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ABSTRACT

In presurgical monitoring, focal seizure onset is visually assessed from intracranial electroencephalogram (EEG), typically based on the selec-
tion of channels that show the strongest changes in amplitude and frequency. As epileptic seizure dynamics is increasingly considered
to reflect changes in potentially distributed neural networks, it becomes important to also assess the interrelationships between channels.
We propose a workflow to quantitatively extract the nodes and edges contributing to the seizure onset using an across-seizure scoring. We
propose a quantification of the consistency of EEG channel contributions to seizure onset within a patient. The workflow is exemplified
using recordings from patients with different degrees of seizure-onset consistency.

© 2021 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0026074

We propose a data-driven analysis method to investigate the
transitions to focal-onset seizures from invasive recordings. We
employ a combination of uni- and bivariate quantification and a
quality score to extract the channels and channel pairs that opti-
mally display the transition in invasive recordings. This allows us
to identify the consistency of anatomical contributions involved
in seizure onset across multiple seizures of a patient. We hope our
approach leads us closer to a better understanding of the complex
transition dynamics in refractory epilepsy.

I. INTRODUCTION

The onset of an epileptic seizure is often accompanied in
the electroencephalogram (EEG) by a more or less characteristic
transition of the so-called background EEG to abnormal seizure
discharges.1 In invasive recordings of focal-onset seizures from
patients during presurgical monitoring, the onset of abnormal dis-
charges is seen in a subset of recording channels.2 The aim is to
find out which anatomical areas are involved in the cooperative
dynamics that represents the transition. However, the interpretation

of interactions between channels may not be feasible from visual
inspection. As such, new multivariate methods are needed to reduce
the dimensionality of the problem and to quantitatively assess the
variability of interactions between locations at seizure onset in a
patient. Recently, this has been addressed by so-called network
approaches, which combine the interpretation of uni- and bivariate
measures.3

Electrographically, the seizure onset is viewed as the appear-
ance of abnormal rhythmic (but not necessarily periodic) discharges
from a background that is assumed to be pseudo-stationary for
a period of a few seconds prior to seizure.4 Here, we adopt this
view and assume a two-state model (the background and the ictal
state) with a transition period between them. With that assumption,
it is possible to consider the last few seconds of background and
the first few seconds of seizure as two pseudo-stationary dynamics
on two respective branches of a slow manifold in state space and
two (comparatively) fast transitions from one branch to another.
This idea was discussed in the context of deterministic flows in
low-dimensional state space by Rössler in 1976.5 In that exam-
ple, the deterministic chaos was explained as a transition from a
pseudo-fixed point to an unstable oscillatory dynamics by recurrent
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(a) (b)

FIG. 1. Fast-slow manifold schemes for spon-
taneous transitions in dynamical systems. (a)
Redrawn from Ref. 5 showing spontaneous tran-
sitions between two dynamical states on an
S-shaped slow manifold in an abstract system.
(b) Adaptation to a state-space projection of
the epileptic EEG two-state seizure model with
seizure onset indicated by a downward arrow.

transitions that were illustrated as fast switchings from one branch
of the slow manifold to another [see Fig. 1(a)]. The transition to
oscillations was illustrated as a straight line as if falling from a cliff.
However, in the context of more complex bursting dynamics, the
same kind of illustration reveals that there are many possibilities of
how the transition can be organized.6 While it is straightforward to
illustrate this in deterministic dynamical systems with three vari-
ables, the picture becomes more complex in bursting dynamical
networks.7,8 A major problem when trying to compare the compu-
tational model output to the clinical EEG of epileptic seizures is that
the EEG is too high dimensional for a simple illustration.9 Never-
theless, knowledge about the transition dynamics (or at least the
deterministic components of it) is crucial to better understand the
nature of seizure onset (and equally, the seizure offset).10–13

Here, we propose a data-driven workflow to extract uni- and
bivariate features of the seizure onset dynamics from the EEG in
clinical focal-onset seizures. Changes in recurrence of state-space
motifs are used to separate the interictal and the ictal state and the
joint evolution of trajectories are illustrated in state space. The quan-
tification allows the composition of the seizure-onset network and
quantification of the consistency of contributions from anatomical
locations to the onset. The method can be automated and can be
applied to any state transition in the EEG.

II. DATA AND METHODS

We use intracranially recorded EEG (iEEG) of patients with
recurrent focal-onset seizures. Data were from the Neurophysiol-
ogy Department, Great Ormond Street Hospital, London, UK. All
patients are pediatric and stereo EEG recordings for drug-resistant
epilepsy with spontaneous, focal-onset seizures. The aim of the
implantation was the identification of the seizure onset zone for
subsequent epilepsy surgery. Sensors were invasive depth electrodes
(Dixi Medical, Besançon, France) with contacts −1.5 mm apart. For
data acquisition, Natus NeuroLink IP amplifiers (Natus, Oakville,
Canada) with a sampling rate of 1024 Hz were used. The position of
the electrodes in patient 1 is shown in Fig. 2(a).

Seizures included are those showing a focal onset (not gen-
eralized) and are of the same clinical type. The seizure onset is
determined from the visual inspection of the complete recording by
a trained neurophysiologist according to its definition as the “first
unequivocal intracranial EEG sign of change from the background

that led to a clear seizure discharge.”4 The number of channels and
implantation varied between patients. Data are imported from EDF
format using the PYEDFLIB library in Python. Before processing,
data are filtered with a high pass to reduce the slow shifts on time
scales longer than the selected segment and with a low pass set to half
of the sampling rate (the Nyquist frequency) to exclude components
above 512 Hz. Filtering is done with a bidirectional Butterworth
filter of order 5. We selected 10 s segments of iEEG centered at
the clinically determined seizure onset, see Fig. 2(b). Details of the
recordings are summarized in Table I.

A. Univariate measures

The workflow can use any univariate measure to determine the
state transition. Here, we tested the frequency of maximal power,
band power, and autocorrelation. The results below are obtained for
the change in the frequency of maximal power obtained from the
Fourier spectrum of the sliding window. It has the advantage that it
is independent of band-specific contributions and picks up the onset
in seizures with notable seizure rhythm following the transition
period.

B. Bivariate measure

As with the univariate measure, it is possible to use any bivari-
ate quantification in the workflow. Here, we searched and selected a
measure that is not restricted to the similarity between pairs of time
series (like correlation, coherence, or phase-locking value). Instead,
we implemented a measure that quantifies the recurrence of motifs
in two-dimensional state space. A sliding window (referred to as
recurrence window) is defined to search for similar recurrences
of motifs within each large window. Recurrence is determined as
the distance between two pieces of trajectory in two-dimensional
state space. Each segment is normalized to minimum and maxi-
mum to make this distance independent from changes in amplitude.
We calculated the Euclidean distance between normalized pieces of
trajectories of the same length. The distance is zero if the two tra-
jectories are identical and are large for unrelated trajectories. Using
an overlap (shift) of 20 data points, all possible distances are calcu-
lated, and the smallest distance is recorded for each large window,
and the results are stored as a time series of similarities for all
pairs of channels. Two exemplary recurrence matrices are shown
in Fig. 3. They are taken from the beginning and the end of the
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FIG. 2. (a) Brain scan of patient 1 with the position
of stereo-electrodes marked. Labels refer to recording
electrodes as specified in Table I for each patient. Each
channel is depicted by a dot. (b) iEEG as recorded from
patient 1 with annotated seizure onset at the center
(labeled “0.0”). Red arrows point to channels with the
early visible change of dynamics.

iEEG segment of 10 s in Fig. 2, respectively, and should thus rep-
resent the best recurrences during the background (A) and the ictal
state (B), respectively. The matrices are symmetric and thus only one
triangular part is filled with similarity values. The pattern of similar-
ities varies between the two large windows and shows, in this case,
a decrease in distances (and thus increase of similarities) for cer-
tain windows. The subsequent analysis is done using only the lowest
score (highest similarity) from each matrix.

C. Fitting of sigmoid

After assessing the uni- or bivariate quantity for channels or
channel pairs, we fit a sigmoid function to the resulting time series.

The function is taken as f =
a

1+exp(−b(x−c))
+ d where we set d = 0

because the data are min–max normalized before fitting, and a, b,
and c are free parameters adjusting the separation of states, the loca-
tion of the inflection point, and the steepness at the inflection point,
respectively. The fit returns the optimal parameters of the function
for each channel, and the result is scored to find the best candidates
for a state transition.

D. Fit scoring

Scoring of the fit is calculated from three contributions: (i) the
goodness of fit as expressed in the R2 value; (ii) the separation of the
states (the more the better, maximum 1, minimum 0); and (iii) the
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TABLE I. Details of iEEG data with seizure onset used for analysis.

Seizure
No. of
channels

Electrodes (number of contacts in gray
matter) Selected for bivariate analysis

Total
samples Onset (s)

Sz01 patient 1 137 A(10)B(7)C(8)D(11)E(6)F(4)H(7) Q15-Q14, Q14-Q13, J11- 965 120 187
I(7)J(14)K(10)L(6)M(5)N(3) J10, I4-I3, F14-F13, E7-E6,

O(11)P(17)Q(11) P10-P9, J6-J5, Q12-Q11,
E2-E1

Sz02 patient 1 137 A(10)B(7)C(8)D(11)E(6)F(4)H(7) F15-F14, J8-J7, P7-P6, K3- 1 065 088 201
I(7)J(14)K(10)L(6)M(5)N(3) K2, P12-P11, A12-A11,

O(11)P(17)Q(11) I3-I2, H6-H5, J15-J14,
J13-J12

Sz03 patient 2 98 A(8)B(10)C(11)E(7)D(7)F(7)I(5) C9-C8, C10-C9, C7-C6, 435 200 171
J(9)H(7)L(14)G(6)K(7) C12-C11, C5-C4, C6-C5,

C8-C7, E3-E2, K3-K2,
A5-A4

Sz04 patient 2 98 A(8)B(10)C(11)E(7)D(7)F(7)I(5) C9-C8, C7-C6, C10-C9, 699 136 143
J(9)H(7)L(14)G(6)K(7) C11-C10, C12-C11, J11-

J10, C6-C5, H8-H7, J2-J1,
A4-A3

Sz05 patient 3 140 A(10)B(8)C(7)D(9)E(9)F(14) F10-F9, J2-J1, G4-G3, E8- 560 000 152
G(11)H(10)I(8)J(12)K(12)L(8) E7, I9-I8, I10-I9, L15-L14,

M(9)N(6)O(7) J11-J10, I4-I3, I3-I2
Sz06 patient 3 140 A(10)B(8)C(7)D(9)E(9)F(14)G(11) I5-I4, M11-M10, D7-D6, 591 104 131

H(10)I(8)J(12)K(12)L(8)M(9) N3-N2, J10-J9, A6-A5,
N(6)O(7) I10-I9, I9-I8, K13-K12,

F6-F5

steepness at the inflection point (the steeper the better, normalized
to the maximal steepness in the dataset between 0 and 1). The total
score is taken as the arithmetic mean of the three partial scores.

E. Score optimization

We include optimization steps to address the problem of
robustness of results. We scan the sliding window length to opti-
mize the sum of the N best scores for the N best channels to be
displayed as network nodes. Similarly, we optimize the sum of the

M best scores of the recurrence window length for all channel pairs
to be displayed as network edges.

F. Network extraction

In the first round, the scoring is done for all iEEG chan-
nels using the univariate quantification to return the channel order
according to the fit. From a network perspective, these form the
weighted nodes of the iEEG transition network. To reduce the com-
putational load, the N top-scoring channels are then selected for

(a) (b)

FIG. 3. Recurrence matrices for the comparisons
between all small windows within a single large sliding
window. Lower triangular part set to 0. (a) First run-
ning window in the inter-ictal part of the EEG. (b) Last
running window in the ictal part.
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bivariate analysis. A bivariate quantity is calculated from the same
signal segment to obtain its temporal change as a function of time.
This is done for all N(N − 1)/2 (bidirectional) channel pairs to
obtain the weighted edges of the onset network. Choosing the M
top-scoring pairs of channels, we finally obtain the network with N
nodes and M edges, along with their achieved score and the individ-
ual onset time (inflection point of the fitted sigmoid). The results are
calculated for N = M = 10 for the seizures specified in Table I.

G. Across-seizure scoring

The ranked channels and channel pairs along with their scores
are then used to derive an across-seizure scoring. To calculate the
across-seizure score, we check which channel or channel pair is
found among the 10 highest-scoring pairs of a seizure. Each appear-
ance gets a full mark per seizure. For each candidate, we then add
ranking marks, from 1 for rank 1 to 0 for rank 10. The result is then
normalized between 0 and 1. All channels or channel pairs that never
make it into the first 10 score 0, while a channel or channel pair that
scores first in all seizures obtains 1. All other channels or channel
pairs lie somewhere in between. As the scoring is based on ranks, it
is limited to discrete values.

III. RESULTS

Figure 2(b) shows the time series of voltages of all recorded
iEEG channels during a segment centered on the clinically deter-
mined seizure onset. There are transitions from irregular back-
ground to large amplitude rhythmic voltage changes as indicated
by the darker areas. The visibly discernible onset is not homoge-
neous but occurs differentially in some groups of channels. The
arrows point to groups of channels with early onset. As an exam-
ple, based on the state separation using the frequency of maximal
power in the sliding window of the Fourier spectrum, the following
channels for returned for Sz01 of patient 1 with the highest scor-
ing: Q15–Q14, Q14–Q13, J11–J10, I4–I3, F14–F13, E7–E6, P10–P9,
J6–J5, Q12–Q11, E2–E1, i.e., channels from different sEEG depth
electrodes (cf. Fig. 2). For the results of all seizures, see Table II.
These 10 top-scoring channels were selected for bivariate analysis.

TABLE II. Across-seizure scorings for nodes in three patients.

Patient 1 AS score Patient 2 AS Score Patient 3 AS score

Nodes: Nodes: Nodes:
Q15-Q14 0.5 C9-C8 1. I9-I8 0.7
F15-F14 0.5 C10-C9 0.92 I10-I9 0.69
Q14-Q13 0.47 C7-C6 0.92 F10-F9 0.5
J8-J7 0.47 C12-C11 0.81 I5-I4 0.5
J11-J10 0.45 C6-C5 0.69 J2-J1 0.47
P7-P6 0.45 C11-C10 0.42 M11-M10 0.47
I4-I3 0.42 C5-C4 0.39 65 0.45
K3-K2 0.42 J11-J10 0.36 D7-D6 0.45
F14-F13 0.39 C8-C7 0.33 36 0.42
P12-P11 0.39 E3-E2 0.3 N3-N2 0.42

For each of the channel pairs (in this case 45), the recurrence
matrix is calculated within each large sliding window. Two exem-
plary recurrence matrices are shown in Fig. 3. They are taken from
the beginning and the end of the iEEG segment in Fig. 2(b), respec-
tively, and thus represent an instance during the background (left)
and the ictal state (right), respectively. The matrices are symmet-
ric and thus only one triangular part is filled with similarity values.
The pattern of similarities varies between the two large windows
and shows, in this case, a decrease in distances and thus an overall
increase of similarities. Note that the downstream analysis is done
only with the lowest score (highest similarity) within the matrix.

Figure 4(a) shows the sliding window of the highest similar-
ity for all channel pairs of the selected iEEG segment. Comparing
the time series in Fig. 2(b), the onset of a region of higher similarity
(dark blue, right-hand side) seems to occur around the annotated
seizure onset. Some temporal structure can be seen within the
seizure activity but is qualitatively similar for the channel pairs dis-
played. Note that the change in color reflects a transition in the
dynamics in terms of recurrence in state space and is not a reflec-
tion of changes in signal amplitudes. The fact that the recurrence
measure changes consistently implies that the recurrence found dur-
ing the ictal state is not the same as the one before the clinically
determined seizure onset.

The seizure onset timings (as determined by the inflection
point of the fitted sigmoid) for the 10 pairs with the highest score are
displayed in Fig. 4(b). The two-state coloring shows that the onset
points are distributed within the interval and, in particular, three
pairs show onset before the marked onset point. According to the
coloring, all switches are from low to high recurrence similarity.

The bivariate scores for all channel pairs are displayed in
Fig. 4(c). The scores are ordered from high to low and demon-
strate the general finding that some pairs score significantly higher
than the majority of pairs. We take this as an indicator that these
pairs show the strongest change in recurrence feature and are thus
optimal for the display of the dynamics of the state transition from
background to ictal activity. Overall, the scores decrease continu-
ously in this particular case and do not indicate any specific groups
of pairs.

From this analysis, we thus obtain the best channel and the best
channel pairs with their respective scoring and onset time based on
the state transition model. For all seizures studied, we find that the
best channels and best pairs show good separation (scoring above
50%), which is consistent with the clearly visible seizure onset.

Figure 5(a) shows the reconstructed network containing the
nodes and edges, which display the strongest transition in the period
of seizure onset. All nodes are included and the nodes that have
already passed their onset point according to the analysis are colored
in red. At this point in time, the two nodes with the highest degree
are still gray, meaning they have not yet passed the onset point. All
edges are included and in this case, all edges have already passed the
onset point and are thus colored in blue. Figure 5(b) shows the same
network but with node size varying according to the degree of the
node (based on M edges). One node is found to not have any of the
highest-scoring edges attached to it.

Figure 6 shows a state-space representation of the voltage for
the two highest-scoring channel pairs as a time series (from top
to bottom), similar to the right-hand side of the sketch in Fig. 1.
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(a)

(b)

(c)

FIG. 4. (a) Recurrence evolution and (b) ranked
total scores for all channel pairs. (c) Onset time
for ten top-scoring pairs indicated in red as deter-
mined by inflection point of sigmoid fit.

The coloring for the individual trajectories shows the individual
phases, black for background and magenta for ictal dynamics. There
are relatively few turns of the trajectories because the transition is
sharp. Also, the transition (as determined by this method) does not
involve large-amplitude oscillations. Large amplitude oscillations
appear when the trajectory reaches the bottom of the display, i.e.,
after the transition.

Having the unique result of onset properties for a feature, we
exemplify the transition dynamics with two attempts to visualize the
seizure onset dynamics. Figure 7(a) is a ribbon plot of the voltages of
two pairs for the transition period in a single display. Note that one

of the axes shares the same variable, but the other has two variables.
This is equivalent to plotting two scatterplots in one. The ribbon
then highlights the co-evolution of the two trajectories. Figure 7(b)
is based on the data for the same channels but the time series were
band pass filtered around the frequency for which the optimal state
separation was obtained (i.e., the optimization of the recurrence
window length).

Figure 8 shows displays of the (Euclidean) distances between
the voltages of the three highest-scoring pairs that share at least one
channel. Figure 8(a) is the time series of the three distances, which
show the co-evolution of the distances in a waxing and waning
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(a) (b)

FIG. 5. Network extracted from Sz01 for patient 1 displayed at time point 2.4 [cf. Fig. 2(b)]. (a) All nodes with the same size. (b) Node size dependent on node degree.

pattern. Figure 8(b) displays the same distances in a two-state-time
space as in Fig. 7 (time from top to bottom). The co-evolution indi-
cates a strongly coordinated evolution (as if in a swarm) between the
electric potentials of the three-channel pairs.

Doing the analysis for repeated seizures in the same patient,
we calculated the across-seizure score. Results are summarized in
Table II. The channels are the findings for each seizure after opti-
mization. The results indicate that different patients may show
different degrees of consistency of channel onset. Specifically,
patient 2 shows the highest consistency, whereas patients 1 and 3
have lower onset channel consistency which agrees with a visual
inspection.

IV. DISCUSSION

A major unknown concerning the dynamics of epileptic
seizures is the components of the EEG signal that reflect genuine

contributions to the recurrent onset of seizures in patients with
intractable epilepsy.14 Also, the dynamical nature of the transition
is still unclear.15 It may involve random switching between states
in a global state of bistability,16 change of dynamics following the
passing of a control parameter through a bifurcation point,17,18 or
a case of the randomly induced complex transient in an excitable
system.19 However, it is widely assumed that the transition follows
some organizing nonrandom components, mostly due to the emer-
gence of pronounced rhythmic activity in some EEG channels.20

Computational modeling has typically settled on one or the other
possibility without actually providing evidence for either against the
others (e.g., in terms of making testable predictions). Here, we have
elaborated a data-driven approach to extract and quantify seizure
onset dynamics, which is independent of mechanistic assump-
tions. The main assumption made is that of the state transition
between a nonepileptic and an epileptic state which is, however, the
widely accepted two-state model of epilepsy with a transition period

(a) (b)

FIG. 6. State-space projection of (a) Best channel pair vs sigmoid (from the background at top to ictal at the bottom). (b) Second best channel pair vs sigmoid. The scale of
the sigmoid is over 10 s.
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(a) (b)

FIG. 7. Transition ribbon of two best channel pair trajectories vs sigmoid as in Fig. 6. (a) Ribbon from best two-time series. (b) Same as in (a) but using bandpass filtered
data (see text). The ribbon is constructed by successively connecting corresponding time points in each time series with triangular surfaces.

separating the two states.14 There is a confirmed correspondence
between EEG abnormalities and the clinical symptoms in many
cases even if their exact correspondence cannot always be deter-
mined quantitatively. As we have not included clinical symptoms,
our analysis focuses exclusively on iEEG signatures of seizure onset.
Our main point of reference is the visually determined onset time
which is a single point in time for all iEEG channels. The concept
of a preictal state is not considered in the present analysis as there

does not seem to be a general agreement about generic markers to
identify its presence in invasive recordings.

EEG analysis and its application to the characterization of the
transition from background to ictal activity has a long history.21–23

Many studies were done using univariate features (mostly Fourier
components or related), but there is also a line of research into
multivariate analysis.24 As in previous approaches, we use a sliding
window approach that implicitly assumes the existence of (pseudo-)

(a) (b)

FIG. 8. Display of Euclidean distances between top three channel pairs. (a) Time series for the central third in. (b) 3D scatterplot of the data in (a).
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stationary states. However, we exploit the knowledge of the exis-
tence of a neurologically important state transition (seizure onset)
to optimize the analysis based on the feature of state separation.
In an everchanging signal like the EEG, a definition of “state” can
only be empirical and will depend on the time scale of interest. The
scale chosen in our analysis is consistent with the clinical practice
involving the onset of electrographic signs over periods of less than
a minute.

The inspiration for looking at a state transition as a (com-
paratively) fast process happening between two branches of a slow
manifold representing two pseudo-stationary states comes from the
treatment of deterministic chaos in state space as introduced, e.g., in
Ref. 4. There, the dynamical property of mixing of trajectories was
illustrated by a (deterministic) flow that switches between two sub-
types of dynamics (see Fig. 1 in Ref. 5). Rössler extended this idea
to arbitrary dynamics happening on either branch of the slow mani-
fold with autonomous switching between them (see Fig. 2 in Ref. 5).
Applying this epileptic dynamics led to the proposal to treat epilepti-
form rhythms as a type of bursting25–27 and the subsequent modeling
of spontaneous transitions as a slowly modulated transition between
a time-varying fixed point and complex bursting.7 The nature of
the slow process has been a subject of speculation28 but so far no
conclusive evidence has been obtained for the case of human data
(however, see Ref. 29 for some recent observations). Nevertheless,
the recurrent and apparently spontaneous nature of (in particular)
focal epileptic seizures is at least compatible with an underlying slow
process guiding the transitions.30–32 Here, we have used a two-state
(sigmoidal) function as an underlying model of the slow process and
then quantified to what degree this leads to a successful state sep-
aration within the period of interest. Conveniently, the same type
of state separation analysis can be performed with both uni- and
bivariate measures. The scoring of the state separation then offers
a possibility of an informed ranking of the high-dimensional data
(typically on the order of 100 recorded channels with around 5000
possible connections between them). As such, the workflow can be
applied to any case where a state transition is seen in EEG data,
e.g., the fragmentation at seizure offset,33,34 the onset or offset of
REM sleep,35 and others.

Specifically, for the multivariate analysis, we have exploited a
recurrence measure as a bivariate quantity that overcomes some
of the shortcomings of visual analysis and thus offers additional
insight. First, recurrence is not dependent on signal amplitude. It
quantifies whether a motif recurs in state-space after normalization
(similar to comparing two objects independent of their size). Sec-
ond, the finding is independent of repetition (a certain dominant
Fourier frequency) as it finds the best recurrence within a window
independent of its respective distance in time. This can be of par-
ticular value when analyzing, e.g., an epileptic seizure that has large
but irregular spiking at seizure onset.36–38 The potential problem of
finding an accidentally high recurrence similarity is partly accounted
for by the fitting process which smoothens many individual values
and leads to an increase in the level of the quantity only if there is a
substantial change in recurrences over a larger period of time.

The analysis offers the possibility to detect the consistency of
seizure-onset dynamics between any number of seizures in the data
from a given patient. As the duration of the invasive recording is
limited by clinical considerations, no systematic studies of the onset

dynamics are possible. Nevertheless, typically a few seizures are
being recorded and the analysis with the proposed across-seizure
measure offers the calculation of an estimate of the consistency of
the involvement of channels or channel pairs (and thus anatomical
locations and connections between them) from the available num-
ber of seizures. Note that the suggested optimization methods help
to increase the robustness of the qualitative results. Nevertheless, dif-
ferent data will lead to different results, e.g., applying the analysis to
individual frequency bands will yield different results. However, this
is not a shortcoming of the method but a reflection of the actual
complexity of the distributed epileptic dynamics. One possibility
to account for different frequency content and filter settings is to
compare the results against an ensemble of independent stationary
Fourier surrogates to assure that only findings are considered which
score above chance level.

Finally, from the point of view of network theory, it has been
argued that seizure onset is not necessarily the result of a strictly
localized abnormality but that even a focally appearing onset may
be the result of a network interaction happening at different (nearby
or distant) locations.39,40 We have, therefore, combined a univariate
and bivariate analysis to automatically extract the most prominent
network nodes and the strongest connections between them based
on state separation scoring. The evolution of the resulting “icto-
genic” network (cf. Figure 5), as well as the “swarming” of distances
between potentials as in Fig. 8, then offers new ways to animate the
complex dynamics accompanying focal seizure onset.
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