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Abstract

Overcomplete representations such as wavelets and windowed Fourier ex-
pansions have become mainstays of modern statistical data analysis. In the
present work, in the context of general finite frames, we derive an oracle ex-
pression for the mean quadratic risk of a linear diagonal de-noising procedure
which immediately yields the optimal linear diagonal estimator. Moreover,
we obtain an expression for an unbiased estimator of the risk of any smooth
shrinkage rule. This last result motivates a set of practical estimation pro-
cedures for general finite frames that can be viewed as the generalization
of the classical procedures for orthonormal bases. A simulation study veri-
fies the effectiveness of the proposed procedures with respect to the classical
ones and confirms that the correlations induced by frame structure should
be explicitly treated to yield an improvement in estimation precision.

Keywords: Frame theory, Block thresholding, Shrinkage, Signal de-noising,
SURE

1. Introduction

Regression using more predictors than observations has received a great
deal of attention in recent years, from viewpoints as diverse and fundamental
as high-dimensional inference and regularization, approximation theory, and
sparse coding. While an orthogonal basis yields fast algorithms and classical
asymptotic theory, it can often fail to represent a particular function of in-
terest efficiently. As a result, overcomplete representations such as wavelets
and windowed Fourier expansions have become mainstays of modern statis-
tics and signal processing.

Such representations are formalized through the theory of frames. Frames
can be generated by the action of operators on a template function (mother
wavelet or Gabor atom), or be unstructured and random (as in compressive
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sensing). Results for frame-based regression come in two flavors: those that
derive from statistics which usually aim for universality, and those that de-
rive from signal processing which usually exploit structure of specific frame
families (usually wavelet or Fourier frames).

In the context of thresholding estimators for de-noising purposes, [4] gave
some of the first related results, for multiwavelets. Some of the latest results
are by [7] for a particular windowed Fourier frame and [6], where an universal
threshold is derived for frames satisfying rather stringent conditions which
ensure that the threshold depends on the number of the frame functions but
not on the frame structure. In general, frame based de-noising procedures are
often derived using adaptation of de-noising methodologies developed for the
case of orthonormal bases by exploring specific characteristic of an unknown
signal (as in Bayesian framework, see, e.g., [9]), and/or by exploring specific
characteristic of the frame structure (see, e.g., [11, 8, 5].

The objective of this paper is to bridge the existing gap between mathe-
matical and statistical theories on one hand and engineering practice on the
other. In particular, the purpose of this paper is to give a comprehensive
study of de-noising properties of frames in a way that allows practitioners
to trade off between computational convenience and statistical efficacy. We
do this by providing several new and practically implementable techniques
that generalize standard ones taking the correlation structure of the frame
coefficients into account.

We start with deriving an oracle expression for the quadratic risk of a
linear diagonal estimator which, in the case of an orthonormal basis, imme-
diately yields the popular Wiener estimator. We also show that it is naturally
related to block thresholding, which is proved to be very effective (see, e.g.,
[14]). We then derive the Stein’s (1981) unbiased risk estimator (SURE) for
all smooth shrinkage functions and general frames, recovering the results of
[13, 10] from the image processing literature. Using SURE, we then obtain
explicit expressions for the linear shrinkage and the soft and the hard thresh-
olding de-noising procedures for general frames that are standard in signal
processing literature for the case of orthonormal bases. A finite-sample sim-
ulation study verifies the effectiveness of the proposed methods with respect
to classical techniques.
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2. Oracle risk expression for frame-based regression

Consider the canonical problem of recovering some f ∈ Rn from its cor-
rupted observation x:

x = f + δ, δ ∼ N (0, σ2In). (2.1)

Any matrix W ∈ CN×n of full column rank is a frame for Rn when n and
N are finite; columns of its conjugate transpose W ∗ are the corresponding
frame vectors. Applying W to (2.1), we obtain

Wx = Wf +Wδ ⇒ y = θ + ε, ε ∼ N (0, σ2U) (2.2)

where covariance U = WW ∗ ∈ CN×N is of rank n, and we let y = Wx,
θ = Wf , and ε = Wδ.

The goal of our analysis is first to reduce noise in the vector y of frame
coefficients by shrinking or thresholding its components—thus yielding vector
θ̂—and subsequently to estimate f by

f̂ = (W ∗W )−1W ∗θ̂ = W+θ̂, (2.3)

withW+ = (W ∗W )−1W ∗ the Moore–Penrose inverse ofW , termed its canon-
ical dual frame. When, in particular, W ∗W = αIn, then the frame is said
to be tight, in which case U− = (W+)∗W+ reduces to U− = α−2U and
∥Wf∥22 = 1

α2∥f∥22.
Let Γ be a diagonal matrix with vector γ on the diagonal, so that Γ =

diag(γ). If we consider any estimator of type θ̂ = Γy with Γ fixed (not
depending on y), then an expression for its oracle risk is given by the following
statement.

Theorem 1. Let U = WW ∗ and U− = (W+)∗W+. If θ̂ = Γy for fixed,
diagonal Γ, then

E∥f̂ − f∥2 = Tr
{
U−(IN − Γ)θθ∗(IN − Γ) + σ2ΓUΓU−} . (2.4)

In particular, if the frame is tight, then U− = α−2U .

Proof: Note that for all x ∈ Cn×1 it holds ∥x∥2 =
∑n

i=1 x
2
i = Tr(xx∗).

Hence, we obtain

E∥f̂−f∥2 = E∥W+(Γy−θ)∥2 = ETr
{
W+(Γy − θ)(Γy − θ)∗(W+)∗

}
≡ ∆1+∆2.
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Then, by using E(ϵ) = 0 and the cyclic permutation property of the trace
operator, we derive

∆1 = Tr {W+(IN − Γ)θθ∗(IN − Γ)(W+)∗} = Tr [U−(IN − Γ)θθ∗(IN − Γ)];
∆2 = Tr {W+ΓE (ϵϵ∗) Γ∗(W+)∗} = σ2Tr (ΓUΓU−) . □

It is worth to observe that Theorem 1 implies that in the case of hard thresh-
olding, one needs to minimize the risk of (2.4) over the set of binary diagonal
matrices. In the case of an orthonormal basis, the oracle expression in (2.4)
takes the familiar form

∑n
i=1 {θ2i I(γi = 0) + σ2 I(γi = 1)}. This motivates

the choice of a threshold based on the magnitude of a coefficient for any kind
of an orthonormal basis. This situation changes, however, whenever matrix
W of frame elements ceases to be unitary—because the specific frame struc-
ture should now be taken into account. Indeed, Theorem 1 implies that the
choice of coefficients to “keep” (γi = 1) or “kill” (γi = 0) depends not only
on their values, but also on the entries of matrix U .

Denote by A ◦B the Hadamard (element-wise) matrix product of A and
B. Then, Theorem 1 yields the following expression for the optimal diagonal
shrinkage rule.

Corollary 1. The optimal diagonal linear shrinkage rule θ̂ = γ ◦ y in the
setting of Theorem 1 is given by

γ =
{
(θθ∗) ◦ U− + σ2(U ◦ U−)

}−1 {
(θθ∗) ◦ U−} 1N , (2.5)

where, again, U− = α−2U for the special case of a tight frame.

Proof: Note that minimization of (2.4) with respect to Γ = diag(γ) leads to
minimization, with respect to γ, of the quadratic form

argmin
γ

(γ∗Aγ − 2γ∗b), (2.6)

where A = (θθ∗) ◦ U− + σ2(U ◦ U−) and b = ((θθ∗) ◦ U−)1N , with 1N the
column vector of all ones. The existence of the inverse in (2.5) is guaranteed
to exist, since the Hadamard product of any two positive-definite matrices is
positive-definite. □

Corollary 1 generalizes the linear diagonal oracle estimator for an or-
thonormal basis. In a special case of a tight frame, when N = n and α = 1
and U = U− = In, we recover, directly from (2.5), the well-known Wiener
linear shrinkage rule γi = θ2i /(θ

2
i + σ2).
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Corollary 1 also implies that the optimal weights are functions not only of
θi but also of other coefficients in their respective neighborhoods. Thus, (2.5)
represents an overlapping block shrinkage procedure where the lengths of the
blocks are automatically determined by the correlations induced by the frame
operator. The latter directly motivates the block shrinkage procedures that
are known to have good risk properties (see, e.g., [14] [2] and [5] among
others).

3. Unbiased risk estimation for the frame-based regression

The oracle expression of Theorem 1 enables the construction of unbiased
estimators of the risk E∥f̂ − f∥2. Indeed, if we re-write the matrix Θ = θθ∗

appearing in (2.4) as Θ = E(yy∗)− σ2U and estimate it via Θ̂ = yy∗ − σ2U ,
then, we obtain the following unbiased estimator of the risk.

Corollary 2. Let θ̂ = Γy for a fixed, diagonal matrix Γ. Then, an unbiased
estimator for the risk R = E∥f̂ − f∥2 is

R̂ = σ2n+∆, ∆ = y∗(IN−Γ)U−(IN−Γ)y−2σ2Tr
{
U−U (IN − Γ)

}
. (3.1)

In particular, if Γ induces a hard thresholding rule, so that θ̂ = γ ◦ y with
γ ∈ {0, 1}N , then

∆ =
∑N

i,j=1 {yiyjU
−
ij − 2σ2(U−U)ii I(i = j)} I(γi = 0) I(γj = 0). (3.2)

Proof: Note that Tr (ΓUΓU−) = Tr {UU− + (IN − Γ)U(IN − Γ)U− − 2(IN − Γ)UU−}.
Now replace θθ∗ in (2.4) by yy∗ − σ2U and observe that, since W+W = In,

Tr
(
UU−) = Tr

{
WW ∗(W+)∗W+

}
= Tr

{
(W+W )∗ W+W

}
= n, (3.3)

which proves expression (3.1). □
We shall later use Corollary 2 and the specific form of (3.2) to implement

hard thresholding. First, however, note that since Θ is positive semi-definite,
its diagonal elements must be nonnegative, implying Θ̂ii = y2i −σ2Uii ≥ 0 for
each i. These inequalities themselves enforce thresholds σ

√
Uii on the values

of yi.
The oracle risk (2.4) and its unbiased estimator (3.1) are very useful when

working with linear estimators, i.e., estimators for which Γ does not depend
on y. However, very often linear estimator are poor and more sophisticated
formulae are required for Γ depending on y. To take into account this de-
pendence, in the following theorem we propose a modification of SURE for
a general estimator θ̂ = y + g(y).
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Theorem 2. Assume the settings of Section 2 and let θ̂ = y + g(y), where
g(y) : RN → RN is a continuous and piecewise differentiable column vector
function. Let Z = ∇yg

∗(y) be the N × N matrix with components Zij =

∂gj(y)/∂yi. Then SURE for E∥f̂ − f∥2 is given by (3.1) with

∆ = g∗(y)U−g(y) + 2σ2Tr
{
U−U Z

}
. (3.4)

Here, again U− = α−2U and U−U = α−1U for the special case of a tight
frame.

Proof
First, let us show that under conditions of Theorem 2, one has

E{(θ̂ − θ)(θ̂ − θ)∗} = σ2U + E {g(y)g∗(y)}+ 2σ2UE (Z) . (3.5)

To see this, write E{(θ̂ − θ)(θ̂ − θ)∗} = E {(y − θ)(y − θ)∗ + g(y)g∗(y)} +
2E {(y − θ)g∗(y)} ≡ Ω1 + 2Ω2. Observe Ω1 = σ2U + E {g(y)g∗(y)} and
Ω2 = WE {(x− f)g∗(Wx)}, as y = Wx and θ = Wf .

Let Cσ = (2πσ2)−n/2 and observe that Q = E[(x−f)g∗(Wx)] is the n×N
matrix with components

Qlj = E[(xl − fl)gj(Wx)] = Cσ

∫
· · ·

∫
(xl − fl) gj(Wx) exp

(
−∥x− f∥2/2σ2

)
dx

= −Cσσ
2

∫
· · ·

∫
gj(Wx) dl

{
exp

(
−∥x− f∥2/2σ2

)}
dx1 · · · dxl−1dxl+1 · · · dxn

= Cσσ
2

∫
· · ·

∫
∂

∂xl

{gj(Wx)} exp
(
−∥x− f∥2/2σ2

)
dx = σ2E

{
∂

∂xl

gj(Wx)

}
,

obtained using integration by parts, and denoting the differential with respect
to xl by dl. Applying the chain rule, we derive that

∂
∂xl

{gj(Wx)} =
∑N

i=1
∂
∂yi

{gj(y)}Wil =
∑N

i=1 ZijWil = (W ∗Z)lj.

Therefore, we obtain that Ω2 = σ2 E(WW ∗Z) = σ2 U E(Z), which yield
expression (3.5). Now, to complete the proof of the theorem, recall that
Tr(UU−) = n by (3.3), and observe that

E∥f̂−f∥2 = ETr{(θ̂ − θ)(θ̂ − θ)∗(W+)∗W+} = σ2Tr(UU−)+ ETr
{
g(y)g∗(y)U−+ 2σ2UZU−}.

□
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We emphasize that Theorem 2 generalizes the classical Stein’s results pre-
sented in [12] to the case of general frames, which includes any full-rank linear
expansion of a data vector in a finite-dimensional setting. It also recovers
results of [13, 10] in the image processing literature. Moreover, Theorem 2
applies to any arbitrary de-noising strategy which satisfies assumptions of
the theorem. In particular, it applies to various types of thresholding or
shrinkage procedures for construction of unbiased estimators of the risk, as
it is shown by the following four examples.

Example 1. Consider the case of linear shrinkage procedure θ̂ = Γy =
INy + (Γ− IN)y where Γ is diagonal and independent of y. Then, Theorem
2 with g(y) = (Γ− IN)y and Z = Γ− IN recovers expression (3.1) for ∆.

Example 2. Consider the case of “keep-or-kill” hard thresholding procedure
θ̂ = Γy = INy + (Γ− IN)y where Γ = diag(γ) and γ ∈ {0, 1}N independent
on data. Then, Theorem 2 with g(y) = (Γ− IN)y and Z = Γ− IN recovers
expression (3.2) for ∆.

Example 3. In the case of a hard thresholding procedure with variable
threshold t (where the decision to “keep” or “kill” a coefficient depends
upon the coefficient itself), θ̂ = y − yI(|yi| < t). Hence, in Theorem 2,
g(y) = −yI(|yi| < t) and Z is diagonal with elements Zii = −I(|yi| < t).
Thus, Theorem 2 yields the SURE for E∥f̂ − f∥2 of the form (3.1) with

∆=
∑N

i,j=1{yiyjU
−
ij I(|yi| < t)I(|yj| < t)−2σ2(U−U)ii I(i = j)I(|yi| < t)}.

(3.6)
Note that (3.6) generalizes the hard thresholding rule from orthonormal bases
to frames. Indeed, in the former case, (3.6) recovers the familiar expression

∆={
∑n

i=1 y
2
i I(|yi| < t)− 2σ2

∑n
i=1 I(|yi| < t)} (3.7)

Example 4. In the case of the soft thresholding with a variable threshold
t, one has θ̂i = {yi − sign(yi) t} I(|yi| > t), so that gi(y) is of the form

gi(y) = −sign(yi)min(|yi|, t) i = 1, . . . N. (3.8)

Hence, Z in Theorem 2 is diagonal, with elements Zii = −I(|yi| < t), so that
Theorem 2 yields the SURE for E∥f̂ − f∥2 of the form (3.1) with

∆=
∑N

i,j=1{sign(yiyj)min(|yi|, t)min(|yj|, t)U−
ij−2σ2(U−U)ii I(i = j)I(|yi| < t)}.

(3.9)
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Note that (3.9) generalizes the soft thresholding rule from orthonormal bases
to frames. Indeed, in the former case, (3.9) recovers the familiar risk reported
in [3]

∆={
∑n

i=1min(y2i , t
2)− 2σ2

∑n
i=1 I(|yi| < t)} (3.10)

4. Optimal strategies for finite frames.

In this section, we use results obtained in the previous sections to obtain
optimal frame based estimators of some specific forms. In particular, we con-
struct an optimal linear shrinkage estimator, an optimal hard thresholding
and an optimal soft thresholding estimator in the case of a general frame.
These choices are motivated, on one hand, by the actual possibility of mini-
mizing the SURE obtained in the previous section, on the other hand, by our
intention to compare them with their classical counterparts adapted from the
setting with an orthonormal basis. Indeed, the numerical simulations below
show the advantage of taking into account the frame correlation structure
wile minimizing the error estimator. However, we would like to point out
that Theorem 2, in principle, offers a valid instrument for obtaining an opti-
mal estimator for any θ̂ = y + g(y) which satisfies the assumptions.

4.1. The linear shrinkage

We begin with the SURE strategy for linear shrinkage in the frame setting.
By Corollary 2, one has E∥f̂ −f∥2 = σ2n +E∆ with ∆ = Tr{U−(IN −
Γ)yy∗(IN −Γ)+2σ2U−UΓ− 2σ2U−U}. Writing θ̂ = γ ◦ y, we recognize that,
similarly to Corollary 1, the problem of finding Γ reduces to the minimization
of a quadratic form (2.6) where, now, A = (yy∗) ◦ U− and b = {A− σ2(U ◦
U−)}1N , so that

γ = A−1b =
{
(yy∗) ◦ U−}−1 {

(yy∗) ◦ U− − σ2(U ◦ U−)
}
1N . (4.1)

Since matrices U , U− and yy∗ are nonnegative definite and Hermitian, matrix
A is also nonnegative definite and Hermitian, and, thus, the minimum exists
and it is unique. Furthermore, note that matrix A and vector b are often
sparse. For example, in the case of a sparse tight frame, expressions for A
and b take the forms A = α−2(yy∗) ◦ U and b = (A− σ2U ◦ U)1N . Since the
majority of entries of matrix U are equal to zero, respective entries of matrix
A also vanish.

Note that the objective function in (2.6) can be modified and improved
in a variety of ways. For example, adding a quadratic penalty term γ∗Pγ
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with any positive-definite matrix P leads to the Tikhonov regularization
while adding a penalty of the form β∥γ∥ℓp , where ∥·∥ℓp is a vector norm in ℓp
space, induces sparsity whenever 0 ≤ p ≤ 1. We refer to [1] for the discussion
on how the estimating procedure above can be improved and specialized.

4.2. The hard thresholding

In the case of a hard thresholding rule, our SURE strategy again follows
Corollary 2 and Example 3 with ∆ given by (3.6). To minimize the resulting
expression, we introduce a matrix H with components

Hij =

{
yiyjU

−
ij if i ̸= j,

y2iU
−
ii − 2σ2(U−U)ii if i = j

Consider a set of indices J such that j ∈ J if γj = 0 and j ̸∈ J otherwise.
Then ∆ can be re-written as

∆ =
∑
i,j∈J

Hij

and the goal is to find a set of indices J such that the sum of respective row
and column elements of matrix H is minimal. This minimizations can be
accomplished by a kind of a greedy algorithm which can be carried out as
follows.

The greedy algorithm
1. Since the diagonal values of matrix H are counted once while all other
elements are counted twice, introduce modified matrix H̃ with elements

H̃ij =

{
Hij, if i ̸= j,
Hij/2, if i = j

Set J = {1, · · · , N}.
2. Find a column l of H̃ with the maximum sum of elements.
3. If the sum of elements of column l is positive, then eliminate column l
and row l from H̃ and index l from set J , and RETURN TO STEP 2. If the
sum of elements of column l is zero or negative, then FINISH.
4. Set γj = 0 if j ∈ J and γj = 1 if j ̸∈ J .
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Figure 1: Normalized test signals of length 1280.

4.3. The soft thresholding

In the case of the soft thresholding, our SURE strategy follows Example 4
with ∆ given by (3.9) and threshold chosen as

argmin
t

{
N∑

i,j=1

{sign(yiyj)min(|yi|, t)min(|yj|, t)U−
ij −2σ2(U−U)ii I(i = j)I(|yi| < t).

}
(4.2)

This optimization problem can be solved in O(N logN) steps. Indeed,
if |yi| are arranged in an increasing order, then the rule (4.2) implies that
for the values of t which lie between two consecutive values of |yi| SURE is
strictly increasing, see [3]. Therefore, t should coincide with one of the values
|yi|.

5. Simulation Study

In this section, we carry out some numerical experiments to study the
finite sample performances of the proposed estimators. In our simulation
study, we use the classical Gabor frame with the Hamming window. This
is a tight frame which is particularly suitable for representation of fast os-
cillating signals such as audio signals. For that reason, we consider two fast
oscillating standard test signals, WernerSorrows andMishmash, reproducible
by MakeSignal of the toolbox Wavelab, and two pieces of real audio signals
sp2-5k.wav and Glock.wav. The test signals listed above are displayed in
Figure 1.
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The objective of this simulation study is to illustrate the gain in de-noising
precision obtained by taking into the account the frame structure rather than
to be an exhaustive study of signal de-noising by frames which is usually ad-
dressed by application-specific schemes. Results of all comparisons are rep-
resented in terms of the means and the standard deviations of ∥f̂ − f∥2. In
order to show the advantage attained by accounting for the frame structure,
we compare the ideal best diagonal estimator obtained minimizing the true
risk in (2.5) with the ideal best diagonal estimator obtained by minimizing
the true risk without taking into account the frame structure, i.e., consider-
ing U = I. We denote these two estimators WIENERU and WIENERI ,
respectively. Note that estimators WIENERU and WIENERI are not
available in practice, but their comparison can give an idea of the best pos-
sible gain obtained by taking into account the frame structure. The empirical
versions of these estimators, to which we refer as EMPU and EMPI , respec-
tively, are derived by substituting θθ∗ with its unbiased estimator yy∗ − σ2U
for EMPU , and yy∗ − σ2IN for EMPI . Note that both estimator are of the
form γ ◦ y where γ is given by expression (4.1) for EMPU , while γ reduces
to the well known empirical Wiener estimator γi = (y2i − σ2)/y2i for EMPI .
Since matrices

(
yyT ◦ U

)
and

(
yyT ◦ IN

)
have high condition numbers, in

order to stabilize their inversion, in our simulation study, we add a quadratic
penalty term γtPγ with matrix P = ζ IN to the objective function (2.6).

Results for ζ = 10−4.5 are reported in Table 1 and are based on 100 sim-
ulation runs with the signal-to-noise ratios (SNR) 1, 3 and 5, that represent,
respectively, the high, the moderate and the low noise levels. As it is stan-
dard in the statistical literature, the signal-to-noise ratio (SNR) is defined as
the ratio of the standard deviations of the signal and the noise. The empirical
estimators EMPU and EMPI approximate the corresponding ideal estima-
tors WIENERU and WIENERI when the noise level is low (SNR=5) and
can be quite far from them when the noise level is high (SNR=1). However,
for all the test signals, the ideal gain (the difference between the first and
the second columns) and the empirical gain (the difference between the third
and the fourth columns) obtained by accounting for the frame structure is
quite significant, especially, in the case of high noise.

In a similar manner, we carry out comparisons between the soft threshold-
ing procedures obtained with and without consideration of the specific frame
structure. In particular, we construct estimators SOFTU and SOFTI which
are provided by the formula θ̂i = (yi − sign(yi)t)I(|yi| > t) with the global
threshold t obtained by minimizing, respectively, expression (3.9) derived

11



Table 1: Results obtained over 100 runs and with parameter choices, n = 1280 and 64-
sampled Hamming window.

WIENERU WIENERI EMPU EMPI

WernerSorrows
SNR=1 0.1327 (0.0096) 0.2274 (0.0116) 0.4964 (0.0240) 5.7420 (0.1847)

SNR=3 0.0284 (0.0019) 0.0404 (0.0022) 0.0777 (0.0034) 0.1343 (0.0049)

SNR=5 0.0126 (0.0006) 0.0167 (0.0007 ) 0.0321 (0.0011 ) 0.0412 (0.0015)
MishMash
SNR=1 0.1026 (0.0106) 0.1837 (0.0139) 0.4881 (0.0254) 6.2411 ( 0.2290)

SNR=3 0.0211 (0.0017) 0.0284 (0.0021) 0.0752 (0.0036) 0.1113 (0.0044)

SNR=5 0.0094 (0.0007) 0.0122 (0.0008) 0.0324 (0.0013) 0.0286 (0.0015)

sp2-5k
SNR=1 0.1533(0.0112) 0.2474(0.0127) 0.5201 (0.0254) 6.2648(0.1745)

SNR=3 0.0363 (0.0022) 0.0548 (0.0024) 0.0849 (0.0039) 0.1771 (0.0058)

SNR=5 0.0168 (0.0009) 0.0244 (0.0011) 0.0349 (0.0014) 0.0614 (0.0022)

Glock
SNR=1 0.0845(0.0075) 0.1305 (0.0093) 0.4529 (0.0245) 6.4889 (0.2079)

SNR=3 0.0192 (0.0014) 0.0278 (0.0016) 0.0737 (0.0037) 0.1232 (0.0043)

SNR=5 0.0089 (0.0006) 0.0123 (0.0007) 0.0322 (0.0013) 0.0326 (0.0015)

above and the classical one (3.10) as in [3]. Moreover, we compare esti-
mators HARDU and HARDI obtained using the hard thresholding scheme
presented in Section 4.2 and the universal hard thresholding estimator de-
fined as θ̂i = yiI(|yi| > σ

√
2 logN). We emphasize that this last estimator

represents both the classical universal thresholding (when U = I) as well as
an asymptotically optimal estimator when U is a stable frame (as the one
adopted here) according to results presented in [6].

Results of comparisons are reported in Table 2 and are based on 100
simulation runs. As in the previous study, results show a very significant
gain when taking frame structure into account. Note that, performance of the
estimator HARDI is very poor, but this is not surprising since the universal
threshold σ

√
2 logN is known to be too large for de-noising applications when

the true signal is not sufficiently sparse (see, e.g., [3]).
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Table 2: Results obtained over 100 runs and with parameter choices, n = 1280 and 64-
sampled Hamming window.

SOFTU SOFTI HARDU HARDI

WernerSorrows
SNR=1 0.3748 (0.0188) 0.8511 (0.0414) 0.4939 (0.0277) 0.9024 (0.0200)

SNR=3 0.0763 ( 0.0041) 0.1342 (0.0114) 0.0737 (0.0037) 0.3965 (0.3965)

SNR=5 0.0327 (0.0016) 0.0481 (0.0039) 0.0298 (0.0014) 0.1275 (0.0041)
MishMash
SNR=1 0.3519 (0.0216) 0.8970 (0.0695) 0.4884 (0.0312) 0.9756 (0.0158)

SNR=3 0.0602 (0.0040) 0.1063 (0.0095) 0.0659 (0.0034) 0.2573 (0.0160)

SNR=5 0.0251 (0.0013) 0.0414 (0.0035) 0.0266 (0.0015) 0.0786 (0.0039)

sp2-5k
SNR=1 0.3893 (0.0197) 0.8555(0.0693) 0.5204 (0.0281) 0.9952 (0.0105)

SNR=3 0.0917 (0.0047) 0.1689 (0.0164) 0.0842 (0.0036) 0.4023 (0.0142)

SNR=5 0.0457 (0.0026) 0.0626 (0.0059) 0.0353 (0.0015) 0.1799 (0.0050)

Glock
SNR=1 0.2853 (0.0186) 0.5064 (0.0462) 0.4523 (0.0285) 0.9350 (0.0462)

SNR=3 0.0516 (0.0029) 0.0981 (0.0083) 0.0656 (0.0037) 0.1628 (0.0078)

SNR=5 0.0228 (0.0012) 0.0406 (0.0034) 0.0273 (0.0015) 0.0919 ( 0.0026)
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Figure 2: Data (green dotted line); true signals (blue); WIENERU estimators (red);
WIENERI estimators (magenta). SNR=1.

For completeness, one of the 100 estimators obtained by WIENERU and
WIENERI are shown in Figure 2 and one obtained by SOFTU and SOFTI

are shown in Figure 3, both in the case of SNR=1.
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