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Tsunamis are unpredictable events and catastrophic in their potential for destruction of
human lives and economy. The unpredictability of their occurrence poses a challenge to
the tsunami community, as it is difficult to obtain from the tsunamigenic records estimates
of recurrence rates and severity. Accurate and efficient mathematical/computational
modeling is thus called upon to provide tsunami forecasts and hazard assessments.
Compounding this challenge for warning centres is the physical nature of tsunamis, which
can travel at extremely high speeds in the open ocean or be generated close to the
shoreline. Thus, tsunami forecasts must be not only accurate but also delivered under
severe time constraints. In the immediate aftermath of a tsunamigenic earthquake event,
there are uncertainties in the source such as location, rupture geometry, depth, magnitude.
Ideally, these uncertainties should be represented in a tsunami warning. However in
practice, quantifying the uncertainties in the hazard intensity (i.e., maximum tsunami
amplitude) due to the uncertainties in the source is not feasible, since it requires a
large number of high resolution simulations. We approximate the functionally complex
and computationally expensive high resolution tsunami simulations with a simple and
cheap statistical emulator. A workflow integrating the entire chain of components from the
tsunami source to quantification of hazard uncertainties is developed here - quantification
of uncertainties in tsunamigenic earthquake sources, high resolution simulation of tsunami
scenarios using the GPU version of Volna-OP2 on a non-uniform mesh for an ensemble of
sources, construction of an emulator using the simulations as training data, and prediction
of hazard intensities with associated uncertainties using the emulator. Thus, using the
massively parallelized finite volume tsunami code Volna-OP2 as the heart of the workflow,
we use statistical emulation to compute uncertainties in hazard intensity at locations of
interest. Such an integration also balances the trade-off between computationally
expensive simulations and desired accuracy of uncertainties, within given time
constraints. The developed workflow is fully generic and independent of the source
(1945 Makran earthquake) studied here.
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1 INTRODUCTION

The 2004 Indian Ocean tsunami was the worst tsunami disaster in
the world’s history (Satake, 2014). It was responsible for massive
destruction and loss of life along the coastlines of the Eastern
Indian Ocean. In the aftermath of this event there was a concerted
effort by the scientific community to mitigate the damage posed
by these geophysical events (Bernard et al., 2006; Satake, 2014;
Bernard and Titov, 2015). Scientific work was focused on
developing tsunami warning centres, deploying tsunami wave
gauges and increasing public awareness (Synolakis and Bernard,
2006). International collaborations were formed with tsunami
early warning centres being set up across all the major oceans
(Bernard et al., 2010). The responsibilities of tsunami early
warning centres include detecting tsunamigenic sources,
deducing the level of threat posed, deciding on the areas most
at risk and then notifying the relevant authorities. As tsunami
waves can propagate at extremely high speeds, arrival times on
the coastline can be in the order of minutes. Therefore, severe
time constraints compound the difficulties faced by tsunami early
warning centres in providing accurate tsunami wave forecasts.

Tsunamis are long waves that can be generated from a variety of
geophysical sources such as earthquakes, landslides and volcanic
explosions. As stated, tsunami early warning centres are
responsible for detecting tsunamigenic sources and in this paper
we focus on tsunamis triggered by earthquakes. The detection and
inversion of the seismic signal to constrain the earthquake’s origin,
magnitude and physical features is the first stage of a warning
centre’s workflow. Tsunami warning centres currently use a variety
of techniques in this inversion stage (Melgar and Bock, 2013;
Clément and Reymond, 2015; Inazu et al., 2016). After the seismic
signal has been constrained, the second stage focuses on deducing
the level of threat posed by the tsunamigenic event. The most
simplistic approach is a decisionmatrix, which gives a crude hazard
map based on a specified earthquake magnitude, location and
depth (Gailler et al., 2013). Amore involved approach incorporates
the large databases of pre-computed tsunami simulations from
identified sources that most tsunami warning centres possess for
their respective regions. In the event of a seismic signal being
detected, these pre-computed databases are queried for sources
similar to the signal source. The resultant database simulation
results are then combined to inform a warning decision (Reymond
et al., 2012; Gailler et al., 2013). A different approach exploits
independent multi-sensor measurements to minimize the
uncertainty in the tsunami hazard for ‘near-field’ events, whilst
also reducing the number of plausible representative scenarios
from a pre-computed database (Behrens et al., 2010). Further,
building on these extensive pre-computed database approaches,
some centres utilize ‘on the fly’ tsunami simulations to constrain
the associated hazard (Jamelot and Reymond, 2015). Real-time
tsunami wave observations, where available, can also play an
extremely important role (Behrens et al., 2010; Angove et al., 2019).

In the immediate aftermath of an earthquake event there is
always some uncertainty associated with the characteristic features
of the seismic source. At present, these uncertainties are not fully
accounted for in traditional tsunami early warning approaches.
Accurately assessing the uncertainties on the tsunami hazard from

the uncertainties on the source requires a large number of tsunami
simulations. The authors show here that by utilizing a statistical
surrogate model (emulator) in conjunction with an efficient
tsunami code, one can massively augment the number of source
realisations sampled with minimal added runtime and computing
resources. Statistical surrogate models approximate the functional
of more expensive deterministic models. They have been utilized
successfully in a large variety of fields such as biological systems
(Oyebamiji et al., 2017), climate models (Castruccio et al., 2014),
atmospheric dispersion (Girard et al., 2016), or building energy
models (Kristensen et al., 2017), but pertaining to this work they
have been leveraged to carry out tsunami sensitivity studies and
uncertainty quantification (Salmanidou et al., 2017; Guillas et al.,
2018; Gopinathan et al., 2020).

By utilizing the latest high performance computing
architectures and efficient tsunami codes, it has become
feasible to run regional tsunami simulations in a faster than
real time setting (Løvholt et al., 2019). The massively parallelized
Volna-OP2 is an example of one such capable code. It solves the
nonlinear shallow water equations using a finite volume
discretization (Dutykh et al., 2011). It has been successfully
used to simulate faster than real time ensembles for a North
East Atlantic tsunami (Giles et al., 2020b). Leveraging Volna-
OP2’s computational efficiency is a key component of this paper’s
workflow. However, in order to fully capture the uncertainty on a
tsunami source, thousands of potential sources need to be
investigated in a faster than real time setting. Even with the
performance capabilities of Volna-OP2, carrying out thousands
of tsunami simulations would require an unrealistic amount of
computing resources. The functionality of this ‘expensive’
deterministic model can be captured by a ‘cheap’ emulator,
which is trained on the resultant outputs of the deterministic
simulations. The incorporation of the emulator balances the
trade-off between expensive simulations and desired level of
accuracy on uncertainties. The authors note that there have
been substantial efforts made in developing tsunami codes
which are capable of faster than real time simulations.
Tsunami-HySEA is another code that has been shown to be
capable in this respect (Macías et al., 2017).

The emulator is shown here to capture the tsunami hazard, i.e.
maximum wave heights, and associated uncertainties in three
different manners. Maximum wave height percentiles at output
locations which are positioned at a fixed depth are produced
along with local and regional maximum wave height and
standard deviation maps. These three different products utilize
the same method of constructing the emulators from input/
output pairs. The general workflow introduced here is
independent of the test case studied, the 1945 Makran
earthquake and the specified areas of interest (Karachi,
Chabahar and Muscat). Further, the authors would like to
point out that the statistical surrogate framework introduced
here in the context of early warning systems is a proof-of-concept
and is not a fully fledged early warning system, for that more
computing resources and efforts on parallelized workflow would
be required. As each individual source realization and simulation
is independent, the whole workflow lends itself to parallelization.
The runtime for each step of the workflow is given in terms of one
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source realization or total number of predictions at one output
location. Therefore with adequate computing resources, this
whole process could lead to a faster than real time setting.

The paper is structured as follows. Section 2 outlines the
proposed workflow for a tsunami early warning centre for
providing relevant uncertainties of tsunami hazard (maximum
tsunami wave heights). Section 3 introduces the test case chosen
here, the 1945 Makran earthquake and tsunami. As this is a
historical source, we have chosen to centre the tsunami
realisations in the vicinity of the source mechanism proposed
by (Okal et al., 2015). Section 4 highlights the tsunami
modeling aspect of the study, which as stated utilizes the
massively parallelized tsunami code Volna-OP2. The non-
uniform unstructured meshes, refined around the areas of
interest (Karachi, Chabahar and Muscat), are presented here.
The construction, training and prediction procedures of the
statistical emulator are explored in section 5. The results
section (section 6) presents the two different outputs from the
workflow presented below (Figure 1). The first type of outputs are
produced directly by the deterministic Volna-OP2 simulations –
regional maximum wave heights and time series plots. The second
type involves the maximum tsunami wave heights with associated
uncertainties generated using the emulator. These are presented for
various output locations – points along a coastline at a fixed depth,
localized maps and regional maps. Finally, the paper is wrapped up
with concluding remarks and future work (section 7).

2 TSUNAMI WARNING WORKFLOW

The workflow (Figure 1) is launched with an input of a range of
estimated location (latitude, longitude), magnitude and
associated distribution of an earthquake source. A number of
possible earthquake sources nD in this space are then sampled
using a Latin Hypercube design. The number of output locations
nG and prediction scenarios nP are selected ahead of time. The
output locations can be gauge points at a fixed depth, points
within a localized region or points which provide coverage of the
global region. The uplift of the earthquake sources is computed
using the Okada model (Okada, 1985) by first extracting the
remaining earthquake parameters, length and width from scaling
relations and local geometry such as rake and dip. In this
application an added plug in for the effect of sediment
amplification on the slip is carried out. More details are
provided in section 3. The displacement is then used as the
initial condition in the Volna-OP2 simulations. The maximum
runtime for generating the initial displacements using a Matlab
code running on a Xeon E5-2620V3 2.4 GHz × 12 workstation is
120s per scenario. This runtime could be reduced by generating
the initial displacements on a dedicated cluster instead of a
workstation, where faster and more CPUs could be
incorporated. Each source realization is independent, thus the
initial displacement calculation lends itself to parallelization. The
non-uniform unstructured mesh required for the Volna-OP2
simulations is generated ahead of time, with refinement
around the areas of interest. For this study these areas are
Karachi, Chabahar and Muscat. The nD simulations are

carried out using Volna-OP2 on a Nvidia Tesla V100 GPU
with a runtime of 136s per scenario. Regional maximum wave
heights and selected time series plots from the nD simulations are
produced. The emulators Mi are constructed for each output
location (with i � 1 to nG and M being the set of Mi emulators)
from the nD extracted maximum wave heights and associated
earthquake source parameters. Finally, the tsunami hazard
(maximum wave height - ηmax) and associated uncertainties at
the nG output locations are obtained by the nP prediction
scenarios using the emulators Mi. If the estimated location or
distribution of the earthquake source is updated, which is often
the case in the aftermath of a seismic event, new predictions can
be rapidly carried out with the updated information, again using
the same emulator. Emphasis is placed on the nature of the
runtimes quoted in this workflow. These are serial runtimes of
time per scenario (nD), time for construction of emulators per
output location or time of nP predictions per output location.
Further, the time taken to post-process and visualize the data is
not incorporated.

3 EARTHQUAKE SOURCE

The eastern section of the Makran subduction zone (MSZ)
(Figure 2) is modeled by 559 (nF) finite fault (FF) segments
arranged in a 43 × 13 grid. The dimensions of each segment are
approximately 10 km × 10 km. The entire fault model spans a
rectangle of 420 km × 129 km. The analytical equations in Okada
(1985) are used to generate the vertical displacement U from the
slips and other geometric parameters that define the fault. The dip
angles and depths of the fault (df) are taken from Slab2 (Hayes
et al., 2018; Hayes, 2018), while the rake and strike are uniformly
kept at 90° and 270° respectively. The seismic moment Mw is
defined as (Kanamori, 1977; Hanks and Kanamori, 1979)

Mw � (2/3)(log10M0 − 9.1), M0 � ∑
nF

i�1
μliwiSi, (1)

whereM0 is the seismic moment, µ � 3 × 1010 N/m2 is the rigidity
modulus, and li, wi, and Si are the length, width and slip on the ith
fault segment. The slip profile for the entire fault or rupture is
modeled as a smooth function that has a maximum near the
origin of rupture, whose coordinates are denoted by (Xo,Yo).

Amplification of U due to the presence of sediment layers in
the MSZ is modeled via the sediment amplification curve in
(Dutykh and Dias, 2010). The main component in arriving at the
sediment amplification factor (Sia) on a segment is the relative
depth (dir) of the ith segment. dir is defined as the ratio of the
sediment thickness (dis) and the down-dip fault depth (dif) of the
ith segment. dis is sourced from GlobSed1 (Straume, 2019), while
dif is interpolated from Slab2 (Hayes et al., 2018). The sediment
amplification factor corresponding to dir amplifies Si to an
effective slip Sei as

Sei � Si(1 + Sia) (2)

1available at ngdc.noaa.gov/mgg/sedthick/.
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The effective deformation due to Se is generated by the
Okada equations and denoted by Ue. The Okada equations
are implemented based on the dMODELS2 code (Battaglia
et al., 2012; Battaglia et al., 2013). More details on the

implementation of the slip profile and sediment
amplification may be found in Gopinathan et al. (2020).

A major earthquake in the eastern MSZ generated a
devastating tsunami on November 27, 1945 (Byrne et al., 1992).
It is the strongest recorded tsunami in the MSZ. Seismic waveform
inversion resulted in a magnitude range of Mw 8.0–8.24, with an
average value of Mw 8.1 (Byrne et al., 1992). Another seismic

FIGURE 1 | Flowchart of the proposed workflow. nD is the number of sample earthquake sources (training set), nP is the number of prediction scenarios and nG is
the number of output locations where the emulators are constructed. The runtimes quoted in this workflow are time per source, time for construction of emulators per
output location or time per predictions at an output location. ηmax is defined as maximumwave height. The outputs in the right column come directly from the Volna-OP2
simulations, while the outputs at the bottom are obtained using the emulator.

2v1.0 available from pubs.usgs.gov/tm/13/b1/.
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inversion adjusted the location of the source and estimated the
magnitude at Mw 8.2. Thus, an approximate range would be Mw

8.0–8.3 (Heidarzadeh and Satake, 2015). Table 1 lists the various
sources for the 1945 tsunami reported in the literature and the
locations of these sources can be seen in Figure 2.

4 TSUNAMI MODELLING

Tsunamis exhibit small wave heights and long wavelengths when
compared to depth whilst propagating across open oceans. This
physical feature allows modellers to drastically simplify the

FIGURE 2 | Bathymetry of theMakran region, with the areas of interest: Chabahar, Muscat andKarachi ports, highlighted by the red dots. The locations of the 1945 earthquake
sources from the literature are marked with the black stars. The eastern section of the Makran subduction zone (MSZ) considered in this study is bounded by the black box

FIGURE 3 | Localized non-uniform unstructured mesh. Top:Mesh sizing function (h) supplied to Gmsh for the whole domain. The location of the three ports under
consideration and the extent of the finite fault (FF) model for the eastern MSZ are also shown. The color scale marks the maximum mesh size hM � 25 km on land, the
mesh size at the coast hm � 500m, and the refinedmesh size hpm = 100m for the ports.Bottom: Zoom in of the locally refinedmeshes (of size hpm) at a scale of 32 km × 32
km for the three ports, Muscat (left), Chabahar (middle) and Karachi (right).
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governing system of equations. Due to this long wave nature, the
linear shallow water equations have been shown to be effective in
capturing tsunami dynamics across open oceans. However, as a
tsunami propagates closer to the shoreline, the nonlinear
behavior of the wave becomes important. As it is
computational advantageous to solve only one set of
equations, the nonlinear shallow water equations (NLSW)
have become a popular choice for modellers. Examples of
tsunami codes which solve the NLSW include NOAA’s MOST
(Titov and Gonzalez, 1997), COMCOT (Liu et al., 1998) and
TsunAWI (Harig et al., 2008). However, physical dispersion can
also play an important role in the ensuing tsunami dynamics
(Glimsdal et al., 2013). In order to capture this, the dispersion
terms must be included, which results in variants of the
Boussinesq equations. Examples of tsunami codes which can
capture this physical dispersion and therefore solve a variant of
the Boussinesq equations include FUNWAVE (Kennedy et al.,
2000), COULWAVE (Lynett et al., 2002) and Celerais (Tavakkol
and Lynett, 2017).

4.1 Volna-OP2
Volna-OP2 is a finite volume nonlinear shallow water solver
which is capable of harnessing the latest high performance

computing architectures: CPUs, GPUs and Xeon-Phis. It
captures the complete life-cycle of a tsunami, generation,
propagation and inundation (Dutykh et al., 2011). The code
has been carefully validated against the various benchmark
tests and the performance scalability across various
architectures has been explored (Reguly et al., 2018). An
extensive error analysis of the code has also recently been
carried out (Giles et al., 2020a). Owing to its computational
efficiency it has been used extensively by the tsunami
modeling community, in particular for tasks which require a
large number of runs, such as sensitivity analyses or uncertainty
quantification studies (Salmanidou et al., 2017; Gopinathan et al.,
2020). The capabilities of the GPU version of the code at
performing faster than real time simulations have also been
recently highlighted (Giles et al., 2020b).

4.2 Non-Uniform Meshes
In order to capture localized effects on the tsunami dynamics,
Volna-OP2 utilizes unstructured non-uniform meshes, which are
refined around areas of interest. A customized mesh sizing
function and the Gmsh software (Geuzaine and Remacle,
2009) are used to generate the non-uniform meshes. The
customized mesh sizing procedure splits the domain into three

FIGURE 4 | The input parameters (Mω, Xo, Yo) for the 100 scenarios used to train the emulator generated by Latin Hypercube Design. The input parameters
projected onMω−Xo plane (left),Mω−Yo plane (middle), and Xo−Yo plane (right). The dot color corresponds to moment magnitude (Mω). Sample no. 1 is marked with a
star.

TABLE 1 | Sources from the literature for the 1945 Makran earthquake and tsunami.

1945 source Lon (+E) Lat (+N) Magnitude Comment

Okal et al. (2015) 63.53 24.88 Mw 8.2 Seismic waveform inversion
Engdahl and Villseñor (2002) 63.00 24.50 Mw 8.0 Centennial catalog
Byrne et al. (1992) 63.48 25.15 Mw 8.0 – 8.24 Seismic waveform inversion
Quittmeyer and Jacob (1979) 63.48 25.15 Mw 8.0 Surface wave magnitude
Heidarzadeh and Satake (2015) — — Mw 8.3 Tsunami wave inversion
Heidarzadeh et al. (2008) 64.01 25.06 Mw 8.4 Southeast corner of fault plane
Heidarzadeh et al. (2009) 64.17 24.45 Mw 8.1 Southeast corner of fault plane
Heck (1947) 61.50 25.00 — List of tsunamis
Pendse (1946) 62.60 24.20 — —

Ambraseys and Melville (1982) 63.47 25.02 — —
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distinct regions - onshore, offshore and area of interest. In the
onshore region cell sizes are based on distance from the coastline.
For the offshore region the cell size is dependent on the
bathymetry, while in the area of interest a fixed cell size is
used. Full details on the customized mesh sizing procedure
can be found in Gopinathan et al. (2020). For a consistent
numerical method (Giles et al., 2020a), the numerical error
decreases with increasing mesh resolution. One would
therefore ideally use the finest mesh resolution available.
However, as is the case with all numerical simulations there is
a trade-off between minimummesh resolution and runtime. This
trade-off is acutely apparent here, where there is an added severe
time constraint imposed by the early warning requirements.
Numerous mesh size configurations (Table 2) were trialled
and a minimum resolution of 100 m at the areas of interest
was chosen for this work, as it provides results in an acceptable
runtime.

Another key component for providing accurate tsunami
forecasts is the bathymetry/topography data used. In this study
the data is solely taken from GEBCO (GEBCO Bathymetric
Compilation Group, 2020) (resolution ∼400 m). However, it is
noted that the meshing procedure and every stage of the workflow
work with higher resolution data and ideally should be
incorporated in the future. Problems with the GEBCO data
can be seen in the zoomed in plot of the mesh around
Chabahar (Figure 3), where artificial coastlines in Chabahar
Bay are visible.

4.3 Performance Scaling
As stated various mesh configurations were trailed in this work.
The associated runtimes for 6 h simulated time using one Nvidia
Tesla V100 GPU are included in Table 2. The first column of the
table refers to what areas of interest are included in the local
refinement. Naturally, if all three ports are included (Karachi,
Chabahar and Muscat) the number of cells is the greatest at a
given minimum mesh size. The runtime for the chosen mesh
setup (100 m minimum mesh resolution) on one GPU is 135 s
(2.25 min). If the user has more time/greater computational
resources available a higher resolution mesh could be chosen.
Further, if the user is only interested in one area, faster runtimes
can be achieved by using a mesh setup which is only refined
around that area.

5 EMULATOR

In the setting of fast warnings, the need to quickly compute a
range of predictions precludes the simulation of a large number of
tsunami scenarios. Our paper only illustrates a proof-of-concept
idea with a small number of parameters, and so the dimension of
the input space describing the source is small. In more realistic
settings, large dimensions of the source (e.g. uncertainties about
the geometry of the source) would create a greater need for a large
range of scenarios. The Gaussian Process (GP) emulator is a
statistical surrogate (M) that mimics the input-output

TABLE 2 | Runtimes using one Nvidia Tesla V100 GPU for the 6 h simulations with various mesh configurations. Text highlighted in bold refers to the chosen mesh set up
used for this study (Figure 5).

Refined
areas of interest

Minimum mesh size hm
p [m] No. of cells [×106] Runtime [min]

Karachi, Chabahar and Muscat 200 100 50 25 0.715 0.834 1.030 1.670 1.2 2.3 5.3 16.3
Karachi 200 100 50 25 0.699 0.784 0.868 1.115 0.4 0.8 1.7 4.20
Chabahar 200 100 50 25 0.701 0.785 0.863 1.081 0.8 2.0 4.5 11.1
Muscat 200 100 50 25 0.704 0.787 0.855 1.041 1.2 1.8 4.1 9.40

FIGURE 5 | Leave-One-Out diagnostics for a gauge in Muscat (left), Karachi (middle), and Chabahar (right). The discrepancies between the training set and the
predictions are shown by the vertical line segments
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relationship of the tsunami simulator (M). It is trained over a
small set of input points, called a design, whose size (nD) is much
reduced compared to the number of predictions. The sources (or
points in the space of input parameters) for training are chosen
with the specific purpose of capturing the input-output
relationship. Here, this is done via the Latin Hypercube
Design (LHD), which maximizes the minimum distance
between the training points resulting in a nearly uniform
cover of the input space, i.e. a space-filling cover instead of a
random scatter. Table 1 gives some of the different earthquake
sources that we have used to determine the ranges for the LHD, as
shown in Figure 4. The geographical boundaries of the sources
used in the design are rectangular, bounded by the axes limits of
the Xo–Yo plane in Figure 4. By providing an approximation of
the simulator, along with uncertainties in its approximation to
validate quality, the GP emulator allows for gains of orders of
magnitude in computational costs. Tsunami GP emulation has
supplied ranges of prediction for tsunamis generated by
earthquakes and landslides over the North Atlantic, the
Western Indian Ocean and Cascadia (Salmanidou et al., 2017;
Guillas et al., 2018; Salmanidou et al., 2019; Gopinathan et al.,
2020). We choose the GP emulator due to its versatility and our
efficiently parallelized Multiple-Output Gaussian Process
emulator (MOGP)3 code. Alternative approaches could also be
used, e.g. polynomial chaos (2010 Chile event (Giraldi et al.,
2017)) and sparse-grid interpolation (1993 Hokkaido Nansei-oki
tsunami (de Baar and Roberts, 2017)). A comparison of GP and

polynomial chaos based surrogate methods may be found in
Owen et al. (2017). An important ingredient in the construction
of the GP emulator is the covariance function (or kernel). Here,
we employ the Matern 5/2 kernel. This kernel is smooth enough
to avoid the GP becoming too rough whilst not being excessively
smooth, which is appropriate for modeling physical relationships.
Examples of other kernels are exponential, squared exponential,
rational quadratic, and piecewise polynomial (Rasmussen and
Williams, 2005). The kernels have parameters (also called length
scales) that are solved along with other hyperparameters via non-
linear optimization in a maximum likelihood estimation (MLE)
scheme (other approaches such as a Bayesian procedure are
possible in MoGP). MOGP is flexible in its prescription of the
optimization algorithm. In this work we employ the L-BFGS-B
algorithm.

We fit an emulator to the tsunamimaximum height ηmax at each
output location using a LHD of size 100 for 3 input parameters
(Mw,Xo,Yo) (Figure 4). This is well over the required number for a
good approximation over an input space of dimension 3 and with
small variations due to a narrowwidth that comes from the fact that
seismic inversion restricts the values of these parameters compared
to a wider risk assessment (Gopinathan et al., 2020), even more so
for stages W2 and W3 compared to the initial stageW1 of seismic
inversion/earthquake source updation. As a result, we can predict
the whole distribution of tsunami heights at all output locations
using these emulators.

We also show a quick validation of the quality of fit using Leave-
one-out (L-O-O) diagnostics in Figure 5, where the match between
predictions and removed runs provides confidence in the ability of
the emulator to approximate the simulator. The mean of predictions

FIGURE 6 | The three stages of tsunami warning. Top row: The probability distributions of the input parameters - magnitudeMw (left), rupture origin coordinates
Xo (middle) and Yo (right). The standard deviation of the Gaussian distributions decreases by a factor of 2 as warning stages progress. Bottom row: The samples
drawn from these three distributions, successively increasing in order from nP � 0.1k in the left to nP � 100k in the right.

3v0.2.0 from github.com/alan-turing-institute/mogp_emulator.
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is connected by a line segment to the corresponding training value,
and is a visual indicator of the fit between them. The green bars show
the 90% prediction intervals around the mean of predictions, and
depict the measure of uncertainty in the prediction at that point.
Importantly, around 90% of the training data lies within these bars,
evidencing a good confidence in the fit. Note that the GP emulator is
typically unable to extrapolate. TheGP approximation (or prediction)
outside or near the boundary of the convex hull spanned by points in
the LHD contains more uncertainty. In our case, these regions
include low and high values of Mw, and similarly locations of
rupture origin at the corners or boundaries of the design. This
limitation also crops up in the L-O-O diagnostics, hence higher
uncertainties and lack of fit are expected at certain design locations. A
denser design (i.e. increase in nD) and focusing on the interpolation
only (i.e. within the convex hull) would improve the predictions, and
may be tailored depending on the requirements of the warning
system. The L-O-O is nevertheless a good validation in the interior of
the convex hull away from the boundaries.

In this work, the range of input parameters corresponds to the
various source descriptions of the 1945 earthquake (Table 1). With
current advances in seismic inversion, the uncertainties in the
magnitude (Mw) and rupture origin (Xo, Yo) in a seismic inversion
may be very different from the ranges assumed here. For example,
Table 1 contains source descriptions from not only seismic
inversions, but also tsunami wave inversion and forward
modeling studies. For the sake of demonstration, we assume the
first stage of earthquake warningW1 to be derived from the values
in Table 1, the ranges informing the sampling limits in the Latin
Hypercube samples shown in Figure 4. The emulator is trained
using these 100 samples, i.e. no information on the probability

distribution of the parameters is made use of. Once the emulator is
constructed, it can be employed to predict the maximum wave
height at the output locations rapidly. At the first stage of warning
W1, the probability distributions of the input (or source)
parameters are used to sample scenarios, which are
subsequently propagated via the emulator to generate
distributions of predicted ηmax . We expect the uncertainties in
the source parameters to decrease (here, successively by a factor of
2 in Figure 6) as the warning progresses to stagesW2 andW3. This
is an attempt tomimic the behavior of a realistic update in a seismic
inversion. As soon as updated uncertainties in (and distributions
of) source parameters from seismic inversion are available, new
emulator predictions enable rapid updating of the output quantity.
The number of stages of warning is limited to three for the sake of
illustrating the methodology. The emulator can be used to predict
for manymore stages of warnings, as predictions form the cheapest
computational component in the entire workflow (tP in Table 3).
Although we use Gaussian distributions to characterize the priors,
the samples for predictions may be drawn from any kind of
distribution (or Monte Carlo ensembles) depending on the
outputs from the seismic inversion routines. Indeed, it requires
only a set of points where the emulator needs to be evaluated.

6 RESULTS

There are two types of outputs from the proposed workflow
(Figure 1). The first type of output relates directly to the nD
Volna-OP2 simulation results, regional maps (Figure 7) and
wave gauge time series (Figure 8). The second type of output

FIGURE 7 | Maximum wave heights (ηmax) resulting from Volna-OP2 simulations corresponding to the 100 training source deformations shown in Figure 4.

Frontiers in Earth Science | www.frontiersin.org January 2021 | Volume 8 | Article 5978659

Giles et al. Tsunami Warning with Hazard Uncertainties

https://www.frontiersin.org/journals/earth-science
www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles#articles


captures the uncertainty on the tsunami hazard (maximum wave
height) by utilizing the emulator. These include maximum wave
heights and associated variance at localized points at a fixed
depth, over a localized area and regional maps (Figures 9–11 and
Supplementary Figures S1–S4).

6.1 Volna-OP2 – Regional Maps
Figure 7 highlights the maximum wave heights obtained over the
whole domain during each of the nD (100) 6 h simulations. This
figure shows that despite the variation in the initial displacement
there is a consistency in the directionality of the resultant tsunami
wave. Most of the tsunami energy is propagated directly south.
The figure provides valuable information on the sections of
coastline most at risk, with the maximum wave heights
focused along the local Pakistani and Iranian coastlines. A

map like this provides information to a warning system on the
areas most at risk. However, to completely capture the hazard and
associated uncertainty for the three stages of warning over the
whole the domain the emulator is leveraged to produce Figure 11.

6.2 Volna-OP2 – Time Series
Virtual wave gauges can be prescribed in the Volna-OP2
simulations, where the wave height as a function of time is
outputted. For this work, virtual gauges are positioned within
each of the refined port areas; Muscat, Chabahar and Karachi.
The time series outputs from each of the nD (100) simulations are
plotted with the maximum and minimum wave heights at each
point in time highlighted (Figure 8). These time series present the
dynamics of the tsunami wave in each of the localized areas. This
information can be extremely beneficial for a warning center, i.e. the

FIGURE 8 |Wave height time series plots at Chabahar, Muscat and Karachi from the 100 Volna-OP2 simulations. The output from each simulation is plotted in grey
while the maximum and minimum wave heights at each point in time is plotted in black. The closest match (blue) to the observed wave gauge measurement from the
1945 event at Karachi is plotted along with the gauge signal (red dots).

TABLE 3 | Computational times in seconds per output location for emulation construction and prediction using MOGP on a Xeon E5-2620V3 2.4 GHz × 12 workstation.

tT
nG

[s] tP
nG

[s] tT+tP
nG

[s]
Locations at fixed depth (Figure 9; Supplementary Figures S1-S2) 1.18 8.09 9.27
Local maps (Figure 10; Supplementary Figures S3-S4) 1.25 0.07 1.31
Regional map (Figure 11) 1.12 0.07 1.19

tT is the training time and tP is the time to carry out nP predictions.
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maximum wave at Karachi is not the initial wave. However, we
would need to emulate the whole time series at each gauge (Guillas
et al., 2018) to be able to present warnings at this level of precision.
Furthermore, as pointed out elsewhere, higher resolution
bathymetry data would be recommended for future work. The
minimum mesh size in the areas of interest is ∼100m but the
underlying bathymetry is sourced directly from GEBCO and thus
has a resolution of ∼400m.

As there was a working wave gauge at Karachi port in 1945, the
de-tided signal from the event is also plotted (Heidarzadeh and
Satake, 2015). Figure 8 shows the waveform of the 1945 tsunami
superimposed over the 100 Volna-OP2 simulation results. The
uncertainties on the tsunami wave from the design (Figure 4) are
displayed, where none of these 100 runs is constructed to match
the 1945 event exactly. Instead, this initial design has wide ranges
spanned nearly uniformly by the LHD, consisting of 100 runs
(slips) with the specific purpose of building the emulator.

However, the closest match to the 1945 Makran signal has
been highlighted in Figure 8. In order to justly compare the
signals, the following should be noted: the location of the virtual

wave gauge in the simulations is different to the gauge’s location
in 1945 and this earthquake event is associated with a triggered
submarine landslide (Okal et al., 2015), which is not considered in
this work. The location of the 1945 wave gauge is located ‘on-
land’ in the coarse GEBCO data, therefore a nearby offshore point
had to be chosen. Despite all the problems outlined, the
highlighted signal marked in blue matches closely the observed
signal for this initial wave. Note that a good match from the
curves in the design is not expected as these are only drawn to
cover the space and create the emulator, in order to capture
variability. Hence some runs of the emulator should match even
better the actual measurements.

6.3 Emulator – Maximum Wave Heights at a
Fixed Depth
An emulatorMi is constructed for each output location (nG � 100,
95, and 100 for Karachi, Chabahar and Muscat respectively). The
locations are selected to be at a fixed depth off the coastline. To
construct the emulator, the maximum wave heights ηmax at these

FIGURE 9 | Uncertainty at gauges along the coastline of Karachi. Top row: Location of 100 gauges ordered from A to B.Bottom row: Box plots for the maximum
wave height ηmax at the 100 gauges, for first (left), second (middle) and third (right) warning stages. A boxplot for a gauge portrays the distribution of predicted ηmax

using the emulator via the quantiles for probabilities of 1, 25, 50, 75, and 99%. Superimposed on each plot are the distributions of the predicted ηmax for four sets of
samples from the priors (see Figure 6, Bottom row), i.e., for nP � 0.1k, 1k, 10k, and 100k.
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locations are extracted from the deterministic, i.e. Volna-OP2,
simulations of the 100 training scenarios. Then, the emulator is
employed to predict ηmax at each location using the nP samples
from the priors for each warning (Figure 6). This results in a
distribution of nP ηmax predictions at each location. The
distribution of ηmax at each location is portrayed as a box
plot (see Figure 9; Supplementary Figures S1, S2 for
Karachi, Chabahar and Muscat respectively). Each box plot is
asymmetric (non-Gaussian) and depicted by its quantiles at
probabilities of 1, 25, 50 (median), 75, and 99%. This not only
gives a sense of the spread of the distribution at the location but
also gives a clear indication of the maximum wave height that is
of interest to the warning centre. The plots show four boxplots
for each location, corresponding to increasing numbers of
samples from the priors, i.e., nP � 100, 1000, 10,000, and
100,000. The distributions of ηmax with 10,000 and 100,000
predictions are almost identical, since these large numbers of
samples thoroughly interrogate the priors. Appreciable
differences are noted when quantiles for 100 and 10,000
samples are compared – 75% quantiles for Karachi warning
stage W1 (Figure 9), 75, 50, and 25% quantiles for Karachi
warning stage W2 (Figure 9), 99% quantiles for all warning
stages at Chabahar (Supplementary Figure S1), 99% and 75%
quantiles for Muscat warning stageW1 (Supplementary Figure
S2), and 75, 50, and 25% quantiles for Muscat warning stageW2

(Supplementary Figure S2). Note that slight differences in
maximum wave height for high quantiles can establish with
confidence whether or not there will be over-topping of
defences, so are important to the warning process. The plots
also show the restriction of the distributions as the warning
stages proceed, resulting in tighter uncertainties in stage W3.

6.4 Emulator – Local Maps
The fixed depth locations in the previous section provide a good
representation of the hazard and associated uncertainties along
the coastline of interest. However, localized maps can be
beneficial for highlighting the areas that could be exposed to
the greatest hazard. Thus, in this section, the output locations are
selected to be the barycenters of the mesh within the areas of
interest (nG � 19,749, 10,766, and 9,355 for Karachi, Chabahar
and Muscat respectively). The procedure for emulator
construction and predictions is similar to that described in the
last section. The local maps for Karachi, Chabahar and Muscat
depicting the mean and uncertainty in ηmax are in Figure 10;
Supplementary Figures S3, S4 respectively. For each stage of
warning, the maps are generated using nP � 1000 samples for
predictions. As observed in the plots for the locations in the
previous section, the uncertainty in the predictions decreases as
the warning progresses.

6.5 Emulator – Regional Maps
A regional understanding of the tsunami hazard and associated
uncertainties can be extremely beneficial to a warning centre.
However, to construct an emulator for each of the barycenters
in the mesh is not feasible (∼0.8 M points). Therefore, in this
case the maximum wave heights (Figure 7) were interpolated
onto a 2.5 km × 2.5 km grid and the offshore points of this grid

were selected as the output locations (nP ∼ 50,000). Similar to
the local maps, the uncertainties become tighter as the warning
advances.

7 CONCLUSION AND DISCUSSION

In this paper we showcase the first possible combinations of
tsunami simulation and emulation in order to reach faster than
real time predictions of tsunami heights near shore, using
synthetic teleseismic inversions to constrain the earthquake
source. We are also able to provide uncertainties in the
warning, as these can be very large, especially in the initial
period following the earthquake. These uncertainties are
essential toward accurate and wise disaster management.

Our study is a proof-of-concept investigation. Indeed, to
demonstrate the appropriateness, we employed a safe margin
in terms of the number of runs (100 for 3 parameters). The rule of
thumb in emulation is to provide a minimum of around 10 runs
per input parameter, the number of runs increasing with
increasing complexity of the input-output relationship. Hence,
for narrow intervals where the influence of inputs on outputs is
typically smooth and monotonic, it may be possible to reduce the
number of runs to around 30 (for three parameters considered
here). The emulator construction can also be aided by using an
informed mean function for the GP. These features can be
exploited especially for stages of seismic inversions that
progressively restrict the input space to small variations across
the outputs, resulting in gains for warning time and computing
resources.

Another attractive extension would be to retrain the emulator
for each wave of seismic inversion, using a design that is focused
on the seismic inversion region, and thus improve the fit.
However the addition of the design of experiments would be
costly in time compared to our first shot of runs. Furthermore,
to be even more realistic, other parameters that could add
uncertainty to this problem could be included. These include
the uncertainties in geometry of the fault, in the rigidity, in the
sediment amplification factor, in the near-shore bathymetry
(Liu and Guillas, 2017), in case warnings were to be explicit in
terms of inundations to make them more useful for subsequent
action. To sample from a larger input space requires great care
and emulation is the only available option since even thousands
of runs would not suffice to cover the spread of uncertainties.
Possible approaches include dimension reduction (Liu and
Guillas, 2017), and sequential design of experiments (Beck
and Guillas, 2016) but with some tailored tuning as the
sequential nature would add time to the whole design
sequence, albeit with large gains in efficiency in the
approximation.

The workflow presented in this study is fully generic and
could, with some additional resources/efforts, be applied by any
tsunami warning centre. The emulator is used to obtain the level
of tsunami hazard and uncertainty at selected points of interest.
These points can cover a localized section of coastline, a regional
area or fixed depths off the coastline of interest. The different
types of warnings that the emulator produces could aid in a
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FIGURE 10 | Local map of uncertainties generated from emulator predictions of ηmax at 19,749 gauges (barycentres of mesh triangles) near Karachi, for first (top),
second (middle) and third (bottom) stages of warning. Each warning stage depicts themean of the predicted ηmax (left) and associated standard deviation (right) using
nP � 1k samples for prediction (Figure 6, Bottom row).
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warning centre’s ability for providing accurate warning
recommendations. Further, the direct results from the
deterministic model are extremely beneficial for providing an
insight into the tsunami dynamics.

As stated, this is a proof-of-concept paper and the authors
recognize that there are many outstanding issues that need to
be addressed before the workflow presented here can be
implemented by a warning centre. The main issues include
a greater number of computational resources, a faster Okada
solver and a fully parallelised/automated workflow. More
computing resources, namely GPUs, would allow for the
Volna-OP2 simulations to be carried out in parallel,
ideally a GPU for each source realization being simulated.
A faster Okada solver running on a cluster would reduce the
runtime of the initialization steps. The runtimes presented
are given in relation to time per scenario or time for

predictions at a gauge. As these are fully independent the
whole system lends itself to parallelization, but effort is
required in this respect to carry out these tasks in parallel.
Finally, another aspect that needs to be considered is the
optimization of the post processing and displaying (plotting)
of the results, runtimes which a warning centre would need to
incorporate. However, with the outstanding issues addressed
and greater computing capacities the total runtime is safely
within the time frame afforded to warning centres in the
aftermath of a tsunamigenic event.
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FIGURE 11 | Regional map of uncertainties generated from emulator predictions of ηmax at 50,983 locations picked from a rectangular grid, for first (top), second
(middle) and third (bottom) stages of warning. Each warning stage depicts the mean of the predicted ηmax (left) and associated standard deviation (right) using nP � 1k
samples for prediction (Figure 6, Bottom row).
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