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“Faced with the achievements of Darwin, one cannot claim that
mathematics are needed for successful theoretical work in biology.

But they certainly make it easier.”

John Maynard Smith (1989)
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Abstract

The thesis addresses various problems arising in parasite population dynam-
ics through the use of mathematical techniques, and in particular of stochastic
processes.

Parasite diseases generally fall into two categories, those in which a host has a
small number of disease classifications, such as susceptible, infected and immune,
and those in which the severity of the infection is an important property of the dis-
ease. It is the latter type that is addressed in this thesis. Parasite-host interactions
are studied via simple nonlinear stochastic processes describing the dynamics of
parasites within hosts. In particular, the effect of parasite-induced host mortality
and acquired immunity on the distribution of parasite numbers in hosts is consid-
ered. Moment closure techniques for approximating nonlinear stochastic processes
are investigated for the models, including an assumption based on a new multivari-
ate negative binomial distribution. Approximate results are compared with exact
results where obtainable, and results from stochastic simulations elsewhere.

Various stochastic models are proposed for the study of between-host parasite
dynamics in a population of immortal hosts. Their solutions and properties are
evaluated through the use of systems of differential equations, which lead to varying
results according to the host population size and the assumptions made concerning
the method of parasite transmission. It is suggested that the structure of a disease
transmission process, often implicitly ignored in the modelling process, may have
a greater effect on the parasite distributions than currently thought.

Throughout the thesis examples of diseases in humans and wildlife are given to

illustrate the motivation behind the mathematical models and the discussions.
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Chapter 1

Introduction

1.1 Thesis Overview

This thesis addresses and discusses various problems arising in parasite popula-
tion dynamics through the use of mathematical techniques, and in particular of
stochastic processes. The structure of the thesis is as follows. In the following
section we introduce the biological aspects of parasitology that are relevant to the
studies of the thesis. We then introduce some of the roles mathematics has to play
in analysing populations in Section 1.3, and in Section 1.4 we review some of the
relevant mathematically-based work in the area.

In Chapter 2, some basic techniques for the analysis of stochastic population
processes that will be used in the thesis are outlined. The techniques are illustrated
with a simple example.

Chapter 3 begins with a further discussion of mathematical models in various
areas of parasite dynamics, and then the subject of parasite-induced excess host
mortality is investigated with a particular model. Approximation techniques appli-
cable to this, and other parasite dynamic models, are investigated in this chapter,
and further in Chapter 4.

In Chapter 4, the problem of including acquired immunity into parasite-host
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models is discussed, and further suggestions for both models and analysis of ap-
proximation techniques are considered.

Chapter 5 compares the effects of a number of different transmission mechanisms
on the distribution of parasites among hosts. Again, discussion of other work
relevant to the area is included.

Finally, in Chapter 6 we outline some areas where the work of this thesis may

be extended and where further research would be relevant and interesting.

1.2 Aspects of Parasitology

In this section we outline some of the biological aspects relevant to the modelling
and discussions of this thesis. We do not attempt to cover any aspect of parasitology
extensively, but merely try to give a flavour of the biology that motivates the ideas
presented.

Parasites have been credited with representing more than half the living species
of animals and plants (Price, 1980). However, there is no universal definition of
a parasite. Anderson and May (1978) require a parasite to utilize its host as a
habitat, have nutritional dependence on and cause ‘harm’ to its hosts. Esch and

Fernandéz (1993) give the ‘classical’ definition of parasitism as

. an intimate relationship between two organsims in which one lives

on, off, and at the expense of the other,

though they point out that the major problem of this definition is that ‘...harm is
a relative term.” A discussion of definitions and different historical approaches to
the study of parasites is given by Cheng (1969), and in Price (1980, Chapter 1).
For the purpose of studying the dynamics, effects and properties of parasites
from a modelling perspective, as we shall mostly be doing, the strict definition is
not too important. Parasites are closely associated with disease and this in itself

makes their study important. However, even if there is no firm evidence of parasites
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directly afflicting a host species this does not mean their study is not of interest
from an ecological point of view. As Price (1980, Preface) writes, “Parasites affect
the life and death of practically every other living organism.”

For the purpose of modelling, parasites can be split roughly into two different
categories. The first contains those in which the most important factor is sim-
ply whether the host does or does not have the infection, and the second involves
parasites for which it is important to model the severity of the infection. Mathemat-
ically, the former category can usually be sensibly modelled using compartmental
models, the latter must also include a more detailed account of the dynamics of
the parasite population. The difference can be thought of as being in the choice of
unit of study, the host or the parasite.

The terms microparasite and macroparasite have become widely used for the
two categories (Anderson and May, 1979). Roughly speaking, viruses, bacteria,
funghi and protazoa can be thought of as microparasites, and are associated with
compartmental models. Macroparasites can be thought of relating to metazoa
(multi-cellular organisms) including helminths and, for modelling purposes some
arthropods such as ticks and lice. It is on models for macroparasites that we shall
concentrate in this thesis. The numbers of humans infected with macroparasites
are enormous, for example it is estimated that one quarter of the world’s population
is affected by intestinal helminths (Bundy and Cooper, 1989).

The main differences betwen microparasites and macroparasites are as follows.
Microparasites are typically much smaller and reproduce directly, and usually at a
very fast rate inside the host. Macroparasites do not generally reproduce directly
inside the host, but have complicated life cycles, involving many stages inside and
outside the host, and often vector hosts and free living stages. They are physically
much larger than microparasites, as the name suggests, and usually have longer gen-
eration lifetimes. The acquired immunity stimulated in the host by microparasites
often provides long term protection, whereas specific immunity to macroparasites

is usually short term (Anderson and May, 1979). As hosts do not usually develop

12



full immunity after infection by macroparasites, these infections tend to be more
persistent and endemic in a host population. Microparasites are often associated
with epidemics in the host population, though they too can be endemic.

The essential features of a parasitic relationship between two organisms were

drawn out in one of the earliest pieces of work on quantitative ecological parasitol-

ogy by Crofton (1971b) as

1) The parasite is physiologically dependent on the host;

2) The infection process tends to produce an overdispersed distribution
of parasites within the host population;

3) The parasite kills heavily infected hosts;

4) The parasite species has a higher reproductive potential than

the host species.

This second property can also be known as contagion, clumping or clustering,
but is most frequently described in present ecological literature as aggregation of
parasites.

Aggregation is one of the most important aspects of macroparasite epidemiology
and ecology. It has effects on both the host and parasite populations. Anderson and
May (1991, page 10) describe it by saying that ‘...sometimes 20% of the hosts can
harbour 80% of the parasites’. As the morbidity or mortality of a disease is often
related to the parasite level of the host, the aggregation can cause the hosts with
high parasite levels to suffer the effects of disease that would otherwise be quite
mild if the parasites were spread evenly among the hosts. This has implications for
the application of chemotherapy treatment to reduce disease. Many macroparasites
reproduce sexually inside the definitive host and so sexual mating chances inside
the host are increased by aggregation. On the negative side for the parasites, the
sum of intra-host density-dependent constraints in the whole parasite population
will be larger than if parasites were distributed uniformly over a host population.

The cause of aggregation has been subject to much debate but with no con-
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clusive answer. The distinction often made (see for example Esch and Fernandéz
(1993, Chapter 4) or Poulin (1998, Chapter 6)) is that hosts can gain unusually high
parasite burdens either due to chance effects or by being more predisposed to par-
asitism. Host predisposition could occur through heterogeneities in host behaviour
(affecting their chance of becoming infected) or in host immunity and resistance
levels, often genetic (Wassom, Dick, Arnason, Strickland, and Grundmann, 1986;
Lively and Apanius, 1995). Even if predisposition is established in a host-parasite
relationship in the field, it is often difficult to separate out the immune and be-
havioural differences (Chan and Isham, 1998). In chapters 3 and 5 we study and
discuss further some possible causes of aggregation.

The role this clustering of parasites plays in regulating the host population has
itself been the subject of study (Anderson and May, 1978). As well as increasing
the morbidity of heavily infected hosts, parasite infections can be considered to
cause mortality, either directly or, more frequently, through indirect mechanisms
(Hudson and Dobson, 1995). These may include reducing the host nutritional levels
and thereby increasing susceptibilities to predators and further infection (see Booth,
Clayton, and Block (1993), Slater and Keymer (1986) and Slater and Keymer (1988)
for examples of this), or reducing the host’s ability to obtain food (Saumier, Rau,
and Bird, 1994). In any case, mortality rates have often been shown to be related
to parasite burden, and this has an effect on the parasite host population stucture
(Scott and Anderson (1984), Boray (1969) and Hudson and Dobson (1995) provide
examples). This is related to the third of Crofton’s aspects of parasitism. Aspects
of this area are discussed in Chapter 3, where specifically the effect of parasite-
induced excess host mortality on the distribution of parasites in a host population
is studied.

In general, a parasite can enter a host through direct means, (by penetrating
the host’s skin) or indirectly, for example by encysting (protecting itself in a shell
inside a vector host until the vector is eaten) or by more direct ingestion by the

definitive host from the environment. Endoparasites live within their hosts, while
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ectoparasite is the term given to parasites that live on the exterior of the host and
are usually not entirely dependent on their hosts for survival. Studies in this thesis
will relate to endoparasites, but some models may be applicable to ectoparasites

as well.

1.2.1 Parasite Life Cycles

A helminth is a term used for parasitic worms that usually covers the phylum
Platyhelminthes, Nematoda and Acanthocephalanes, or flatworms, roundworms and
spiny-headed worms respectivley. We briefly describe some of the important prop-
erties and examples of each, and give more detailed descriptions of life cycles of
three particular parasites. This is with the aim of illustrating the variety of compli-
cated life cycles macroparasites can have, and to give an indication of the potential
difficulties that arise when attempting to transfer information about a life cycle into
a model. We will refer to the examples given here throughout the thesis. See Lyons
(1978), Despommier and Karapelou (1987) and LaPage (1963) for more details, on
which much of the following is based.

The classes of flatworms that are endoparasitic are Cestoida (tapeworms) and
Trematoda (lukes). Endoparasitic flukes are usually in the subclass Digenea. They
are mostly found in the gut of a vertebrate host. Male and female reproductive
organs are both found on adults, except in the family Schistosomatoidea. Two of
the most common human fluke diseases are Schistosomiasis (estimated to afflict
200 million people worldwide (WHO, 1993)), and the human liver fluke, Clonorchis
Sinensis which infects through encysts in fish. The life cycle of Schistosoma man-
soni, one of the three main species that cause Schistosomiasis, starts when the
cercariae stage of the worm penetrates the human host’s skin from freshwater.
They then migrate to the liver, mature in about forty days and then mate. The
female produces around 300 eggs per day, about half of which reach the intestine

and are passed out of the host with faeces. If the eggs reach water, miracidium
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hatch from the eggs, penetrate into snails and release around two hundred thou-
sand cercariae each, 15-75 days later. The cercariae swim to the water surface and
remain infectious to hosts for around one day.

Tapeworms (Cestoida) usually live in the intestine of veterbrates. Adult worms
contain both male and female reproductive organs. Definitive hosts are infected by
ingesting either an infected intermediate host or its faeces.

Nematodes (roundworms) tend to have less complicated life cycles than flat-
worms, and the sexes are always separate. There are always four larval stages,
termed L1-L4. Nematode parasites that live in animal intestines have direct life
cycles, and examples include Hookworm (a disease caused by Necator americanus
and Ancyclostoma duodenale and estimated to effect several hundred million people
(Bundy and Cooper, 1989)) and many parasites of livestock. The lifecycle of the
Teladorsagia circuminta nematode which infects sheep is as follows. Each female in
the host lays around 10° eggs per day, some of which pass out through host faeces
onto the pasture, and hatch in around 15 hours. Once L3 larvae have developed,
they climb up grass blades to become more easily ingested by grazing sheep. Once
ingested, they take 3-4 weeks to become mature and able to reproduce sexually.

Filarial nematodes are usually transmitted by mosquitoes and flies, and are
responsible for causing filariasis, a complex of diseases including onchoceriasis (or
river blindness) and elephantiasis, that are widesperad in warm climates (an esti-
amted prevalence of 300 million (Wakelin and Blackwell, 1988)). Elephantiasis is
caused by Wuchereria Bancrofti, the life cycle of which is as follows. When an in-
fected mosquito bites a human host, L3 larvae enter the blood stream and migrate
to the lymphatic nodes where they develop to sexual maturation in approximately
one year. Females produce larvae known as microfilarie which can live for about
1% years in the blood stream. The microfilarie are found in peripheral blood at
periodic time intervals, corresponding to the times when the appropriate vector
mosquitoes feed on the host most frequently. Once microfilarie have been taken up

by a biting mosquito they become infectious within two weeks, and so the life cycle
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is completed.
The third phyla of parasitic helminths are spiny-headed worms (Acanthocepha-
lanes) which usually live in the gut of birds and fish and often have indirect life

cycles.

1.2.2 Immunity to Parasites

As previously mentioned, acquired immunity to macroparasites is not usually long
term. In Chapter 4 we discuss and compare models for the immune response,
some previously proposed and some new. The area of immuno-epidemiology, the
study of the role of the immune system on a disease at the population level is a
relatively new, but growing area. It is, however, a difficult area in which to apply
mathematical modelling as knowledge of the details of the dynamics, biological
workings and effects of the immune system is still incomplete. The immune system
of vertebrate hosts is extremely complicated. and it is difficult to identify the
roles and effects of cells involved, and still harder to quantify these effects. The
details and workings of an immune response are very particular to the host-parasite
interaction concerned but here we give an extremely rough outline that is necessarily
a huge oversimplification.

There are many difficulties when measuring an immune response to a parasite
infection, not least the question of which antigen or antibody should be measured
(Woolhouse, 1995). An antigen is the material released by the parasite, often
proteins, that is recognised as ‘foreign’ by the host so that an antibody reaction
is produced. Due to its relative complexity, a macroparasite is likely to release a
wider range of antigens upon entering the host than a microparasite. For this reason
details of all the immune responses to macroparasites are harder to understand fully.
Additionally, there may be more than one type of macroparasite in the host, each
stimulating a different immune response.

The immune system involves a large number of different cell types interacting
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and stimulating reactions against the invading body. The defence is either through
direct attacks by antibodies, by cytotoxic T cells killing infected host cells or by
macrophages killing intracellular parasites. The whole process involves an enormous
amount of feedback, signalling and self-regulation that itself is the subject of a
growing amount of mathematical modelling. Often the mature parasites are capable
of evading the hosts’ immune defences, so that the immune response may only
cause pathological effects to the host itself. In helminth infections, it is the larval
worms that are often killed directly by antibodies before they are able to mature.
In some host-parasite relationships the cost to the host of mounting an immune
response high enough to completely expel the macroparasite may be too great when
considered as a trade off against the harm of the parasite. The complexity of the
response may also partly explain why host immunity is rarely life long.

Detailed knowledge of immune responses to helminths is still limited, if grow-
ing. For this reason, the approach taken towards modelling the immune system
in Chapter 4 is to simplify the process greatly and consider the effects of possi-
ble mechanisms on the parasite population, rather than details of cell interactions.
Further details are given in Chapter 4. For a more detailed account of the biolog-
ical workings of the immune response to helminths, see for example Stites, Terr,
and Parslow (1994, Chapter 50), Roitt, Brostoff, and Male (1996, Chapter 18) or
Wakelin and Blackwell (1988).

1.3 Mathematics and Population Biology

Mathematics does not rest as easily with biology as it does with physics, astronomy
or even chemistry. These disciplines have made advances hand in hand with math-
ematics for centuries, whereas it is relatively recently that a wide theory involving
the synthesis of mathematics and biology has developed. The main reason for this
is of course the scarcity of robust, general laws in biology that can be expressed

mathematically. As J. Maynard Smith (Maynard Smith, 1968, page 2), a long time
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proponent of the use of mathematics in biology, says

We rarely know enough about the laws governing the components of
biological systems to be able to write down the appropriate equation

with any confidence in the first place.

Ultimately, perhaps this can be viewed as a consequence of a biological system
itself consisting of many physical and chemical systems ongoing within, for every
tiny biological action.

Historically, the biological sciences appeared to lag behind the physical sciences
until the last hundred years or so. When the great advances of the seventeenth
century were being made in quantitative studies of mathematics, physics and as-
tronomy (or natural philosophy as it was known then), the view of Descartes of the
body as a mechanical device, and more generally his idea of universality encom-
passing biology, was widely accepted. William Harvey (1578-1637) is often cited as
providing some of the first work in quantitative biology (see for example Asimov
(1965)), following his publication in 1628 that showed that blood must circulate
the body (Harvey, 1628). However, many other attempts at applying the advances
in quantitative and mechanistic thinking proved unsuccessful due to the lack of
biological knowledge.

John Graunt’s (1620-1674) famous study of disease in London, and the inven-
tion of the life table using the London Bills of Mortality (Graunt, 1662) are some
of the earliest examples of analysis of population data. Thomas Malthus’ seminal
essay on populations (Malthus, 1798; Boulding, 1959) suggesting that they tend to
grow geometrically (exponentially) included one of the earliest mathematical mod-
els of populations. It led to the term ‘Malthusian parameter’ used by Fisher (1930)
for the intrinsic natural growth rate; that is, the growth rate of a population in the
absence of changes in birth and death rates due to resource or other constraints.
Even earlier than Malthus, Euler (1767) used mathematical techniques to study
human population growth (see Keyfitz and Keyfitz (1970) for an English transla-
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tion). P.F Verhulst first proposed a mathematical model that included constraints
on the exponential growth of the Malthus model, known as Verhulst’s Logistic
Curve (Verhlust, 1838). Other important pioneering work included models with
age structure and the renewal integral equation by Lotka (1907) and Sharpe and
Lotka (1911). The following work of Lotka (1924), Volterra (1926) and Volterra
(1931), including the well known predator-prey equations, provided the foundations
for much of the further mathematical modelling of populations that has developed
this century (see Scudo and Ziegler (1978) for some English translations of this
work). The area has now grown to be a vast field, both in the range of biological
populations modelled and the mathematical techniques used. On a historical note,
perhaps the first published use of mathematics in the study of populations in biol-
ogy in Western Science was Fibonacci’s series, in Leonardo of Pisa’s (¢ 1170-1250)
Liber Abaci, published in 1202 (Young, 1998). The series was given as an answer
to the problem

How many pairs of rabbits can be produced from a single pair in a given
year if every month each pair begets a new pair, which from the second

month on becomes productive ?

and is now known to be relevant for patterns of petals and leaves in plants.

In general it could be argued that just as the physical sciences have traditionally
stimulated advances in mathematics, biological sciences have also contributed to a
large number of advances in mathematics this century, particularly in the area of
probability and statistics. Bienaymé (1845) and, independently, Galton and Wat-
son (Galton, 1873; Watson, 1873; Galton and Watson, 1874) studied populations
probabilistically and laid the foundations for branching process theory. A large
amount of early work in stochastic processes was applied to problems on popula-
tion growth (see for example Kendall (1949)). Perhaps the first widespread and
most successful application of mathematics to biology has been in the field of pop-

ulation genetics, Mendel’s laws of inheritance providing a relatively rigorous basis
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for establishing the mathematical foundations.

Generally, the use of probability and statistics is important in biology due to
the inherent differences between ‘similar’ organisms. The applications of stochastic
processes to the biological, and especially population, sciences has therefore been
a flourishing field. The choice between stochastic and deterministic models should
depend largely on the motivation behind the modelling, and often both have a
role to play. Mathematical and statistical models can be used for a wide range of
purposes. It may not be especially productive to attempt a general discussion on
the merits of different approaches to modelling here, but it is worth understanding
the benefits that can be gained.

Models can be used for purely predictive purposes, for description of processes
and for gaining understanding of the mechanisms of a process under study. Often
purely predictive models have no relationship to the actual (physical or otherwise)
mechanisms involved. This may be because the processes are not of interest, or
are too complicated to be modelled directly. None of the models presented in this
thesis are of this type. However, the use of stochastic mechanisms themselves may
be considered as a way of subsuming the workings of a large amount of highly
detailed mechanisms into a probabilistic description. As mentioned earlier, this
is especially relevant in the biological sciences as the intricate details of so many
processes are too complicated to model explicitly.

Descriptive models generally provide information about the relationship be-
tween different variables, whilst mechanistic models start from assumptions about
the actual physical process involved and study the consequences. Of course there
is a large amount of overlap in model types. There exists a spectrum of approaches
within mechanistic models ranging from detailed models aiming at a high level of
realism, to more general models aimed at providing a framework for discussion of
the processes being modelled. May (1973) has called the two approaches (respec-
tively) tactical and strategic models. As they contain specific details, the benefits of

the tactical models are perhaps more obvious, whilst on the benefit of the stategic
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models May (1973) writes ‘such (strategic) framework can serve a useful purpose
in indicating key areas or relevant questions for field and laboratory (study), or
simply in sharpening discussion of contentious issues.” Further, he writes, ‘tactical
and strategic approaches mutually reinforce, each providing new insights for the
other.” In this thesis, the models of chapters 3 and 4 lie somewhere in between the
two approaches, whilst as they stand the models of Chapter 5 are very much of the
strategic nature.

For excellent overviews on the use of mathematical techniques in population
biology see Renshaw (1991) and Nisbet and Gurney (1982). In the following section

we concentrate on mathematical models of infectious diseases.

1.4 Population Dynamics of Infectious Diseases

The first recorded instance of mathematics being used to study the dynamics of
a disease was by Daniel Bernouilli in 1760 (Bernoulli, 1760), but it was not until
the early part of this century that the area really progressed. This is in part due
to a greater knowledge of the biological workings of diseases. The understanding
of biology was such that it was not until the mid eighteenth century that the idea
of spontaneous generation of micro-organisms was completely dispelled by Louis
Pasteur. The advances around this time in microbiology paved the way for a
better understanding of infectious diseases.

Hamer (1906) was the first to propose the idea of an epidemic developing ac-
cording to mathematical rules involving susceptibles and infectives using a com-
partmental model. Ross (1911) and Kermack and McKendrick (1927) (reprinted in
Kermack and McKendrick (1991)) developed these ideas into deterministic continu-
ous time models for malaria and general epidemics respectively, and the foundations
of a growing body of literature in epidemic theory developed. Early probabilitic
work on epidemics included McKendrick (1926), who introduced a stochastic com-

partmental model, and the chain binomial models of Reed and Frost (Abbey, 1952)
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and Greenwood (1931). The number of papers on mathematical studies of infec-
tious disease has grown enormously since these early works, and reviews have been
provided by Bailey (1975), Anderson and May (1991); see also the collections An-
derson and May (1982b), Isham and Medley (1995), Mollison (1995) and Grenfell
and Dobson (1995).

The early works on epidemics described above are relevant to microparasites.
Kostitzin (1934) was perhaps the first to study mathematical models that directly
considered disease severity in terms of parasite numbers in hosts (see Scudo and
Ziegler (1978, pages 369-408) for an English translation). He considered an infinite
system of differential equations representing numbers of hosts in particular infection
states. Despite the huge number of people affected by macroparasite infections, it
was not until much later, in the nineteen sixties, that mathematical modelling in
this area was taken further.

Hairston (1962), Hairston (1965) and MacDonald (1965) provided early deter-
ministic attempts to model schistosome parasites, whilst Tallis and Leyton (1966),
Tallis and Leyton (1969) and Leyton (1968) used stochastic models for within host
dynamics of nematode parasite infections in sheep. The papers of MacDonald
(1965) and Leyton (1968) were amongst the first to include sexual mating of par-
asites in modelling terms. Initially, schistosome parasite modelling received the
majority of the attention in macroparasite modelling, which included determinis-
tic work (May, 1977; Cohen, 1977; Goddard, 1978), and hybrids of stochastic and
deterministic models (Nasell and Hirsch, 1973; Nasell, 1985; Lewis, 1975).

A more ecological approach to helminth modelling with the interaction of the
host and parasite populations being the focus, was initiated by Crofton (1971b),
Crofton (1971a) and pursued by Anderson (1974), Anderson and May (1978) and
May and Anderson (1978).

Both the models tailored towards specific parasite host relationships and more
general host parasite models have received a growing amount of attention since

the nineteen eighties. See Anderson and May (1985), Anderson and May (1991),
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Roberts (1995) and Roberts, Smith, and Grenfell (1995) for reviews. Here we
give a brief selection of recent work in this area, — more detailed outlines of some
macroparasite models will be given in Section 3.1.

Much of the work in macroparasite modelling has concentrated on models that
are essentially deterministic although some allowance for the variability of parasite
load between hosts may be made. One way of doing this is to make assumptions
about the statistical distribution of parasites in the host population that remains
fixed in time. Essentially this reduces the dimension of the dynamical system to
a manageable level. See Crofton (1971a), Anderson and May (1978) and May and
Anderson (1978) for early work using this method. The technique has been used for
the study of a large number of ecological effects involving parasitic diseases, often
with the purpose of assessing whether particular host parasite effects are stabilising
or destabilising for the host population. Diekmann and Kretzschmar (1991) provide
a more general model based on the assumptions of Anderson and May (1978), and
Kretzschmar (1993), Adler and Kretzschmar (1992) and Kretzschmar and Adler
(1993) analysed these assumptions further and suggested extensions to the method.
White, Grenfell, Hendry, Lejeune, and Murray (1997) and White and Grenfell
(1997) have used the technique to consider seasonality of host birth rates. Roberts
and Dobson (1995) have looked at the dynamics of more than one type of parasite
in a host population. Also see Damaggio and Pugliese (1996) and Pugliese, Rosa,
and Damaggio (1998) for further work in this area.

The collections Scott and Smith (1994) and Grenfell and Dobson (1995) provide
a good source of work on a wide number of problems in parasite dynamics. See
also Roberts and Heesterbeek (1995) and Heesterbeek and Roberts (1995)

The work of Hadeler and Dietz (1983) provides a neat solution using generating
functions to the problem of keeping parasite numbers discrete whilst anlaysing host
parasite population dynamics. Hyperbolic partial differential equations were solved
for a model that included age structure of the host population. See also Hadeler

(1984) in this area, as well as extensions of this work by Kretzschmar (1989b) and
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Kretzschmar (1989a).

Anderson and Gordon (1982) looked at different processes affecting the disper-
sion of parasite loads, with emphasis on the effect of parasite-induced host mor-
tality. They summarised some stochastic immigration-death processes, as well as
providing some Monte Carlo simulations. See also Pacala and Dobson (1988) for
studies of parasite distributions on host populations.

There are few stochastic models for macroparasites, especially when taken in
comparison with the microparasite literature. The interesting work of Barbour
and Kafetzaki (1993) uses a stochastic model to investigate possible causes of ag-
gregation for a closed populations of identical, immortal hosts. The model con-
tains an assumption concerning the hosts’s immune mechanism that leads to in-
teresting threshold phenonema that are looked at in Barbour, Heesterbeek, and
Luchsinger (1996). Recently, but without including parasite-host interactions,
Quinnell, Grafen, and Woolhouse (1995) have proposed a discrete-time stochastic
model in which they investigate the effects of predisposition (of hosts to infection)
on parasite aggregation by assuming that the numbers of parasites picked up by a
particular host in separate time periods are dependent random variables. Grenfell,
Dietz, and Roberts (1995a) extended within-host stochastic models to include im-
mune effects and parasite induced host mortality analytically, and work by Grenfell,
Wilson, Isham, Boyd, and Dietz (1995b) and Isham (1995) follows on from this.
Many of the studies in chapters 3 and 4 of this thesis have developed from the ideas
of these three papers.
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Chapter 2

Stochastic Population Processes

2.1 Probability Equations

The stochastic processes used in this thesis will represent population processes.
They are all discrete and positively valued, and in continuous time. Some basic
theory is presented in this chapter with emphasis on those techniques used later
on. Markov processes are mostly used, though possible extensions to Semi-Markov
processes are indicated, and in places analysed. The advantage of Markov processes
is that they are relatively tractible mathematically, whilst still providing qualitative
information about the process under study.

In this section we describe a method for writing down a partial differential equa-
tion for a probability generating function of a discrete valued Markov process that is
based on the forward equations of the Chapman-Kolmogorov property. As we use
discrete valued processes, we work mostly with probability generating functions,
though the results given apply more generally to characteristic functions.

Assume the joint probability generating function for an N variable, continuous

time Markov process, X (t), exists and is written P(s;t) :== E (sx (t)), where sX(t) =
Iy, slx"(t). Its partial derivative can be written in the form
P E((s2X® _ 1) X®
oy, B2 21)X0) 21

Ot t50 5t

26



where AX (t) = X (t+0t) — X (t). If the Markov process is specified such that the
limit

K(s; X;t) = }ti_%% (B(s2X0 | X)) - 1) (2.2)

exists, and (E(sAX(t) | X(t)) — 1) /6t is bounded above and below for finite §t, we

can interchange the expectation and limit and write (2.1) as

‘?9_1; = B (K (s; X (t);1) s*®). (2.3)

Consider more specifically an N variable integer valued Markov process that
has a set of possible transitions, C = Z"\0, with transition probabilities of the

form

P(AX(t) =c| X(t) = x) = fe(x)dt + o(6t)

for all ¢ € C, so that
PAX(t)=0|X(t) =) =1-)_ fo(x)dt + o(6t),
ceC
where f.(x) is assumed to be a multinomial in the components of & for each c¢. We

can write K as

K(s;x;t) = llIIl—(ZS (fe(@)ot +0(81)) — Y fe(z (5t+o<5t))

5t—0 Ot by

= > fe(x)(s°=1) (2.4)

ceC

and hence (2.3) can be written as

%? = E (K (s;s%;t) (sx(t)))

where K is now a partial differential operator and 353; has ¢

i=1,.,N. As K (s; s%;t) (sx(t)) is infinitely differentiable for |s| < 1 we can

th component si2- for

interchange the expectation and differential operator and write

" K( oL ;t) (P(s:1) (25)
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which provides a partial differential equation for the probability generating function
of X (t). Whittle (1957, page 269) has referred to (2.5) as the Bartlett relation, but
Bartlett himself (Bartlett, 1949) credits Palm (1943) as being the first to publish
this result. Bailey (1964, page 70) refers to this as the ‘Random variable’ technique,
(possibly because it uses AX (t) as a random variable), but we shall call it the Palm

relation, or the forward equation for the probability generating function.

2.2 Moment Equations

Though this section is concerned with moments of a stochastic process, we first
post a brief warning about relying too heavily on them. Some processes may
have realisations that rarely look anything like their means. The obvious example
for population processes is a population that relies on self perpetuation so that
there is a chance of extinction. In such cases the mean of the process may fall
well below the mean conditional on the survival of the population. Fade out in
epidemics (in which a disease in a closed population may become extinct) is one
of many examples of this (see Bailey (1975)). The observation of a population will
sometimes occur only if the population has survived, and so care should naturally
be taken in interpreting these sorts of results. In addition, if a distribution is
typically non-Gaussian then only considering say the first two moments may leave
out a lot of important information.

The result (2.5) given in Section 2.1 enables us to find a partial differential equa-
tion for the probability or moment generating function of many Markov population
processes. If this can be solved then moments are easily obtainable from either
generating function. It is also possible to derive ordinary differential equations for
any order moment without directly solving the Palm relation (2.5) by differentiat-
ing and setting the arguments to 1 or equivalently equating coefficients of powers
of the argument. This is of interest if the partial differential equation is not easily

solved, or if only the moments of the process are required and so there is no need
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to find the full generating function.

It is often the case that if the Palm relation (2.5) is not directly solvable then the
ordinary differential equations for the moments derived from it are also not easily
solvable. Markov processes in which the transition probabilities are nonlinear in
the variables, called nonlinear processes, often fall into this category. The benefit
of deriving the ordinary differential equations for the moments comes from being
able to interpret more readily any solutions obtained via approximation techniques,
numerical or otherwise. When numerical approximation techniques are applied to
the partial differential equation for the generating function, results are at best
difficult to utilise.

Any differential equation for a moment of a nonlinear process will involve terms
of higher order moments so a solution cannot be found as no system of moments
will ever be closed. Various methods of approximating nonlinear processes will be
discussed in the next section.

There is a slightly quicker method of deriving moment ordinary differential
equations that does not involve the use of generating functions. It is essentially
similar in that it utilises the forward equation for the process. We use an example
to illustrate this.

Consider an immigration-death process. If the death rate of each individual is
constant regardless of the number of individuals present, then we have linear death.
Suppose, however, that the death rate of each individual increases when there are
more individuals present, due to density dependent constraints such as competition
for resources. It may be that the individual death rate is proportional to the total
number of individuals present, and we then have a density dependent immigration-
death process. In this case deaths occur in the population during (¢,t + §t) with
probability uM (t)26t + o(dt), where M (t) is the population total at time ¢. The
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two possible transitions we are considering are, from M (t) to

M(t)+1 at rate A

M(t) -1 at rate p M(t)?
by which we mean that, conditional on M (t), M(t + dt) can take the values

M(t)+1  with probability Aot + o(dt)
M(t)—1  with probability u(M (t))*6t + o(dt)
M(t)  with probability 1— A6t — u(M(t))*6t + o(6t)

M(t)+c¢  with probability o(dt) for c € N\{-1,0,1}.
Using the notation of Section 2.1,

f]_(.’L‘) = )\
fa1(z) = p

so that the Palm relation (2.5) for the probability generating function P(z;t) :=
E (sM®) is

%—]; = (1-3) (us%i—]; + “% - )\P> : (2.6)
As mentioned above, succesive differentiation of (2.6) with evaluation at s = 1 will
give an ordinary differential equation for the moments, as will expansion and evalu-
ation of coefficients. Alternatively, these differential equations can be formed from
the specification of the process itself as follows. Using the transition probabilities

above, we can write

E(M(t+6t)|M(t)) =  (M(t) + 1) (A6t + o(6¢)) +
(M(t) — 1) (M (£)%5t + o(6t)) +
M(t) (1= (A + uM()2)dt + o(6t)) +
>, (M(t)+c)o(dt)

ceN/{-1,0,1}
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and

E(M(t+6t)*M(t)) =  (M(t) + 1)2 (A6t + o(6t)) +
(M(t) —1)* (M ()6t + o(5t)) +
M) (1 (A + pM(2)%)dt + o(5t)) +
Yo (M(t) +c)%0(6t).

CEN/{_]"O’l}

Rearranging and dividing both sides by dét gives

and
: 2 i o(6t)
5t (E(M(t+6t)"|M(2)) — M()?) = A+ 2AM (t) + uM () — 2u(M(2))* + o0t

where upon we remove the conditioning and take limits as 6t — 0 to obtain

B~ i {6 B0+ 50 - M) }
= X—pBE(M(t)?) (2.7)
and
iE(_]gM - lm {E (51; (B(M(t + dt)? - M(t)2|M(t))))}
= A+ 2XE(M(t)) + uE(M(t)?) — 2uE(M(t)?). (2.8)

This is not a closed system as each equation contains terms of higher order moments.
Equation (2.8) includes E(M(¢)?) - including the differential of E(M (¢)®) would add
the term E(M (t)*) and so on. As already noted, this will be the case in general for
processes with nonlinear transition probabilities.

The degree of the nonlinearity of the transition probabilities will affect how
many higher order terms are in each equation. If the transition probabilities for
variable M involve k variables multiplied together, the ordinary differential equa-

tion for a moment of M will contain moments of order £ — 1 higher. For example,
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if there are transition probabilities which are products of three of the variables of
the process, (in a univariate case proportional to M(¢)?), then each differential

th

equation of the n"" order moment will contain terms of the n + 2 th order . This

can be seen from studying the form of (2.5).

2.3 Approximation Methods

2.3.1 Moment Approximations

Various approximations can be made in order to close the system of differential
equations for the moments of the process. One is to assume a relationship between
some of the moments of different orders. This involves taking the equations for the
moments we are interested in and writing all higher order terms in those equations
in terms of the variables concerned. The crudest of these approximations is to make
the deterministic assumption that E(M?) = E(M)? so that the system of means is
closed. This is equivalent to assuming that there is no variance in the process.

A slightly more sophisticated, but sometimes more ad-hoc, method is to use
fixed relationships between higher order moments that are determined from a spec-
ified random variable. (The deterministic approximation uses the constant random
variable). There may be some reason or practical justification as to why a par-
ticular distribution is used, or the method may be used in a pragmatic, heuristic
way.

For example, often the normal distribution is used to provide the assumptions
about the moment relationships. An early discussion of this approximation tech-
nique was given by Whittle (1957). Some of the early uses of the method include
Moyal (1949), see also Chandrasekhar (1943). Whittle himself, referring to the
equivalent assumption of Chandrasekhar (1955) that the variates have cumulants
which vanish for order greater than the third, says “the justification for this as-

sumption is not clear, but results yielded by treatments of this type appear to agree
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relatively well with both intuition and experiment.” This was of course before the
days when extensive simulations were routinely possible.

There is a class of population processes (called density dependent population
processes in Kurtz (1981)) that converge weakly to Gaussian processes in the limit
of the initial population size, shown in Kurtz (1970) and Kurtz (1971). See Kurtz
(1981) and Ethier and Kurtz (1986) for more details. For large populations, this
provides some justification for the moment assumptions based on the normal dis-
tribution, and in some cases accurate results (see Isham (1991)). The processes
considered in this thesis are not of this type.

The univariate normal distribution is defined by two parameters, and so the
system of equations involving the first and second moments can be closed in a

unique way. The univariate normal distribution yields the relationship
E(X?) = 3E(X)E(X?) - 2(E(X))®. (2.9)

If the moment relationships are derived by assuming simply that the univariate
random variable is symmetric, then setting the skewness to zero gives the same
relationship. Thus in the univariate normal approximation case the assumption
used to derive the moment relationship can be weakened to assuming symmetry
about the mean.

If a distribution other than the normal is more likely to resemble the population
distribution then using its moment relationships may give more accurate results.
For example, if the population is highly skewed and takes only positive integer
values (as most population processes will), a negative binomial distribution may
sometimes be more appropriate. This distribution is relevant to some of the biolog-
ical processes studied later, and is frequently used in ecological models to fit field
data. We investigate the accuracy of using this alternative distribution for various
models in Section 2.4 and in Chapter 3. There are many ways of parameterising

the negative binomial distribution; in the univariate case we will use parameters
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such that Y ~NegBin(p, k) if Y has probability generating function

P = (=) 210

forreal k >0 and 0 <p < 1.
From (2.10) we have that E(Y) = k(1 — p)/p, Var(Y) = k(1 — p)/p* and the

relationship
E(Y?) = E(Y)? + E(Y?) (2E(Y?)/E(Y) — E(Y) —1) (2.11)

can be derived.

We can see that this will present a problem if we wish the mean to have value
zero at any point. In practice, positive integer valued population processes will
not have mean zero unless the population is zero with probability 1. The only
practical situation of interest where this may be the case is the initial state of a
population. Ways of getting around this, such as setting the initial mean to a
very small value should be used carefully, though in many models it is unlikely
that the moment equations will be sensitive to initial conditions. The problem
arises from the fact that a constant value of zero cannot be obtained from the
negative binomial distribution, unlike the normal distribution. However, given the
approximate nature of the method, ways around the problem used carefully should
not affect the results greatly.

As with the normal distribution, the negative binomial distribution has two
parameters and so (2.9) and (2.11) will provide a unique method of substitution for
systems with first and second order moments. If a third order moment is required,
or included as an attempt provide more accuracy to the first two equations, then
a univariate three parameter distribution is needed. The negative binomial can be
extended to a three parameter version by considering the number of trials until &
runs of r successes occur, often called a negative binomial distribution of order 7.
We do not use this in the thesis, but setting r = 1 gives the negative binomial

distribution so any process whose moments follow the negative binomial moments
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relationship closely are likely to be at least as closely approximated using this
distribution.

If we have more than one variable in our stochastic process, we need to assume
the moment relationships derived from a multivariate distribution. In order that
there is a unique way of closing the system there should be the same number of
parameters as there are moments we are interested in. For example, if the first and
second order moments are kept in the system then an n variable system will provide
Ln(n+3) equations, (n 15 order and Y%, i = in(n+1) 284 order moments) and
so any multivariate distribution used will need to have in(n + 3) parameters to
provide a unique closure.

A multivariate normal distribution has this required number of parameters. For
example, if n = 3 there are three means and six elements of the symmetric variance
matrix (giving the nine parameters needed) and the third order moments have the

form

EW WoWs) = E(W))E(W,Ws) + E(W,) E(W3W)) + E(W3)E(W, W) —
2E(W3)E(W1)E(W,),

with the others following by symmetry of W;, W, and W3. Possible choices for a
multivariate negative binomial distribution are discussed in Section 3.6.

While there are situations in which there is a good justification for using these
types of approximations (Kurtz, 1971; Ethier and Kurtz, 1986; Isham, 1991), often
the only ‘justification’ is a pragmatic one. Of course, in these cases, great care
needs to be taken in their use and interpretation. In analysis of models of parasite
dynamics Grenfell, Dietz, and Roberts (1995a) and Grenfell, Wilson, Isham, Boyd,
and Dietz (1995b) have used the approximations without any real theoretical jus-
tification. Isham (1995) provides exact results for simple cases of the models of
Grenfell, Dietz, and Roberts (1995a) that show some success for the approxima-
tions. More discussion of these approximation techniques is given in chapters 3

and 4. Clearly care, and more research, is needed in this area, particularly as these
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so called ‘moment closure’ approximations appear to be attracting great interest
in the study of parasite dynamics, as well as in other biological fields (Chan and
Isham, 1998; Michael, Grenfell, Isham, Denham, and Bundy, 1998).

In this thesis we provide further studies and insight into the use of these meth-
ods, particularly in the area of parasite dynamics. The models studied are often
simple enough that stochastic (or Monte Carlo) simulations can be run to check the
accuracy of the approximations in relevant parameter areas where exact theoretical
results are not available. We investigate the performance of the approximations for

models proposed in this thesis and by others.

2.3.2 Deterministic Rate Approximations

In addition to the uncertainty of their accuracy, moment closure approximations
do not provide information about the probability distributions of variables, or in-
dividual probabilities of events. A further form of approximation is described here
that does provide this information, though admittedly in a fairly crude way.

The idea underlying this section is as follows. If the probability of a transition
is nonlinear, being a product of several variables (not necessarily distinct), then it
can be approximated by the product of just one of these variables, and the means
of each of the others, so that we then have an approximating, linear process. This
will be equivalent to using the deterministic value for some of the variables in the
transition probabilities.

As an example we return to the density dependent immigration-death process.
Suppose we reformulate the problem, and let the per capita death rate be um(t) for
some function m(t), and keep the immigration rate at A. The partial differential

equation for the probability generating function P(s;t) := E (sM (t)) is then

= -9 (w0 -2p), (2.12)
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with P(z;0) = 1, the solution of which is
t
P(s;t) = exp {)\(s - 1)/ e~F ) du} (2.13)
0

where x(u,t) = u [l m(s)ds. This is simply a time inhomogeneous linear immigration-
death process. If we now let m(t) = E(M(t)) then we obtain an approximation to
the original density dependent process described above. We call this a deterministic
rate approximation.

For stochastic population processes of the type considered in this chapter it
will often be possible to find the probability generating function by using one or
more approximations of this type, even if it is not in a closed form. It will be
given in terms of at least one of the means of the process, for which a differential
equation can be found by differentiating the probability generating function. If a
closed solution is not obtainable for the mean, then any equation for any properties
obtained from the probability generating function in terms m(t) can be solved in
conjunction with this differential equation (numerically if required). In multivariate
models, or models with rates that depend on powers of the variable greater than
one, there is more than one way of making this approximation. Notice that this
approximating method will give the same means as an analogous deterministic
model. From (2.13) we can see that in the particular example given the population
follows a Poisson distribution. This is a consequence of it in effect being modelled
as simply an immigration-death process.

We can approximate a large number of complicated nonlinear stochastic popu-
lation processes this way. It often amounts to simply considering the variables as
nonhomogeneous birth, death, immigration or emmigration processes, whatever is
required, and then writing down ordinary differential equations for the rates (usu-
ally involving the means). This gives the advantage of adding simplicity to the
relationship between variables in stochastic systems, or adding some stochasticity
to deterministic systems whose means have already been modelled. However, often

the process will not yield much information about the original nonlinear stochastic
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