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Abstract 

The advancement in the field of Urban Building Energy 

Modelling (UBEM) is assisting urban planners and 

managers to design and operate cities to meet 

environmental emission targets.  The usefulness of the 

UBEM depends upon the quality and level of details 

(LoD) of the inputs to the model. The inadequacy and 

quality of relevant input data pose challenges. This paper 

analyses the usefulness of different methodologies for 

developing a 3D building stock model of Ahmedabad, 

India, recognizing data gaps and heterogenous 

development of the city over time. It evaluates the 

potentials, limitations, and challenges of remote sensing 

techniques namely (a) Satellite imagery (b) LiDAR and 

(c) Photogrammetry for this application. Further, the 

details and benefits of data capturing through UAV 

assisted Photogrammetry technique for the development 

of the 3D city model are discussed. The research develops 

potential techniques for feature detection and model 

reconstruction using Computer vision on the 

Photogrammetry reality mesh. Preliminary results 

indicate that the use of supervised learning for Image 

based segmentation on the reality mesh detects building 

footprints with higher accuracy as compared to geometry-

based segmentation of the point cloud. This methodology 

has the potential to detect complex building features and 

remove redundant objects to develop the semantic model 

at different LoDs for urban simulations. The framework 

deployed and demonstrated for the part of Ahmedabad 

has a potential for scaling up to other parts of the city and 

other Indian cities having similar urban morphology and 

no previous data for developing a UBEM. 

Introduction 

This section discusses pertinent aspects of a UBEM 

ranging from its application, specifications, data 

collection and processing techniques for the 3D model to 

the relevance of this research.  

UBEM has emerged as a powerful tool for exploring 

opportunities to address the challenges of rapid 

urbanisation. Combining the data generated in cities with 

energy simulations, UBEMs help in the identification, 

support, and improvement of sustainable urban 

development measures and policies. During the last 

decade, bottom-up UBEMs have been extensively 

researched due to their suitability for urban and regional 

analyses when more integrated energy supply-demand 

scenarios are being investigated (Johari, Peronato, 

Sadeghian, Zhao, & Widén, 2020). UBEM’s growing 

popularity and importance as a planning tool has 

encouraged the exploration of this research and its 

application in Indian cities. While statistical models are 

more reliable at estimating energy use, they have 

limitations in excessive requirement of existing & historic 

data and not being able to adopt for design modifications 

(Abbasabadi and Mehdi Ashayeri 2019). For application 

in Indian cities where this type of data is scarce (Khosla 

and Janda 2019; Shnapp and Laustsen 2013), such a 

modelling approach can be challenging. Thus, simulation-

based modelling can be promising as it doesn’t rely 

heavily on metered electricity data. It requires detailed 

inputs for individual buildings, which is used in obtaining 

reliable energy use estimates.  

Need for a semantic 3D city model 

Like BEM, Simulation based UBEMs also require a 

description of the geometry of the buildings and their 

surroundings to account for the operational energy and 

thermal performance (Johari et al. 2020). These models 

are integrated with the Cadastral data to define energy 

related semantic attributes including building use, age, no. 

of properties, occupancy patterns, mechanical system and 

construction details. (Krüger & Kolbe, 2012). The 

geometry defines the building’s volume with the surfaces 

for the thermal interaction of the envelop with the external 

and internal loads. It defines interactions between outdoor 

exposed surfaces with the conditioned space, adjacencies 

between different buildings and exposure to radiation 

from the sky, sun and the urban context. Thus, application 

of 3D city models for UBEMs extend beyond 

visualization purposes to a Semantic city 3D model. 

These models can be developed with Levels of detail 

(LoD) ranging from 0 to 4 (Biljecki 2013). The suitability 

of developing different LoD 3D models for a UBEM 

varies with their application, indented outcomes and the 

available data.  

Data collection & Model Reconstruction 

Data for 3D city models can be acquired from 

Photogrammetric Digital Surface Models (DSM) or Light 

Detection and Ranging (LiDAR) data or extruded from 

orthophotos and vector building footprints that are often 

provided by cadastral or topographic maps (Moreia, Nex, 

Agugiaro, Remondino, & Lim, 2013). Methods also 

extend to the use of synthetic aperture radar, architectural 

models and drawings, handheld devices, and volunteered 



geoinformation (Biljecki et al. 2015). In addition to 

building geometry, the other components of 3D city 

models are topography and vegetation. Topography can 

be generated from Digital Elevation Models (DEM), 

which are widely accessible in most locations. Vegetation 

can be reconstructed using LiDAR data or georeferenced 

databases providing the characteristics of trees (Johari et 

al. 2020).  

 

The output generated from these data collection methods 

needs specific processing to generate 3D models. Due to 

their simple data structure, these models lack analytical 

capabilities. Moreover, the individual objects in the model 

can be recognized by the human eye but cannot be 

distinguished by computer systems (Willenborg, Pültz, 

and Kolbe 2018) which is essential for analysis, 

particularly energy simulations. Extracting building 

features and defining their geometry as points, lines, 

surfaces and polygons in 3D space is required for the 

model to be usable in energy simulations. Thus, outputs 

generated from these methods are re-constructed and 

linked to other datasets to generate semantic models. This 

reconstruction defines the city objects into semantic 

classes like buildings, transportation, water bodies, 

vegetation, and terrain, that are individually identified and 

operated. The model needs to provide required attributes 

and decomposed representation of the buildings with their 

thematic surfaces; walls, ground, and roof shape, etc. as 

shown in Figure 1. 

City GML is one such globally accepted inter-operable 

format for storing semantic 3D city models in thematic 

classes that can be used in several applications (Gröger 

and Plümer 2012). Open Street Maps (OSM) is another 

open source database that provides building 3D models 

with crowdsourced semantic data on properties like use 

type, No. of floors, building age and other relevant 

information. OSM models are readily accepted by GIS 

based applications and can be used to create 3D shapefiles 

of the city’s buildings. Due to their easy availability and 

ready to use formats, the outputs from both these 

platforms are extensively used as input data for a number 

UBEM projects globally, as reflected in Table 1. 

Relevance of the research 

The challenge however is for Indian cities where such 

datasets are unavailable or have too many data gaps. 2D 

cadastral data for many Indian cities do not exist in a 

digitized format on open source platforms. Hence not only 

the 3D geometry of buildings and urban structures but 

their semantic attributes like use-type, age, etc. along with 

model processing is required. Thus, data collection, 

understanding different building attributes, and 

associating their behaviour, are all significant challenges 

in haphazardly developed Indian cities (Tanzeem, Aswal, 

and Saini 2019).  The LoD which can be achieved in 3D 

building reconstruction also depends on the quality of the 

input data. The higher the LoD, the longer is the time 

required to produce a 3D model, as the amount of manual 

editing and checks grow considerably (Moreia et al., 

2013). Also, fully automatic and reliable reconstruction of 

3D models is challenging beyond LoD2.  

Analysis of existing projects indicates several 

methodologies to reconstruct buildings to form semantic 

3D models as highlighted in the following sections. 

However extensive data, computational knowledge and 

manual efforts are required in those techniques. In most 

of the UBEM projects reviewed in Table 1, an existing 

GIS dataset with building footprints and semantic 

attributes is required as a base to extract building 

polygons from remote sensing data. In the absence of such 

data, more than one method of data collection like LiDAR 

and Photogrammetry are combined to generate accurate 

building geometry. This is followed by manual 

digitization of semantic attributes in the buildings. 

This research evaluates different model development and 

reconstruction methodologies for their suitability in 

Ahmedabad. To simplify data collection and feature 

extraction in the absence of previous datasets, a case study 

is presented to discusses the application of 

Photogrammetry-based Reality mesh models coupled 

with Computer vision using the Bentley Systems – 

Context Capture software (Bentley 2017). The proposed 

methodology uses supervised machine learning 

algorithms, built in the software to train an image based 

detector and thematically classify different urban features, 

eg- buildings, vegetation, landscape etc. The application 

of the computer vision can potentially be extended to 

classify archetypes for semantic attributes to buildings 

based on their appearance. Classification of archetypes 

will assign characteristics like construction assembly, 

operational schedules and mechanical systems to the 

buildings. Thus, with limited cadastral data,  the generated 

3D model can be enriched semantically to fill the 

necessary data gaps for its utilization in UBEM 

simulations.  

Review of existing methods 

A comprehensive literature review was carried out to 

identify the different methods available and adopted for 

data collection and reconstruction of building geometries. 

Their advantages, limitations and applicability in 

Ahmedabad are detailed below and in Table 2. 

Figure 1- Semantic model generated from Photogrammetry, 

linked with Cadastral data for performing simulations 



Using aerial imagery with DEM/DTM data: - This 

process involves feature extraction using satellite or UAV 

based orthographic imagery for detecting building 

footprints and use of Digital elevation/terrain models 

(DEM/DTM) for height information. This method 

typically generates LoD1 models.  Tanzeem et al., (2019) 

used this methodology to generate an LoD1 model of 

Khanjarpur Area of Roorkee, Uttarakhand, India. High 

resolution orthophotos taken from a UAV were used to 

digitize building footprints using the Quick shift 

segmentation algorithm, which is based on the pixel value 

of the coloured image. These footprints were linked to a 

DSM model generated through LiDAR to obtain mean 

heights of the buildings and extrude the LoD1 model. 

These models can be linked to the cadastral dataset to 

generate semantic models as performed by (New et al. 

2018) to automatically generate a UBEM  for 130,000 

buildings. A specially developed API was used to source 

all publicly available cadastral information available in 

GIS format to link the semantic attributes to the buildings 

and thereafter a series of assumptions and heuristics for 

estimating building type and properties from available 

data sources was applied to fill data gaps. These building 

models were then simulated on Energy Plus engine for the 

UBEM.  

Using Photogrammetry & LiDAR data: - Aerial 

photogrammetry captures several oblique and orthogonal 

photos to generate a 3D reality mesh model. 

Photogrammetry models are often combined with DTM 

generated from LiDAR or previously existing 2D GIS 

shapefiles to reconstruct semantic city 3D models. City 

GML models are also developed using this technique. 

Typically, LoD2 & LoD3 models have been generated 

from this approach. Various UBEMs have used LoD2 

CityGML models for simulations, like Helsinki, 

(Willenborg et al. 2018) Berlin (Kaden and Kolbe 2013) 

and Switzerland (Fonseca et al. 2016).  

Using only Photogrammetry with advanced computer 

vision algorithms: - The advent of UAV with high 

resolution oblique camera payloads has increased the 

popularity and accuracy of photogrammetry models. With 

the help of reality modelling software, photogrammetry 

models can be generated and geo-referenced to give 

accurate measurements, heights and elevations. These 

tools also allow these models to be converted into both 

point clouds like LiDAR and triangulation surfaces or 

meshes. Increasing computational power and advanced 

machine learning algorithms have improved computer 

vision to abstract semantic models from reality meshes. 

Stathopoulou & Remondino, (2019) presented a method 

for image-based 3D reconstruction with semantic 

labelling, similar to the method discussed in this paper. A 

trained Convolutional Neural Network (CNN) on 

building façade images was used. The results of this study 

are promising, with an improved performance on the 

quality of the 3D reconstruction. Hensel, Goebbels, & 

Kada, (2019) used photogrammetry models on existing 

LoD2 models to generate LoD3 models by adding façade 

details like exact window and door locations. Abstracting 

actual window / glazing on the façade improves UBEM’s 

accuracy in simulation. They used deep neural networks 

to detect bounding boxes on the actual glazing on the 

façade and then reconstructed it to enhance the existing 

3D city model.  

Data availability for the area of interest 

An attempt was made to review the suitability of the 

existing datasets for Ahmedabad prepared the Urban 

Local Bodies and research institutes. (Rawal et al., 2018) 

used the administrative data along with satellite imagery 

to extract building footprints and develop a GIS database.  

Similarly as shown in Figure 2 manual digitization and 

field survey to assign semantic attributes to buildings was 

performed by CEPT University to generate a GIS 

database for Ahmedabad. Along with this, publicly 

avaialble OpenStreetMap dataset was also extracted, as 

shown in Figure 3. However, there are several gaps and 

inaccuracies in these available datasets as discussed:- 

1. The building footprints extracted didn’t match the plot 

boundaries and overestimated building area by including 

projections like balconies, porch, temporary structures 

and unoccupied areas like lift/staircase cores, shafts & 

corridors.     

2. Building heights were estimated based on maximum 

permissible FSI  or visual inspection of the number of 

floors and not on the actual building as existing.  

3. The validity of semantic attributes like building use and 

age is questionable due to approximation errors. 

3. The Address on the property tax assessment data is 

insufficient to locate the property on the GIS map for 

many properties, thereby tagging semantic attributes that 

were performed manually.  

 
Figure 2- GIS data collected by CEPT university overlaid (in 

red) on satellite imagery 

 
Figure 3- OpenStreetMaps for Ahmedabad overlaid (in orange) 

on satellite imagery. Many buildings are missing here.



Table 1-Application of different data sources in UBEM projects globally 

 

Table 2- Evaluating the challenges and potential of different methodologies for developing a semantic model for Ahmedabad 

UBEM. The dots represent a score of High (6-5), medium (4-3) and low (2-1). 

Primary source Secondary source 
UBEM projects 

Examples Location Model LoD  No of Projects reviewed 

GIS shapefiles 

(Geometry and 

Cadastral data) 

Public Datasets  (Hong et al. 2016) San Francisco, USA 1 19 

Field survey (Saran et al., 2015) Dehradun, India 2, 3 1 

Open Street Maps - (Wang et al., 2019) Nanjing, China 1 2 

City GML - (Kaden & Kolbe, 2014) Berlin, Germany 2 12 

LiDAR GIS shapefiles (Evans et al., 2017) London, UK 1 8 

Photogrammetry 
GIS shapefiles (Julin et al., 2018) Helsinki, Finland 2 4 

LiDAR (New et al. 2018) Tennessee, USA 1 2 

Aerial imagery LiDAR (DEM) (Ratti et al., 2005) London, UK 1 3 

Methodology Inputs Outcomes 

Limitations Data 

collection 

Processing / 

Reconstruction 

Input 

data 

Economic 

viability 

Effort 

required 

Compu-

tation 
Accuracy Suitability 

Ariel 

Imagery 

Manual digitization of 

footprint 

      Extensive manual effort 

Prone to human error 

RGB / Multispectral 

Reflectance value-based 

segmentation of high-

resolution images to 

extract footprints 

      

Requires very high 

resolution orthophotos 

and an algorithm to 

detect buildings. 

Requires DEM for 

building heights 

LiDAR 

Geometry based 

segmentation of point 

cloud    

     LiDAR devices are 

expensive.  

An algorithm to detect 

buildings from height or 

reflectance values needs 

to be developed for 

processing. 

RGB / Reflectance value-

based segmentation of 

Point cloud  

     

 

LiDAR 

DEM + 

2D GIS 

LiDAR to generate DEM 

- for building heights & 

2D GIS data for footprints 

and semantic attributes 

      

Needs more than one 

dataset. 

2D GIS data has many 

gaps and error (Fig 4) 
Photogra

mmetry 

mesh + 

2D GIS 

Point cloud to generate 

DEM & 2D GIS data for 

footprints and semantic 

attributes 

  
 

   

Photogra

mmetry 

mesh + 

LiDAR 

LiDAR for 3D geometry, 

photogrammetry with 

image processing for 

other building features 

      

Needs multiple devices 

for conducting the data 

collection.  

Photogra

mmetry 

RGB value-based 

segmentation of Point 

cloud  

   

 
 

 Limited accuracy, 

requires specific 

algorithms for detection, 

Cannot detect objects 

hidden below foliage 

Geometry based 

segmentation of point 

cloud  

 
  

  

 

Image based segmentation 

of Reality mesh using ML 

algorithms (supervised 

learning) 

  
 

 
  

Extensive requirement of 

labelled images for 

training the algorithm 



Establishing a suitable methodology 

It was judged that the existing database from Open Street 

Maps has too many data gaps, thus making it unfit for 

UBEM application. The GIS data developed by the 

academic institute is collected and digitized manually and 

thus required extensive human resources and is prone to 

several errors and assumptions. However, it is by far the 

best dataset for Ahmedabad readily available. Another 

challenge apart from geometric data is the collection and 

linking of semantic data from public records to the model. 

As discussed above the property’s address is insufficient 

to locate it geographically. Moreover, a lot of cadastral 

data with the Urban Local Bodies (ULB) is not digitized. 

Thus, these challenges along with the technological and 

human resources make data collection and processing 

even more difficult. Evaluating the methodologies, it is 

evident that an extensive remote sensing exercise through 

either LiDAR or Photogrammetry needs to be carried out 

exclusively for Ahmedabad to develop the geometry. 

Along with this validating the semantic attributes and 

digitizing public records must be carried out. The scope 

of this paper is limited to the geometry extraction method 

adopted for Ahmedabad. Parallel research is also being 

dedicated to generating and linking semantic attributes for 

the UBEM. 

Methodology 

The UAV assisted photogrammetry method was selected 

after this review. The application of Computer Vision 

with photogrammetry-based reality mesh was explored to 

extract building footprints for application in the UBEM of 

Ahmedabad. To develop the reality mesh, a state-of-the-

art method comprising of the latest Real-time kinematic 

(RTK) enabled UAV with a hybrid oblique imaging 

camera was selected to capture the aerial images which 

were later processed in Context Capture (CC) (Bentley 

2017). As a pilot study to test this methodology an area of 

1.2 km2 was selected within Ahmedabad city. As shown 

in Figure 4 The first step of the data-collection includes 

preparing a flight mission plan for the pilot area. The 

required input of the flying height, photo overlap (front 

and side), which are important for the resolution of the 

model (GSD) are entered in the UAV software. The 

second step is the actual data collection of the pilot area 

by flying the UAV. Simultaneously the Ground Control 

Points (GCP), which are used to enhance the accuracy of 

the resultant model were also collected manually on the 

ground. After the collection and compilation of both 

image data and GCPs, both were imported to the Context 

Capture software. Due to the scale of the data collected, a 

grid/cluster setup of high-performance computers was 

used to process the reality mesh in less time. The image 

processing is conducted in two steps. First is the Aero-

triangulation which prepares a rudimentary model to be 

reviewed. Second is the 3D model reconstruction, where 

the actual model is prepared as per the users desired 

output. After 62 hours of processing of nearly 10000 

images the photogrammetry software developed a reality 

mesh in *.3mx format. The cleaning process was also 

carried out on the model to discard the distorted parts of 

the model. The reality mesh along with the .3mx format 

was also converted into *.las: point cloud format and the 

*i3s or Esri3d: portable 3D model format to be used in 

ArcGIS Pro and the Ortho DSM raster format for visual 

verification of obtained shapefile from the footprint 

extraction exercise. 

Extraction of Building Footprints  

The next step after developing the model is to utilize the 

model for extracting usable building footprint in UBEM. 

In this study, two techniques are being explored for 

building footprint extraction i.e.: -  

1. Elevation and area-based classification of the point 

cloud model generated in the. las format using the 

classification codes defined by the American Society 

for Photogrammetry and Remote Sensing 

(ASPRS,2015) in the ArcGIS software and the 

coordinates of the point. 

2. Image-based segmentation in the CC Insights 

machine learning extension by training a detector 

with relevant training images to identify building 

rooftops.   

Both the methodologies are evaluated with their workflow 

and the preliminary results of building footprint and 

model extraction in Table 3. 

 

Figure 4- Data collection through UAV and processing to 

generate 3D models 



Table 3 - Comparison of the two methodologies adopted to extract building footprints from Photogrammetric reality mesh model  

Method Geometric classification of the point cloud model Image-based segmentation using computer vision 

Data 

Required 

Point cloud model from the reality mesh needs to be 

generated separately and stored in the .las format along 

with .i3s format for its use in ArcGIS pro 

Aero-triangulated block. Some images from the UAV 

need to be processed as training data. Manual 

classification of rooftops in the trained images is required 

to develop the initial classification algorithm. 

Software 

used 

Context Capture centre edition for generating reality 

mesh & ESRI ArcGIS Pro for footprint extraction and 

3D reconstruction 

Context Capture centre edition for generating reality mesh 

& Insights extension in the software for developing the 

trained detector. ContextCapture editor to export the 

detected rooftop polygons into a *.shp shapefiles 

Steps 

followed 

 

Importing point-cloud in 

ArcGIS pro. The model auto-

classifies based on the point's 

elevation as per presets of 

ASPRS 

Model is aerotriangulated after the manual identification 

of GCPs 

A separate block or a new file is made and only the limited 

images that are required for training the detector are 

imported in that block.  

 

Changing point display from 

height based to class based 

using LAS classification tools 

in ArcGIS pro 

An appropriate method of training the detector i.e. object 

based or image segmentation is now selected. The image 

segmentation is selected for this study. 

 

Classification of ground 

surface based on the 16 point 

classes defined as per ASPRS 

A new Insight file is created. Roof polygons are manually 

drawn over the selected images for training the detector 

The detector is uploaded on the server for training 

 

Classifying vegetation into 

high & low densities 

The detector is applied to a small test area to check its 

consistency. 

After necessary quality assurance, the detector runs on a 

larger testing data set. 

 

Filtering Building rooftop 

points with a minimum height 

of 3.5 m  & area of the shape 

more than 20 sqm. 

The detector runs to identify building rooftops in the 

images. On obtaining satisfactory results the images are 

exported to generate the segmented reality mesh model. 

 

Post 

Processing 

The obtained roof polygons from post-processing are 

converted first into raster images and then to vector 

format. Then Building footprint regularization 

command is run to extract the polygons. Manual 

editing is done to remove redundant polygons 

Manual editing and re-training of the detector is required 

to improve its accuracy. Building rooftops obtained can be 

exported and vectorized to obtain the *.shp shapefiles. 

Preliminary 

results 

(Building 

footprints) 

  

Challenges 

& 

Limitations 

• Additional time is required to converted *.3mx to 

*.las and to DSM and *i3s 

• A lot of manual classification is required and 

many times the results are not accurate 

• ArcGIS is an additional cost 

• Processing time is more than ArcGIS 

• The quality assurance and training the detector can 

take more time 

• Results are as accurate as the quality of the trained 

images 

Prospects 

• Overall processing time is less 

• If the sweet spot of everything can be obtained, 

like point sampling distance for the model, and 

other input in the steps of vectorizing the 

footprints, it can be a promising method. 

• Result accuracy is higher than the point cloud 

method. 

• Ability to expand classification beyond the standard 

16-point classes  

• Features like temporary structures can be removed 



Conclusion 

The preliminary results indicate the potential of using 

Image based segmentation for building footprint 

extraction. These footprints can now be linked to the 

DEM for building heights to generate an LoD1 geometry 

of the urban area. The challenges currently being faced 

are primarily linked to enriching the training data and 

accounting for finer details and peculiarity in the urban 

fabric of Ahmedabad. As evident in the results that due to 

similarity in textures of roofing materials and paving 

materials the latter is also getting detected as a building. 

However, with more feature classes created for separate 

urban components like roads, vehicles, trees, humans and 

furniture, the accuracy of the detector to remove these 

objects from the building class will increase. The 

algorithm can potentially be trained further to extract 

building features like balconies, overhangs, canopies and 

porches and identifying the exact glazing ratios on each 

façade of the building. This will enable extracting the 

geometry at different LoDs as shown in Figure 5. 

Prospects for this study 

The 3D city model thus developed would be data 

semantically enriched with cadastral and energy data 

different public/private sources to create a single database 

as shown in Figure 6. Each building would be linked to 

different datasets through the unique fields / IDs as 

described in the framework. This City energy model is 

proposed to be made available on an open source online 

platform for assisting in various analysis and planning 

exercises by the Local government. By linking more such 

publicly collected data, the model can be enriched to 

ultimately serve as a City Information Model.  

The use of computer vision along with photogrammetry 

models for the UBEM of Ahmedabad will allow the 

model’s application in other analyses as well. The most 

promising application that can be explored is appearance-

based assignment of building archetype properties. As 

previously stated, that linking of semantic data to the 

building geometry is another challenge for Ahmedabad. 

Thus, for the framework proposed in Figure 6, the 

application of Computer vision can fill the data gaps by 

identifying buildings of similar use-type based on their 

physical appearance. This will also help in identifying the 

building’s age and physical condition to assign properties 

like construction material, the efficiency of mechanical 

systems and equipment installed etc.  The potential of 

Photogrammetry models can also be extended to link and 

map the municipal service network into the UBEM. Thus, 

a holistic analysis of urban scale energy consumption can 

be achieved. Apart from energy-based applications, these 

models are capable of application in areas like: - 

management of infrastructure and public assets, planning 

transport networks, and developing strategies for the 

city’s resilience towards extreme climate events and 

preparedness for the pandemic scenario. 

 

Figure 6 - Proposed framework to link datasets into the semantic 3D model and performing UBEM simulations 

Figure 5-Proposed methodology will result in a semantic 3D model at different LoDs for their application in UBEM of Ahmedabad 
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