, l} = γ̃(ω−1(ω({i, j})− 1)), i.e., q, l are the communities of vertices

of Bω({i,j})−1. Assume

Ai,j = Bw({i,j}) ∼

{
Bernoulli(%0,q,l

γ(i),γ(j)) if Bω(i,j)−1 = 0

Bernoulli(%1,q,l
γ(i),γ(j)) if Bω(i,j)−1 = 1

. (4.5)

The probability of linking (i, j) depends on its “parent” edge variable Bω(i,j)−1, and the

communities of the four nodes q, l, γ̃(i, j). Conditioning on the latent memberships, (4.5)

reduces to an inhomogeneous two-state Markov process. Recently in time series analysis,

researchers have developed certain inhomogeneous models to characterise non-stationarity

of integer-valued and categorical data, see for example [47]. To define a composite SBM

with k groups such that f(ξi, ξj) = θγ(i)γ(j) for k(k+1)
2

connection probabilities {θi,j, i, j ∈
[k], θi,j = θj,i}, using Algorithm 1, we specify a composite SBM with the parameters

{%u,c,da,b , u ∈ {0, 1}, {a, b, c, d} ∈ [k]4} satisfying the following constraints:

(a) For 1 ≤ i ≤ j ≤ k,

%i,j =
%0,i,j
i,j

1 + %0,i,j
i,j − %

1,i,j
i,j

.

(b) For 1 ≤ i ≤ j ≤ k, 1 ≤ s ≤ l ≤ k, {s, l} 6= {i, j}, %0,s,l
i,j and %1,s,l

i,j satisfy

%i,j = %0,s,l
i,j (1− %s,l) + %1,s,l

i,j %s,l.

In fact, each sub-chain that maps (i, j) → (i, j) describes a homogeneous Markov chain,

i.e., if we consider any consecutively generated edge variables which connect the vertices

that belong to the same pair of groups (i, j), then these edge variables form a homogeneous

Markov Chain with stationary probability (%i,j, 1 − %i,j). If k = 1 (corresponding to the

scenario of only one group), constraints (a), (b) degenerate to a strictly stationary 2-

states Markov process. From this point of view, the inhomogeneity is introduced by the

specification of communities with stationary probabilities (%1,1, 1− %1,1).
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4.1.2 Inhomogeneity Introduced by Individuals

Another source of inhomogeneity is due to the dependence introduced by the latent position

ωn(i, j). Consider the single group, or k = 1 case. As described by the algorithm under

definition 4.2, another composite SBM could be specified by

%1,1 =
q0,i

1− q1,i + q0,i

=
q0,j

1− q1,j + q0,j

for 1 ≤ i < j ≤ N, (4.6)

where q0,i = P(Bi = 1|Bi−1 = 0) and q1,i = P(Bi = 1|Bi−1 = 1). It is not hard to see that

(4.6) defines an inhomogeneous Markov chain. The conditional connection probabilities of

the edge variables depend on the its ordered edge variables’ positions in the history of the

Markov chain. Since all nodes belong to the same community, the inhomogeneity is evident

only at the individual level. This is very different from its Erdős-Rényi counterpart, in

which each node is stochastically equivalent.

5 Minimax Rate Estimator of the Composite Graphon

In this section, we discuss the minimax estimator of the composite graphon with respect

to squared error loss. Let Zn,k = {z : [n]→ [k]} be the collection of all possible mappings

from [n] to [k]. Then for any z̄ ∈ Zn,k, {z̄−1(a) : a ∈ [k]} forms a partition of [n], or

equivalently: ∪a∈[k]z̄
−1(a) = [n] and z̄−1(a) ∩ z̄−1(b) = ∅ for any a 6= b ∈ [k]. In the

following, we adopt the notation of [26]. Define

η̄ab(z̄) =
1

|z̄−1(a)||z̄−1(b)|
∑

i∈z̄−1(a)

∑
j∈z̄−1(b)

ηij for a 6= b ∈ [k],

η̄aa(z̄) =
2

|z̄−1(a)|(|z̄−1(a)| − 1)

∑
i∈z̄−1(a),j∈z̄−1(a),i<j

ηij for a ∈ [k], |z̄−1(a)| > 1,

where A = Ai,j is the adjacency matrix. In this section, let θi,j = P(Ai,j = 1|ξ) = f(ξi, ξj).

Define the estimate θ̂ij = Q̂ẑ(i)ẑ(j) where

(Q̂, ẑ) = argmin
Q∈Rk×ksym,z̄∈Zn,k

L(Q, z̄), (5.1)

L(Q, z̄) =
∑
a,b∈[k]

∑
(i,j)∈z̄−1(a)×z̄−1(b),i<j

(Aij −Qab)
2. (5.2)

13



This procedure (5.1) is referred to as minimizing combinatorial least squares (see [26]). The

word combinatorial is inserted, as we need to determine group membership (z) which is a

combinatorial problem, rather than solely estimating a parameter by weighted averaging.

Straightforward calculations show that Q̂ab = Āab(ẑ) for all a, b ∈ [k]. Therefore similarly

to [53] we propose a block constant estimates for the composite graphon model. For this

purpose, we define

Θk = {{θ�i,j} ∈ [0, 1]n×n : θ�i,i = 0, θ�i,j = Qab = Qba, ∀(i, j) ∈ z̄−1(a)× z̄−1(b),

for some Qab ∈ [0, 1], z̄ ∈ Zn,k}.

Define the true value on each block by {Q∗ab} ∈ [0, 1]k×k, and the oracle assignment z∗ ∈
Zn,k, writing θi,j = Q∗z∗(i)z∗(j). For each estimate ẑ, define Q̃ab ∈ [0, 1]k×k by Q̃ab = θ̄ab(ẑ)

and θ̃i,j = Q̃ẑ(i)ẑ(j) for i 6= j. For all i ∈ bnc, let θ̂i,i = θ̃i,i = θi,i = 0 (as we have assumed no

self loops). Define na = |z̄−1(a)|. We first consider the composite SBM model. Recall the

definition of χn from Corollary 4.1. In this section, we assume that the memory parameter

is bounded.

Theorem 5.1. Considering the composite SBM model Gn with k groups. Assume the

conditions of (A) hold. For any constant C ′ > 0, there is a constant C > 0 which only

depends on C ′, such that

1

n2

∑
i,j∈[n]×[n]

(θ̂i,j − θi,j)2 ≤ C

(
k2

n2
+

log k

n

)
(1− χ)−2

with probability at least 1− exp(−C ′n log k) uniformly over θ ∈ Θk, and

sup
θ∈Θk

E
{

(θ̂i,j − θi,j)2
}
≤ C1

(
k2

n2
+

log k

n

)
(1− χ)−2

for all k ∈ [n] with some universal constant C1 > 0.

Proof. This proof proceeds along the lines of [26]. By using the fact that L(Q̂, ẑ) ≤
L(Q∗, z∗), we have that

‖θ̂ − θ‖2 ≤ 2〈θ̂ − θ, A− θ〉.

14



Direct calculations show that

〈θ̂ − θ, A− θ〉 ≤ ‖θ̃ − θ̂‖

∣∣∣∣∣
〈

θ̂ − θ̃
‖θ̂ − θ̃‖

, A− θ

〉∣∣∣∣∣+ (‖θ̃ − θ̂‖

+‖θ̂ − θ‖)

∣∣∣∣∣
〈

θ̃ − θ
‖θ̃ − θ‖

, A− θ

〉∣∣∣∣∣ . (5.3)

Define for any z̄ ∈ Zn,k,
θ̂(z̄) = argmin

Q∈Rk×ksym

L(Q, z̄),

and θ̃(z̄) = argminQ∈Rk×ksym
L̃(Q, z̄), where

L̃(Q, z̄) =
∑
a,b∈[k]

∑
(i,j)∈z̄−1(a)×z̄−1(b),i<j

(θij −Qab)
2.

Note that θ̃ = θ̃(ẑ). Thus, by the property of least squares estimator, we have that ‖θ̃−θ‖ ≤
‖θ̂ − θ‖. As a result, we have

‖θ̃ − θ̂‖ ≤ 2‖θ̂ − θ‖.

It follows from Lemmas D.2 and D.3 in the supplementary material that the terms∣∣∣∣∣
〈

θ̂ − θ̃
‖θ̂ − θ̃‖

, A− θ

〉∣∣∣∣∣ ,
∣∣∣∣∣
〈

θ̃ − θ
‖θ̃ − θ‖

, A− θ

〉∣∣∣∣∣ , (5.4)

could be bounded by
√
k2 + n log k(1−χ)−1 with probability at least 1− exp(−C ′n log k).

Finally, the theorem follows from combining (5.3)–(5.4). �

Note that when a graph sequence model is considered, the factor χ = χn is allowed to

depend on n. This is discussed further in Remark 5.1. Regarding the convergence rate,

the term k2

n2 corresponds to the estimation of k2 unknown parameters with an order of

n2 observations (edge variables), and the term log k
n

corresponds to clustering rate, see for

example [26] and [32]. Meanwhile, the term (1−χ)−2 is the effect of the non-exchangeability

due to the latent order ω({·, ·}) and the conditional dependence between edges given latent

variables (ξi). When p0 = p1, our model reduces to the usual SBM. In this situation, the

second part of the convergence rate degenerates to a constant, while the first part agrees

with the rate in [26], which has been shown to be rate optimal.
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Consider the composite graphon model generated from Algorithm 1 and specified by

{ξ1, ..., ξn, A, ω({·, ·}), l} with symmetric composite grahon f(·, ·), i.e., θi,j = f(ξi, ξj), where

latent variables {ξi, 1 ≤ i ≤ n} are i.i.d U(0, 1), ω is the latent order of edge variables

and l is the memory parameter. When f ∈ Fα(M), which is the bounded Hölder’s class

defined in (B) of Section 4, arguments of Gao et al. (2015) show that there exists an oracle

([53]) z+
k ∈ Zn,k such that for some universal constant C > 0,

1

n2

∑
a,b∈[k]

∑
i 6=j:z+k (i)=a,z+k (j)=b

(θi,j − θ̄a,b(z+
k ))2 ≤ CM2(

1

k2
)α∧1. (5.5)

Consider

(θ∗, z∗) = argmin
Q∈Rk×ksym,z∈Zn,k

L̃(Q, z), L̃(Q, z) =
∑
a,b∈[k]

∑
(i,j)∈z̄−1(a)×z̄−1(b),i<j

(θi,j −Qab)
2.

By choosing k = n
1

(1+α∧1) , we have the following theorem:

Theorem 5.2. Consider a composite graphon model G = {ξ1, ..., ξn, A, ω({·, ·}), l} Assume

the conditions of (B) hold. Then there exist constant C,C ′

1

n2

∑
i,j∈[n]

(θ̂i,j − θi,j)2 ≤ Cn
−2(α∧1)
1+α∧1 (1− χ)−2 log n

with probability at least 1− exp(−C ′n), uniformly over f ∈ Fα(M). Furthermore,

sup
f∈Fα(M)

E

 1

n2

∑
i,j∈bnc

(θ̂i,j − θi,j)2

 ≤ C1n
−2(α∧1)
1+α∧1 (1− χ)−2 log n, (5.6)

for some constant C1 > 0.

Proof. By similar arguments to those of [26], we have that

‖θ̂ − θ∗‖ ≤ max{16(D + C)2, 4(B +D)E}, (5.7)

where

E = ‖θ̃ − θ̂‖ ≤ 2‖θ̂ − θ‖,

B =

∣∣∣∣∣
〈

θ̂ − θ̃
‖θ̂ − θ̃‖

, A− θ

〉∣∣∣∣∣ , C = ‖θ − θ∗‖, D =

∣∣∣∣∣
〈

θ∗ − θ̃
‖θ∗ − θ̃‖

, A− θ

〉∣∣∣∣∣ .
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Direct calculations show that Lemma D.2 in the supplementary material still holds when

replacing
∣∣∣〈 θ̃−θ
‖θ̃−θ‖ , A− θ

〉∣∣∣ with
∣∣∣〈 θ∗−θ̃
‖θ∗−θ̃‖ , A− θ

〉∣∣∣ . By Lemma D.2, Lemma D.3 in the

supplementary material and (5.5), the theorem follows. �

Remark 5.1. Comparing with the results of the usual SBM and the graphon model as

discussed in [26], our Theorems 5.1 and 5.2 introduce an extra factor of (1 − χn)−2. The

convergence rate is therefore slow when χn is close to 1, of which the situation indicates

the strong conditional dependence between the edge variables on latent variables, see

Proposition 4.1. A straightforward calculation using Proposition 4.1 shows that if given ξn,

l = 0 and {Bi} is an independent series, the rate is fully consistent with previous results

in the sense that both the model and the rate recovers the known optimal rate of [26].

Remark 5.2. Consider the composite graphon model defined in Theorem 5.2 with ordered

edge variables Bs, 1 ≤ s ≤ n. We construct a sparse composite graphon model G̃ =

{ξ1, ..., ξn, Ã, ω({·, ·}), l} by P(Ũi = ui|Ũi−1 = ui−1, ξ) = ρnP(Ui = ui|Ui−1 = ui−1, ξ), where

Ui = (Bi, ..., Bi−l+1)T , Ũi = (B̃i, ..., B̃i−l+1)T , B̃i, 1 ≤ i ≤ N are ordered edge variables of

Ã, and ρn is a positive sequence that converge to 0. We therefore represent the “sparsity”

by the parameter ρn > 0. This parameter was used by [12] to uniformly control the

success probability across all nodes and uniformly controls the number of edges present.

Straightforward calculations show that the upper bound of RHS of (5.6) could be lowered to

the order of mink{ρ2
n( 1

k2
)α∧1 +ρn( k

2

n2 + log k
n

)(1−χ)2}, which coincides with the upper bound

of that in [32]. In Section 7, we shall see scenarios of homogeneity that
maxi,j P(Ai,j=1)

mini,j P(Ai,j=1)
→∞

which is able to produce power law degree distribution. This scenario cannot be captured

by scale parameter ρn. As a result, we do not focus on the scaled sparse model in detail.

Remark 5.3. Assume the setting of the composite SBM sequence such that χ = χn is

regulated by n. Assume that the conditions of Theorem 5.1 hold. By Theorem 5.1, when

the number of communities k is fixed, a sufficient condition for the consistency of the

L2 estimator (5.1) is (
√
n(1 − χn))−1 = o(1). Theorem 5.2 indicates that the estimator

will be inconsistent under strong dependence such that χn approaches 1 at a rate faster

than 1√
n
. Similarly, Theorem 5.2 implies that when the composite graphon f ∈ Fα(M)

and k = bn
α∧1

1+α∧1 c, a sufficient condition for the consistency of the L2 estimator (5.1) is

(n
α∧1

1+α∧1 (1− χn))−1 = o(1).
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Interpretation: In other words, our estimator is consistent for 1 − χn = Ω(n−a),

0 < a < 1/2, where we write an = Ω(bn) for series an, bn if bn = O(an). By proposition 4.1

this means maxa,b∈X×X P(Ui = a|Ui−l = b, ξ) ≤ 1− Cn−a for some constant C.

Remark 5.4. Theorem 5.2 determines that matrix estimation can be done for this prob-

lem, i.e. the sampled graphon can be estimated from an observed adjacency matrix. It

does not necessarily relate to the underlying graphon function, unless we derive further

results. As noted in [53] the mean square error of the estimate of f(x, y) can be directly

related to the matrix mean square error of (5.7). An issue with this statement is that

the discretized pij = f(ξi, ξj) is still random as ξi is random and so statements can be

made either marginally or conditionally on ξ1, . . . , ξn. The added problem of estimating

f(x, y), the function, is to use an appropriate metric, and factor out measure preserving

transformations.

It is discussed in [26] and [53] that the graphon model is closely related to non-

parametric regression with unknown design and i.i.d. errors. Consider the one-dimensional

regression problem yi = f(zi) + ei, where zi, 1 ≤ i ≤ n are i.i.d. samples, and ei are zero

mean errors. When f ∈ Hα(M) and ei are i.i.d normals, the local polynomial estimator

achieves the minimax rate n−
2α
1+α under the squared error loss 1

n

∑
i∈[n]{f̂(zi) − f(zi)}2.

When ei is a short range dependent non-stationary time series for example the piecewise

locally stationary time series in [58], Lemma 5 in [60] shows that E(eiej) = O(η|i−j|) for

some η ∈ (0, 1). It follows from this fact and Proposition 1.13 in [48], that the convergence

rate of the local polynomial estimator with non-stationary time series error has the same

order as with i.i.d. error.

However, under the situation that the design is unknown, an additional difference arises

between the time series error and the i.i.d error due to the unknown chronological order.

Indeed, missing chronological order affects time series but not the i.i.d. errors. Surprisingly,

for the time series error, the impact of the missing chronological order on the estimation

is negligible in terms of order under certain situation. Suppose the edge variables of the

graph are short range dependent with respect to the mapping ω({·, ·}).
Recall L(Q, z̄) in (5.2), and define the new objection L0(Q, z̄) by replacing A with

θ = E(A|ξ). For given z̄, let Q̃(z̄) and Q0(z̄) be the minimizer of L(Q, z̄) and L0(Q, z̄),

respectively. In fact, Q̃(z̄) and Q0(z̄) are the average among partitions of adjacency ma-
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trix and of true but unknown conditional linkage probability matrix, respectively. Thus

E(Q̃(z̄)) = Q0(z̄). Since Bernoulli random variables are bounded, we show in our pa-

per that under mild conditions and similar to the time series counterpart, the deviations

between the average and the mean of the edge variables are bounded uniformly over all

possible partitions z as if the edge variables are conditional independent.

The time series structure of our model is important for many real applications. For

example, [26] relates link prediction to the graphon model. In real application, links can be

modeled by time series in dynamic network, see for example [45]. Despite the convergence

rate of the proposed estimator for the composite graphon model is similar to that under

usual graphon model, its moment behavior is different under two scenarios. This will

further impact on any estimation and hypothesis testing procedure, see for example [11]

and [8].

6 Spectral Clustering Algorithm for Composite Stochas-

tic Block Model

In the previous sections we investigate the estimation of the composite graphon model and

the composite stochastic block model. In addition to estimation of the linkage probabilities,

community detection is another research topic in the network analysis. The connection

between estimation and spectral clustering is complicated, and they are not identical prob-

lems. A good estimation result for the block heights of a stochastic blockmodel does not

necessarily guarantee a good community detection result. For a more detailed discussion

of the link between parameter estimation and spectral clustering, we refer to [26]. In the

area of community detection, spectral clustering and its variants have already been widely

applied ([52]). The consistency of spectral clustering for certain exchangeable network

models has been studied by for example [43], [42], [57], [34] among others. In the follow-

ing, we shall study the performance of spectral clustering for estimating the composite

SBM.
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6.1 Re-parameterization of the Composite Stochastic Block Model

By choosing a block-wise constant symmetric f(·, ·) in Definition 4.2, the composite SBM

has the form of θi,j = P(Ai,j = 1|ξi, ξj), where {ξi, 1 ≤ i ≤ n ∈ Rk} are i.i.d. latent vectors,

with one entry equal to one and all other entries equal to zero. Let θ be an n× n matrix,

with θi,j its (i, j)th entry. Then θ could be parameterized as

θ = ZB†ZT ,

where B† ∈ [0, 1]k×k is full rank and symmetric, and Z ∈ Rn×k is a matrix with ith row

ξi such that it has one 1 in each row and at least one 1 in each column. For each node

i, we say it belongs to group j if ξi,j, which is the jth element of ξi, equals 1. With the

re-parameterization, we are able to define the graph Laplacian, which is essential for the

spectral clustering algorithm. Define diagonal matrices D and D̄ with diagonal elements

Di,i and {D̄i,i}, i = 1...n, respectively, where

Di,i =
n∑
k=1

Ai,k, D̄i,i =
n∑
k=1

θi,k.

Define L and L̄ for the Laplacian of A and θ, respectively, as

L = D−1/2AD−1/2, L̄ = D̄−1/2θD̄−1/2.

Note that L̄ is the population version of L since the former is the Laplacian of θ and

the latter is the Laplacian of adjacency matrix A. Both L and L̄ depend on the number

of nodes n. Let ci = D̄i,i/n and τn = mini=1,...,n ci. We shall write L as L(n), L̄ as L̄(n)

and τ as τn when we need to emphasise the sample size. In the remainder of this section,

we assume Z is unknown but fixed (unless specified). After obtaining L, the spectral

clustering algorithm is given by:

1. Compute the eigenvectors u1, ..., uk w.r.t. the first k largest eigenvalues of L.

2. Run a k-means algorithm on vectors y1, ..., yn, {yi}1≤i≤n ∈ R1×k to cluster them into

clusters C1, ..., Ck, where yi is the ith row of matrix U , an n × k matrix such that

the jth column of U is uk.

Then node i is in class g if yi is assigned to Cg.
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6.2 Properties of Mis-clustered Nodes

For simplicity of exploration and the ease of comparison, we will use the notion of [43].

In order to discuss the property of mis-clustered nodes, we first introduce the following

notation. In addition we define

Pn = max
j=1,...,k

(ZTZ)j,j.

We then give two properties of composite SBM. The validity of the properties could be

shown similarly to Lemma 3.1 and Lemma 3.2 of [43], and so we omit the proof for the

sake of brevity.

(a) There exists a matrix V1 ∈ Rk×k such that the columns of ZV1 are the eigenvectors of

L̄ which correspond to the nonzero eigenvalues. In addition, ziV1 = zjV1 if and only

if zi = zj.

(b) Let V2 ∈ Rn×k be a matrix whose orthonormal columns are the eigenvectors which cor-

respond to the ordered largest k eigenvalues of L (in absolute value). Let ci, 1 ≤ i ≤ n

be the centroid corresponding to the ith row of V2. Let the columns of U, Ū ∈ Rn×k

be k orthonormal eigenvectors of LL and L̄L̄ (recall L and L̄ are symmetric matrix)

which correspond to the first k largest eigenvalues of the two matrices in absolute

value, respectively. Define matrices O1 and O2 with the singular decomposition

ŪTU = O1ΣOT
2 , where O1, O2 are orthonormal matrices and Σ is a diagonal matrix.

Let O = O1O
T
2 . Then ‖ci−ziV1O‖ < 1√

2Pn
if and only if ‖ci−ziV1O‖ < ‖ci−zjV1O‖

for any zi 6= zj.

Under conditions of Theorem 6.1 below, the Davis-Kahan Theorem [23] shows that

‖V2−ZV1O‖F = o(1) almost surely, which leads to that the corresponding eigenvectors of

the observed graph Laplacian L is close to that of the population graph Laplacian L̄; see

[43] for a detailed introduction of the Davis-Kahan Theorem. As a result, by (a), (b), we

define the set of mis-clustered nodes as

M =

{
i : ‖ci − ziV1O‖ ≥

1√
2Pn

}
,

since similarly to the argument in [43], we can show that if any node i 6∈ M, then i will be

correctly clustered by spectral clustering algorithm. For any symmetric matrix M , define
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λ(M) to be the eigenvalues of M . For any interval S ∈ R, define λS(M) = {λ(M) ∩ S},
Let ῑ1 ≥ ... ≥ ῑn be the elements of λ(L̄L̄), and ι1 ≥ ... ≥ ιn be the elements of λ(LL).

Define G(χ,N, u) =
∑N

r=0 r
uχr/2, where χ is defined in Proposition 4.1.

Before stating Theorem 6.1 regarding the performance spectral clustering for estimat-

ing the composite SBM, we present the following Proposition 6.1 which studies the tail

probability of ‖LL− L̄L̄‖F . The latter is the difference between the population version of

and the usual graph Laplacian. The graph Laplacian plays a central role in the spectral

clustering, therefore the difference ‖LL− L̄L̄‖F is key to study the asymptotic behavior of

the corresponding clusters. The proof of Proposition 6.2 and Proposition 6.1 are inspired

by [59], as well as [43] and [59], respectively. The proof of Theorem 6.1 rests on the the

following Proposition 6.1.

Proposition 6.1. Under conditions of Theorem 6.1, there exist sufficiently large positive

constants η0, η1,M
′ such that if n ≥M ′

P(‖LL− L̄L̄‖F ≥
log n

τ 2n1/2
G1/2(χ,N, 3)(1− χ)−1/2) ≤ ζ(n),

where

ζ(n) =
η0

n log4 n
+ η1n

−2.

Theorem 6.1. Consider a size n composite SBM with a fixed unknown mapping ω({·, ·}).
Denote by kn the number of groups of nodes, and by nkn the corresponding group size.

Let |λ1| > ... > |λkn| be the absolute values of ordered kn largest absolute and non-

zero eigenvalues of L̄. Assume that n−1/2(log n)2G1/2(χ,N, 3)(1 − χ)−1/2 = O(λ2
kn

), and

τ 2
n > M/ log n for a sufficiently large constant M . Then we have that the number of

miss-specified nodes has the order of

|M| = o

(
Pn log2 n

λ4
kn
τ 4
nn

G(χ,N, 3)(1− χ)−1

)
, a.s.

provided that G(χ,N, 3)(1 − χ) log n is sufficiently large such that ζ(n) (defined as in

Proposition 6.1 below) is summable.

The conditions on the eigenvalues and on τ are similar to those of [43] that ensure the

eigengap of L̄L̄ and the smallest nonzero eigenvalues of L̄ cannot be too small. Hence we

omit the discussion here for the sake of brevity.
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Proof of Theorem 6.1. Since ζ(n) in Proposition 6.1 is summable, by the Borel-

Cantelli Lemma, we have that

‖LL − L̄L̄‖F = o

(
log n

τ 2n1/2
G1/2(χ,N, 3)(1− χ)−1/2

)
, a.s.,

where ‖ · ‖F represents the Frobenius norm. Thus we have that

max
1≤i≤n

|ιi − ῑi| = o

(
log n

τ 2n1/2
G1/2(χ,N, 3)(1− χ)−1/2

)
, a.s. (6.1)

Define Sn = [λ2
kn
/2, 2], and

δn = inf{|l − s|; l ∈ λ(L̄L̄), l 6∈ Sn, s ∈ Sn},

δ′n = inf{|l − s|; l ∈ λSn(L̄L̄), s 6∈ Sn}.

Then δn = δ′n = λ2
kn
/2. The quantity δn measures the distance between spectrum (eigen-

value) of L̄L̄ outside Sn and Sn. δ′n measures the how the Sn separates the eigenvalues of

L̄L̄. They are needed for the application of the Davis-Kahan Theorem ([43]). Together

with (6.1), by assumption, the number of elements in λSn(L̄L̄) will be equal to the number

of elements in λSn(LL). By the definition of M, as well as the properties (a) & (b), and

the definition of a centroid, we have that

|M| ≤ 8Pn‖V2 − ZV1O‖2
F = o

(
Pn log2 n

λ4
kn
τ 4
nn

G(χ,N, 3)(1− χ)−1

)
, a.s.

The last equality follows from the Davis-Kahan theorem, the results of Theorem 2.2, Lem-

mas 3.1 and 3.2, and the proof of Theorem 3.1 in [43]. �

Theorem 6.1 shows the consistency of the spectral clustering algorithm for composite

SBM under regularity conditions. With χ gets closer to 1, the dependence between edge

variables becomes stronger and the theoretically guaranteed convergence rate deteriorates.

On the other hand, the requirement that τ 2
n > M/ log n is almost as restrictive as the

requirement of at least linearly growing expected degree for all nodes. The following

proposition is key to study the tail probability of ‖LL − L̄L̄‖F (Proposition 6.1), which

controls the mis-clustering rate in Theorem 6.1. The proposition is of general interest. It

reveals the covariance structure of the latent time-order graph.
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Proposition 6.2. Let C > 0 be a sufficiently large constant. Consider the latent time-

order graph with fixed memory parameter l < ∞. Let h ≥ 1 be an integer. Define

{B̃j}1≤j≤N to be {Bj − E(Bj|ξ)}1≤j≤N . Then for any 2l different integers {is, 1 ≤ s ≤
2h} ∈ [N ]2h and for a sufficiently large positive constant C which may depend on h, we

have that (a)

|Cov(Πh
u=1B̃iu ,Π

2h
v=h+1B̃iv |ξ)| = O(χΛ(is,1≤s≤2h)/2(1− χ)−1),

where Λ(is, 1 ≤ s ≤ 2h) = min1≤s≤h(minh+1≤u≤2h |is − iu|). In addition, we have (b)

|Cov(Πh
u=1B̃iu ,Π

2h
v=h+1B̃iv |ξ)| = O(χmax1≤s≤2l ι(is)/2(1− χ)−1),

where ι(is) = min1≤j≤2l,j 6=s(|is − ij|), Cov(A,B|ξ) = E(AB|ξ)− E(A|ξ)E(B|ξ).

Remark 6.1. Proposition 6.2 shows that for the composite SBM, the upper bound of the

covariance between the product of two groups of ordered edge variables, {Bjs , 1 ≤ s ≤ l}
and {Bjs , l + 1 ≤ s ≤ 2l}, is determined by (a) min1≤s≤l(minl+1≤u≤2l |is − iu|) and (b)

max1≤s≤2l ι(is). Cov(Πh
u=1B̃iu ,Π

2h
v=h+1B̃iv |ξ) will become smaller when the terms described

by (a) and (b) become larger. The term in (a) is large if the two groups of labels are

far away from each other, i.e. , the smallest distance between two labels, one from the

js, 1 ≤ s ≤ l and the other from js, l + 1 ≤ s ≤ 2l is large. The quantity (b) is large if

there is a label far way from all other labels.

Recently, many complex models have been proposed based on the SBM to capture

additional and important graph structure. For instance, the general SBM proposed in [18]

allows for a portion of arbitrary outliers, where the majority of nodes are generated from

a fixed SBM. As a comparison, all nodes from the composite SBM in this paper differ

from the SBM when edge variables are conditionally dependent on the latent membership.

Another prominent model that can generate arbitrary degree inhomogeneity is the degree

corrected stochastic block model (DC-SBM) (see [31]). For this model, consistency of

community detection has been studied (see for example [57]), and corresponding spectral

clustering algorithms have been proposed (for example see [42]). Also, SBM has been

generalized to a mixed membership (for example [1]), and the K-median approach ([56]).

A tensor approach ([4]) have been proposed to address the mixed-membership. In this

paper, we have built up a general framework for non-exchangeable graphs, and investigate

the spectral clustering algorithm for composite SBM in detail.
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Remark 6.2. The key concepts of a “composite graph” and composite SBM in Sections 4

and 6 are closely related to notion of composite likelihood. Composite likelihood inference

is a popular and successful tool for statistical research when the joint likelihood is hard to

evaluate, see [49] among others for a comprehensive review. In the literature of network

analysis, the idea of analyzing pseudo or approximate likelihood has been proposed to

tackle the complex and computational-infeasible joint likelihood of graph models, see for

example ([2], [3] and [9] among others.)

Remark 6.3. We shall assume that kn ≡ k. Assume that there exists ζ > 0 such that

|nk| ≥ bζnc. Straightforward calculations show that G(χ,N, 3) is of the order (1−χ1/2
n )−4.

As a result, the condition n−1/2(log n)2G1/2(χ,N, 3)(1− χ)−1/2 = O(λ2
k) reduces to

(1− χn)(1− χ1/2
n )−4 log4 n = O(n), (6.2)

which yields the weak consistency of clustering in the sense of [57], i.e, the mis-clustering

rate in Theorem 6.1 is therefore simplified to |M| = o(1). A straightforward calculation

shows that a sufficient condition for (6.2) is that

1− χn = Ω(n−1/5 log n−4/5).

As a comparison, Remark 5.3 shows that the estimation error of Theorem 5.1 is negligible

if 1− χn = Ω(n−1/2).

6.3 Simulation Study of the Mis-clustering Rate

In this section, we examine the performance of the spectral clustering algorithm used on

the composite SBM. We consider two simulation scenarios: two groups and three groups

where the n nodes are partitioned into. A latent order ω1({·, ·}) representing a strong

dependence and a latent order ω2({·, ·}) representing a weak dependence are considered.

The orders (and these are literal orderings, not orders of magnitude) are constructed in

a way such that their corresponding marginal edge variables linkage probabilities are the

identical. Their forms are deferred to and discussed in detail in Sections 7.1.1 and 7.1.2.

The other detailed parameters of the considered two and three group composite SBMs can

be found in Section A of the supplemental material.
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Figure 1: Exploring the mis-clustering under different latent orders for two groups. Left:

the number of mis-clustered nodes under order ω1({·, ·}). Right: the number of mis-

clustered nodes under order ω2({·, ·}). We display the mean (solid line), median (dotted

line) and upper/lower frequency band (dashed line) of the mis-clustering number over 1000

simulations.

The simulation results are displayed in Figures 1 for two groups and which show that

there are fewer mis-clustered nodes under order ω2({·, ·}) than under ω1({·, ·}). This rein-

forces the message of Section 6, namely that stronger conditional dependence between edge

variables, as introduced by the order ω1({·, ·}), tends to increase the mis-clustering rate.

These simulation results also support the consistency of the spectral clustering algorithm

for the composite SBM. The clustering results for the three group scenario are similar

to that of the two group cases and have been shown in Figure A.4 of the supplemental

material.

7 Example: Marginally Edge Constant Latent Time–

Order Graph

In this section, we study the effect of the posited conditional dependence by studying

the given model of the marginally edge constant latent time-order graph sequence model

(MECLTG). The MECLTG sequence model is defined as a composite graphon model with
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f(·, ·) ≡ cn where cn is a function of n, and f(·) is defined in (4.3). For each fixed n,

P(Ai,j = 1) = P(Ak,l = 1) = cn for every (i, j), (k, l), i 6= j, k 6= l. It is also a composite

SBM with only one group, (as the SBM with one group corresponds to the Erdös-Rényi

model). Meanwhile, edge variables are correlated with respect to the latent order ωn({·, ·}).
Via studying the MECLTG, we can investigate the effect of the (conditional) dependence

separately from the effect of inhomogeneous (marginal) edge variables’ linkage probabilities.

In the following arguments, for simplicity we omit the subscript n of ωn({·, ·}), p1,n, p0,n

and pn if no confusion arises.

Consider the Markov process of MECLTG, which we write as CG(V, ω, p0, p1):

P(Bi|Bi−1) = (pBi1 (1− p1)1−Bi)Bi−1(pBi0 (1− p0)1−Bi)1−Bi−1 , (7.1)

where Bi = Aω−1(i).

From (7.1), if Bi−1 = 1 then Bi is distributed as Bernoulli(p1), otherwise it is distributed

as Bernoulli(p0). By the fundamental theorem of Markov Chains, the edge variables of

CG(V, ω, p0, p1) have a limiting distribution

p := P(B∞ = 1) = p0/(1 + p0 − p1) ∈ [p0 ∧ p1, p0 ∨ p1]. (7.2)

We then consider the stationary scenario, i.e.,

P(Bj) = p ∀1 ≤ j ≤ N. (7.3)

This is because when the total number of the edge variables is large, the majority of the

edge variables of CG(V, ω, p0, p1) have marginal linkage probabilities close to p.

Definition 7.1. We say that the graph CG(V, ω, p0, p1) is a first order homogeneous

MECLTG with vertices V , driven by the order ω({·, ·}) if (7.1) and (7.3) hold.

Notice that when p0 = p1 = p, then the latent structure is not active. As a re-

sult, CG(V, ω, p0, p1) reduces to the standard Erdős-Rényi graph G(|V |, p). The following

corollary explicitly calculates the conditional probability of Bi given Bi−k for k ≥ 2:

Corollary 7.1. Consider CG(V, ω, p0, p1). Define Pk(a|b) = P(Bj = a|Bj−k = b) for

a, b ∈ {0, 1}. Then we have that

Pk(1|0) =
p0(1− (p1 − p0)k)

1− p1 + p0

; Pk(1|1) =
p0 + (1− p1)(p1 − p0)k

1− p1 + p0

,

Pk(0|1) =
(1− p1)(1− (p1 − p0)k)

1− p1 + p0

; Pk(0|0) =
(1− p1) + p0(p1 − p0)k

1− p1 + p0

.
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If we let p = p0
1−p1+p0

, then we have that

Pk(1|0) = p− p(p1 − p0)k, Pk(1|1) = p+ (1− p)(p1 − p0)k

Pk(0|1) = (1− p)− (1− p)(p1 − p0)k, Pk(0|0) = (1− p) + p(p1 − p0)k.

The results show that the dependence between edge variables, or equivalently ∆n(k)

defined in (3.1) decays at the geometric rate (p1 − p0)k. We discuss the phase transition

of MECLTG in Section C of the online supplementary material. In the remaining of the

paper, we focus on the degree distribution of the MECLTG.

7.1 Degree Distribution

In previous sections we find that the ordering ωn({·, ·}) has an asymptotically negligible

impact on graphon estimation and on community detection under weak dependence (be-

tween edge variables), i.e. χ = χn ∈ (0, 1). Any ωn({·, ·}) will yield a consistent estimator

of the graphon or detection for communities when 0 ≤ χ = χn < 1, where χ is defined in

Proposition 4.1. In this subsection, by investigating simple examples, we shall see that i)

different ordering ωn({·, ·}) have different impact on the network structure when χn → 1,

so the impact of missing information of ωn({·, ·}) is no longer asymptotic negligible; and

ii) our model is flexible enough to produce networks both with and without a heavy-tailed

degree distribution. The idea is that when P(Bi = 1|Bi−1 = 1) → 1, we can design la-

tent orders such that incident edge variables (e.g., Aij and Aik) are strongly correlated (or

weakly correlated), and hence their summation, or corresponding degrees, cannot (can) be

well approximated by sums of independent Bernoulli random variables.

To illustrate this, assume that p0 = λ0/n and also p1 ≥ p0. Recall the homogeneous

probability p = p0
1−p1+p0

. Obviously, p and p0 are of the same order if either p1 is a constant

or goes to 0. If p1 = 1− n−1gn for a sequence of positive real numbers gn, then p still goes

to 0 as long as gn →∞.

7.1.1 Examples of MECLTG with heavy tail degree distribution

Let $1(i, j) = n(i−1)− i(i−1)/2+ j− i for 1 ≤ i < j ≤ n, and ω1({i, j}) = $(i∧ j, i∨ j),
i 6= j. Consider the first order homogeneous process MECLTG CG(V, ω1, p0, p1). In
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particular we choose the ordering ω1({i, j}) where the edge variables are generated as

follows:

A1,2, A1,3, ..., A1,n, A2,3, ..., A2,n, A3,4, .., A3,n, ..., An−1,n.

In other words, a node generates its edge variables after all the node labels before it have

generated their edge variables. We shall see that the considered ordering is able to generate

a heavy-tailed degree distribution if we set p1 → 1, since a connected edge variables Aa,b

will lead to a high chance that the next edge variable Aa,b+1 is connected, where the two

edge variables have the same vertex. In such a way our model is able to produce a larger

number of high degree nodes than the Erdös-Rényi model.

We now study the empirical degree distribution n−1
∑n

i=1 I(di = k) for 1 ≤ k ≤ n,

where di is the degree of node i. When the nodes have a homogeneous degree distribution,

for example in the Erdös-Rényi graph, n−1
∑n

i=1 I(di = k) is an unbiased estimator of

Edi, see for example [39]. Meanwhile, inhomogeneity introduced by strong dependence

will distort the empirical degree distribution, i.e., as we shall show among a wide range

of k, the expectation of n−1
∑n

i=1 I(di = k) of the graph decays with k at a polynomial

rate. In this way, the graph displays the power law degree distribution. Different from

the Erdös-Rényi model, P(di = k) for MECLTG is heterogeneous in i instead of remaining

constant in i.

Theorem 7.1. (Heavy-tailed Degree Distribution) Consider the first order homogeneous

MECLTG CG(V, ω1, p0, p1) with |V | = n. Suppose p0 = λ0
n

with λ0 ≥ 1, and p1 =

1 − λ1n
−c, 0 < c < 1/2. For any γ > 1, µ > 0, define Mγ :

∑n
k=1Mγ

1
kγ

= 1, and

Mγ,µ :
∑n

k=1 Mγ,µ
1
kγ

exp(−µk) = 1. Let An,γ = {k : n−1
∑n

i=1 P(di = k) ≥ Mγk
−γ},

Bn,γ,µ = {k : n−1
∑n

i=1 P(di = k) ≥ Mγ,µk
−γ exp(−µk)}. Then there exist a0, b0, c0, d0 > 0

(which may depend on γ), such that{
k : ba0n

2c
1+γ c ≤ k ≤ bb0n

c log nc
}
⊂ An,γ,

{k : bc0 log nc ≤ k ≤ bd0nc} ⊂ Bn,γ,µ.

Proof. See section F of Appendix . �

Theorem 7.1 shows that, within a wide range of values of k, the tail of the distri-

bution of the degrees of the MECLTG CG(V, ω1, p0, p1) model behaves similarly to the
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power law distribution (or to a power law degree distribution with exponential cutoff,

see [36] ). Consider the usual Erdös-Rényi graph G(V, p), where p = p0
1−p1+p0

, so that the

marginal linkage probabilities of edge variables are the same as the first order homogeneous

MECLTG CG(V, ω1, p0, p1). Let Cn = {k : k ≥ g(n)} where g(n)→∞ arbitrarily slowly.

By proposition F.2 (a Poisson approximation) in the supplementary supplement and the

large deviation theorem (see the proof of Lemma 7.1 in the supplementary material), it

follows that there exist constants c, d such that both Cn ∩An,γ and Cn ∩Bn,γ,µ are subset

of {k : bancc ≤ k ≤ bbncc} when n is large enough. Thus, the first order homogeneous

MECLTG CG(V, ω1, p0, p1) has much larger |Cn∩An,γ| and |Cn∩Bn,γ,µ| than SRG G(V, p).

7.1.2 Examples of MECLTG with light-tailed degree distribution

In this section, we construct a first order homogeneous MECLTG CG(V, ω2, p0, p1) which

has similar |Cn∩An,γ| and |Cn∩Bn,γ,µ| to that of Erdös-Rényi graph G(V, p = p0
1−p1+p0

). The

order ω2 we consider is ω2({i, j}) = $2(i∧j, i∨j), i 6= j, where $2(i, j) = i+ (2n−(j−i))(j−i−1)
2

for 1 ≤ i < j ≤ n. In particular, our choices of ordering follow which the edge variables

Ai,j, i < j are generated are as follows

A1,2, A2,3, ..., An−1,n, A1,3, ..., An−2,n, A1,4, .., An−3,n, ..., A1,n.

Observe that the edge variables are generated in increasing order of j − i. Among edge

variables with equal j − i, the edge variables with smaller i are generated earlier. We now

study the expectation of n−1
∑n

i=1 I(di = k) to show the characteristic of A.

Lemma 7.1. Consider the first order homogeneous MECLTG Graph

CG(V, ω2, p0, p1) where p0 = λ0
n
, λ0 ≥ 1 and p1 = 1 − λ1n

−c, c ∈ (0, 1/2) are defined in

Theorem 7.1. Let Yn follow Poisson(p) for p = p0
1−p1+p0

. Let di be the degree of node i.

Let g(n) be a series of real numbers which diverges but may increase at an arbitrarily slow

rate. The we have for some ι > c, ι+ c < 1,

(i)
∞∑
k=0

|P(di = k)− P(Yn = k)| = O(nι+c−1),

(ii) P(di = k) ≤ exp(−0.5(ι− c)k log n) for bnιg(n)c ≤ k ≤ n. (7.4)

Proof. See supplementary material, Appendix Y. �
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Lemma 7.1 shows that the behavior of the MECLTG CG(V, ω2, p0, p1) is similar to

an Erdös-Rényi graph G(n, p), in the sense that both of their degree distributions can be

mimicked by a Poisson(λ0
λ1
nc) random variable. Equation (7.4) also shows that the tail

of the degree distribution decays very rapidly. Together with Theorem 7.1, we find that

simply multiplying a scale parameter to the marginal edge variable linkage probabilities

(for example in [10] which models the sparse graphon as ρnf(·, ·)) is not able to capture

the heteroskedasticity in the probability of linkage, in the sense that
maxi,j P(Aij=1)

mini,j P(Aij=1)
stays

unchanged under this parameterization. This shows the greater flexibility and rich struc-

ture of our model class. We illustrate this property in Figure B.5 of the supplementary

material. We discuss the images from left to right in Figure B.5. Figure B.5 shows typi-

cal graphs generated from MECLTGs CG(V, ω1, p0, p1), CG(V, ω2, p0, p1) and Erdős-Rényi

G(V, p), respectively with p0 = 0.01, p1 = 1− 1
n1/3 , p = p0

1−p1+p0
with |V | = 100. From the

figure, we see that the first network is very inhomogeneous: it has the most hubs among

the three networks. The second network is less inhomogeneous than the first network, but

is more inhomogeneous than the third network. Notice that we construct the three net-

works in such a way that the marginal connection probability is n−2/3, where n is the size

of the network. This is larger than the connectivity threshold logn
n

. However, all the three

networks in Figure B.5 have some isolated nodes just like the models of [15]. For the third

network, this is because the sample size is not large enough, so 100−2/3 is very close to

log 100/100. We observed that the first and second network have more components, which

is the price we pay for the inhomogeneity. Since the marginal connection probability in

our experiment is controlled, the expected total edges of the three networks are fixed. As

a result, the structure with more hubs will also tend to have more small degree nodes, and

also more isolated nodes. The edge variables are distributed according to the dependence

structures ω1 and ω2 in the first and second networks, and purely randomly distributed in

the third network.

Remark 7.1. A familiar model for networks with power law degree distributions is the

preferential attachment (PA) model, where the network is growing sequentially node by

node. In PA, a node can not affect the relationship among earlier nodes. This shares some

features with out model. Thus, the generating order (or history) of the edge variables of
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PA could be written as

A1,2, A1,3, A2,3, A1,4, A2,4, A3,4, ..., A1,n, ..., An−1,n.

with the associated ordering ω({i, j}) = $(i ∧ j, i ∨ j), where $(i, j) = (j−1)(j−2)
2

+ i,

1 ≤ i < j ≤ n. The linkage probability of an edge variable is determined by the popularity

of its earlier (more popular) verteces. Hence PA is not a latent time-order graph since

the required properties fail to hold for any finite k. The well known heavy-tailed degree

distribution of PA is contributed by infinite memory, order ω({, }), and inhomogeneous

edge variables linkage probabilities.

Recently [Borgs et al.] proposed a class of normalized unbounded graphon model. Given

latent positions (ξi = xi)1≤i≤n, the edge variables are independently connected with proba-

bilities P(Aij = 1|ξi = xi, ξj = xj) = min(1, ρW (xi, xj)), where ρ is the target density and

W is a (possibly) unbounded graphon. For detailed definition of ρ and W we refer to [13].

Due to the inhomogeneous conditional connection probabilities and the unboundedness of

W , their model is allowed to have a large portion of high degree nodes and therefore the

feature of heavy-tailed degree distribution under some circumstances.

In contrast to the aforementioned models, the MECLTG model CG(V, ω1, p1, p0) has

homogeneous (marginal) edge variable linkage probabilities. Hence the power law degree

distribution is a consequence of the order ω1({·, ·}) and the strength of dependence which is

determined by p0, p1. As a comparison, our construction CG(V, ω2, p1, p0) does not have a

power law distribution though it has the same strength of dependence as CG(V, ω1, p1, p0).

The only difference between the two MECLTGs is the order function. The unobserved

ordering ωi, i = 1, 2 introduces correlation, this increasing the probability of an edge vari-

able between nodes adjacent in the ordering. This reveals the complex nature of the

latent time-order graph. We display the adjacency matrix of typical CG(V, ω1, p0, p1)

and CG(V, ω2, p0, p1) with network size n = 100, p0 = 1
n
, p1 = 1 − 1

n1/3 in left and right

panels of Figure 2. Notice that di is the sum of ith row of the adjacency matrix. The fig-

ure shows that CG(V, ω1, p0, p1) generates high degree nodes with greater frequency than

CG(V, ω2, p0, p1). Recall that degrees are calculated by averaging along rows or columns,

whilst diagonal structure does not aggregate to form larger degrees.
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Figure 2: Adjacency matrix of CG(V, ω1, p0, p1) (left) and CG(V, ω2, p0, p1) (right).

7.2 Simulation Results of Degree Distributions

In this section we generate MECLTGs with n nodes. The orderings are discussed in

Section 7.1. Let p0 = λ0/n, p1 = 1 − λ1/n
c for λ0 = λ1 = 1. We calculate and plot

the empirical degree distribution n−1
∑n

i=1 I(di = k), k = 0, ...n, and fit a power law

to the degree distribution as follows: let k′ = argmax0≤k≤
√
n n
−1
∑n

i=1 I(di = k), and

k′′ = max{k : n−1
∑n

i=1 I(di = k) > 0}. We then fit the regression

log
n∑
i=1

I(di = k) = γ0 + γ1 log k,

for k′ ≤ k ≤ k′′ to estimate γ1, and use γ̂1 as the estimate of the power law index. We draw

the power line together with the degree distribution in the log scale plot. The empirical

distribution is generated by 1000 replications in each simulation study, and the correspond-

ing 95% confidence interval is provided by the simulated 0.025 and 0.975 quantiles of the

simulated samples, respectively. In figure 3 we show the degree distribution for n = 1000,

c = 0.3 with latent order ω1. We also examine scenarios with various c′s, n′s for latent

order ω1 and ω2 in figures B.6–B.12 shown in the supplementary material. Those figures

indicate that γ̂1 increases as c increases. Also we observe that

γ̂1(G(V, ω1, p0, p1)) > γ̂1(G(V, ω2, p0, p1)) ≈ γ̂1(SRG).

When modelling the network via either the composite graphon model or the composite

SBM, we have demonstrated in Sections 4 and 6 that the usual methods are still valid when
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Figure 3: The degree distribution for n = 1000, and c = 0.3.

the dependence is not strong, and the consequences of the inhomogeneous degree pattern

is negligible. Our simulation results support this, which coincides with the conclusion

in [57]: comparing with the SBM, the estimation from DC-SBM only improves a little

when the variation of degrees among nodes is not large. On the other hand, when the

dependence is strong and the consequences of inhomogeneous degree pattern of network is

significant, more advanced approaches are required for modelling and statistically analysing

the network.

8 Discussion

As social media data sets, and other types of relational observations (networks) have

become prevalent, so unsurprisingly the mathematical treatment of data taking the form of

relationships between entities has become increasingly important. The analysis of networks

has been the focus of considerable efforts where the properties of estimators for popular

models have now been established. Following on from the understanding of correctly
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specified parametric models is the usage of non-parametric and incorrectly specified models.

For example, our understanding of classical approaches can be found to extend when

considering dense exchangeable arrays, see for example [53, 37, 21, 34].

Unfortunately the world contains many data sets that cannot be assumed to be ex-

changeable, despite how innocuous the assumption may seem, rather like stationarity for

time series. For that reason we introduce the composite graphon model, and finite mem-

ory latent time-order graphs. By focusing on the latent variables in the model directly

we can build a continuum of types of networks that are exchangeable, or strongly non-

exchangeable, all tuned explicitly in terms of the dependence strength. This helps us to

understand data of this form, and when we can apply regular network tools to novel types

of data, and understand the consequences of that choice.

Non-exchangeable networks produce many challenges. The presence of strong pow-

erlaws in the degrees and further heterogeneity in the graphon function itself are still

challenging researchers. It is not unreasonable to believe that these features reflect how

the network was formed. By assuming that the network formed sequentially we are able

to both define a parameter that tunes its degree of exchangeability, and thus we may

understand standard tools when applied to such data. Our understanding of this mecha-

nism simultaneously give glimpses into the formation of non-exchangeability, and provide

a gray-scale understanding of networks, letting us see how the mechanism allows us to

gradually “dial away” from exchangeability as a consequence of evolution and growth.

A number of developments have sought to understand greater heterogeneity by mod-

elling edge variables directly rather than relationships between nodes [22], this allowing a

more natural and direct treatment of edge sparsity than some competing models. Others

have concerned developing the practical application of work by Kallenberg’s construc-

tions [30], such as [15, 14]. The two key aspects of the latter construction is to use a

latent Poisson construction and a latent time. We also used a latent variable which is

uniform rather than Poisson. We correlate the latent uniforms directly, and show how

the correlation of the latent variables drive the degree of non-exchangeability directly and

quantitatively. The advantage of our framework is that it naturally straddles the model

space between strong heterogeneity to the standard exchangeable graph model, with a

direct tuning of its degree of non-regularity. If the correlation is not too strong, then stan-

dard methods apply for estimating the graphon model, rather like in time-series analysis
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with stationary errors when estimating polynomial trends. As the correlation becomes

very strong, the observations exhibit more strong heterogeneity, and standard tools like

the stochastic blockmodel approximation of the underlying graphon model will become

increasingly problematic.

A number of questions remain unanswered. In parts this falls back to the difficulty

of understanding a non-property, which has already haunted both non- stationary and

non-linear time series (there are many ways to be non-stationary or non-linear, but only

one to be stationary). In parts it falls back to understanding non-exchangeability itself,

as one property rather than several real-life observed consequences thereof. By provid-

ing this framework, we can better see the limitations of exchangeable models, and how

exchangeability can fail to materialize as a consequence of dependence.
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Supplemental material for ‘Tractably Modelling Dependence in Networks

Beyond Exchangeability’

Abstract

The structure of the supplementary material is organized as follows. Section A

provided arameters in simulation models for spectral clustering algorithm in Section

6.3 of the main article. Section B contains additional simulation results for section

7 of the main article. Section C contains a discussion of the phase transition for

connectivity and giant component of MECLTG. Section D provides the detailed

proof of results in Section 4 of the main article. Section E provides the detailed

proof of results in Section 6 of the main article. Finally, Section F provides the

detailed proof of results in Section 7 of the main article. Notice that N = n(n−1)/2.
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A Parameters in simulation models for spectral clus-

tering algorithm in Section 6.3 of the main article

For two groups case, we choose the parameter listed in Tables 1 and 2, respectively, where

we refer the notation % to Section 4.1.1 of the main article. The corresponding results are

shown in Figure 1 in the main article.

Table 1: The tables for parameters %0,index
index

index 11 12 22

value 0.1 0.01 0.2

Table 2: The tables for parameters %1,up
down

down

11 12 22

up

11 0.4 0.05 0.3

12 0.3 0.1 0.1

22 0.2 0.03 0.6

We now show parameters for three groups case in Tables 3 and 4, respectively. The

clustering result is presented in Figure A.4.

Table 3: The tables for parameters %0,index
index

index 11 12 13 22 23 33

value 0.3 0.01 0.02 0.3 0.06 0.3

B Simulation results for degree distribution
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Table 4: The tables for parameters %1,up
down

down

11 12 13 22 23 33

up

11 0.5 0.02 0.05 0.3 0.02 0.04

12 0.3 0.1 0.05 0.2 0.02 0.04

13 0.2 0.1 0.08 0.05 0.02 0.04

22 0.15 0.02 0.02 0.6 0.02 0.04

23 0.15 0.1 0.05 0.01 0.1 0.04

33 0.2 0.01 0.02 0.05 0.02 0.7

Figure A.4: Exploring the mis-clustering under different latent orders and three groups.

Left: The number of mis-clustered nodes under order ω1({·, ·}). Right: The number of

mis-clustered nodes under order ω2({·, ·}). We display the Mean (solid), median (dot) and

upper/lower frequency band (dashed) of the mis-clustering number over 1000 simulations.
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In this section we display Figure B.5 which shows typical graphs generated from

MECLTGs CG(V, ω1, p0, p1), CG(V, ω2, p0, p1) and Erdős-Rényi G(V, p), respectively with

p0 = 0.01, p1 = 1 − 1
n1/3 , p = p0

1−p1+p0
with |V | = 100. Then we show the degree distribu-

tion of various MECLTGs in Section 7.2 of the main article with different sizes, different

values of c and two choices of latent order ω, i.e., ω1 and ω2. Results are shown in Figures

B.6–B.12. The related analysis are concluded in Section 7 of the main article.

C Phase Transition for Connectivity and Giant Com-

ponent

In this section we discuss the phase transition of connectivity and of the giant component

for the first order homogeneous MECLTG defined in Section 7 of the main article. It

is well known that the threshold probability for connectivity in simple random graph

(SRG) G(n, p) is p = logn
n

(e.g.[24]). The threshold probability for the emergence of a

giant component is p = 1
n

(e.g. [24]). However, the traditional method of finding the

threshold probability relies heavily on the assumptions of edge variables independence

that does not hold for MECLTG. For example, to calculate the threshold probabilities

for connectivity, many traditional methods need to evaluate Cov(Ii, Ij), where Ii = 1 if

node i is isolated and 0 otherwise. To calculate the threshold for the emergence of giant

component in the SRG, techniques based on branching process, random walk, or depth

first search algorithm are proposed. However, due to the complicated dependence structure

and the unobserved latent order ωn({·, ·}), these techniques are not directly applicable to

the first order homogeneous MECLTG. The threshold probabilities of the connectivity

and of the emergence of a giant component are discussed for example [24], [33]. In the

following theorem, we show by construction that under some circumstances, the first order

homogeneous MECLTG possess the threshold properties similar to SRG.
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Figure B.6: The degree distribution for n = 10, 000, and c = 0.3. with latent order ω1.

Theorem C.1. Let Gn = CG(Vn, ω, p0,n, p1,n) be a series of first order homogeneous

MECLTG, where Vn is the set of vertices such that |Vn| = n, and pw,n = λw logn
n

, with

w ∈ {0, 1} and λ0, λ1 > 0 are positive constants.

(a) Denote by An the event that Gn is connected. Then we have i) if max{λ0, λ1} < 1,

then limn→∞ P(An) = 0; ii) if min{λ0, λ1} > 1 then limn→∞ P(An) = 1.

(b) Let |Si| be the size of the component that contains i. As n → ∞, we have: i) if

max{λ0, λ1} < 1, then for all (sufficiently large) a > 0, limn→∞ P(max1≤i≤n |Si| ≥
a log n) = 0; ii) if min{λ0, λ1} > 1, then there exists c > 0, such that

P(There exists a component with size ≥ c
√
n)→ 1

as n→∞.

To avoid tedious computation due to the latent order ωn({·, ·}), and comply with the

complex dependence structure, we prove the theorem via studying an algorithm that gen-

erates the SRG and the first order MECLTG simultaneously. The algorithm reveals the

connection between the two constructions.
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Figure B.7: The degree distribution for n = 1, 000, and c = 0.3, with latent order ω2.

Proof. Let pa be a pre-specified number, and ω be the latent order. Consider the

following algorithm, which construct MECLTG by a series of random variables Ãi and B̃i,

1 ≤ i ≤ N.

(a) Generate U ∼Uniform(0, 1). Set B̃1 = 1 if U ≤ p, where p is a function of p0 = p0,n,

p1 = p1,n The function is defined in equation (7.2) of the main article. Set Ã1 = 1 if

U ≤ pa.

(b) At steps i ≥ 2, generate independently a new U ∼Uniform(0, 1). If B̃i−1 = 1, set

B̃i = 1 if U ≤ p1. If B̃i−1 = 0, set B̃i = 1 if U ≤ p0. Set Ãi = 1 if U ≤ pa.

Thus, {Bω−1(i), 1 ≤ i ≤ N} = {B̃i, 1 ≤ i ≤ N} forms the ordered edge variables of a first

order homogeneous MECLTG CG(V, ω, p0, p1), while {Aω−1(i), 1 ≤ i ≤ N} = {Ãi, 1 ≤
i ≤ N} forms the edge variables of a first order homogeneous MECLTG CG(V, ω, pa, pa).

By our definition, CG(V, ω, pa, pa) is the simple random graph G(|V |, pa). Write p̄1 =

max{p1, p0}, p̄0 = min{p1, p0}. Note that p ∈ [p̄0, p̄1].

42



0 10 20 30 40 50 60

Degree

0

0.02

0.04

0.06

0.08

0.1

0.12

F
re

q
u
e
n
c
y

(a) Mean distribution (solid) and upper/lower

frequency band (dashed).

10
0

10
1

Degree

0

5

10

15

20

25

30

35

40

F
re

q
u
e

n
c
y

(b) Powerlaw γ1 = −10.2(dashed) & degree
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Figure B.8: The degree distribution for n = 10, 000, and c = 0.3, with latent order ω2.

From the construction, when p̄1 ≤ pa, then in each step i, 1 ≤ i ≤ N , Aω−1(i) = 0 implies

Bω−1(i) = 0. This is because if Aω−1(i) = 0 (this means Ãi = 0), then U > pa ≥ p̄1 in step

(i). This will make B̃i = 0, and consequently Bω−1
n (i) = 0. The above fact shows that when

p̄1 ≤ pa, if node i is isolated in the constructed CG(V, ω, pa, pa), the corresponding node

is also isolated in the constructed CG(V, ω, p0, p1). As a result, we have that |SAi | ≥ |SBi |
where |SAi | is the size of the component contains node i in CG(V, ω, pa, pa), and |SBi | is

the size of the component contains node i in CG(V, ω, p0, p1). Since CG(V, ω, pa, pa) is

the Erdös-Rényi Graph SRG G(|V |, pa), when p̄1 ≤ pa the theorem follows from the well-

known results of the threshold probabilities of the connectivity and the emergence of a

giant component for Erdös-Rényi Graph (e.g.[24]). When p̄0 ≥ pa, the theorem follows

from a similar argument, and the proof is completed. �
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Figure B.9: The degree distribution for n = 1, 000, and c = 0.3, for simple random graph.

D Proof of auxiliary results for Theorem 5.1 and The-

orem 5.2 in the main article

Proof of Proposition 4.1. By assumption mina,b∈χ×χ P(Ui = a|Ui−l = b) ≥ α′ > 0, By

definition, α′ ≤ 1
2
. The key to proof the proposition is to show that for k ≥ l,

max
b

P(Ui = ui|Ui−k = b)−min
b

P(Ui = ui|Ui−k = b)

≤ (1− 2α′)[max
b

P(Ui = ui|Ui−k+l = b)−min
b

P(Ui = ui|Ui−k+l = b)].

(D.1)

If equation (D.1) holds then for k = lq + s, 0 ≤ s ≤ l − 1, we have by iteratively applying
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Figure B.10: The degree distribution for n = 10, 000, and c = 0.3, for simple random

graph.
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Figure B.11: The degree distribution for n = 10, 000, and c = 0.2, for latent order ω1.
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Figure B.12: The degree distribution for n = 10, 000, and c = 0.4, for latent order ω1.
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(D.1), the following inequality

max
b

P(Ui = ui|Ui−k = b)−min
b

P(Ui = ui|Ui−k = b)

≤ (1− 2α′)q[max
b

P(Ui = ui|Ui−s = b)−min
b

P(Ui = ui|Ui−s = b)]

≤M(1− 2α′)k/lp̃ (D.2)

holds, where M = (1−2α′)−
l−1
l ≤ (1−2α′)−1. Then the proposition follows from equation

(D.2). It remains to show (D.1). Let b0 = argminb P(Ui = ui|Ui−k+l = b). Notice that

P(Ui = ui|Ui−k = ui−k)

=
∑
b∈Rl

P(Ui = ui|Ui−k+l = b)P(Ui−k+l = b|Ui−k = ui−k)

≤ P(Ui = ui|Ui−k+l = b0)P(Ui−k+l = b0|Ui−k = ui−k) (D.3)

+
∑
b 6=b0

(max
b

P(Ui = ui|Ui−k+l = b))P(Ui−k+l = b|Ui−k = ui−k)

= max
b

P(Ui = ui|Ui−k+l = b)

− P(Ui−k+l = b0|Ui−k = ui−k)×
(

max
b

P(Ui = ui|Ui−k+l = b)−min
b

P(Ui = ui|Ui−k+l = b)
)

≤ max
b

P(Ui = ui|Ui−k+l = b)− α′
(

max
b

P(Ui = ui|Ui−k+l = b)−min
b

P(Ui = ui|Ui−k+l = b)
)

By taking maximum on both side of (D.3), we have

max
b

P(Ui = ui|Ui−k = b) ≤ max
b

P(Ui = ui|Ui−k+l = b)

− α′
(

max
b

P(Ui = ui|Ui−k+l = b)−min
b

P(Ui = ui|Ui−k+l = b)
)

(D.4)

Similarly

min
b

P(Ui = ui|Ui−k = b) ≥ min
b

P(Ui = ui|Ui−k+l = b)

+ α′
(

max
b

P(Ui = ui|Ui−k+l = b)−min
b

P(Ui = ui|Ui−k+l = b)
)

(D.5)

The (D.1) follows from (D.4) and (D.5). �

Recall χ of Proposition 4.1 of the main article in the following arguments.
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Lemma D.1. Assume that the conditions of Theorem 5.1 holds. Recall Zn,k defined in

Section 5. Then for all z ∈ Zn,k, there exist constant C1 (which does not depend on n)

such that for a, b ∈ [k],

E

exp

C1 (1− χ)
√
nanb

∑
i∈z̄−1(a),j∈z̄−1(b)

(Ai,j − θi,j)

2 ≤ 2.

Proof. Consider the case of a 6= b. The case of a = b follows mutatis mutandis. Recall

the map ω(·, ·) and define Bi, i ∈ [N ] such that Bω({i,j}) = Ai,j. Define a series of integers

uj, 1 ≤ j ≤ nanb as

{uj, 1 ≤ j ≤ nanb} = {ω({i, j}), i ∈ z̄−1(a), j ∈ z̄−1(b)}

such that us < ul for s < l. Consider the filtration Fi = ({Buj , j ≤ i}, z1, ..., zn), where

z := {zi, 1 ≤ i ≤ n} are latent U(0, 1) variables. Let Bus = Bs for s ≤ 0. Define the

projection operator for j ∈ Z,

Pj(·) = E(·|Fj, z)− E(·|Fj−1, z).

By our construction of Bi, i ≤ 0 in Definition 4.1 of the main article, we get

Pj(Bk) = 0 for j ≤ 0, k > 0.

It follows from the fact that θi,j = E(Ai,j|z),

∑
i∈z̄−1(a),j∈z̄−1(b)

{Ai,j − E(Ai,j|z)} =

nanb∑
i=1

∞∑
s=0

Pi−sBui =
∞∑
s=0

nanb∑
i=1

Pi−sBui . (D.6)

Note that Pi−sBui forms a martingale difference w.r.t {Fi−1, z1, ..., zn}. By Burkholder

inequality, for v > 0, we have that

‖
nanb∑
i=1

Pi−sBui‖2
Lv ≤ Cv

nanb∑
i=1

‖Pi−sBui‖2
Lv ,

where C is a constant independent of v, na, nb and n, and ‖X‖Lv := {E(|X|v)}1/v. By

Corollary 4.1 in the main article and the fact that ui − ui−s ≥ s, we have

|Pi−sBui | ≤ C ′χs.
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Here the above equation does not depend on i due to Corollary 4.1 which only involves

the distant of indices. Thus we obtain∥∥∥∥∥
nanb∑
i=1

Pi−sBui

∥∥∥∥∥
2

Lv

≤ C ′′vnanbχ
2s.

Combining with (D.6) and by triangle inequality, we have that∥∥∥∥∥∥
∑

i∈z̄−1(a),j∈z̄−1(b)

(Ai,j − θi,j)

∥∥∥∥∥∥
Lv

≤
C1
√
nanbv

1− χ
, (D.7)

where C ′, C ′′ and C1 are constants independent of n and v. By using Taylor expansion,

equation (D.7) shows that there exists a small η ∈ (0, 1/2) such that

E

exp

η
 (1− χ)

C1
√
nanb

∑
i∈z̄−1(a),j∈z̄−1(b)

(Ai,j − θi,j)

2 ≤ 1 +
∞∑
u=1

uuηu

u!
≤ 2. (D.8)

The last inequality use the fact that u! > (u
e
)u and we take η small such that ηe ≤ 1/2. �

Corollary D.1. Assume that the conditions of Theorem 5.1 holds. Consider real numbers

{γi,j}1≤i≤n,1≤j≤n,i6=j satisfies
∑

i,j γ
2
i,j = 1. Then we have that there exists a constant C2

such that

E

exp

(C2(1− χ)
∑
i,j

γi,j(Ai,j − θi,j)

)2
 ≤ 2.

Proof. Recall the proof of Lemma D.1 and the filtration Fi = ({Bj, j ≤ i}, z) defined

there, associate with the projection operator Pj(·) = E(·|Fj, z) − E(·|Fj−1, z) in Lemma

D.1. Define a series γ′ such that γ′ω{i,j} = γi,j for i < j such that
∑N

j=1 γ
′2
j = 1/2. Thus we

have ∑
i>j

γi,j (Ai,j − θi,j) =
∞∑
s=0

N∑
i=1

γ′iPi−sBi.

By Burkholder’s inequality and the triangle inequality, a similar argument to that of

Lemma D.1 yields that for v ≥ 0,∥∥∥∥∥∑
i>j

γi,j (Ai,j − θi,j)

∥∥∥∥∥
Lv

≤ C2

√
v/(1− χ),
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where C2 is a constant independent of n and v. The corollary follows from the same

argument of (D.8). �

Lemma D.2. Assume that the conditions of Theorem 5.1 hold. Then for any C ′ > 0,

there exists C > 0 such that∣∣∣∣∣
〈

θ̃ − θ
‖θ̃ − θ‖

, A− θ

〉∣∣∣∣∣ ≤ C
√
n log k(1− χ)−1

with probability 1− exp(−C ′n log k).

Proof. By lemma 4.2 of Gao et al. (2015), we have that∣∣∣∣∣
〈

θ̃ − θ
‖θ̃ − θ‖

, A− θ

〉∣∣∣∣∣ ≤ max
z∈Zn,k

∣∣∣∣∣∑
i,j

γi,j(z)(Ai,j − θi,j)

∣∣∣∣∣
where γi,j(z) ∝

∑
a,b∈[k] θ̄a,b(z)1((i, j) ∈ z−1(a) × z−1(b)) − θi,j, satisfying

∑
i,j γ

2
i,j(z) = 1.

Then Markov’s inequality, union bound and Corollary D.1 lead to

P

(
(1− χ) max

z∈Zn,k
|
∑
i,j

γi,j(z)(Ai,j − θi,j)| > t

)
≤ C1 exp(−C0t

2 + n log k). (D.9)

Then the lemma follows from letting t = M
√
n log k in (D.9) for some large constant M .

�

Lemma D.3. Assume that the conditions of Theorem 5.1 hold. Then for any constant

C ′ > 0, there exists a constant C > 0 only depending on C ′, such that∣∣∣∣∣
〈

θ̂ − θ̃
‖θ̂ − θ̃‖

, A− θ

〉∣∣∣∣∣ ≤ C
√
k2 + n log k(1− χ)−1

with probability at least 1− exp(−C ′n log k).

Proof. Define an n−dimensional ball B ⊂
{
a ∈ Rn×n :

∑
ij a

2
ij ≤ 1

}
with the following

property

if a, b ∈ B, then
a− b
‖a− b‖

∈ B. (D.10)
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Let B′ be a 1/2-net of B such that |B′| ≤ N (1/2,B, ‖ · ‖) where N (1/2,B, ‖ · ‖) is the

covering number of 1/2 net of set B. By Lemma A.1. of Gao et al. (2015), we have that:

sup
a∈B

∣∣∣∣∣∑
i,j

ai,j(Ai,j − θi,j)

∣∣∣∣∣ ≤ 2 max
b∈B′

∣∣∣∣∣∑
i,j

bi,j(Ai,j − θi,j)

∣∣∣∣∣ .
As a consequence, by Corollary D.1 and the union bound, we have

P

(
(1− χ) sup

a∈B

∣∣∣∣∣∑
i,j

ai,j(Ai,j − θi,j)

∣∣∣∣∣ ≥ t

)

≤ P

(
2(1− χ) max

b∈B′

∣∣∣∣∣∑
i,j

bi,j(Ai,j − θi,j)

∣∣∣∣∣ ≥ t

)
≤ |B′|C1 exp(−C0t

2), (D.11)

for some constants C0 ∈ R+ and C1 ∈ R+. For z̄ ∈ Zn,k, define

Bz̄ = {{ci,j} : ci,j = Qab if (i, j) ∈ z̄−1(a)× z̄−1(b) for some Qab,

and
∑
i,j

c2
i,j ≤ 1, ci,j = cj,i, ci,i = 0, 1 ≤ i ≤ n}.

Notice that Bz̄ satisfy (D.10), and N (1/2,Bz̄, ‖ · ‖) ≤ exp(C2k
2) for some constant C2 ∈

R+. By the proof of Corollary D.1 and the union bound, we have that

P

(
(1− χ)

∣∣∣∣∣
〈

θ̂ − θ̃
‖θ̂ − θ̃‖

, A− θ

〉∣∣∣∣∣ > t

)
(D.12)

≤ P

(
(1− χ) max

z∈Zn,k
sup
c∈Bz

∣∣∣∣∣∑
ij

ci,j (Ai,j − θi,j)

∣∣∣∣∣ > t

)
≤ C0 exp

(
−C0t

2 + C1n log k + C2k
2
)

for some positive constants C0, C1, C2. The last inequality requires (D.11). Then the

lemma follows from taking t = M
√
n log k + k2 for sufficiently large M in (D.12). �

E Proof of auxiliary results for Theorem 6.1

For latent variable z and random variable X, let ‖X|z‖L2 =
√
E(X2|z). We need the

following proposition to show Proposition 6.2 of the main article.
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Proposition E.1. Consider the latent undirected Markov model with memory parameter

h <∞. Let Fi be the filtration generated by {Bs}s≤i, where {Bs}s≤i is defined in Definition

4.1 in the main article. Let δ(k): δ(k) = (1 − 2α′)−1/2χk/2 for k ≥ 0, χ and α′ defined in

Proposition 4.1 in the main article, and 0 if k ≤ −1. Then for any integers i1 ≤ .. ≤ il for

some fixed constant l, we have that

‖Pa(Πl
s=1Bis)|z‖L2 ≤ 2

l∑
s=1

δ(is − a)1(is−1 < a),

where Pj(·) = E(·|Fj, z)− E(·|Fj−1, z), Fi = (B−∞, ..., Bi) and i0 = −∞.

Proof. Without loss of generality, let is ≤ is+1 for s ≤ s+1. Then by direct calculations,

we obtain that

‖Pa(Πl
s=1Bis)|z‖2

L2 = E
(
E
(
P2
a(Πl

s=1Bis)|Fa−1, z
)
|z
)

= E(E2(Πl
s=1Bis|Fa, z)|z)− E(E2(Πl

s=1Bis|Fa−1, z)|z) := E(AB|z),

where

A = E(Πl
s=1Bis|Fa, z) + E(Πl

s=1Bis|Fa−1, z),

B = E(Πl
s=1Bis|Fa, z)− E(Πl

s=1Bis|Fa−1, z).

As a result we have that

‖Pa(Πl
s=1Bis)|z‖L2 ≤ (‖A|z‖Lv‖B|z‖Lv)1/2.

By the boundedness of Bernoulli random variable, we have that |A| ≤ 2. For a ≥ il + 1,

it is easy to see that ‖Pa(Πl
s=1Bis)|z‖ = 0. Recall the definition of Ui = (Bi, ..., Bi−h+1)′

below the Definition 4.1 in the main article. Let ui = (bi, ..., bi−h+1)′ ∈ {0, 1}h. Note that

for a ≤ i1 − 1 and v = a, a− 1,

E(Πl
s=1Bis|Fv, z) =∑

ui=(bi,...,bi−h+1)′,,
bj={0,1},i1≤j≤il+h,

j 6=is,1≤s≤l

Πil+h
i=i1+hP(Ui = ui|Ui−1 = ui−1, z)P(Ui1+h−1 = ui1+h−1|Fv, z)

∣∣
bis=1,s=1,...,l

.
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Notice that ∑
ui=(bi,...,bi−h+1)′,,
bj={0,1},i1≤j≤il+h,

j 6=is,1≤s≤l

Πil+h
i=i1+hP(Ui = ui|Ui−1 = ui−1, z)

∣∣
bis=1,s=1,...,l

= E(Πl
s=jBis |Fi1+h−1, z), j satisfies ij−1 ≤ i1 + h− 1 ≤ ij.

Using this fact, Proposition 4.1 in the main article and the upper bound of M in equation

(D.2) we have that B ≤ 2(1− 2α′)−1χi1−a. Consequently, we have that

‖Pa(Πl
s=1Bis)|z‖L2 ≤ 2δ(i1 − a). (E.1)

Observe that (E.1) still holds for a = i1. For iu + 1 ≤ a ≤ iu+1, 1 ≤ u ≤ l − 1, we have

that for v = a, a− 1,

E(Πl
s=1Bis|Fv, z) = (Πu

w=1Biw)E(Πl
s=u+1Bis|Fv, z).

Therefore we have that

Pa(Πl
s=1Bis) = (Πu

w=1Biw)Pa(Πl
s=u+1Bis|Fv, z).

It follows from the boundedness of B′is and a similar argument to the a < i1 case that

‖Pa(Πl
s=1Bis)|z‖L2 ≤ 2δ(iu+1 − a),

from which the proposition follows. �

Proof of Proposition 6.2 in the main article. Recall the definition of δ(k) in Propo-

sition E.1. Notice that by the orthogonality of P ′ks defined in Proposition E.1 and Fubini’s
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theorem, we have that

|Cov(Πl
u=1B̃iu ,Π

2l
v=l+1B̃iv |z)|

= |Cov(Πl
u=1B̃iu − E(Πl

u=1B̃iu|z),Π2l
v=l+1B̃iv − E(Π2l

v=l+1B̃iv |z)|z)|

=

∣∣∣∣∣E
(

N∑
a=−∞

Pa(Πl
u=1B̃iu)

N∑
b=−∞

Pb(Π2l
v=l+1B̃iv)

∣∣∣∣z
)∣∣∣∣∣

=

∣∣∣∣∣E
(

N∑
a=−∞

Pa(Πl
u=1B̃iu)Pa(Π2l

v=l+1B̃iv)

∣∣∣∣z
)∣∣∣∣∣

≤
N∑

a=−∞

‖Pa(Πl
u=1B̃iu)|z‖L2‖Pa(Π2l

v=l+1B̃iv)|z‖L2 . (E.2)

By Proposition E.1, we have

(E.2) ≤ 4
N∑

a=−∞

(
l∑

s=1

δ(is − a)1(is−1 < a)
2l∑

u=l+1

δ(iu − a)1(iu−1 < a)

)
which shows (a) by straightforward calculations. For (b), we shall show that

|Cov(Πl
u=1B̃iu ,Π

2l
v=l+1B̃iv |z)| ≤ 12l(1− 2α′)−1χι(is)/2(1− χ)−1, (E.3)

for s = 1, ..., 2l. Without loss of generality, we only show the case for s = 1. The other

cases follow similar arguments. Direct calculations show that

|Cov(Πl
u=1B̃iu ,Π

2l
v=l+1B̃iv |z)|

= |E(Π2l
u=1B̃iu |z)− E

(
Πl
u=1B̃iu|z

)
E
(

Π2l
v=l+1B̃iv |z

)
| ≤ I + II,

where

I := |E(Π2l
u=1B̃iu|z)| = |Cov(B̃i1 ,Π

2l
u=2B̃iu |z)|

II := |E
(

Πl
u=1B̃iu|z

)
E
(

Π2l
v=l+1B̃iv |z

)
| ≤ |Cov(B̃i1 ,Π

l
u=2B̃iu|z)|. (E.4)

The second equality of I is due to EB̃i1 = 0, and the second equality of II is due to

EB̃i1 = 0,EB̃il+1
= 0. By similar arguments to equation E.2. we have that for a sufficiently

large constant C > 0,

I ≤ 4
N∑

a=−∞

(
δ(i1 − a)

2l∑
u=2

δ(iu − a)

)
,

II ≤ 4
N∑

a=−∞

(
δ(i1 − a)

l∑
u=2

δ(iu − a)

)
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Then (E.3) follows from (E.4) and straightforward calculations, which finishes the proof.

�

Proof of Proposition 6.1 in the main article

Let C be a sufficiently large positive generic constant which varies from line to line. Recall

the re-parameterization θ in Section (6.1) of the main article. Let θi,j be the (i, j)-entry

of θ. Define normalized Laplacian L̃ = D̄−1/2AD̄−1/2. We shall show (i): there exists a

sufficiently large positive constant η0 such that

P
(
‖L̃L̃− L̄L̄‖F ≥

log n

τ 2n1/2
G1/2(χ,N, 3)(1− χ)−1/2

)
≤ η0

n log4 n
,

and (ii): there exists a set En with its complement Ec
n and sufficiently large positive

constants η1 and M ′, such that when n ≥M ′

P
(
‖L̃L̃− LL‖F ≥

log n

τ 2n1/2
G1/2(χ,N, 3)(1− χ)−1/2, En

)
= 0, (E.5)

P(Ec
n) ≤ η1n

−2. (E.6)

where C0 is a sufficiently small positive constant. The LHS of equation (E.5) means the

probability of intercept of events En and {‖L̃L̃−LL‖F ≥ M logn
τ2n1/2 G

1/2(χ,N, 3)(1− χ)−1/2}.
For (i), direct calculation shows that

|L̃L̃− L̄L̄|ij =
1

n2√cicj

n∑
k=1

(
Ai,kAk,j − θi,kθk,j

ck

)
.

By definition of τ , we only need to show that

P

∑
i,j

(
n∑
k=1

(
Ai,kAk,j − θi,kθk,j

ck

))2

≥ n3 log2 n

τ 2
G(χ,N, 3)(1− χ)−1


≤ η0

n log4 n
. (E.7)

Write Ãi,j = Ai,j − θi,j for the centered adjacency matrix. Then we have

Ai,kAk,j − θi,kθk,j = Ãi,kÃk,j + θk,jÃi,k + θi,kÃk,j.
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As a result, we get

∑
i,j

(
n∑
k=1

(
Ai,kAk,j − θi,kθk,j

ck

))2

=
∑
i,j,k,l

((
Ãi,kÃk,j + θk,jÃi,k + θi,kÃk,j

ck

)
×

(
Ãi,lÃl,j + θl,jÃi,l + θi,lÃl,j

cl

))
= I1 + I2 + I3 + I4 + I5 + I6 + I7 + I8 + I9,

where

I1 =
∑
i,j,k,l

Ãi,kÃk,jÃi,lÃl,j
ckcl

, I2 =
∑
i,j,k,l

Ãi,kÃk,jÃi,lθl,j
ckcl

, I3 =
∑
i,j,k,l

Ãi,kÃk,jθi,lÃl,j
ckcl

,

I4 =
∑
i,j,k,l

Ãi,kθk,jÃi,lÃl,j
ckcl

, I5 =
∑
i,j,k,l

Ãi,kθk,jÃi,lθl,j
ckcl

, I6 =
∑
i,j,k,l

Ãi,kθk,jθi,lÃl,j
ckcl

,

I7 =
∑
i,j,k,l

θi,kÃk,jÃi,lÃl,j
ckcl

, I8 =
∑
i,j,k,l

θi,kÃk,jÃi,lθl,j
ckcl

, I9 =
∑
i,j,k,l

θi,kÃk,jθi,lÃl,j
ckcl

.

We will show that, there exist constants Ms, 1 ≤ s ≤ 9 such that

P
(
Is ≥

n3 log2 n

τ 2
G(χ,N, 3)(1− χ)−1

)
≤ η0,s

n log4 n
. (E.8)

By taking η0 =
∑9

s=1 η0,s, we shall show (E.7). For the sake of brevity, we only show the

case that s = 1, and the situation that 2 ≤ s ≤ 9 follows from a similar argument. Further

define Ā(i,k),(k,j) = Ãi,kÃk,j − E(Ãi,kÃk,j). Notice that

E
(
Ā(i,k)(k,j)Ãi,lÃl,j

)
= Cov(Ā(i,k)(k,j)Ãi,l, Ãl,j) = Cov(Ā(i,k)(k,j), Ãi,lÃl,j).

By the similar arguments to the proof of Proposition 6.2, we have that∣∣∣∣∣E
(
Ā(i,k)(k,j)Ãi,lÃl,j

ckcl

)∣∣∣∣∣ ≤ 40(1− 2α′)−1

τ 2
χΞ(i,k,j,l,ω)/2(1− χ)−1,

where we have defined

Ξ(i, k, j, l, ω) = max{max
3≤s≤4

min
1≤j≤4,j 6=s

(|is − ij|),min(|i1 − i3|, |i1 − i4|, |i2 − i3|, |i2 − i4|)},

χ and α′ are defined in defined in Proposition 4.1 in the main article, and integers i1 =

ω({i, k}), i2 = ω({k, j}), i3 = ω({i, l}), i4 = ω({l, j}). We then argue that for any ω({·, ·})
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and given i, k, j and r, the possible number of l such that Ξ(i, k, j, l, ω) = r is at most 8r.

We also use the following argument and its analog. If i5 = ω({u, v}) has k possible different

values, then the number of different values of u and v should be both smaller than k + 1.

This can be easily seen by contradiction. When i, j, k are fixed, i1, i2 are fixed. For any real

number a and integer r > 0, denote by Ba(r) the interval [a− r, a+ r]. Then one of the i3

and i4 must fall into Bi1(r)∪Bi2(r). Otherwise min(|i1− i3|, |i1− i4|, |i2− i3|, |i2− i4|) > r,

which implies Ξ(i, k, j, l, ω) > r. Since ω({·, ·}) is a 1 − 1 map, when i, j, k are fixed,

the number of possible choices of l is less than or equal to both the numbers of possible

choices of i3 and i4. The total number of integers in the interval Bi1(r)∪Bi2(r) are is most

(2r+1)×2 = 4r+2, which implies that the possible number of l such that Ξ(i, k, j, l, ω) = r

is at most 8r + 5. Thus,

∑
i,j,k,l

∣∣∣∣∣E
(
Ā(i,k)(k,j)Ãi,lÃl,j

ckcl

)∣∣∣∣∣ ≤ 40(1− 2α′)−1

τ 2
(1− χ)−1

∑
i,j,k

N∑
r=0

(8r + 5)χr/2

≤ Cn3

τ 2
G(χ,N, 1)(1− χ)−1. (E.9)

Similarly, we get∣∣∣∣∣E
(
E(Ãi,kÃk,j)Ãi,lÃl,j

ckcl

)∣∣∣∣∣ ≤ 16(1− 2α′)−1

τ 2
χ|ω({i,l})−ω({j,l})|/2(1− χ)−1,

Then similar but easier arguments of (E.9) (by fixing i, l, k) lead to

∑
i,j,k,l

∣∣∣∣∣E
(
E(Ãi,kÃk,j)Ãi,lÃl,j

ckcl

)∣∣∣∣∣ ≤ Cn3

τ 2
G(χ,N, 1)(1− χ)−1,

which together with (E.9) shows that

EI1 ≤
Cn3

τ 2
G(χ,N, 1)(1− χ)−1. (E.10)

On the other hand, Proposition 6.2 leads to that

Cov

(∑
i,j,k,l

Ãi,kÃk,jÃi,lÃl,j
ckcl

,
∑
u,w,v,p

Ãu,vÃw,vÃu,pÃw,p
cvcp

)

≤
112(1− 2α′)−1

∑
i,j,k,l

∑
u,w,v,p

τ 4
χ

1
2

max(Λ(is,1≤s≤8),max1≤s≤8 ι(is))(1− χ)−1,
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where i1 = ω({i, k}), i2 = ω({i, l}), i3 = ω({j, k}), i4 = ω({j, l}), i5 = ω({u, v}),
i6 = ω({w, v}), i7 = ω({u, p}), i8 = ω({w, p}). For given i, j, k, l and r, we shall show

that the total number of possible pairs of integers u,w, v, p such that max(Λ(is, 1 ≤ s ≤
8),max1≤s≤8 ι(is)) = r is at most (8r+5)2(12r+7)n. Recall the definition of Λ(c)̇ and ι(·).
On one hand, Λ(is, 1 ≤ s ≤ 2l) = min1≤s≤l(minl+1≤u≤2l |is − iu|) is the smallest distance

between 2 indices, of which one is from i1, .., il and the other is from il+1, .., i2l. On the

other hand, ι(is) = min1≤j≤2l,j 6=s(|is− ij|) measures the smallest distance between index is

and other indices. We now calculate the total number of possible pairs of integers u,w, v, p

such that max(Λ(is, 1 ≤ s ≤ 8),max1≤s≤8 ι(is)) = r.

First note that at least one of i5, i6, i7, i8 should belong to the interval Bi1(r)∪Bi2(r)∪
Bi3(r)∪Bi4(r). Otherwise all distances between two indices, such that one indices is from

i1, i2, i3, i4 and the other is from the group of i5, i6, i7, i8 are large than r, so Λ(is, 1 ≤ s ≤
8) > r. Without loss of generality, consider the case that i5 = ω({u, v}) ∈ Bi1(r)∪Bi2(r)∪
Bi3(r) ∪ Bi4(r), then the possible numbers of i5 is at most 4 × (2r + 1) = 8r + 4, which

implies the possible numbers of different values of u, v are both at most 8r + 5. For each

pair of (u, v), define I = Bi1(r) ∪ Bi2(r) ∪ Bi3(r) ∪ Bi4(r) ∪ Br5(r). Then if (a) i6 ∈ I,

the total possible number of different values of w is no larger than one plus the possible

numbers of i6, which is 1 + (2r + 1)× 5 = 10r + 6. Meanwhile, the total possible number

of p is n. So for (a) the total possible number of pairs (u,w, v, p) is (8r + 5)2(10r + 6)n.

If (b) i6 6∈ I, then w has at most n possibilities. However at least one of i7 = ω({u, p})
and i8 = ω({w, p}) should fall into Br6(r), otherwise ι(i6) > r. Since i7 = ω({u, p}) and

i8 = ω({w, p}), the possible number of different values of p is bounded by one plus the

minimal possible numbers of i7 and i8 Thus, p has at most 2r + 1 choices, and for case

(b) the total possible number of pairs (u,w, v, p) is (8r + 5)2(2r + 1)n. Combining (a),

(b), we find that the total possible number of pairs (u,w, v, p) is (8r+ 5)2(12r+ 7)n. The

explanation of (b) is in the scanned figure.
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In conclusion, we have that

112(1− 2α′)−1
∑

i,j,k,l

∑
u,w,v,p

τ 4
χ

1
2

max(Λ(is,1≤s≤8),max1≤s≤8 ι(is))(1− χ)−1

≤112(1− 2α′)−1n4

τ 4

N∑
r=0

(8r + 5)2(12r + 7)nχr/2(1− χ)−1

≤Cn
5

τ 4
G(χ,N, 3)(1− χ)−1.

Equation (E.10) with Markov’s inequality show (E.8) (with s = 1). As a result, (i) follows

from similar arguments to Iv, 2 ≤ v ≤ 9. For (ii), define

En = ∩i{Dii ∈ D̄ii(l(n), u(n))} (E.11)

with l(n) = 1− b(n), u(n) = 1 + b(n), where we have chosen

b(n) =
log n

16
√
n
G1/2(χ,N, 3)(1− χ)−1/2.

We take D such that

D := |D−1
ss (DiiDjj)

−1/2 − D̄−1
ss (D̄iiD̄jj)

−1/2| ≤ 1

τ 2n2

∣∣∣∣D̄ss(D̄iiD̄jj)
1/2

Dss(DiiDjj)1/2
− 1

∣∣∣∣ .
On the other hand, on set E such that for all i, Dii ∈ D̄ii(l(n), u(n)),

D̄ss(D̄iiD̄jj)
1/2

Dss(DiiDjj)1/2
− 1 ∈ ((1 + b(n))−2 − 1, (1− b(n))−2 − 1).

Notice that b(n) → 0. Let M ′ be the integer that b(n) < 0.5 if n ≥ M ′, then mean value

theorem leads to

D ≤ 16b(n)

τ 2n2
.

By the boundedness of a Bernoulli random variable, we have that when n ≥M ′,

|LL− L̃L̃|i,j ≤
n∑
s=1

|Ai,sAs,j||D−1
ss (DiiDjj)

−1/2 − D̄−1
ss (D̄iiD̄jj)

−1/2|

≤ 16b(n)

n2τ 2

n∑
s=1

|Ai,sAs,j| ≤
16(n)

nτ 2
.
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As a result, we have that when n ≥M ′

P
(
‖L̃L̃− LL‖F ≥

log n

τ 2n1/2
G1/2(χ,N, 3)(1− χ)−1/2, En

)
= 0,

which further implies (E.5). It remains to show (E.6). The definition of set En in equation

(E.11) yields that

P(Ec
n) ≤

∑
i

P
(
|Di,i − D̄i,i|√

n
≥ D̄i,ibn√

n

)
≤
∑
i

P
(
|Di,i − D̄i,i|√

n
≥ τ
√
nbn

)
. (E.12)

Moreover it follows from the proof of Lemma D.1, that there exists a sufficiently small

constant C0 which is independent of i such that

E

(
exp

((
C0(1− χ)√

n
(Di,i − D̄i,i)

)2
))
≤ 2.

The above expression together with (E.12), Markov’s inequality and the fact that τ 2
n log n >

M for sufficiently large M implies (E.6). Thus (ii) follows, which together with (i) com-

pletes the proof. �.

F Proof of Results in Section 7

We need the following proposition to show Corollary 7.1 in the main article.

Proposition F.1. Define Wk(Bj), Uk(Bj) for j ≥ 0 iteratively as follows:

W1(Bj) = p
Bj
1 (1− p1)1−Bj , U1(Bj) = p

Bj
0 (1− p0)1−Bj ,

Wk(Bj) = p1Wk−1(Bj) + (1− p1)Uk−1(Bj), k ≥ 2

Uk(Bj) = p0Wk−1(Bj) + (1− p0)Uk−1(Bj), k ≥ 2. (F.1)

Then the dependence between two ordered edge variables in CG(V, ω, p0, p1) could be

represented by Uk(Bj) and Wk(Bj) as follows. For j − 1 ≥ k ≥ 2, we have

P(Bj|Bj−k) = Wk−1(Bj)p
Bj−k
1 p

1−Bj−k
0 + Uk−1(Bj)(1− p1)Bj−k(1− p0)1−Bj−k , (F.2)

where CG(V, ω, p0, p1) is defined in definition 7.1 in the main article.
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Proof. We shall use mathematical induction to prove the proposition. For k = 2, we

have that by Markov property of the sequence {Bj} and j ≥ 2,

P(Bj|Bj−2) =
1∑

Bj−1=0

P(Bj|Bj−1)P(Bj−1|Bj−2)

= p
Bj
1 (1− p1)1−Bjp

Bj−2

1 p
1−Bj−2

0 + p
Bj
0 (1− p0)1−Bj(1− p1)Bj−2(1− p0)1−Bj−2 .

Suppose that for k = l, l ≥ 2, the equation (F.2) holds. Then for k = l + 1,

P(Bj|Bj−l−1) =
1∑

Bj−l=0

P(Bj|Bj−l)P(Bj−l|Bj−l−1)

= (Wl−1(Bj)p1 + Ul−1(Bj)(1− p1))p
Bj−l−1

1 p
1−Bj−l−1

0

+ (Wl−1(Bj)p0 + Ul−1(Bj)(1− p0))(1− p1)Bj−l−1(1− p0)1−Bj−l−1

= Wl(Bj)p
Bj−l−1

1 p
1−Bj−l−1

0 + Ul(Bj)(1− p1)Bj−l−1(1− p0)1−Bj−l−1 ,

where the equality is due to (F.1). By mathematical induction the proposition follows. �

Proof of Corollary 7.1 in the main article

Note that (F.1) in Proposition F.1 implies that(
Wk(Bj)

Uk(Bj)

)
=

(
p1 1− p1

p0 1− p0

)(
W1(Bj−1)

U1(Bj−1)

)
,

which by further iteration results in(
Wk(Bj)

Uk(Bj)

)
=

(
p1 1− p1

p0 1− p0

)k−1(
W1(Bj)

U1(Bj)

)
.

Define the matrix P =
(
p1 1−p1
p0 1−p0

)
. Direct calculations show that the eigenvalues of P are

λ1 = 1 and λ2 = p1 − p0. Let I be the 2 × 2 identity matrix. The by Cayley-Hamilton

Theorem, we have the following formula Let notation Pk represent the nth power of matrix

P.

Pk =
λk1 − λk2
λ1 − λ2

P− λ1λ2
λk−1

1 − λk−1
2

λ1 − λ2

I,
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which by simple calculations leads to

Pk =
1

1− p1 + p0

(
p0 + (1− p1)(p1 − p0)k (1− p1)(1− (p1 − p0)k)

p0(1− (p1 − p0)k) (1− p1) + p0(p1 − p0)k

)
.

Then the corollary is a consequence of the fact that W1(1) = p1, U1(1) = p0,W1(0) =

1− p1, U1(0) = 1− p0, Proposition F.1 and straightforward calculations. �

The results show that the dependence between edge variables, or equivalently ∆n(k)

defined in (3.1) decays at the geometric rate (p1−p0)k. We also observe that by Proposition

F.1, for all k ≥ 2, the following bounds hold for the conditional probabilities that defined

in Corollary 7.1:

Pk(0|1) ∈ [1− p̄1, 1− p̄0], Pk(0|0) ∈ [1− p̄1, 1− p̄0],

Pk(1|0) ∈ [p̄0, p̄1], Pk(1|1) ∈ [p̄0, p̄1],

where p̄1 = p0 ∨ p1 and p̄0 = p0 ∧ p1, where ∨ represents ‘max’ and ∧ represents ‘min’.

We then introduce an auxiliary proposition about the rate of Poisson approximation to

Binomial distribution, which has been used to compare MECLTG CG(V, ω1, p0, p1) with

Erdös-Rényi graph G(V, p) below Theorem 7.1 of the main article.

Proposition F.2. Suppose k2 = o(n), Let Zn follow a Bernoulli(n, λ0/n) distribution with

λ0 := λ0(n) satisfying λ0k = o(n). Let Y follow a Poisson(λ0) distribution. Then it follows

that

P(Zn = k) = P(Y = k)

(
1 +O

(
k2 + λ2

0

n

))
.

Proof. The proof proceeds by direct calculation. Note that

P(Zn = k) =

(
n

k

)(
λ0

n

)k (
1− λ0

n

)n−k
=

λk0n!

k!(n− k)!
(n− λ0)−k exp(−λ0)

(
1 +O

(
λ2

0

n

))
=
λk0
k!

exp(−λ0)

(
1 +O

(
λ2

0

n

))
U(λ0, n, k),
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where U(λ0, n, k) =
Πks=1(n−s+1)

(n−λ0)k
. Direct calculations shows that

U(λ0, n, k) ∈ [U1(λ0, n, k), U2(λ0, n, k)],

where

U1(λ0, n, k) =

(
1 +

λ0 − k + 1

n− λ0

)k
= 1 +O

{
k(λ0 − k)

n

}
,

U2(λ0, n, k) =

(
1 +

λ0

n− λ0

)k
= 1 +O

(
λ0k

n

)
.

which completes the proof. The last step uses that k2/n→ 0,(
1 +

k

n

)k
= exp

{
k ln

(
1 +

k

n

)}
= exp

{
k2

n
+O

(
k3

n2

)}
= 1 +O

(
k2

n

)
.

In fact, this proposition implies that the distribution of a Bernoulli random variable with

a small probability of a successful trial is close to that of a Possion random variable, and

quantifies the difference between the two distributions by their parameters. �

The following proposition is required for proving Theorem 7.1 in the main article.

Proposition F.3. Considering the MECLTG CG(V, ω1, p0 = λ0
n
, p1 = 1 − λ1

nc
) define in

Definition 7.1 of the main article with λ0 > 1. Let n′′ be an integer which is smaller

than bεnc for some ε > 0, and Dn′′ =
∑n−n′′

j=1 I(An′′,n′′+j = 1). Then for any integer

0 ≤ k ≤ n− n′′ − 2, there exist strictly positive constants C1, C2 independent of k and n,

such that

P(Dn′′ = k) ≥ C1n
−c
(
n′ − k − 1

n′

)
exp

(
−C2

(
k

nc

))
.

Proof. Write n′ = n− n′′. To simplify the notation, we set
(
n
k

)
= 0 if k < 0 or k > n.
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The k = 0 case is obvious. For 1 ≤ k ≤ n′ − 2 we have

P(Dn′′ = k) = p

k∑
d=2

(
n′ − k − 1

d− 2

)(
k − 1

d− 1

)
pk−d1 pd−1

0 (1− p1)d−1(1− p0)n
′−k−d+1

+ (1− p)
k∑
d=1

(
n′ − k − 1

d− 1

)(
k − 1

d− 1

)
pk−d1 pd0(1− p1)d−1(1− p0)n

′−k−d

+ p
k∑
d=1

(
n′ − k − 1

d− 1

)(
k − 1

d− 1

)
pk−d1 pd−1

0 (1− p1)d(1− p0)n
′−k−d

+ (1− p)
k∑
d=1

(
n′ − k − 1

d

)(
k − 1

d− 1

)
pk−d1 pd0(1− p1)d(1− p0)n

′−k−d−1

:= I + II + III + IV, (F.3)

where p = p0
1−p1+p0

, as discussed in (7.2) of the main article. The latter equations de-

fine the fewer known I,II, III & IV. The first term is correspond to the situation that

(An′′,n′′+1, An′′,n) = (1, 1). The second term is correspond to the case of (0, 1), The third is

correspond to (1, 0), and the last term is correspond to the case of (0, 0). We only discuss

the quantity I in (F.3) since II, III, IV follow mutatis mutandis. To this end, we need

to calculate for each k,

P(An′′,n′′+1 = a1, ..., An′′,n = an′)

where {ai ∈ {0, 1}, 1 ≤ i ≤ n′ :
∑n′

i=1 ai = k, a1 = 1, an′ = 1}. If a1 = 1, an′ = 1, and in

the series of ai, 1 ≤ i ≤ n′, there are d, 2 ≤ d ≤ n′ pieces of consecutive 1′s, then we have

that, starting with 1, the series will have k − d of 1′s following 1, d− 1 of 0′s following 1,

d− 1 of 1′s following 0, and n′− (k− d+ d− 1 + d− 1)− 1 = n′− k− d+ 1 of 0′s following

0, where the last term of −1 in the LHS of the above equation is due to a1 = 1. Define

Ud,k = {{ai, 1 ≤ i ≤ n′} ∈ {0, 1}n′ :
∑n′

i=1 ai = k, there are d strings of 1′s, a1 = 1, an′ =

1}. Here “a strings of 1” means a sub-series only containing 1. Then we have that

P(An′′,n′′+1 = a1, ..., An′′,n = an′ , {ai}n
′

i=1 ∈ Ud,k) = ppk−d1 (1− p1)d−1pd−1
0 (1− p0)n

′−k−d+1.

Now we study |Ud,k| as follows. Since there are n′ − k of 0′s, we first choose d − 2 out of

n′− k− 1 positions to place strings of 1′s, where d− 2 is due to a1 = 1 and an′ = 1. Then

we assign the length of each string of 1. This leads to choose d− 1 out of k − 1. Thus we
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obtain ∑
{ai,1≤i≤n′}∈Ud,k

P(An′′,n′′+1 = a1, ..., An′′,n = an′)

=

(
n′ − k − 1

d− 2

)(
k − 1

d− 1

)
ppk−d1 (1− p1)d−1pd−1

0 (1− p0)n
′−k−d+1,

Also, we have P(Dn′′ = k,An′′,n′′+1 = 1, An′′,n = 1) =
∑k

d=2

∑
{ai,1≤i≤n′}∈Ud,k P(An′′,n′′+1 =

a1, ..., An′′,n = an′). Similar arguments apply to the (An′′,n′′+1, An′′,n)=(0, 1), (1, 0), and the

(0, 0) cases. Notice that I, II, III and IV are all positive. In particular, IV is greater

than its first term, which is

IV ≥ (1− p)
(
n′ − k − 1

1

)(
k − 1

0

)
pk−1

1 p0(1− p1)(1− p0)n
′−k−2

=
(1− p1)2

1− p1 + p0

pk−1
1

(
n′ − k − 1

1

)
p0(1− p0)n

′−k−2. (F.4)

Since p0 = λ0
n

, it follows from straightforward calculations that for sufficiently large n′

there exists a positive constant η0 < 1 such that(
n′ − k − 1

1

)
p0(1− p0)n

′−k−2 ≥ η0
(n′ − k − 1)λ0

n′
exp(−λ0). (F.5)

Since p1 = 1− λ1
nc

, expression (F.5) yields that if n′ is sufficiently large

(F.4) ≥ η1η0
n′ − k − 1

n′
λ0 exp(−λ0)

λ1

nc
(1− λ1

nc
)k−1

≥ η2η0
n′ − k − 1

n′
λ0 exp(−λ0)

λ1

nc
exp(−(k − 1)λ1

nc
),

for positive constants 0 < η2 < η1 < 1, which completes the proof.

Proof of Theorem 7.1 in the main article

Let n′′ be an integer which is smaller than bεnc for some fixed ε ∈ (0, 1). We consider

node n′′. Denote by dn′′ the degree of the node n′′. Notice that for node n′′, the edge

variables are generated in the following order

A1,n′′ , A2,n′′ , ..., An′′−2,n′′ , An′′−1,n′′ , An′′,n′′+1, ..., An′′,n.
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As a result, the degree has the following decomposition

dn′′ = Dn′′ +Wn′′ , where Dn′′ =
n−n′′∑
j=1

I(An′′,n′′+j = 1), Wn′′ =
n′′−1∑
j=1

I(Aj,n′′ = 1).(F.6)

For k ∈ N,

P(dn′′ = k) =
k∑
s=0

P(Dn′′ = k − s|Wn′′ = s)P(Wn′′ = s). (F.7)

Recall the definition of ω1 in Section 7.1.1 of the main article, i.e., ω1({i, j}) = $(i∧j, i∨j)
for i 6= j, where $1(i, j) = n(i−1)− i(i−1)/2+j− i for 1 ≤ i < j ≤ n. Direct calculations

based on the form of ω1 show that ω1({n′′ − k, n′′}) − ω1({n′′ − k − 1, n′′}) = n − n′′ + k

for 1 ≤ k ≤ n′′ − 2. Also we have that ω1({n′′, n′′ + 1}) − ω1({n′′ − 1, n′′}) = n − n′′ + 1.

Thus it follows from from (F.6) that

P(Dn′′ = k − s|Wn′′ = s) =∑
∑n−n′′
l=1 an′′,n′′+l=k−s,

{an′′,n′′+l}
n−n′′
l=1 ∈{0,1}n−n′′

Πn−n′′
l=2 P(An′′,n′′+l = an′′,n′′+l|An′′,n′′+l−1 = an′′,n′′+l−1)

× P(An′′,n′′+1 = an′′,n′′+1|Wn′′ = s). (F.8)

On the other hand, by Markov property and theory of total probability, we obtain that

P(An′′,n′′+1 = an′′,n′′+1,Wn′′ = s)

=
∑

∑n′′−1
l=1 al,n′′=s,

{al,n′′}
n′′−1
l=1 ∈{0,1}n′′−1

P(An′′,n′′+1 = an′′,n′′+1|An′′−1,n′′ = an′′−1,n′′)

× Πn′′−2
l=1 P(An′′−l,n′′ = an′′−l,n′′ |An′′−l−1,n′′ = an′′−l−1,n′′)P(A1,n′′ = a1,n′′). (F.9)

By using Corollary 7.1 in the main article, we get

P(An′′,n′′+1 = an′′,n′′+1|An′′−1,n′′ = an′′−1,n′′)

= P(An′′,n′′+1 = an′′,n′′+1)(1 +O(n1−c(p1 − p0)n−n
′′+1))

= P(An′′,n′′+1 = an′′,n′′+1)(1 +O(n1−c exp(−nλ1(1−c)))) (F.10)
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if n is sufficiently large. Then by (F.10), (F.9) can be simplified to equal to

(F.9) = P(An′′,n′′+1 = an′′,n′′+1)P(Wn′′ = s){1 +O(n1−c exp(−nλ1(1−c)))},

which further implies that

P(An′′,n′′+1 = an′′,n′′+1|Wn′′ = s) = P(An′′,n′′+1 = an′′,n′′+1){1 +O(n1−c exp(−nλ1(1−c)))}.(F.11)

Therefore (F.7), (F.8) and (F.11) result in

P(dn′′ = k) =
k∑
s=0

P(Dn′′ = k − s)P(Wn′′ = s){1 +O(n1−c exp(−nλ1(1−c)))}.

Similar arguments using the fact ω1({n′′−k, n′′})−ω1({n′′−k−1, n′′}) = n−n′′+k yield

that

P(Wn′′ = s) =


∑

∑n′′−1
l=1 al,n′′=s,

{al,n′′}
n′′−1
l=1 ∈{0,1}n′′−1

Πn′′−1
l=1 P(Al,n′′ = al,n′′)

 {1 +O(n2−c exp(−nλ1(1−c)))}

= P(Yn′′ = s)(1 +O(n2−c exp(−nλ1(1−c)))), (F.12)

where Yn′′ ∼ Binomial(n′′ − 1, p), for p = p0
1−p1+p0

as discussed in equation (7.2) in the

main article. By Proposition F.3, there exist constants positive C1, C2 such that for

0 ≤ k ≤ n− n′′ − 2

P(Dn′′ = k) ≥ C1n
−c
(
n′ − k − 1

n′

)
exp

(
−C2

(
k

nc

))
.
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Let k∗ = bk/pc. Then we have for 0 ≤ k ≤ (n− n′′ − 2),

E
(∑n

n′′=1 I(dn′′ = k)

n

)
≥
∑k∗∧n

n′′=1 P(dn′′ = k)

n

=
1

n

k∗∧n∑
n′′=1

k∑
s=0

P(Wn′′ = k − s)P(Dn′′ = s){1 +O(n1−c exp(−nλ(1−c)))}

≥ 1

n

k∗∧n∑
n′′=1

k∑
s=0

P(Wn′′ = k − s)C1n
−c exp

(
−C2

(
k

nc

))
{1 +O(n1−c exp(−nλ(1−c)))}

=
1

n

k∗∧n∑
n′′=1

k∑
s=0

P(Yn′′ = k − s)C1n
−c exp

(
−C2

(
k

nc

))
× {1 +O(n1−c exp(−nλ(1−c)))}{1 +O(n2−c exp(−nλ(1−c)))}

≥ 1

n

k∗∧n∑
n′′=1

k∑
s=0

P(Yn′′ = k − s)C1n
−c exp

(
−C2

(
k

nc

))
for some positive constant C̃1, where the equality is due to equation (F.12). Furthermore,

observe that by the basic property of a Binomial random variable

bk/pc∧n∑
n′′=1

P(Yn′′ ≤ k) ≥ ζ((k/p) ∧ n)

for some constant ζ, which leads to

1

n

k∗∧n∑
n′′=1

k∑
s=0

P(Yn′′ = k − s)C1n
−c exp

(
−C2

(
k

nc

))

=
1

n

bk/pc∑
n′′=1

P(Yn′′ ≤ k)C1n
−c exp

(
−C2

(
k

nc

))
≥ Č1

1

nc

(
k

nc
∧ 1

)
exp

(
−C2

(
k

nc

))
for some sufficiently small positive constant Č1. Define Mγ = (

∑n
k=1

1
kγ

)−1 for γ > 1,

Mγ,µ = (
∑n

k=1
1
kγ

exp(−µk))−1 for γ > 1, µ > 0. Denote Jn′′ = [1, n− n′′ − 2] ∩ Z, and

Ãn,γ :=

{
k ∈ Jn′′ : Č1

1

nc

(
k

nc
∧ 1

)
exp

(
−C2

(
k

nc

))
≥Mγ

1

kγ

}
,

B̃n,γ,µ =

{
k ∈ Jn′′ : Č1

1

nc

(
k

nc
∧ 1

)
exp

(
−C2

(
k

nc

))
≥Mγ,µk

−γ exp(−µk)

}
.
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Direct calculations show that there exist a0, b0, c0, d0 such that for sufficiently large n,{
k : ba0n

2c
1+γ c ≤ k ≤ bb0n

c log nc
}
⊂ Ãn,γ ⊂ An,γ,

{k : bc0 log nc ≤ k ≤ bd0nc} ⊂ B̃n,γ,µ ⊂ Bn,γ,µ,

which completes the proof. �

Proof of Lemma 7.1 in the main article

Proof. Without loss of generality, we assume that n is even. The case of n odd can be

shown mutatis mutandis. Consider node k such that 2 ≤ k ≤ n/2. Note that for node k,

the order of the corresponding edge variables are generated in the following order:

Ak := (Ak−1,k, Ak,k+1, Ak−2,k, Ak,k+2, ..., Ak−a,k,

Ak,k+a, ...A1,k, Ak,2k−1, Ak,2k, Ak,2k+1, ..., Ak,n),

where Ak is a (n − 1)–vector, with A(l)
k its lth element. Recall that ω2({i, j}) = i +

(2n−(j−i))(j−i−1)
2

. Straightforward calculations show that i): if |a− b| < |c− d|, ω2({a, b}) <
ω2({c, d}) and ii): if |a − b| = |c − d|, then ω2({a, b}) < ω2({c, d}) when min(a, b) <

min(c, d). Let Bi ∈ R1×(n−1) with B(l)
i as its lth element. Define for each finite k, 1 ≤ k ≤

n/2, the real series {ai(k)}n−2
i=1 as

a2s+1(k) = s+ 1, 0 ≤ s ≤ k − 2

a2s(k) = n− 2s− 1, 1 ≤ s ≤ k − 2

al(k) = n+ k − 1− l, 2k − 2 ≤ l ≤ n− 2.

Let B(1)
k = B1, and B(s)

k = B1+
∑s−1
u=1 au(k) for s ≥ 2, where {Bk}1≤k≤N is the ordered edge

variables in (7.1) of the main article with P(Bi = 1) = p0
1−p1+p0

. Then by the stationary

assumption and direct calculation, we can show that

Ak
d
= Bk
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where
d
= means the equivalence in distribution. For node k with n

2
+ 1 ≤ k ≤ n, define

similarly 
a2s+1(k) = s+ 1, 0 ≤ s ≤ n− k − 1

a2s(k) = n− 2s− 1, 1 ≤ s ≤ n− k
al(k) = 2n− k − 1− l, 2n− 2k + 1 ≤ l ≤ n− 2.

Let B(s)
k = B1+

∑s−1
u=1 au(k). By our construction, we have

Ak
d
= Bk.

Recall c in the definition of p1 = 1 − λ1n
−c. Let ι be a constant such that c − 1 + ι < 0.

For the purpose of evaluating P(di = k) we define

di,1 =

bnιc∑
j=1

B(j)
i , di,2 =

n−bnιc−1∑
bnιc+1

B(j)
i , di,3 =

n∑
n−bnιc

B(j)
i .

This therefore splits up P(di = k) into three parts. Then by similar arguments to the proof

of (F.8) of Theorem 7.1, we have that

P(di = k) =
∑
s,u

P(di,3 = u|di,2 = k − s− u)P(di,2 = k − s− u|di,1 = s)P(di,1 = s)

=
∑
s,u

P(di,3 = u)P(d̄i,2 = k − s− u)P(di,1 = s)(1 +O(n2−c exp(−nλ1(ι−c)))),(F.13)

where d̄i,2 follows a Binomial(n − 2bnιc − 1, p) distribution with p = p0
1−p1+p0

. Without

loss of generality, we consider node 1. For node i, 2 ≤ i ≤ n, the equations follow mutatis

mutandis. By similar arguments to the discussion of (F.13), we then have

P(d1 = k) =
∑
u

P(d1,3 = u|d1,2 + d1,1 = k − u)P(d1,2 + d1,1 = k − u)

=
∑
u

P(d1,3 = u)P(D̃1,1 = k − u)(1 +O(n2−c exp(−nι−c))), (F.14)

where D̃1,1 follows a Binomial(n − bnιc, p) distribution. Let V1 follow a Poisson(nιp)

distribution. Let M be a sufficiently large constant. By Theorem 4.1 of [20] or Theorem

1 of [5], we have that for a sufficiently large positive constant M ,

1

2

∞∑
i=0

|P(V1 = i)− P(d1,3 = i)| = M(b1 + b2 + b3),
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where we choose

b1 =

bnιc∑
i=1

p2 ≤Mnι+2c−2, b2 = 0,

b3 =

bnιc∑
i=1

E|E(Bi|Bj, j 6= i)− p(Bi = 1)| ≤ 2pbnιc ≤Mnι+c−1. (F.15)

where for the bound of b3, we have used the property of conditional expectation and

the non-negativity of the Binomial random variable. On the other hand, let Wi follow a

Poisson((n− bnιc)p) distribution. By [19], we have

∞∑
k=0

|P(Wi = k)− P(D̃1,1 = k)| ≤Mnc−1. (F.16)

By the property of sum of independent Poisson random variables, (F.15) and (F.16), (i)

follows. It remains to show (ii). As per usual, define the entropy function

H(a, p) = a log(
a

p
) + (1− a) log(

1− a
1− p

).

For any Binomial(n, p) random variable Sn, we estimate its tail behavior as follows. For

0 ≤ p < a ≤ 1, we have that for β > 0,

P(Sn ≥ an) ≤ exp(−βan)E(exp(βSn)) = (exp (−βan) (1− p+ p exp(β)))n . (F.17)

In equation (F.17) set β = log
(
a(1−p)
p(1−a)

)
> 0, then we have that

P(Sn ≥ an) ≤ exp(−nH(a, p)). (F.18)

In the remainder of the proof, we consider node 1. The other nodes follow mutatis mutandis.

Let V follow Binomial(n− bnιc, p). By (F.14) and the property of Binomial distribution

(F.18), we have that for k ≥ bnιg(n)c, where g(n) is a series of real numbers which go to

infinity arbitrarily slowly,

P(d1 = k) ≤ P(V ≥ k − bnιc)(1 +O(n2−c exp(−nλ1(ι−c))))

≤ exp (−(n− bnιc)H (a, p)) (1 +O(n2−c exp(−nλ1(ι−c)))),
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where a = k−bnιc
n−bnιc . Since k ≥ bnιg(n)c and p � nc−1, when n large enough, log(a/p) ≥

(ι− c) log n. Therefore it follows from Taylor expansion that

H(a, p) ≥ (ι− c)a log n+ (1− a) log(1− a) +O(nc−1). (F.19)

Notice that

lim
a→0

(1− a) log(1− a)

a
= −1. (F.20)

Expression (F.19), (F.20) and the definition of a imply that

{n− bnιc}H(a, p) ≥ δ(ι− c)k log n for some δ ∈ (0.5, 1)

when n is sufficiently large, which completes the proof. �
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