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Abstract 10 

The work presented in this paper aims at developing a novel meshless parameter estimation 11 

framework for a system of partial differential equations (PDEs) using artificial neural network 12 

(ANN) approximations. The PDE models to be treated consist of linear and nonlinear PDEs, 13 

with Dirichlet and Neumann boundary conditions, considering both regular and irregular 14 

boundaries. This paper focuses on testing the applicability of neural networks for estimating 15 

the process model parameters while simultaneously computing the model predictions of the 16 

state variables in the system of PDEs representing the process. The capability of the proposed 17 

methodology is demonstrated with five numerical problems, showing that the ANN-based 18 

approach is very efficient by providing accurate solutions in reasonable computing times. 19 

 20 
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1 Introduction 23 

A wide range of real-world systems in applied sciences and engineering fields belongs to 24 

Distributed Parameter Systems (DPS), where pertinent mathematical models often take the 25 

form of Partial Differential Equations (PDEs) describing the spatial-temporal dynamics of the 26 

system. Developing a reliable parameter estimation method for PDE systems is crucial to 27 

obtain accurate parameter values with fast convergence rates for system identification such that 28 

the model predictions could confirm the underlying dynamic behaviour of the process. 29 

While previous contributions on the inverse problem of estimating unknown parameters have 30 

investigated extensively the parameter estimation properties such as accuracy and computing 31 

time; they discuss cases where methods mainly consider functions over a uniform grid 32 

discretisation; so, PDE models with irregular boundaries were largely ignored which 33 

consequently forms the main objective of this paper. Further advances in terms of estimation 34 

accuracy and savings in computation time are the other potential areas of improvements in this 35 

context. Several methods can be used for solving a system of partial differential equations, 36 

such as the method of weighted residuals (Finlayson and Scriven, 1966), finite difference 37 

methods (Smith, 1985; Mazumder, 2015), the numerical Method of Lines (MOL) (Schiesser, 38 

1991), finite element methods (Bathe, 1996), Finite Volume Methods (FVM) (Mazumder, 39 

2015), and artificial neural networks (Lagaris et al., 1998). Xu and Dubljevic (2017) recently 40 

developed a methodology based on the Model Predictive Control (MPC) algorithms for linear 41 

transport-reaction models. The authors proposed Cayley-Tustin transformation as an exact time 42 

discretisation scheme, and then developed a model predictive control formulation to account 43 

for the spatial nature of the problem. Irregular boundary conditions were not considered in 44 

these works. Applications where irregular boundary conditions are relevant include flow in 45 

heterogeneous porous media, neutron transport and biophysics (Berndt et al., 2006). Among 46 

the available solution strategies for simulation of PDE models, in this work, an artificial neural 47 
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network (ANN) was used to solve the partial differential equations because of its excellent 48 

performance (Lagaris et al., 1998). ANN-based formulations represent an exciting avenue of 49 

research as they offer meshless frameworks to account for irregular boundaries. An ANN 50 

model involves parameters such as weight matrices and bias vectors that are adjusted to 51 

minimise a suitable error function. The computation of the network parameters in the ANN 52 

model forms part of the solution of the PDEs. So, the original parameter estimation problem 53 

for PDE systems becomes an optimisation problem in which the objective is to simultaneously 54 

approximate the PDE models by computing the ANN network parameters, and estimate the 55 

PDE model parameters such that the model predictions are in a good agreement with the 56 

measured data (experimental observations). Comprehensive experience in ODE parameter 57 

estimation (Dua, 2011; Dua and Dua, 2012) indicates that ANN-based methodology was 58 

effectively and successfully tested for ODE systems, and thus is a candidate for parameter 59 

estimation of PDEs. 60 

Although a number of recent and related approaches for solving inverse problems have been 61 

previously studied, further development for PDEs defined on arbitrarily shaped domains is 62 

required. Such recent approaches include works by Bar-Sinai et al. (2019), Brunton et al. 63 

(2016) and Raissi et al. (2019). Bar-Sinai et al. (2019) aim to numerically solve PDEs, assisted 64 

by neural networks by using the data to train the neural networks and avoid discretising 65 

approximate coarse-grained models. Brunton et al. (2016) mainly focus on identifying the 66 

fewest terms in the dynamic model that can accurately represent the data. The work of Raissi 67 

et al. (2019) has some similarities to our work but differs in how the solution is hypothesised; 68 

they approximate a PDE equation by neural network whereas we approximate state variable 69 

with the neural network. Also, boundary conditions and irregular boundaries are incorporated 70 

in our work. 71 
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Classic works used the popular finite difference method (FDM) to provide an approximate 72 

solution to PDEs and employed the least squares method to estimate the physical properties in 73 

the heat conduction equation (Beck, 1970 a, b). The work carried out by Seinfeld and Chen 74 

(1971) had looked at the parameter estimation techniques based on the method of steepest 75 

descent, quasilinearization, and collocation in the class of PDE problems of chemical 76 

engineering interest. Polis et al. (1973) presented a methodology in which Galerkin’s method 77 

had been used to convert the PDEs into a set of ODEs. The authors applied three optimisation 78 

schemes including a steepest descent method, a search technique and nonlinear filtering, for 79 

estimating the unknown parameters. The purpose of this was to show that the PDE parameter 80 

estimation problems could be transformed into a standard optimisation problem in which any 81 

optimisation algorithms can be applied. Some earlier reviews were given by Polis and Goodson 82 

(1976) and Kubrusly (1977). In the survey by Kubrusly (1977), identification methods for the 83 

DPS are classified into three classes: (i) direct method, (ii) reduction to Lumped Parameter 84 

Systems (LPS), and (iii) reduction to Algebraic Equations (AE). The direct method utilizes the 85 

infinite-dimensional system model to obtain the parameters. The reduction-based method, 86 

which is also known as time-space separation, involves spatial discretisation in order to reduce 87 

the PDEs into a set of ODEs in time to which estimation methods for LPS can be applied 88 

(Hidayat et al., 2017). A number of other related works exist in literature including statistical 89 

methods (Banks and Kunisch, 1989; Fitzpatrick, 1991; Xun et al., 2013), Laguerre-polynomial 90 

approach (Ranganathan et al., 1984), general orthogonal polynomials (Lee and Chang, 1986), 91 

Fourier series method (Mohan and Datta, 1989), singular value decomposition (Gay and Ray, 92 

1995), artificial neural networks coupled with traditional numerical discretisation techniques 93 

(Gonzalez-Garcia et al., 1998), and extended multiple shooting method (eMSM) (Muller and 94 

Timmer, 2002). 95 
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In this work, the effectiveness of the proposed methodology is demonstrated through a 96 

collection of linear and nonlinear PDEs with different boundary conditions, such as Dirichlet, 97 

Neumann and Robin, considering both regular and irregular boundaries. This work is organised 98 

as follows: in Section 2, a general formulation of the proposed method is described followed 99 

by the numerical case studies which are presented in Section 3 in order to validate the 100 

applicability of the methodology, and Section 4 provides a summary of the paper. 101 

2 Parameter Estimation Methodology 102 

The proposed approach in this paper will be illustrated in terms of the partial differential 103 

equations under the following assumptions, (i) the PDE model structure of the system to be 104 

investigated is pre-selected and known, (ii) the system is identifiable, and (iii) the measured 105 

data (experimental observations) are available. Therefore, the main objective is to compute the 106 

unknown model parameters while simultaneously providing a solution to the system of PDEs. 107 

Using the Least Squares (LS) objective function, the parameter estimation problem is 108 

formulated as follows: 109 

min
𝜃,Ψ(x)

 Err𝑃𝐸 = ∑{Ψ̂(x𝑝) − Ψ(x𝑝)}
2

𝑝∈𝑃

 (1) 

subject to the PDE model taking the form of: 110 

𝒥(𝜕𝑠Ψ, 𝜕𝑠−1Ψ, ⋯ , ∂Ψ, Ψ, x) = ℱ𝑘(Ψ(x), θ, x) (2) 

and associated boundary conditions, where 𝒥 is a given function of the system of PDEs, and  111 

Ψ ∶= (Ψ1(x), ⋯ , Ψ𝑘(x)) ∈ ℝ𝑛Ψ; 𝑛Ψ ∈ ℕ, denotes the vector of 𝑘 unknown functions of state 112 

variables in the given system of PDEs. It is assumed that the definition domain, x113 

∶= (𝑥1, ⋯ , 𝑥𝑚) ∈ ℝ𝑛x; 𝑛x ∈ ℕ, and the right-hand side of the equations, ℱ𝑘(Ψ(x), θ, x), have 114 

been given. If the time is included as one of the independent variables, it can be identified as 115 
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the zeroth variable, 𝑥0 = 𝑡. Note that the order of the differential equation is determined by 𝑠. 116 

Ψ̂(x𝑝) represents the experimental measurements of the state variables at data points x𝑝; 𝑝 ∈117 

𝑃 ⊆ ℕ, and θ is the vector of model parameters to be estimated such that the error, Err𝑃𝐸, 118 

between the measured data and the model predictions is minimised. 119 

The methodology proposed in this work involves two main steps: first, approximating the 120 

solution by a trial solution, and second, incorporating the boundary conditions within the trial 121 

solution, as explained next. 122 

Let Ψ𝑘
𝐴𝑁𝑁(x) denotes the trial solution. The ANN approximation of the model is formulated as 123 

follows, and incorporated into the parameter estimation problem: 124 

∑ ∑{𝒥(𝜕𝑠Ψ𝑘
𝐴𝑁𝑁 , 𝜕𝑠−1Ψ𝑘

𝐴𝑁𝑁, ⋯ , ∂Ψ𝑘
𝐴𝑁𝑁, Ψ𝑘

𝐴𝑁𝑁, x𝑝) − ℱ𝑘(Ψ(x𝑝), θ, x𝑝)}2

𝑘∈𝐾𝑝∈𝑃

 ≤  𝜀 (3) 

In the proposed approach, a trial form of the solution (or the neural network approximation of 125 

the solution), Ψ𝐴𝑁𝑁, is chosen (by construction) such that the initial/boundary conditions of 126 

the differential equation model are satisfied. The trial solution involves a sum of two terms: 127 

Ψ𝐴𝑁𝑁(x) = 𝐴(x) + 𝐹(x, 𝑁(x)) (4) 

where the first term, 𝐴(x), is independent of adjustable parameters so as to satisfy the boundary 128 

conditions (BCs), while the term, 𝐹, is constructed to employ a feedforward neural network 129 

involving adjustable parameters such as weights and biases to deal with the minimisation 130 

problem. 𝑁(x) represents a single-output feedforward neural network with network parameters 131 

and input datasets (Yadav et al., 2015; Lagaris et al., 1998). A systematic way to demonstrate 132 

the construction of the trial solution for treating different common case studies in various 133 

scientific fields is presented in the appendix. 134 
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Different numerical example problems which demonstrate the capabilities of the proposed 135 

approach will be presented in the next section. According to the numerical experiments, the 136 

ANN-based methodology based upon the formulation presented in this section has been proven 137 

to be very effective by providing accurate solutions in reasonable computing times. Moreover, 138 

the reported solution accuracy can be improved further by calibration of nodes within the ANN 139 

hidden layer in order to compute the optimal ANN topology. 140 

Before proceeding with the numerical analysis, it is worth noticing that the generic 141 

mathematical formulation of the parameter estimation problem involves minimisation of the 142 

LS objective function, Equation (1), subject to the PDE model, Equation (2), and associated 143 

BCs, and the ANN model, Equations (3)-(4).  144 

3 Numerical Case Studies  145 

In this section, a number of case studies will be presented to demonstrate the advantages of the 146 

proposed modelling framework for the parameter estimation of partial differential equations. 147 

To computationally test and illustrate the performance of the proposed methodology for 148 

estimating unknown parameters in PDE models, the following example problems will be 149 

treated. The first problem seeks to estimate the diffusivity in the heat equation; the second one 150 

considers a linear Poisson equation with Dirichlet BCs while the third one studies the linear 151 

Poisson equation with mixed BCs; the fourth example problem examines a non-linear Poisson 152 

equation with mixed BCs; and the last one treats a highly non-linear problem with an irregular 153 

boundary. In all models with orthogonal box boundaries, the domain was taken to be 154 

[0, 1]  × [0, 1] considering both uniform and non-uniform grid discretisation. A summary of 155 

the problems and the solutions obtained is given in Table 1.  156 

All the optimisation problems were formulated as NLPs and solved using GAMS 24.7.1 157 

(Rosenthal, 2008) on a Dell workstation with 3.00 GHz processor, 8GB RAM, and Windows 158 
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7 64-bit operating system. It should be noted that the main difficulty with the parameter 159 

estimation arises from the non-convexity of the non-linear objective function, as minimisation 160 

of such functions may result in different local optimal solutions. For this reason, the parameter 161 

estimation results may change for various NLP solvers and initial parameter guess values used 162 

for the solvers. Each solver can handle certain model types and one has to choose an appropriate 163 

solver that allows for optimal solutions to be computed in reasonable CPU times. To this end, 164 

the optimisation problems corresponding to the PDE models with orthogonal box boundaries 165 

were modelled in GAMS 24.7.1 and solved using SNOPT, while those corresponding to the 166 

PDE models with irregular boundaries were solved using KNITRO. 167 

3.1 Problem 1 168 

A numerical example is presented for the estimation of the diffusivity in the heat equation with 169 

Dirichlet BCs. The model is a linear PDE of parabolic type in one dimension of time and one 170 

space dimension. 171 

3.1.1 Parameter Estimation using Uniform Grid 172 

Consider the following partial differential equation with associated boundary and initial 173 

conditions, representing a mathematical model for a system governed by the heat equation 174 

(Seinfeld and Chen, 1971): 175 

𝜃 
𝜕2 Ψ

𝜕𝑥2
=

𝜕Ψ

𝜕𝑡
 

  

Ψ(0, 𝑥) = sin 𝜋 𝑥 0 ≤ 𝑥 ≤ 1  

Ψ(1, 𝑥) = 0   

Ψ(𝑡, 0) = Ψ(𝑡, 1) = 0 0 ≤ 𝑡 ≤ 1 (17) 

in which Ψ = Ψ(𝑡, 𝑥) denotes the state variable representing the temperature profile, 𝑥 is the 176 
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space coordinate, 𝑡 is the time, and the model parameter 𝜃 ∈ ℝ𝑛𝜃; 𝑛𝜃 ∈ ℕ, stands for the 177 

thermal diffusivity which is unknown throughout the parameter estimation problem. 178 

For this example problem, PSE's gPROMS® advanced process modelling platform was used 179 

for the generation of the simulated measurement data. The PDE model (Equation 17) was 180 

numerically solved by setting the actual value of the unknown parameter as 𝜃 = 1. The model 181 

was implemented in gPROMS while the partial differential equation describing the heat 182 

transfer process was simulated using Orthogonal Collocation on Finite Elements (OCFE) 183 

scheme. To obtain a precise numerical solution, both time and space domains were to be 184 

handled using third order orthogonal collocation over ten finite elements. 185 

Having simulated measurement data, the parameter estimation problem was formulated and 186 

solved in GAMS using ANN model. Note that to approximately solve the heat equation using 187 

an ANN, the trial form of the solution must be written as: 188 

Ψ𝐴𝑁𝑁(𝑡, 𝑥) = (1 − 𝑡) sin 𝜋 𝑥 + 𝑡 (1 − 𝑡) 𝑥 (1 − 𝑥) 𝑁(𝑡, 𝑥) (18) 

As discussed earlier in the previous, the trial solution is chosen such that the initial/boundary 189 

conditions of the PDE model are satisfied. Therefore, by incorporating the four boundary points 190 

given in Equation (17), into Equation (10), 𝜆1 = 𝜆2 = 1 is obtained, while 𝐴(𝑡, 𝑥) =191 

(1 − 𝑡) sin 𝜋 𝑥 is found by direct substitution in the general form given by Equation (11). 192 

Considering a uniform square discretisation of the domain [0, 1] ×  [0, 1], solving the 193 

parameter estimation problem gives Err𝑃𝐸 = 6.3643 × 10−6 and 𝜃 = 0.98863 as the 194 

parameter estimate. 195 

3.1.2 Parameter Estimation using Non-Uniform Grid 196 

To show the ability of the ANN-based simultaneous formulation for estimating unknown 197 

parameters, a non-uniform grid discretisation is now investigated in this section. A desirable 198 
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feature of the ANN-based approach is that random points of each variable can be chosen over 199 

the domain resulting in a non-uniform grid. This could be useful in PDE models with irregular 200 

boundaries in which more sample points might be required in some regions of the domain.  201 

The network architecture is now considered to be an ANN with two inputs x𝑝 ∶= (𝑥𝑝, 𝑡𝑝), one 202 

hidden layer and twenty nodes in the hidden layer. For performing training, a total of 121 data 203 

points, 𝑝 ∶= (1, 2, ⋯ ,11), are obtained by considering nine random points of the domain (0, 1) 204 

of each variable and four boundary points as: 𝑥1 = 0, 𝑥11 = 1, 𝑡1 = 0 and 𝑡11 = 1. Solving 205 

the parameter estimation problem for this case study gives Err𝑃𝐸 = 1.82757 and 𝜃 = 0.99603 206 

as the parameter estimate. Computational times for the obtained results are approximately 40.5 207 

seconds for the uniform grid and 226.8 seconds for the non-uniform grid.  208 

 209 

3.2 Problem 2 210 

Consider the following Poisson equation with Dirichlet BCs, which is a partial differential 211 

equation of elliptic type (Lagaris et al., 1998): 212 

∇2Ψ(𝑥, 𝑦) = 𝑒−𝑥(𝑥 − 𝜃1 + 𝑦3 + 𝜃2𝑦) (19) 

Ψ(0, 𝑦) = 𝑦3  

Ψ(1, 𝑦) = (1 + 𝑦3)𝑒−1  

Ψ(𝑥, 0) = 𝑥𝑒−𝑥  

Ψ(𝑥, 1) = 𝑒−𝑥(𝑥 + 1)  

where the actual values of the parameters are 𝜃 = [𝜃1   𝜃2] =  [2   6], and 𝑥, 𝑦 ∈  [0, 1]. The 213 

analytical solution for the above PDE model is as follows: 214 
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Ψ𝑎𝑛𝑎𝑙𝑦𝑡𝑖𝑐(𝑥, 𝑦) = 𝑒−𝑥(𝑥 + 𝑦3) (20) 

To illustrate the performance of the proposed methodology, the vector of parameters in 215 

Equation 19 is assumed to be unknown and must be estimated by formulating and solving the 216 

parameter estimation problem. The domain [0, 1] ×  [0, 1] was taken with a uniform grid 217 

discretisation considering a mesh of 36 points obtained by subdividing the interval in five equal 218 

subintervals corresponding to six equidistant points in each direction. Using Equation (10), the 219 

trial solution of the PDE model must be written as Ψ𝑘
𝐴𝑁𝑁(𝑥, 𝑦) = 𝐴(𝑥, 𝑦) + 𝑥(1 − 𝑥)𝑦(1 −220 

𝑦) 𝑁 (𝑥, 𝑦). The term, 𝐴(𝑥, 𝑦), can be obtained by direct substitution in the general form given 221 

by Equation (11): 222 

𝐴(𝑥, 𝑦) = (1 − 𝑥) 𝑦3 + 𝑥 (1 + 𝑦3) 𝑒−1 + (1 − 𝑦) 𝑥 (𝑒−𝑥 − 𝑒−1) 

                   + 𝑦 [(1 + 𝑥)𝑒−𝑥 − (1 − 𝑥 + 2 𝑥 𝑒−1)] 
(21) 

Equation 21 incorporates the BCs given in Equation 19. Parameter estimation problem was 223 

modelled and solved in GAMS. Solving the parameter estimation problem for the uniform grid 224 

discretisation provides Err𝑃𝐸 = 2.7615 × 10−6 and 𝜃 = [𝜃1     𝜃2] = [2.03029     6.00006], 225 

and required only 8.6 seconds of computation time. The computational experiment was carried 226 

out for ten nodes in the hidden layer. 227 

It is interesting to explore the advantage of ANN-based framework for estimating the model 228 

parameters over a non-uniform grid, when a small number of points is available for performing 229 

training. A non-uniform grid was generated by considering four random points of the domain 230 

(0, 1) of each variable and four boundary points as the following: 𝑥1 = 0, 𝑥6 = 1, 𝑦1 = 0 and 231 

𝑦6 = 1. Using 7 nodes in the hidden layer, we obtained 𝜃 = [𝜃1     𝜃2] =232 

[2.00926       5.99466], an error of Err𝑃𝐸 = 1.919 × 10−4 and it took approximately 22 233 

seconds to converge.  234 
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3.3 Problem 3 235 

Let us consider a PDE model representing a Linear Poisson Equation with mixed BCs as stated 236 

as follows (Lagaris et al., 1998): 237 

∇2Ψ(𝑥, 𝑦) = (2 − 𝜃2 𝑦2) sin(𝜋 𝑥) (22) 

Ψ(0, 𝑦) = 0  

Ψ(1, 𝑦) = 0  

Ψ(𝑥, 0) = 0  

(𝜕Ψ(𝑥, 1) ∕ 𝜕𝑦) = 2 sin(𝜋 𝑥)  

where the actual value of the parameter is 𝜃 = 𝜋, and 𝑥, 𝑦 ∈  [0, 1]. As before, a uniform grid 238 

discretisation is first studied; hence, training was performed using a mesh of 121 points 239 

obtained by considering eleven equidistant points of the domain [0, 1] of each variable. For 240 

constructing the ANN topology, one hidden layer with ten hidden nodes were used for this case 241 

study. 242 

The analytical solution of the given PDE model (Equation 22) is stated as follows: 243 

Ψ𝑎𝑛𝑎𝑙𝑦𝑡𝑖𝑐(𝑥, 𝑦) = 𝑦2 sin(𝜋 𝑥) (23) 

Using Equation (13), the trial solution of the PDE model must be written as Ψ𝐴𝑁𝑁(𝑥, 𝑦) =244 

𝐵(𝑥, 𝑦) + 𝑥 (1 − 𝑥) 𝑦 [𝑁(𝑥, 𝑦) − 𝑁(𝑥, 1) − 
𝜕𝑁(𝑥,1)

𝜕𝑦
]. The term, 𝐵(𝑥, 𝑦), can be achieved by 245 

direct substitution in the general form given by Equation (15): 246 

𝐵(𝑥, 𝑦) = 2 𝑦 sin(𝜋 𝑥) (24) 
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Solving the parameter estimation problem provides an error of Err𝑃𝐸 = 0.01657 in about 247 

258.8 seconds, and the computed parameter estimate is 𝜃 = 3.14123. For a non-uniform grid 248 

of nine random points in (0, 1), we obtained Err𝑃𝐸 = 0.01167 and 𝜃 = 3.14325 for ten nodes 249 

in the hidden layer and it took about 84 seconds for the convergence of the algorithm. 250 

3.4 Problem 4 251 

A nonlinear PDE problem (Lagaris et al., 1998) with the same mixed BCs as in Problem 3, is 252 

treated in this section. The analytical solution and the neural network approximation of the 253 

solution are the same with those of Problem 3. However, the mathematical model is given by: 254 

∇2Ψ(𝑥, 𝑦) + Ψ(𝑥, 𝑦)
𝜕

𝜕𝑦
Ψ(𝑥, 𝑦) = sin(𝜋 𝑥) (2 − 𝜃1

2 𝑦2 + 𝜃2 𝑦3 sin(𝜋 𝑥)) (25) 

where the actual values of the parameters are 𝜃 = [𝜃1   𝜃2] =  [𝜋   2], and 𝑥, 𝑦 ∈ [0, 1]. 255 

The network was first trained using a uniform grid of six equidistant points in [0, 1]. Parameter 256 

estimation problem was solved for twelve hidden nodes for a uniform grid to give Err𝑃𝐸 =257 

4 × 10−5 and 𝜃 = [3.11367     1.97794]. By considering seventeen nodes in the hidden layer 258 

for a non-uniform grid, Err𝑃𝐸 = 1 × 10−10 and 𝜃 = [3.22134     1.97967] were obtained. 259 

Convergence was achieved in 492 and 68 CPU seconds for uniform and non-uniform grid, 260 

respectively. 261 

3.5 Problem 5 262 

Consider the following highly nonlinear problem (Lagaris et al., 2000) with a star-shaped 263 

domain as shown in Figure 2. 264 

∇2Ψ(𝑥, 𝑦) + 𝑒Ψ(𝑥,𝑦) = 1 + 𝑥2 + 𝑦2 +
4

(𝜃 + 𝑥2 + 𝑦2)2
 (26) 
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where the actual value of the model parameter is 𝜃 = 1 and 𝑥, 𝑦 ∈  [−1, 1]. 265 

 266 

Figure 2: The star-shaped domain (171 points) and the boundary points (60 points) corresponding to Problem 5. 267 

The star-shaped boundary has twelve vertices and sides. The boundary points (𝑥, 𝑦) on the 268 

definition domain are considered by picking points on the interval [−1, 1] on the 𝑥 axis and 𝑦 269 

axis, respectively. The total number of points taken on the boundary is 60, and a total of 171 270 

points were taken within the star-shaped domain. Using the analytical solution, 271 

Ψ𝑎𝑛𝑎𝑙𝑦𝑡𝑖𝑐(𝑥, 𝑦) = log(1 + 𝑥2 + 𝑦2), the values of the state variable at the boundary points 272 

were computed and have been used in the training.  273 

The unknown model parameter can be estimated while simultaneously computing the model 274 

predictions for the state variable. Solving the parameter estimation problem using an ANN with 275 

nineteen hidden nodes for the above PDE model yields Err𝑃𝐸 = 1.2749 × 10−4 and 𝜃 =276 

1.57098, and required 158.48 seconds of computation time. The proposed approach for 277 

parameter estimation works well for PDE models with arbitrarily complex boundaries. As 278 
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indicated here, a close estimate of the parameter is made and the approximate solution is of 279 

high accuracy since there is a good match between the exact solution and the model predictions. 280 

4 Concluding Remarks 281 

A computationally efficient parameter estimation framework based on the artificial neural 282 

network (ANN) approximations was developed for PDE models and tested extensively on 283 

different example problems. To evaluate the performance of the suggested methodology, we 284 

experimented five numerical examples with a mesh-grid of small and moderate size, 285 

considering different distributions (uniform and non-uniform) with boundary conditions 286 

(Dirichlet and Neumann) defined on boundaries with simple and complex geometry. A 287 

summary of the results obtained from solving the parameter estimation problem using the ANN 288 

scheme is presented in Table 1. Based upon our experience, the proposed methodology worked 289 

better than conventional techniques. 290 

Table 1: Example problems 1 – 5. 291 

Problem 
Grid 

discretisation 
Parameter 

Actual 

value 
Estimate 

Error 

(𝐄𝐫𝐫𝑷𝑬) 

CPU 

time 

(s) 

Problem 

1 

Uniform 𝜃 1 0.98863 6.3643 × 10−6 40.5 

Non-uniform 𝜃 1 0.99603 1.82757 226.8 

Problem 

2 

Uniform 

𝜃1 2 2.03029 

2.7615 × 10−6 8.6 

𝜃2 6 6.00006 

Non-uniform 

𝜃1 2 2.00926 

1.919 × 10−4 22 

𝜃2 6 5.99466 

Problem 

3 

Uniform 𝜃 𝜋 3.14123 0.01657 258.8 

Non-uniform 𝜃 𝜋 3.14325 0.01167 84 

Uniform 𝜃1 𝜋 3.11367 492 
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Problem 

4 

𝜃2 2 1.97794 4 × 10−5 

Non-uniform 

𝜃1 𝜋 3.22134 

1 × 10−10 68 

𝜃2 2 1.97967 

Problem 

5 
Non-uniform 𝜃 1 1.57098 1.2749 × 10−4 158.48 

 292 

Varying the ANN topology will have different computational demands such as the prediction 293 

accuracy and the central processing unit (CPU) times for estimating parameters. A trade-off 294 

between the solution accuracy and the computational time is required to land on an optimal 295 

configuration of the ANN model. The highest prediction accuracy with minimum 296 

computational time was achieved using a single hidden layer ANN model. The computational 297 

demands required to converge to the optimal solution are presented in Table 1. The illustrative 298 

examples provided in this paper demonstrate that the ANN-based approach is very efficient as 299 

it provides accurate solutions in reasonable computing times. 300 

 301 
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Appendix 303 

Figure 1 aims to demonstrate the structure of an ANN with 𝑚 inputs, a single hidden layer, ℎ 304 

nodes in the hidden layer and one linear output. The output of the network, for a given input 305 

vector x ∶= (𝑥1, ⋯ , 𝑥𝑚), is given by: 306 

𝑁𝑘 = ∑ 𝜈𝑗𝑘𝜎𝑗

ℎ

𝑗=1

 (5) 

where 307 

𝜎𝑗 =
1

1 + 𝑒−𝑎𝑗
 (6) 

where 308 

𝑎𝑗 = ∑ 𝜔𝑖𝑗𝑥𝑖 + 𝑏𝑗

𝑚

𝑖=1

 (7) 

𝜔𝑖𝑗 denotes the weight from the input 𝑖 = 1, ⋯ , 𝑚 to the hidden node 𝑗 = 1, ⋯ , ℎ, 𝜈𝑗𝑘 309 

represents the weight from the hidden node 𝑗 to the output, 𝑏𝑗 is the bias of hidden unit 𝑗, and 310 

𝜎𝑗 stands for the sigmoid transfer function. There are several possibilities of using transfer 311 

functions of different types, such as linear, sign, sigmoid and step functions (Yadav et al., 312 

2015); here we consider the sigmoid transfer function (Lagaris et al., 1998). 313 
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 314 

Figure 1: An Artificial Neural Network (ANN) with 𝒎 inputs, one hidden layer, 𝒉 nodes in the hidden layer and 315 
one linear output. 316 

The 𝑙𝑡ℎ derivative of the output with respect to the 𝑖𝑡ℎ input, takes the form: 317 

𝜕𝑙𝑁

𝜕𝑥𝑖
𝑙 = ∑ 𝜈𝑗𝑘𝜔𝑖𝑗

𝑙 𝜎𝑗
(𝑙)

ℎ

𝑗=1

 (8) 

where 𝜎𝑗
(𝑙)

 represents the 𝑙𝑡ℎ derivative of the sigmoid function. 318 

After establishing the network structure and assuming the required conditions, the objective 319 

function is minimised. In this study, nonlinear programming (NLP) optimisation problems 320 

were implemented and solved in GAMS using SNOPT and KNITRO as solvers. 321 

It must be noted that in the present work, two-dimensional second-order PDE problems will be 322 

treated; however, the methodology can be extended to more dimensions and derivative orders. 323 

Please note that the following description, based on the work of Lagaris et al. (1998) is 324 

presented for the sake of completeness. Consider the following mathematical model of a PDE 325 

problem with Dirichlet boundary conditions (BCs), in which 𝑠 = 2 and x ∶= (𝑥1, 𝑥2) where 326 



 20 

x ∈ [x𝐿𝑂 , x𝑈𝑃].  327 

𝒥(𝜕2Ψ, ∂Ψ, Ψ, x) = ℱ𝑘(Ψ(x), θ, x) (9) 

Ψ(𝑥1
𝐿𝑂 , 𝑥2) = ℱ𝑘

0(𝑥2)          𝑘 ∈ 𝐾  

Ψ(𝑥1
𝑈𝑃 , 𝑥2) = ℱ𝑘

1(𝑥2)          𝑘 ∈ 𝐾  

Ψ(𝑥1, 𝑥2
𝐿𝑂) = ℊ𝑘

0(𝑥1)           𝑘 ∈ 𝐾  

Ψ(𝑥1, 𝑥2
𝑈𝑃) = ℊ𝑘

1(𝑥1)           𝑘 ∈ 𝐾  

The ANN network structure can be established for the above single PDE system, resulting in: 328 

𝑘 = 1, 𝑙 = 2, and 𝑚 = 2. The two input units of the network are assumed to be: 𝑥1 = 𝑥 and 329 

𝑥2 = 𝑦. The form of the trial solution for the PDE model represented by Equation (9) is 330 

formulated as follows: 331 

Ψ𝑘
𝐴𝑁𝑁(𝑥, 𝑦) = 𝐴(𝑥, 𝑦) + 𝑥 (𝜆1 − 𝑥) 𝑦 (𝜆2 − 𝑦) 𝑁(𝑥, 𝑦) (10) 

where an ANN model, 𝑁(𝑥, 𝑦), is considered for each trial solution Ψ𝑘
𝐴𝑁𝑁(𝑥, 𝑦). The term 332 

𝐴(𝑥, 𝑦) is then formulated as: 333 

𝐴(𝑥, 𝑦) = (1 − 𝜁1 𝑥)ℱ0(𝑦) + 𝜁2 𝑥 ℱ1(𝑦) 

                   +(1 − 𝜁3 𝑦){ℊ0(𝑥) − [(1 − 𝜁1𝑥)ℊ0(0) + 𝜁2 𝑥 ℊ0(1)]} 

                   +𝜁4 𝑦 {ℊ1(𝑥) − [(1 − 𝜁1𝑥)ℊ1(0) + 𝜁2 𝑥 ℊ1(1)]} 

(11) 

Note that Ψ𝐴𝑁𝑁(𝑥, 𝑦), 𝐴(𝑥, 𝑦), 𝜆1, 𝜆2, 𝜁1, 𝜁2, 𝜁3 and 𝜁4 satisfy the Dirichlet BCs of the PDE 334 

model given by Equation (9). This therefore facilitates the numerical solution of the PDE model 335 

for given values of θ, which can be obtained by minimising the error quantity formulated as 336 

the following NLP problem (Lagaris et al., 1998): 337 
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Err𝑃𝐷𝐸 = min
Ψ𝐴𝑁𝑁,𝑁,𝜎,𝜔,𝜈,𝑎,𝑏

∑ ∑{𝒥(𝜕𝑠Ψ𝑘
𝐴𝑁𝑁 , 𝜕𝑠−1Ψ𝑘

𝐴𝑁𝑁, ⋯ , ∂Ψ𝑘
𝐴𝑁𝑁, Ψ𝑘

𝐴𝑁𝑁, x𝑝)

𝑘∈𝐾𝑝∈𝑃

− ℱ𝑘(Ψ(x𝑝), θ, x𝑝)}2 (12) 

If the PDE model given by Equation (9) is reformulated with mixed boundary conditions, the 338 

neural network approximation of the solution, where 𝑥1 = 𝑥, 𝑥2 = 𝑦, 𝑥, 𝑦 ∈ [0, 1] and 𝑘 = 1, 339 

is written as (Lagaris et al., 1998): 340 

Ψ𝐴𝑁𝑁(𝑥, 𝑦) = 𝐵(𝑥, 𝑦) + 𝑥 (1 − 𝑥) 𝑦 [𝑁(𝑥, 𝑦) − 𝑁(𝑥, 1) − 
𝜕𝑁(𝑥, 1)

𝜕𝑦
] (13) 

Mixed BCs, which involve Dirichlet on part of the boundary and Neumann elsewhere, is of the 341 

form: 342 

Ψ(0, 𝑦) = ℱ0(𝑦) (14) 

Ψ(1, 𝑦) = ℱ1(𝑦)  

Ψ(𝑥, 0) = ℊ0(𝑥)  

(𝜕Ψ(𝑥, 1) ∕ 𝜕𝑦) = ℊ1(𝑥)  

The term 𝐵(𝑥, 𝑦), of the trial solution (Equation (13)) is chosen to satisfy the mixed BCs 343 

(Lagaris et al., 1998): 344 

𝐵(𝑥, 𝑦) = (1 − 𝑥)ℱ0(𝑦) + 𝑥 ℱ1(𝑦) + ℊ0(𝑥) 

                    −[(1 − 𝑥)ℊ0(0) + 𝑥 ℊ0(1)]                              

                    +𝑦 {ℊ1(𝑥) − [(1 − 𝑥)ℊ1(0) + 𝑥 ℊ1(1)]} 

(15) 

The trial solutions presented above allow us to treat PDE models with orthogonal box 345 

boundaries. It however poses a challenge when the aim is to deal with realistic problems whose 346 

the boundaries are highly irregular. One of the key contributions of this paper is to develop a 347 
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meshless methodology for parameter estimation, capable of dealing with any arbitrarily 348 

complex geometrical shape. This is achieved by choosing a trial solution in such a way so as 349 

to satisfy the differential equation. More specifically, the boundary conditions can be exactly 350 

satisfied by picking points on the boundary and hence the network is trained to satisfy the 351 

differential equation. The model suitable for this case can be written as: 352 

Ψ𝑘
𝐴𝑁𝑁(𝑥, 𝑦) = 𝑁𝑘(𝑥, 𝑦) (16) 

 353 

  354 
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