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Abstract  

Five vascular endothelial growth factor receptor (VEGFR) ligands (VEGF-A, -B, -C, -D, and 

placental growth factor [PlGF]) constitute the VEGF family. VEGF-A binds to VEGF receptors 1 and 2 

(VEGFR1/2), whereas VEGF-B and PlGF only bind VEGFR1. Although much research has been conducted 

on VEGFR2 to elucidate its key role in retinal diseases, recent efforts have shown the importance and 

involvement of VEGFR1 and its family of ligands in angiogenesis, vascular permeability, and 

microinflammatory cascades within the retina. Expression of VEGFR1 depends on the 

microenvironment, is differentially regulated under hypoxic and inflammatory conditions, and it has 

been detected in retinal and choroidal endothelial cells, pericytes, retinal and choroidal mononuclear 

phagocytes (including microglia), Müller cells, photoreceptor cells, and the retinal pigment epithelium. 

Whilst the VEGF-A decoy function of VEGFR1 is well established, consequences of its direct signaling are 

less clear. VEGFR1 activation can affect vascular permeability and induce macrophage and microglia 

production of proinflammatory and proangiogenic mediators. However the ability of the VEGFR1 ligands 

(VEGF-A, PlGF, and VEGF-B) to compete against each other for receptor binding and to heterodimerize 

complicates our understanding of the relative contribution of VEGFR1 signaling alone toward the 

pathologic processes seen in diabetic retinopathy, retinal vascular occlusions, retinopathy of 

prematurity, and age-related macular degeneration. Clinically, anti-VEGF drugs have proven 

transformational in these pathologies and their impact on modulation of VEGFR1 signaling is still an 

opportunity-rich field for further research.  

Keywords  

Angiogenesis; Microinflammation; Placental growth factor (PlGF); Vascular endothelial growth 

factor-A (VEGF-A); Vascular endothelial growth factor receptor 1 (VEGFR1) 

 

Highlights (3 to 5 bullet points, maximum 85 characters, including spaces, per bullet point) 

• VEGF-A, VEGF-B, PlGF and VEGFR1/R2 can form homodimers or heterodimers 

• The complexity of VEGF family ligands and receptor interactions is underappreciated 

• VEGFR1 and PlGF are involved in inflammatory pathways of retinal diseases  

• A contribution of VEGFR1 to retinopathy via effects on inflammation is likely  

• Clinical relevance of targeting both VEGF-A/PlGF vs VEGF-A needs further elucidation 
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1. Introduction 1 

The retina is nourished by two distinct vascular networks: the inner retina is maintained by the 2 

retinal vasculature, whereas the outer retina depends on the choroidal vasculature. The retinal 3 

vasculature comprises tightly sealed endothelial cells (ECs) surrounded by pericytes and glial cells, 4 

forming the inner blood–retina barrier (BRB) (Díaz-Coránguez et al., 2017; Klaassen et al., 2013). In 5 

contrast, the choroidal vasculature is highly permeable, consisting of fenestrated ECs with fewer 6 

pericytes, from which oxygen diffuses through the monolayered retinal pigment epithelial (RPE) cells of 7 

the outer BRB to reach photoreceptor cells (Fields et al., 2020; Kur et al., 2012). At both the inner and 8 

outer barriers, pathological changes can lead to uncontrolled formation of new fragile blood vessels and 9 

extravasation in both the retinal and choroidal vascular beds, which can lead to severe vision 10 

impairment or blindness (Klaassen et al., 2013).  11 

The most common disease affecting the retinal vasculature is diabetic retinopathy (DR), the 12 

prevalence of which increases with duration of diabetes (approximately 20% versus 75% in individuals 13 

with diabetes for <10 versus ≥20 years) and levels of glycosylated hemoglobin (approximately 20% 14 

versus  50% in individuals with levels ≤7.0 versus >9.0%), and is higher in those with type 1 versus type 2 15 

(approximately 75% versus 25%) diabetes (Yau et al., 2012). Hyperglycemia in diabetes is the major long-16 

term determinant of vascular changes in DR (Klaassen et al., 2013); damage to the ECs and pericytes of 17 

the inner BRB contribute to subsequent retinal edema and hemorrhage within the retina and impaired 18 

vision (Kempen et al., 2004). In proliferative DR (PDR), an advanced form of DR, retinal microvascular 19 

alterations lead to tissue ischemia and retinal neo-angiogenesis, which are often accompanied by 20 

development of contractile fibrovascular membranes.  21 

The main pathology that occurs in the outer retina is age-related macular degeneration (AMD). 22 

As AMD progresses, sustained stress to RPE cells leads to a loss of photoreceptor cells, RPE cells, and the 23 

underlying choriocapillaris, which in the late stage of “dry AMD” manifests as geographic atrophy (GA) 24 

and leads to vision loss. In “wet AMD”, choroidal neovascularization (CNV) causes a wide variety of 25 

anatomical disruptions in the neural architecture of the macula, such as retinal edema and detachment 26 

with hemorrhagic exudates, as well as subretinal fibrosis. Again, these changes lead to vision 27 

impairment and, in more extreme cases, vision loss. Although vascular changes are the hallmark of DR 28 

and AMD, there is also an increasing appreciation that within both DR and AMD there is chronic 29 

microinflammation (that occurs at a cellular level in the absence of tissue injury or infection and is also 30 

referred to as “subclinical” or “low-grade” inflammation (Antonelli and Kushner, 2017), “para-31 
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inflammation” (Chen and Xu, 2015; Xu et al., 2009), or “inflamm-aging” (Subhi et al., 2019).  32 

Vascular endothelial growth factor (VEGF) is viewed as a pivotal mediator of pathology in both 33 

AMD and DR and is a target of current therapeutic interventions (Aiello, 2008). However, the VEGF 34 

signaling pathway is complex and includes multiple ligand–receptor interactions that regulate diverse 35 

processes in different cell types, in a context-dependent manner (Penn et al., 2008). To date, the best 36 

characterized process is activation of VEGF receptor 2 (VEGFR2) tyrosine kinase (TK) in ECs by VEGF-A, 37 

which induces angiogenesis and increases vascular permeability (Peach et al., 2018). In contrast, VEGF 38 

receptor 1 (VEGFR1) functions, in part, as a decoy for VEGF-A, attenuating VEGFR2/VEGF-A–mediated 39 

outcomes (Koch and Claesson-Welsh, 2012). In addition, an established body of evidence indicates 40 

disease-specific roles of direct VEGFR1 signaling, which are independent of VEGFR1 decoy activity, in 41 

particular in immune cells expressing VEGFR1 (Clauss et al., 1996; Crespo-Garcia et al., 2017; Huang et 42 

al., 2013; Luttun et al., 2002; Muramatsu et al., 2010). Yet the complexities in the ligand–receptor 43 

interactions and their differential expression have so far precluded a clear understanding of VEGFR1 44 

functions. 45 

In this review, we summarize the current understanding of the signals mediated by VEGFR1 and 46 

its ligands – VEGF-A, VEGF-B, and placental growth factor (PlGF) – within the retinal microenvironment 47 

in both healthy and pathologic states. We further discuss the possibility of translating the knowledge 48 

gained from basic science into the clinical management of DR and AMD, as well as other eye diseases. 49 

The goal of this review is to highlight the key research in this area and guide future research in this 50 

constantly evolving field. We recognize that this area of research is extensive, spanning pharmacology to 51 

animal models to clinical trials and it is clear that the science of VEGFR1 continues to grow, as evidenced 52 

by the consistently increasing number of publications on this topic. Accordingly, the review begins by 53 

introducing the current biology of the VEGFR1 itself and in context with VEGFR2, followed by an 54 

overview of disease-driven biological processes where VEGFR1 is known to have a role, focusing on 55 

retinal vascular and macular degenerative diseases.  56 

2. Molecular signaling mechanisms in the VEGF family 57 

2.1. Basic VEGF receptor properties 58 

There are three evolutionarily related VEGF receptors in humans: VEGFR1 (FLT1), VEGFR2 59 

(KDR/FLK1), and VEGFR3 (FLT4) (Grassot et al., 2006). They all comprise an extracellular, ligand-binding 60 
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domain composed of seven immunoglobulin-like loops, a transmembrane domain, a juxtamembrane 61 

domain, a split intracellular TK domain, and a C-terminal tail; all three have different ligand-binding 62 

properties and biological functions (D'Amore, 1994; De Falco, 2012; de Vries et al., 1992; Ebos et al., 63 

2004; Jeltsch et al., 2013; Shibuya, 2013; Takahashi and Shibuya, 1997; Terman et al., 1992; Vaisman et 64 

al., 1990).  65 

There are five VEGFR ligands (VEGF-A, -B, -C, -D, and PlGF) collectively known as the VEGF 66 

family. Isolated and cloned in 1989, VEGF-A was confirmed as a disulfide-linked dimeric glycoprotein 67 

with EC growth-promoting properties (Ferrara, 2011; Jakeman et al., 1992; Keck et al., 1989; Leung et 68 

al., 1989). Of all the VEGF family members, PlGF shares the greatest homology with VEGF-A, despite its 69 

unique nomenclature, which derives from the fact that it was initially isolated from a human placental 70 

complementary DNA library (Iyer et al., 2001). The VEGF-A mRNA contains eight exons, the splicing of 71 

which gives rise to a variety of isoforms. To date, 16 distinct VEGFA isoforms have been identified most 72 

commonly from six transcripts: VEGF111, VEGF121, VEGF145, VEGF165, VEGF189, and VEGF206; the subscripted 73 

numbers denoting the number of amino acids present (Peach et al., 2018). The isoforms have different 74 

affinities for extracellular matrix components, VEGF receptors and associated coreceptors, and the 75 

expression profile of each isoform varies among tissues (Ng et al., 2001). One of the primary differences 76 

among the VEGF-A isoforms is their ability to bind heparan sulfate proteoglycan, affecting their 77 

diffusiblilty within tissues: the larger isoforms can bind heparan sulfate proteoglycan, whereas VEGF-78 

A120 in mice and VEGF-A121 in humans do not (Bridgett et al., 2017; Stalmans et al., 2002). Alternative 79 

splicing of the VEGF-A pre-mRNA may also give rise to a non- or anti-angiogenic family of isoforms 80 

(VEGF-Axxxb) as well as the pro-angiogenic family (VEGF-Axxxa) (Bowler and Oltean, 2019; Peach et al., 81 

2018). However, the relevance of these transcripts has been contested (Bridgett et al., 2017; Harris et 82 

al., 2012; Lomet et al., 2018). Furthermore, alternative splicing also gives rise to multiple isoforms of 83 

PlGF and VEGF-B (Olofsson et al., 1996; Yang et al., 2003). 84 

2.2. Modulation of VEGFR1/2 signaling 85 

VEGF-A binds to VEGFR1 and VEGFR2, whereas VEGF-B and PlGF only bind VEGFR1, and VEGF-C 86 

and VEGF-D primarily bind VEGFR3 (Jeltsch et al., 2013), although proteolytically processed VEGF-C and 87 

VEGF-D can also bind to VEGFR2 (Achen et al., 1998; Joukov et al., 1996; Joukov et al., 1997; Masoumi 88 

Moghaddam et al., 2012; Stacker et al., 1999). However, as the VEGF-C/VEGF-D/VEGFR3 pathway mainly 89 

regulates the formation of lymphatic vessels, which are absent in the retina (Alitalo, 2002), this review 90 
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focuses primarily on VEGFR1 and its ligands (VEGF-A, VEGF-B, and PlGF), and delineates the roles 91 

between the VEGFR1 and VEGFR2 receptors in retinal development, homeostasis, and disease. 92 

VEGFR1/2 activation and signaling are heavily influenced by a number of elements, and a key 93 

one is the availability of the VEGFR ligands themselves, which are modulated by a large array of 94 

mechanisms. First, the availability of VEGFR ligands depends on transcriptional and post-transcriptional 95 

regulation of their expression. Second, specific ligands can bind to and activate VEGFR1, causing VEGFR1 96 

to signal via its own kinase domain, but VEGFR1 also has indirect effects on VEGFR2 activity by acting as 97 

a decoy receptor for VEGFR2 ligands (Koch and Claesson-Welsh, 2012). Third, VEGF-A, VEGF-B, and PlGF 98 

can compete for VEGFRs and extracellular matrix binding sites (Koch and Claesson-Welsh, 2012). Fourth, 99 

VEGF-A, VEGF-B, and PlGF can form heterodimers and VEGFR subtypes can form homodimers or 100 

heterodimers, depending on the binding ligand (Koch and Claesson-Welsh, 2012). Fifth, VEGFR1/2 101 

activity can also be modulated by neuropilins and the glycocalyx component, endomucin, which act as 102 

VEGF co-receptors (Alvarez-Aznar et al., 2017; LeBlanc et al., 2019).  103 

2.2.1. Expression of VEGFR1 ligands and VEGFRs 104 

VEGFR1 expression has been detected in various types of cells, including retinal and choroidal 105 

ECs (Cao et al., 2010; Fruttiger, 2002; Stewart et al., 2011), retinal pericytes (Cao et al., 2010; Eilken et 106 

al., 2017), retinal and choroidal mononuclear phagocytes (Couturier et al., 2014; Huang et al., 2013; 107 

Ogura et al., 2017), Müller cells (Stitt et al., 1998), photoreceptor cells (Luo et al., 2013), and RPE cells 108 

(Luo et al., 2013) as shown in Fig. 1a. It should be noted that the VEGFR1 expression in these cell types is 109 

variable depending on their microenvironments in developmental, homeostatic, and disease conditions. 110 

In particular, oxygen concentration and inflammation largely influence the expression levels of VEGFR1 111 

as well as its ligands (Hata et al., 1995; Philipp et al., 2000). 112 

Michaelson et al. first introduced the concept that damage to the ECs and/or pericytes of the 113 

vascular network may lead to vessel closure and ultimately, hypoxia within the retina (Michaelson et al., 114 

1954). Soon afterwards, Wise proposed the presence of a “hypoxia-induced growth factor” (Wise, 1961), 115 

which was identified as VEGF-A over the subsequent decades. Mechanistically, it has been shown that 116 

tissue exposure to hypoxia provokes an adaptive response that is reliant on the ability of retinal cells to 117 

detect alterations in intracellular oxygen tension.  118 

Hypoxia-induced expression of VEGF-A can be mediated by both transcriptional and post-119 

transcriptional mechanisms. The transcriptional response depends on hypoxia-inducible factor (HIF)-1 120 
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and HIF-2, heterodimeric transcription factors that modulate the expression of a large set of genes 121 

through binding to the hypoxia responsive element located in the promoters or other genomic 122 

regulatory regions (Forsythe et al., 1996; Gerber et al., 1997; Maxwell and Ratcliffe, 2002; Semenza, 123 

2001). VEGF-A mRNA is intrinsically labile and contains destabilizing elements in its 5’, 3’ untranslated, 124 

and coding regions (Dibbens et al., 1999; Levy, 1998; Yao et al., 2013). Hypoxic conditions stablize VEGF-125 

A mRNA (Dibbens et al., 1999; Levy, 1998; Yao et al., 2013), increasing its half-life from about 45 minutes 126 

to more than 8 hours (Shima et al., 1995). This post-transcriptional mechanism can have a greater 127 

impact on VEGF-A protein production than transcriptional regulation.  128 

HIF-mediated gene regulation also impacts expression of other members of the VEGF family and 129 

related receptors. For instance, HIF-1 activates transcription of VEGFR1, but not VEGFR2 (Gerber et al., 130 

1997). More recently, the molecular mechanisms underlying the positive modulation of PlGF expression 131 

by hypoxia in vascular cells at transcriptional (Tudisco et al., 2017) and post-transcriptional (Xiang et al., 132 

2014) levels have been unraveled. Furthermore, hypoxia-related modulation of PlGF expression has 133 

been shown to be mediated by metal-responsive transcription factor-1 in immortalized/H-Ras–134 

transformed mouse embryonic fibroblasts (Green et al., 2001), and by nuclear factor-κB in human 135 

embryonic kidney 293 cells (Cramer et al., 2005). 136 

Several other mechanisms regulate gene expression in the VEGF family. For instance, VEGF-A 137 

expression is upregulated by several growth factors, including epidermal growth factor, transforming 138 

growth factors (TGF) α and β, insulin-like growth factor-1, fibroblast growth factor, and platelet-derived 139 

growth factor (PDGF) (Ferrara et al., 2003). Inflammatory cytokines, such as interleukin (IL)-1β and IL-6, 140 

stimulate expression of VEGF-A in several cell types, modulating angiogenesis and vascular permeability 141 

in inflammatory conditions (Ferrara et al., 2003). Oncogenic mutations can also influence VEGF-A 142 

expression (Ferrara et al., 2003). Similarly, activation of oncogenes (Ras), inflammatory cytokines (IL-1β 143 

and tumor necrosis factor [TNF]-α), and several growth factors can also positively modulate PlGF 144 

expression in pathologic conditions, including many types of cancer and chronic inflammatory conditions 145 

(Kim et al., 2012).  146 

2.2.2. Decoy function of VEGFR1  147 

Animal studies provided evidence of the essential function of VEGFR1 in vascular development 148 

as mice lacking VEGFR1 die at embryonic day 8.5 due to an excess of ECs, which assemble into 149 

disorganized tubules (Fong et al., 1995). In contrast, mice engineered to express a truncated, non-150 
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signaling form of VEGFR1 lacking the TK domain (VEGFR1-TK-/-) (Hiratsuka et al., 1998) are healthy and 151 

fertile with close to normal vascularization. Similarly, knock-out (KO) mice for genes encoding the 152 

VEGFR1-specific ligands, PlGF (Apicella et al., 2018; Carmeliet et al., 2001) and VEGF-B (Bellomo et al., 153 

2000), are also largely normal.  154 

Although VEGF-A binds to VEGFR1 with higher affinity than VEGFR2 (Kd =15 pM vs 750 pM), 155 

VEGFR1 exhibits 10-times lower TK activity (Sawano et al., 2001; Shinkai et al., 1998). Based on initial 156 

observations, it appears that one role of VEGFR1 is to act as a decoy receptor for VEGF-A rather than a 157 

signaling mediator, which limits the activity of the VEGF-A/VEGFR2 axis, at least in physiological settings 158 

(Carmeliet et al., 2001). In addition, a soluble/secreted version of VEGFR1 (sVEGFR1) can be produced 159 

via alternative splicing or proteolytic cleavage retaining the extracellular ligand–binding domains of 160 

VEGFR1 (Kendall and Thomas, 1993; Raikwar et al., 2013), lowering the availability of free VEGF-A in the 161 

extracellular space and indirectly modulating the intensity of VEGFR2 signaling (Kappas et al., 2008). The 162 

powerful anti-VEGF-A activity of sVEGFR1 is seen in the cornea, where it is strongly expressed and plays 163 

a crucial role in maintaining corneal avascularity (Ambati et al., 2006). 164 

2.2.3.  Competition among VEGFR1 ligands  165 

Because VEGFR1 functions as a decoy receptor for VEGF-A, the other two VEGFR1 ligands, PlGF 166 

and VEGF-B, can indirectly affect VEGF-A availability by competing for VEGFR1 binding. For example, 167 

increased levels of VEGF-B can increase unbound VEGF-A levels by preventing VEGF-A from being 168 

trapped by VEGFR1, indirectly leading to increased VEGFR2 activation (Anisimov et al., 2013; Kivela et 169 

al., 2014; Robciuc et al., 2016). In other words, despite its lack of affinity for VEGFR2, VEGF-B can still 170 

indirectly activate VEGFR2 signaling, if VEGF-A is present.  171 

Likewise, PlGF can also increase unbound VEGF-A levels by competing for VEGFR1 binding (Yang 172 

et al., 2013) and displacing VEGF-A from VEGFR1 (Carmeliet et al., 2001; Kowalczuk et al., 2011; Park et 173 

al., 1994). However, competition between PlGF and VEGF-A for VEGFR1 binding is complicated by PlGF 174 

also being capable of directly activating VEGFR1 signaling. Indeed, PlGF can directly stimulate vessel 175 

growth by inducing proliferation, migration, and survival of ECs (Adini et al., 2002; Carmeliet et al., 2001; 176 

Ziche et al., 1997a), as well as vessel maturation, by increasing the proliferation and recruitment of 177 

vascular smooth muscle cells (Bellik et al., 2005; Yonekura et al., 1999). Thus, when interpreting 178 

biological outcomes, it is important to consider the possibility of effects of PlGF and VEGF-B acting 179 

directly via VEGFR1, or indirectly via VEGFR2 due to VEGF-A displacement.  180 
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In summary, PlGF and VEGF-B are able to compete with VEGF-A in binding to VEGFR1, freeing up 181 

VEGF-A. The relative binding affinities of VEGF-A and PlGF to VEGFR1 have been assessed under various 182 

conditions, including levels of glycosylation of the ligands and binding to specific domains of the 183 

receptor (Huang et al., 2019a; Jiao et al., 2019). To date, it remains unclear whether VEGF-A or PlGF 184 

binds more tightly to VEGFR1. 185 

2.2.4. Heterodimerization of VEGFR1 ligands and VEGFRs 186 

VEGF-A, VEGF-B, and PlGF can form heterodimers (Fig. 2) if they are co-expressed in the same 187 

cell (Cao et al., 1996; DiSalvo et al., 1995). The formation of VEGF-A/PlGF heterodimers can reduce the 188 

number of VEGF-A homodimers formed, thereby reducing signaling via VEGFR2. On the other hand, 189 

VEGF-A/PlGF heterodimers can still bind VEGFR1, competing with VEGF-A and increasing the amount of 190 

unbound VEGF-A available for VEGFR2 binding (Autiero et al., 2003; Tarallo et al., 2010; Yang et al., 191 

2013). It is therefore extremely difficult to predict the effects of PlGF because it can either increase 192 

VEGFR2 signaling (by freeing up VEGF-A from VEGFR1) or decrease VEGFR2 signaling (by trapping VEGF-193 

A in VEGF-A/PLGF heterodimers).What mechanism dominates under which circumstances is currently 194 

not known, but the complexity of the system may be responsible for some of the apparent contradictory 195 

in vivo findings about PlGF described below in section 3.  196 

To complicate matters further, VEGF-A/PlGF heterodimers, like VEGF-A, can bind VEGFR1/2 197 

heterodimers (Autiero et al., 2003). In fact, VEGFR1/2 heterodimers exist even in the absence of VEGF-198 

A/PlGF heterodimer ligands (Fig. 2) (Autiero et al., 2003). Computational modeling has shown that, in 199 

cells expressing both receptors, VEGFR1/2 heterodimers comprise 10–50% of active, signaling VEGFR 200 

complexes, and form preferentially over VEGFR1 homodimers when VEGFR2 is more abundant (Mac 201 

Gabhann and Popel, 2007). It has been suggested that VEGFR1/2 heterodimers reduce signaling via 202 

VEGFR2 homodimers (Cai et al., 2017; Cudmore et al., 2012), but the signal transduction properties of 203 

VEGFR heterodimers are currently not well characterized and their functional roles in an in vivo context 204 

are, at this stage, very difficult to predict. Nevertheless, some of the known biological effects of VEGF-205 

A/PlGF and VEGFR1/2 heterdimers are discussed further in sections 3.1.2 and 3.2. 206 

2.2.5. VEGF co-receptors 207 

Neuropilin (NRP)-1 and -2 were first identified as co-receptors for semaphorin and VEGF 208 

signaling during neural and vascular development (Giger et al., 1998; Gu et al., 2003; Sulpice et al., 209 
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2008). NRPs are transmembrane proteins with a small cytoplasmic domain that lack intrinsic catalytic 210 

function (Fujisawa et al., 1997). The larger heparin-binding members of the three VEGF ligands (VEGF-A, 211 

VEGF-B, and PlGF) are able to bind NRP1 and NRP2 (Makinen et al., 1999; Migdal et al., 1998), bridging 212 

VEGFRs and NRP1 or NRP2 to create holoreceptor complexes (Pellet-Many et al., 2008; Wild et al., 2012) 213 

and inducing intracellular trafficking of VEGFR2, which is a critical event for downstream signal 214 

transduction (Simons et al., 2016). In ECs, NRPs modulate VEGFR signaling, enhancing migration (Soker 215 

et al., 1998) and survival (Favier et al., 2006). In addition, NRP-1 has also been implicated in the spatial 216 

organization of ECs within angiogenic sprouts (Fantin et al., 2013; Kawamura et al., 2008) and in mouse 217 

models of pathological choroidal and retinal neovascularization (Dejda et al., 2014; Dejda et al., 2016; 218 

Fernandez-Robredo et al., 2017).  219 

The biological relevance of NRP-1 for VEGF signaling has yet to be fully elucidated because mice 220 

with a mutant version of NRP-1 that cannot bind VEGF develop normally (Gelfand et al., 2014). 221 

Furthermore, NRPs have been shown to bind other growth factors, such as TGF-β (Glinka and 222 

Prud'homme, 2008), fibroblast growth factor, and others (Uniewicz and Fernig, 2008; West et al., 2005). 223 

In ECs, NRP-1 plays an important role during sprouting angiogenesis, modulating differential 224 

responsiveness to TGF-β superfamily signaling, independently of VEGF-A (Aspalter et al., 2015). The 225 

relevance of interactions between NRPs and other growth factors in the context of vascular biology 226 

remains to be established.  227 

More recently, biochemical studies have revealed that the glycocalyx component endomucin 228 

interacts with VEGFR2 (independent of the presence of VEGF-A) and that knock-down of endomucin in 229 

cultured human retinal ECs using small interfering RNA blocks the biologic action of VEGF-A by 230 

preventing VEGFR2 internalization (LeBlanc et al., 2019; Park-Windhol et al., 2017). Preliminary studies 231 

indicate that VEGFR1 internalization also requires the presence of endomucin, but it is unclear if this 232 

applies to VEGFR1 homodimers or requires dimerization between VEGFR1 and VEGFR2. 233 

2.3. Downstream signaling of VEGFRs 234 

Upon ligand binding, conformational changes in the VEGFR intracellular domains lead to 235 

autophosphorylation of specific tyrosine residues. This allows binding of several signaling mediators 236 

such as phospholipase C gamma, non-receptor TKs such as Src, and adaptor proteins, such as those 237 

containing the Src homology 2 domain. Consequently, VEGFR1 and VEGFR2 activation induce signaling 238 

pathways that are normally activated by TK receptors (Fig. 1b), such as extracellular signal-regulated 239 
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kinase (ERK)/mitogen-activated protein kinase (MAPK), phosphoinositide 3-kinase (PI3K)/Akt, and p38 240 

(Jeltsch et al., 2013; Koch and Claesson-Welsh, 2012). Downstream signals from these receptors 241 

converge to cooperatively regulate transcription of different genes, leading to cell proliferation, 242 

migration, and survival, as well as controlling cell–cell contacts, cell–matrix adhesions, and cytoskeletal 243 

rearrangements (Fig. 1c), depending on cell type and biological context (Jeltsch et al., 2013; Koch and 244 

Claesson-Welsh, 2012).  245 

To date, there is little comparative evidence regarding the relative activation of the different 246 

VEGFR1 signaling pathways following binding by VEGF-A and PlGF homodimers and heterodimers. 247 

However, there are important differences between the downstream signaling mechanisms induced by 248 

activation of VEGFR1 and VEGFR2. VEGFR2 has strong TK activity that induces a plethora of signals 249 

depending on which tyrosine becomes phosphorylated after ligand binding, whereas VEGFR1 has 250 

comparatively weak kinase activity (Koch and Claesson-Welsh, 2012; Meyer et al., 2006; Olsson et al., 251 

2006), although some studies suggest potentially stronger downstream activity when PlGF binds VEGFR1 252 

compared to VEGF-A (Roskoski, 2008). Like many other TK receptors, VEGFRs are internalized by 253 

clathrin-mediated endocytosis upon ligand binding and are subsequently proteolytically degraded 254 

(Pitulescu and Adams, 2014).  255 

The downstream signaling of VEGFRs can be modified by VEGFR interactions. Specifically, PlGF is 256 

known to regulate intermolecular and intramolecular cross talk between VEGFR1 and VEGFR2. For 257 

example, VEGFR1 activated by PlGF can trans-phosphorylate VEGFR2 (Autiero et al., 2003). Furthermore, 258 

signaling via VEGFR1/2 heterodimers can lead to outcomes that are different to VEGFR2 homodimer 259 

signaling (Cudmore et al., 2012). Activation of VEGFR1 by VEGF-A and PlGF homodimers, as well as by 260 

VEGF-A/PlGF heterodimers, induces overlapping pathways, but also a distinct downstream response. 261 

The pattern of VEGFR1 tyrosine phosphorylation differs in a ligand-dependent manner. PlGF, but not 262 

VEGF-A, directly stimulates ECs through the phosphorylation of tyrosine residues 1213 (Autiero et al., 263 

2003) and 1309 (Dewerchin and Carmeliet, 2012; Fischer et al., 2008; Koch and Claesson-Welsh, 2012; 264 

Selvaraj et al., 2003). VEGFR1 phosphorylation is stimulated by VEGF-A but fails to alter the gene 265 

expression profile of mouse capillary ECs, whereas PlGF stimulation induces the expression of more than 266 

50 genes (Roskoski, 2008). Furthermore, VEGF-A/PlGF and VEGF-A, but not PlGF, induce Akt-mediated 267 

cyclin-dependent kinase inhibitor 1B (p27Kip1) phosphorylation at residue Thr198 that is associated 268 

with its cytoplasmic retention and stimulation of cell motility (Apicella et al., 2018). Use of a synthetic 269 

heterodimer that does not occur naturally in humans, comprising VEGF-E (a non-mammalian protein) 270 
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and PlGF, which specifically bind VEGFR2 and VEGFR1, respectively, activates the VEGFR1/2 heterodimer 271 

and highlights the ability of a receptor heterodimer to regulate EC homeostasis, migration, and 272 

vasorelaxation via the nitric oxide pathway (Cudmore et al., 2012). 273 

 It is clear from the research to date that the relationship between PlGF and VEGF-A and their 274 

interactions with the VEGFR1 and VEGFR2 receptors is remarkably complex and the resulting 275 

downstream effects are multifaceted. What is much less clear are the factors that determine which 276 

downstream signaling pathways are activated/modulated, and how these translate into functional 277 

responses, depending on the circumstances. However, the recent emergence of single cell analysis is 278 

likely to facilitate progress in this field in the near future.  279 

3. Biological functions of VEGFR1 280 

Activation of the signaling cascades downstream of VEGFRs can lead to numerous biological 281 

outcomes, depending on cell type and the expression profiles of VEGFRs/ligands in the tissue, as well as 282 

the presence of other growth factors and cytokines. Therefore, to understand the biological function of 283 

VEGFR1, it is important to consider all the signal-modulating mechanisms outlined in section 2. 284 

3.1. Angiogenesis 285 

VEGF-A is the prototypical VEGF family member and stimulates angiogenesis via VEGFR2 286 

activation in ECs in both physiological and pathological settings (Cebe-Suarez et al., 2006; Ferrara, 2009; 287 

Jakeman et al., 1992; Koch and Claesson-Welsh, 2012; Nagy et al., 2007). Indeed, homozygous VEGFR2 288 

KO mice die at embryonic day 8.5 due to the defective cardiovascular development (Shalaby et al., 289 

1995). Importantly, even single allelic VEGF-A deficiency results in embryonic lethality (Carmeliet et al., 290 

1996; Ferrara et al., 1996), indicating that VEGF-A–mediated vascular formation is strictly dose-291 

dependent. During retinal development, oxygen demand in differentiating neurons induces VEGF-A 292 

expression in astrocytes and Müller glia, which stimulates sprouting and lumenization of new blood 293 

vessels, leading to the formation of superficial and deep layers of the retinal vasculature (Blanco and 294 

Gerhardt, 2013; Claxton and Fruttiger, 2003; Liu et al., 2006; Pierce et al., 1995; Selvam et al., 2018; 295 

Stone et al., 1995; Zhang et al., 2007). Likewise, VEGF-A signaling is also fundamental for retinal, 296 

subretinal, and choroidal neovascularization in various eye diseases (Campochiaro, 2015).  297 

3.1.1. VEGFR1 decoy activity during sprouting angiogenesis 298 
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Endothelial cells in angiogenic sprouts display distinct phenotypes depending on their position. 299 

At the front of the sprout, tip cells “sense” their environment using long filopodia, essentially navigating 300 

along a VEGF-A gradient (Gerhardt and Betsholtz, 2005; Gerhardt et al., 2003; Jeltsch et al., 2013). VEGF-301 

A increases delta-like 4 expression in tip cells, which in turn induces a stalk cell phenotype in more 302 

proximal ECs via Notch-mediated lateral inhibition (Blanco and Gerhardt, 2013; Hellstrom et al., 2007; 303 

Jakobsson et al., 2009), triggering downregulation of VEGFR2 and upregulation of VEGFR1 in stalk cells. 304 

Accordingly, sequestration of VEGF-A by VEGFR1 on these stalk cells results in spatial restriction and fine 305 

tuning of VEGF-A signaling at the growing vascular front.  306 

Pericytes associated with angiogenic sprouts also express transmembrane and soluble VEGFR1, 307 

and the genetic ablation or the biochemical inhibition of PlGF or VEGFR1 in tumor models have 308 

implicated a direct role of VEGFR1 signaling in pericyte recruitment and vessel stabilization (Cicatiello et 309 

al., 2015; Tarallo et al., 2010). On the other hand, the developing retinal vasculature of the pericyte-310 

specific VEGFR1 KO mice displayed normal numbers of pericytes but increased numbers of ECs and 311 

angiogenic sprouts with abnormally expanded morphology, suggesting that VEGFR1 on pericytes 312 

spatially restricts VEGF signaling at the angiogenic sprout (Eilken et al., 2017). Thus, the main role of 313 

VEGFR1 on pericytes awaits further investigation.  314 

3.1.2.  Activity of VEGFR1 ligands in sprouting angiogenesis 315 

The role of direct VEGFR1 mediated signaling is not obvious, because (1) VEGFR1-TK-/- mice 316 

survive and do not develop any obviously detrimental phenotypes (Hiratsuka et al., 1998); (2) Pgf KO 317 

mice display only very subtle developmental angiogenic abnormalities, with small and transient 318 

reductions in angiogenic sprouting during retinal and brain vascularization (Kay et al., 2017; Luna et al., 319 

2016), and (3) VEGF-B KO mice also appear to have a largely normal phenotype (Bellomo et al., 2000). 320 

Nevertheless, the most pronounced effects of disrupting the VEGFR1 signaling axis have been observed 321 

in the context of pathologies. Tumor growth (Apicella et al., 2018; Carmeliet et al., 2001), arthritis (Yoo 322 

et al., 2009), and recovery from heart  (Luttun et al., 2002; Pipp et al., 2003) and limb ischemia (Gigante 323 

et al., 2006) were all reduced in the absence of PlGF-mediated signaling. Furthermore, angiogenesis in 324 

ischemic retinas and laser-injured choroids, as well as diabetes-induced retinal cell death, capillary 325 

degeneration, pericyte loss, and BRB breakdown were alleviated in Pgf KO mice or by pharmacologically 326 

inhibiting PlGF activity (Apicella et al., 2018; Carmeliet et al., 2001; Crespo-Garcia et al., 2017; Huang et 327 

al., 2015; Rakic et al., 2003).  328 
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In general, artificially increasing levels of VEGFR1 ligands can result in more obvious phenotypes, 329 

usually characterized by increased angiogenesis. For instance, transgenic mice overexpressing PlGF in 330 

the skin under the keratin-14 promoter have a substantial increase in the number and size of dermal 331 

blood vessels (Odorisio et al., 2002). Similarly, adenovirus-mediated Pgf transfer in ischemic heart and 332 

limb tissue elicits a strong angiogenic response that is comparable to that of VEGF-A (Luttun et al., 333 

2002). Transcranial injection of adeno-associated virus vectors encoding Pgf induced a robust 334 

stimulation of angiogenesis and arteriogenesis in the central nervous system (Gaal et al., 2013).  335 

However, findings have not been entirely consistent. For example, one study has indicated that 336 

reduction of VEGF-B activity (using VEGF-B–KO mice or an anti-VEGF-B antibody) and may improve 337 

diabetic readouts in mice (Hagberg et al., 2012), whereas another report suggested that diabetic disease 338 

hallmarks can be improved by increasing VEGF-B, rather than blocking its activity (Robciuc et al., 2016).  339 

Transgenic overexpression of PlGF in T cells under the CD2 promoter produced a significant reduction in 340 

placental angiogenesis that was linked to the inhibition of BRAF and activation of ERK,  (Kang et al., 341 

2014) indicating that the effects of PlGF on angiogenesis are context dependent. Moreover, reduced 342 

angiogenesis has been described after blocking PlGF in mouse tumor models (Van de Veire et al., 2010), 343 

but this was not confirmed by others (Bais et al., 2010).  344 

Such conflicting results could arise from the complexity and context-dependency of VEGFR1 345 

signaling and, as detailed in section 2, there are several molecular mechanisms that can lead to different 346 

outcomes. For example, increased PlGF production can increase VEGF-A activity and angiogenesis via 347 

competition for VEGFR1 binding, whereas, if PlGF is expressed in the same cell, formation of PlGF/VEGF-348 

A heterodimers could result in reduced VEGFR2 homodimer activation. In fact, co-expression of VEGF-A 349 

and PlGF occurs in many cell types, including ECs and pericytes (Yonekura et al., 1999), fibroblasts 350 

(Green et al., 2001), macrophages (Bottomley et al., 2000), keratinocytes (Failla et al., 2000), and RPE 351 

cells (Klettner et al., 2015), making it difficult to delineate which biological activity is attributable to 352 

VEGF-A or PlGF homodimers versus PlGF/VEGF-A heterodimers (DiSalvo et al., 1995).  353 

Recent work by Apicella et al. suggests that PlGF/VEGF-A heterodimers do have a positive effect 354 

on angiogenesis (Apicella et al., 2018), which may be mediated by a VEGFR1/2 heterodimer (Yang et al., 355 

2013). The Pgf-DE knock-in mouse, generated by knocking into the Pgf locus a variant (Pgf-DE) that is 356 

unable to bind and activate VEGFR1 (Tarallo et al., 2010), allowed the investigation of the effects of the 357 

complete loss of function of PlGF, as these mice produce homodimers of PlGF-DE and heterodimers of 358 

VEGF-A/PlGF-DE that are inactive (Apicella et al., 2018). These mice showed significant impairment of 359 
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angiogenesis in tumor growth, hind limb ischemia, and CNV compared with Pgf KO and wild-type mice 360 

(Fig. 3). Moreover, in a laser-induced CNV model, these mice show a large reduction in vascular leakage. 361 

In parallel, the recombinant VEGF-A/PlGF heterodimer is able to rescue vascularization and vascular 362 

leakage to an extent that is similar to that of recombinant VEGF-A (Apicella et al., 2018). These results 363 

highlight the central role of the VEGF-A/PlGF heterodimer on vascular leakage and neo-angiogenesis 364 

stimulation during CNV.  365 

3.2. Vascular permeability 366 

Optimal functioning of the neuronal cells of the retina necessitates a tightly regulated 367 

environment in each of the functional compartments. In the healthy state, this is achieved through an 368 

intact BRB that provides such an environment, and, through the cellular barriers, allows the uptake of 369 

essential nutrients and elimination of discarded metabolites. As stated in the introduction, there are two 370 

distinct barriers protecting the retina. The outer BRB, mediated by the RPE, regulates transport between 371 

the choriocapillaris and the outer retina (Fields et al., 2020). The inner BRB regulates transport across 372 

the retinal capillaries within the inner retina and is composed of a single layer of tightly adherent 373 

endothelial cells, a basal lamina, and surrounding pericytes, astrocytes, and microglia (Díaz-Coránguez et 374 

al., 2017; Klaassen et al., 2013). In retinal capillaries, pericytes contribute to maintenance of barrier 375 

function, not only by providing mechanical support, but also by communicating with ECs via paracrine 376 

signals and direct cell–cell contact (Armulik et al., 2011). 377 

Vascular permeability is thought to be mediated via two mechanisms: the transcellular route 378 

and the paracellular route. The transcellular route involves vesicular transport and the formation of 379 

channels from vesicles or vacuoles, the vesiculo-vacuolar organelle. The paracellular route is based on 380 

transient changes in junctions between ECs (adherens and tight junctions) (Wettschureck et al., 2019). 381 

VEGF-A was initially identified as a factor secreted by tumor cells that induces vascular permeability 382 

(Senger et al., 1983). The process is mediated via VEGFR2 and is likely to involve the tyrosine 383 

phosphorylation, internalization, and degradation of vascular endothelial-cadherin, a major component 384 

of endothelial adherens junctions (Dejana, 2004; Dejana and Orsenigo, 2013; Dejana et al., 2008). It may 385 

also be attributable to transcellular extravasation via EC vesicles (Lin et al., 2007). VEGF-A/VEGFR2-386 

mediated modulation of vascular permeability and plasma extravasation also involves the activation of 387 

endothelial nitric oxide synthase (eNOS) and production of nitric oxide (Papapetropoulos et al., 1997; 388 

Ziche et al., 1997b).  389 
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Despite the fact that vascular permeability is generally thought to be mediated primarily by 390 

VEGF-A/VEGFR2, there is also evidence for a role for VEGFR1, PlGF, and VEGF-A/PlGF heterodimers. 391 

VEGFR1 activation controls vascular permeability via eNOS activation, as is the case for VEGFR2. In 392 

addition, there is a functional link between PlGF and eNOS activation. The phosphorylation of eNOS, 393 

which occurs downstream of ERK and Akt activation (Feliers et al., 2005; Hisamoto et al., 2001), has 394 

been directly associated with the activation of VEGFR1 (Bussolati et al., 2001), and is supported by 395 

findings that vascular leakage in mouse models can be reduced by blocking PlGF (Carmeliet et al., 2001) 396 

or VEGFR1 (Huang et al., 2011). An in vitro study of the mechanism of high-glucose-induced damage to 397 

retinal ECs  concluded that PlGF was signaling through the Erk1/2-NOS axis via VEGFR1 (Jiao et al., 2019). 398 

A recent study has reported that PlGF directly disrupts barrier function by suppression of glucose-6-399 

phosphate dehydrogenase and peroxiredoxin, acting through glutathione peroxidase and 400 

phospholipase A2 activity (Huang et al., 2019a). VEGF-A also induces vasodilation, mainly through 401 

VEGFR1 signaling, with the involvement of VEGFR1/2 receptor heterodimerization (Cudmore et al., 402 

2012), a finding that has been  corroborated using the Pgf-DE knock-in mouse model (Apicella et al., 403 

2018) described in section 3.1.2.  404 

In ECs, VEGFR1 and VEGFR2 are distributed luminally and abluminally, respectively suggesting 405 

that the highly polarized signaling depends on the receptor position (Hudson et al., 2014). The majority 406 

of VEGFR1 is localized to the apical or luminal sides of retinal microvascular ECs, whereas VEGFR2 is 407 

predominantly located on the basal or abluminal sides (Hudson et al., 2014); however, this 408 

generalization has been the subject of recent debate (Blaauwgeers et al., 1999; Dragoni and Turowski, 409 

2018; Van Bergen et al., 2019). Thus, luminal and abluminal endothelial surfaces display differential 410 

functionality, with luminal VEGFR1 activation via circulating VEGF-A leading to Akt activation and 411 

facilitation of EC survival and abluminal VEGFR2 activation via tissue-borne VEGF-A associated with 412 

increased permeability via p38 (Hudson et al., 2014). This suggests important roles for the MAPK and 413 

PI3K/Akt pathways downstream of VEGFR2 in angiogenesis and permeability. The impact of differential 414 

apicobasal signaling, as a consequence of VEGFR1 or VEGFR2 activation, should be considered when 415 

working with experimental models of retinal disease (Cao et al., 2010; Liu et al., 2017). 416 

3.3. VEGFR1 and inflammation 417 

Although not necessarily the primary etiopathogenic factor, persistent microinflammation can 418 

cause considerable collateral damage in many age-related chronic diseases, fueling further inflammation 419 
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(Nathan and Ding, 2010) and is a known contributor to retinal pathology as well (Rashid et al., 2019). In 420 

the affected tissues, inflammation is often associated with the persistence of mononuclear phagocytes, 421 

a family of cells that includes circulating monocytes, tissue-resident macrophages, and monocyte-422 

derived inflammatory macrophages (Nathan and Ding, 2010). VEGFR1 and PlGF are known to be 423 

involved in the inflammatory pathways (Shibuya, 2015). Genetic ablation of the VEGFR1 TK domain in 424 

mice allows normal vascular development but significantly suppresses VEGF-induced macrophage 425 

migration (Hiratsuka et al., 1998). There is strong evidence that PlGF and VEGFR1 signaling can influence 426 

how immune cells affect tumor growth and metastasis (Albonici et al., 2019; Ceci et al., 2020; Incio et 427 

al., 2016; Kim et al., 2012; Muramatsu et al., 2010; Qian et al., 2015) as well as cardiovascular disorders 428 

(Luttun et al., 2002; Raisky et al., 2007; Roncal et al., 2010) or rheumatoid arthritis (Murakami et al., 429 

2006).  430 

PlGF/VEGF-A heterodimers have been detected in synovial fluid samples from patients with 431 

inflammatory arthropathy and in human keratinocytes during wound healing, with levels of PlGF and 432 

VEGF-A in synovial fluid correlating significantly with total leukocyte and neutrophil counts (Bottomley 433 

et al., 2000). An increase in inflammatory cytokine production after VEGFR1 activation in mononuclear 434 

phagocytes has also been observed in patients with rheumatoid arthritis, in which fibroblast-like 435 

synoviocytes produce high levels of PlGF (Yoo et al., 2009). PlGF-induced VEGFR1 activation increased 436 

TNF-α and IL-6 expression, whereas TNF-α and IL-1β upregulated VEGFR1 (Yoo et al., 2009).  437 

In the retina, circulating monocytes, macrophages, and so-called resident microglia — which are 438 

not true glial cells but specialized, resident mononuclear phagocytes —are constantly engaged in the 439 

surveillance of their surrounding tissue (Akhtar-Schafer et al., 2018; McMenamin et al., 2019). Retinal 440 

microglia are maintained mostly by self-renewal through the entire life span but can also be replenished 441 

from extraretinal sources (Huang et al., 2018). This contrasts with continuous replenishment of 442 

choroidal macrophages by circulating monocytes (O'Koren et al., 2019). During development, microglia 443 

contribute to the refinement of the neural circuits (Akhtar-Schafer et al., 2018; McMenamin et al., 2019; 444 

Reyes et al., 2017) and also influence morphogenetic patterning of the vascular network, facilitating 445 

vascular anastomosis (Fantin et al., 2010; Kubota et al., 2009; Rymo et al., 2011). The VEGFR1 signal 446 

contributes but is not indispensable for the development of retinal microglia and the superficial retinal 447 

vascular networks (Ogura et al., 2017). In contrast, microglia in the deep retinal layer express VEGFR1, 448 

and the decoy function of this receptor neutralized circulating PlGF/VEGF-A, thereby reducing 449 

angiogenic branching of the deep retinal vessels (Stefater et al., 2011). 450 
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In addition to microglia, which are the most common immune cells in the retina, the retina also 451 

contains ionized calcium-binding adapter molecule 1 (Iba1)-negative perivascular macrophages found on 452 

the abluminal aspect of the vascular endothelial basal lamina that are closely associated with pericytes 453 

and Müller cells in the deeper retina (Mendes-Jorge et al., 2009). The microglia and perivascular 454 

macrophages can also be differentiated from one another since the macrophages express BM8 and 455 

MOMA-2 antigen epitopes, which are not expressed by microglia (Mendes-Jorge et al., 2009) and their 456 

position relative to retinal blood vessels indicate their involvement in the preservation of the BRB as 457 

well as the immune defense against blood-borne pathogens (McMenamin et al., 2019). On breakdown 458 

of the BRB and photoreceptor degeneration, the macrophages migrate to the site of damage as shown 459 

in various models of retinopathy (Roubeix et al., 2019; Saban, 2018; Sennlaub et al., 2013). Retinal injury 460 

can activate microglia and trigger the secretion of inflammatory mediators, such as CC chemokine ligand 461 

2 (CCL2, also known as monocyte chemoattractant protein-1), IL-1β, IL-6, and TNF-α (Grossniklaus et al., 462 

2002; Oh et al., 1999), which can further aggravate retinal injury (Langmann, 2007). 463 

In the disease state, activation of VEGFR1 results in the production by macrophages and 464 

microglia of proinflammatory and proangiogenic mediators in the retina (Carmeliet et al., 2001; Crespo-465 

Garcia et al., 2017; Fischer et al., 2008; Rakic et al., 2003; Ziche et al., 1997a). Furthermore, PlGF may 466 

stimulate VEGFR1-dependent migratory pathways of monocytes more efficiently than does VEGF-A 467 

(Cicatiello et al., 2015; Clauss et al., 1996). Both activated microglia and monocyte-derived macrophages 468 

are assumed to upregulate VEGFR1 in various sites including the retina (Barleon et al., 1996; Ogura et 469 

al., 2017). VEGFR1 activation in these mononuclear phagocytes upregulates their production of pro-470 

inflammatory and pro-angiogenic cytokines, such as CCL2, IL-1β, IL-6, TNF-α, and VEGF-A (Murakami et 471 

al., 2006; Selvaraj et al., 2003).  472 

However, there remains a large gap in our understanding of how exactly VEGFR1 signaling in 473 

inflammatory cells contributes to retinal vascular pathology. As outlined in this section, various types of 474 

inflammatory cells of different origins (i.e., resident versus invading) and in different states of activation 475 

are found in the retina. Thus, whilst certain features of the pathologies provide hints of inflammatory 476 

cell involvement, further study of the many levels of intricacy might resolve some of the apparent 477 

experimental paradoxes in the VEGFR1 literature.  478 

4. Role of VEGFR1 in retinal vascular disease 479 

The seminal discovery of increased VEGF levels in ocular fluids of patients with retinal eye diseases 480 
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(Adamis et al., 1994) introduced an era of anti-VEGF therapy in diseases such as DR, retinal vascular 481 

occlusions, retinopathy of prematurity (ROP), neovascular AMD and others. Currently in use are, 1) 482 

aflibercept and conbercept* (fusion proteins consisting of the ligand binding portions of VEGFR1 and 483 

VEGFR2 extracellular domains fused to the Fc portion of human IgG), 2) bevacizumab* (a full-length 484 

anti-VEGF monoclonal antibody), 3) ranibizumab (an anti-VEGF monoclonal antibody Fab fragment) and 485 

4) brolucizumab (a single-chain antibody fragment), recently approved for neovascular AMD (Markham, 486 

2019) (see Table 1).  487 

Aflibercept and conbercept* bind all known VEGFR1 ligands, VEGF-A, PlGF, and VEGF-B, unlike 488 

ranibizumab, bevacizumab,*
 
and brolucizumab, which are VEGF-A specific (de Oliveira Dias et al., 2016; 489 

Papadopoulos et al., 2012). It is tempting to hypothesize that some observed differences between the 490 

clinical effects of anti-VEGF agents may result from differences in their targets, i.e. the binding of VEGF-491 

A, VEGF-B and PlGF versus just VEGF-A, but given the complexity of VEGFR1 signaling and the impact of 492 

other factors like pharmacokinetics, binding affinities, and dosing strategies, this hypothesis remains 493 

open to further investigation. Furthermore, despite significant advances in our understanding of the 494 

molecular and cellular aspects of VEGF receptors and their ligands, it is only more recently that research 495 

has focused on elucidating the effects of VEGFR1 versus VEGFR2 in the pathophysiology of retinal 496 

diseases. 497 

4.1. Diabetic retinopathy 498 

Diabetic retinopathy is the leading vision-threatening disease in the working-age population 499 

globally (Yau et al., 2012). Over years of hyperglycemic episodes, the accumulation of insults, including 500 

advanced glycation end products and oxidative stress, damages retinal blood vessels and neural cells 501 

(Duh et al., 2017). About one-third of diabetic patients display non-proliferative DR (NPDR) 502 

characterized initially by intraretinal microvascular abnormalities and retinal microaneurysms, and 503 

additionally by retinal hemorrhage, edema, and exudative lipoprotein deposits (known as hard 504 

exudates) (Duh et al., 2017; Wong et al., 2018). In more severe cases, capillary non-perfusion and 505 

subsequent tissue ischemia can lead to retinal microinfarctions and collateral vessel formation and 506 

ultimately retinal neovascularization (Duh et al., 2017; Wong et al., 2018), thus evolving into PDR. PDR is 507 

distinguished by the growth of retinal neovascularization extending into the vitreous cavity, ultimately 508 

                                                           

*
 Note on drug approval status:  Bevacizumab is not approved for intraocular use, even though it is used off-label in several 

countries. Conbercept is currently only approved and used in China. 
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resulting in vision-impairing vitreous hemorrhage and tractional retinal detachment (Duh et al., 2017; 509 

Wong et al., 2018). A further complication is diabetic macular edema (DME), which affects central vision 510 

in any DR, with an estimated prevalence of approximately 7% among people with diabetes (Yau et al., 511 

2012).  512 

For DME treatment, intravitreally injected anti-VEGFs have been demonstrated to be effective in 513 

multiple clinical trials and have subsequently been widely adopted worldwide (Ferrara and Adamis, 514 

2016; Sivaprasad et al., 2017; Wong et al., 2018; Writing Committee for the Diabetic Retinopathy Clinical 515 

Research et al., 2015). Anti-VEGF agents are effective in reducing the edema associated with the 516 

increased vascular permeability in the retina and in improving the vision of patients with DME (Heier et 517 

al., 2016; Nguyen et al., 2012). This clearly illustrates the pivotal role VEGF-A plays in angiogenesis as 518 

well as in vascular permeability. However, the exact mechanisms behind this remarkable success story 519 

are less well understood. Additionally, as outlined in the previous section, VEGF-A does not only play a 520 

role in endothelial cell behavior but is also relevant for inflammatory cells, whose contribution to DR is 521 

overshadowed by the current focus on vascular phenotypes. Furthermore, the roles of the different 522 

VEGF ligands within the context of human retinal pathology have not yet been properly elucidated. 523 

Nevertheless, there are clinical observations and animal experiments that allow us to hypothesize about 524 

potential mechanisms.     525 

Initiation of the inflammatory response that is linked to the early stages of the pathogenesis of 526 

DR was demonstrated initially by leucocyte-mediated endothelial cell injury and death in animal models 527 

(Joussen et al., 2001; Joussen et al., 2004). Indeed, one of the most compelling arguments for an 528 

involvement of inflammation in DR is the well-established potency of corticosteroids in the treatment of 529 

DME (Rittiphairoj et al., 2020; Whitcup et al., 2018; Wykoff, 2017). Interestingly, there is evidence that 530 

benefits of steroid treatment are not limited to just edema but may also slow down development of PDR 531 

and overall progression of DR (Pearson et al., 2011; Querques et al., 2017; Wykoff et al., 2017), 532 

suggesting that inflammatory mechanisms (such as persistent low-grade inflammation) make a causal 533 

contribution to DR (Kinuthia et al., 2020). This is consistent with a large collection of clinical studies 534 

showing increased ocular levels of inflammatory mediators, including IL-1β, IL-6, IL-8, TNF-α, and CCL2, 535 

in NPDR, DME and PDR (Bolinger and Antonetti, 2016; Chernykh et al., 2015; Funatsu et al., 2012; Kovacs 536 

et al., 2015; Mao and Yan, 2014; Mesquida et al., 2019; Rubsam et al., 2018; Tang and Kern, 2011; 537 

Wykoff, 2017; Zhou et al., 2012). 538 

Considering the likely contributions from inflammatory cells in DR and the role of VEGF signaling 539 
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in inflammatory cells (as covered in section 3), a key emerging question is whether the benefits of anti-540 

VEGFs in ophthalmic practice are based only on the well-established effects on vessels or if they are also 541 

acting on inflammatory cells, and beyond that, whether signaling via VEGFR1 may be relevant. For the 542 

first part of this question there is considerable clinical evidence showing that anti-VEGFs can reduce 543 

inflammatory cytokines in diabetic eye disease. For instance, aflibercept injections not only suppress 544 

levels of VEGF-A in DME patients but also reduced inflammatory cytokines such as IL-6, IL-1β and others 545 

(Mastropasqua et al., 2018). Similarly, a study on PDR patients receiving aflibercept showed reduced 546 

levels of IL-6, IL-8, IL-10 and IL-1β in the vitreous (Raczyńska et al., 2018). Likewise, ranibizumab 547 

treatment reduced levels of IL-1β, IL-8, IL-10, CCL2 and TNF-α in DME patients (Lim et al., 2018). 548 

However, it is not known yet whether the changed cytokine levels are a direct result of VEGF signaling 549 

inhibition or whether they are an indirect consequence of reduced vascular pathology.  550 

The functional role of VEGFR1 in inflammation within the context of human diabetic eye disease 551 

remains to be fully understood. Looking at the VEGFR1 specific ligand, PlGF, is certainly a path to 552 

explore. In human eyes with DR, PlGF is elevated in addition to VEGF-A (Ando et al., 2014; Noma et al., 553 

2017; Noma et al., 2015), and there are significant increases in the levels of both VEGF-A and PlGF in 554 

vitreous samples from eyes of patients with increasing levels of ischemia, i.e. from the normal to 555 

diabetic state, or from PDR to neovascular glaucoma (Kovacs et al., 2015; Patel, 1989). Whilst the mere 556 

presence of elevated PlGF levels in the vitreous does not prove a functional involvement in DR 557 

pathology, there appears to be an association between PlGF levels and progressive disease severity in 558 

DR and RVO (Noma et al., 2015). Mechanistic insights may be gained by comparing the clinical effects of 559 

drugs that target specifically VEGF-A (e.g. ranibizumab) versus the ones that in addition also target the 560 

VEGFR1 specific ligands PlGF and VEGF-B (e.g. aflibercept), although this is not straightforward either. 561 

Current clinical trials usually focus on visual acuity or retinal thickness under therapy and therefore an 562 

approach more focused on inflammation markers is required to shed more light on this topic.     563 

An intriguing piece of clinical evidence comes, however, from a subtle feature in retinal OCT 564 

images in patients with DME that might be useful for the assessment of inflammation in vivo. In some 565 

patients with early DR, small well-demarcated, hyperreflective foci have been identified (Yu et al., 2019). 566 

Such deposits are located within walls of intraretinal microaneurysms and in some cases distributed 567 

throughout the retinal layers. Various etiologies have been suggested regarding the possible nature of 568 

these hyperreflective foci and it is suggested that they represent lipoproteins or lipid-laden 569 

macrophages, indicating extravasation and/or neuroinflammation, as an early subclinical sign of barrier 570 
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breakdown in DME (Bolz et al., 2009). In early stages of DME with few or no funduscopically visible 571 

exudates, the number of hyperreflective spots, as visualized by OCT, decreased significantly after either 572 

anti-VEGF or steroid treatment and correlated with functional data. DME with high number of 573 

hyperreflective spots showed better morphologic and functional results (in terms of retinal sensitivity) if 574 

treated, at least initially, with steroids versus a selective VEGF-A inhibitor (ranibizumab) (Frizziero et al., 575 

2016; Vujosevic et al., 2017). However, the hyperreflective spots cannot be used as a true proxy for 576 

inflammation until their cellular nature has been established more firmly. 577 

The target specificity of currently used anti-VEGF drugs might also yield some hints about the 578 

pathobiological function of VEGFR1 in DR. There are numerous studies in DME patients showing 579 

significant differences between ranibizumab and aflibercept when looking at certain clinical readouts, 580 

with aflibercept showing higher efficacy or longer lasting treatment effects (Bhandari et al., 2020; 581 

Jampol et al., 2016; Kaldirim et al., 2019; Ozkaya et al., 2020; Sarda et al., 2020; Shimizu et al., 2017). 582 

Furthermore, comparisons between aflibercept and bevacizumab* had similar outcomes (American 583 

Academy of Opthalmology, 2019; Virgili et al., 2018; Wells et al., 2015; Wells et al., 2016). For example, 584 

some studies have found that aflibercept was statistically superior in vision gains compared to 585 

ranibizumab and bevacizumab* (Protocol T) (Wells et al., 2015; Wells et al., 2016). These outcome 586 

differences may be explained by several factors, such as anti-VEGF-A relative potency/binding affinity 587 

(Papadopoulos et al., 2012), specificity for VEGF-A only versus VEGFR1 blockade through binding of 588 

VEGF-A, PlGF and VEGF-B (Papadopoulos et al., 2012), duration of intraocular VEGF suppression (Fauser 589 

and Muether, 2016; Fauser et al., 2014; Muether et al., 2013), ocular pharmacokinetics (Do et al., 2020; 590 

Krohne et al., 2008; Krohne et al., 2012) and drug formulation. The higher binding affinity, multiple 591 

molecular targets and ocular pharmacokinetics of aflibercept may be contributing factors to the 592 

observed differences in clinical outcomes. While the respective relative importance of these factors is 593 

unknown, these differences have been considered significant enough to define clinical practice 594 

guidelines (American Academy of Opthalmology, 2019; Cheung et al., 2018b; Schmidt-Erfurth et al., 595 

2017). In this respect it will be interesting to see direct comparisons between aflibercept or conbercept* 596 

and some of the more recently approved anti-VEGFs. For example, brolucizumab has a higher molarity 597 

of VEGF-A binding sites than aflibercept but only binds VEGF-A and not PlGF and VEGF-B. Differences in 598 

future clinical trial outcomes might inform us further about the molecular effects of these drugs. 599 

Despite the current absence of such comparative data it is intriguing that aflibercept has been 600 

shown to reduce overall DR progression in DME patients (Mitchell et al., 2018) and to improve DR 601 
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severity in PDR patients (Nittala et al., 2020). This is remarkable because anti-VEGFs are generally seen 602 

to treat complications of DR (i.e. high VEGF levels) and not the underlying disease. It is possible that 603 

effects on inflammatory mechanisms could reduce overall progression and severity in DR. Future clinical 604 

studies measuring cytokines in aqueous humor from DR patients treated with aflibercept or 605 

conbercept* versus ranibizumab or brolucizumab are likely to add further insight here.     606 

In addition to clinical observations, studies in animal models can inform us about potential 607 

functional roles of VEGFR1 and PlGF in retinal pathology. For instance, overexpression of PlGF in ciliary 608 

muscle of rats led to microaneurysms and vascular sprouts in the retinal vasculature, demonstrating the 609 

pathogenic potential of elevated PlGF levels (Kowalczuk et al., 2011). Similarly, PlGF injection into the rat 610 

eye vitreous caused sub-retinal fluid accumulation by opening RPE tight junctions (Miyamoto et al., 611 

2007). Additionally, deletion of the Pgf gene in a type 1 diabetic mouse model (Ins2Akita mouse carrying 612 

a spontaneous point mutation in the insulin 2 gene, (McLenachan et al., 2013)) led to protection from 613 

capillary dropout, pericyte loss, and BRB breakdown (Huang et al., 2015). Furthermore, the absence of 614 

PlGF increased Akt phosphorylation and inhibited the HIF1α–VEGF pathway, preventing retinal cell 615 

death, capillary degeneration, pericyte loss, and BRB breakdown, which highlights the critical role of 616 

PlGF and VEGFR1 in the development of DR. Increased expression of the tight junction molecule, ZO-1 617 

and vascular endothelial-cadherin alongside sonic hedgehog and angiopoietin-1 also indicated additional 618 

protection associated with Pgf deletion (Huang et al., 2015). In contrast, expression of intracellular 619 

adhesion molecule (ICAM)-1, vascular cell adhesion molecule-1, CD11b, CD18 and retinal leukostasis 620 

were not inhibited in this study (Huang et al., 2015).  621 

An alternative approach, using VEGFR1 neutralizing antibodies in mice with streptozotocin-622 

induced diabetes, led to a reduction of leukostasis and various cytokines (including IL-1β), besides 623 

lowered vascular permeability (He et al., 2015). This is consistent with another study in streptozotocin-624 

treated rats, demonstrating reduced TNF-α after intravitreally injected aflibercept (Lazzara et al., 2019). 625 

Moreover, it has also been shown in type 1 diabetes mouse models that leukocyte and macrophage 626 

infiltration was decreased by an anti-PlGF specific antibody or aflibercept, but not by VEGF-A specific 627 

antibodies, suggesting a specific role of PlGF in retinal inflammatory mechanisms (Van Bergen et al., 628 

2017). One should keep in mind though, that models based on diabetic animals (typically rodents) have 629 

limitations. Although they  mimic some aspects of human NPDR, other features (such as PDR) are not 630 

present. Furthermore, while these models can  indicate what might be going wrong in human eyes, they 631 

cannot be used to validate human disease mechanisms.  632 
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In histological analyses of human diabetic eyes, the loss of pericytes in the retinal vasculature is 633 

one of the first cellular pathologies that has been recognized (Cogan et al., 1961), and it is assumed that 634 

pericyte dropout is a key driver of vascular abnormalities in DR (Arboleda-Velasquez et al., 2015). In line 635 

with this notion, pericyte loss can be seen in some animal models of diabetes (Robinson et al., 2012). 636 

The consequences of pericyte loss in the retinal vasculature can also be studied in diabetes-independent 637 

models. For example, pericyte recruitment to growing retinal vessels can be efficiently disrupted by 638 

genetic or pharmacologic tools leading to disorganized vascular patterning with microaneurysms, 639 

edema, and hemorrhage (Enge et al., 2002; Kitahara et al., 2018; Klinghoffer et al., 2001; Kusuhara et al., 640 

2018; Lindblom et al., 2003; Park et al., 2017; Uemura et al., 2002; Valdez et al., 2014) as shown in Fig. 4, 641 

A and B.  642 

Interestingly, in addition to the vascular pathologies, pericyte deficiency can also lead to 643 

inflammatory phenotypes via the activation of nuclear factor of activated T (NFAT) cells in ECs, which 644 

upregulates a series of inflammatory mediators and leukocyte adhesion molecules including CCL2 and 645 

ICAM-1, resulting in influx of CCR2-expressing monocytes and perivascular infiltration of 646 

CD45hiCD11b+Ly6C+ mononuclear phagocytes (Fig. 4C) (Ogura et al., 2017). These mononuclear 647 

phagocytes, which might also comprise activated microglia, displayed amoeboid cell bodies with fewer 648 

dendrites that physically contacted the denuded ECs (Ogura et al., 2017). In contrast to the tissue-649 

resident microglia, mononuclear phagocytes infiltrating into pericyte-deficient retinas exhibited 650 

elevated VEGF-A, PlGF, and VEGFR1 (Fig. 4, C-E), which is indicative of VEGFR1 activation in an autocrine 651 

or paracrine manner (Ogura et al., 2017). ECs devoid of pericytes revealed increased VEGFR2, which 652 

would be expected to be activated by VEGF-A derived from mononuclear phagocytes and exacerbate 653 

vascular hyperpermeability (Ogura et al., 2017). In VEGFR1-TK-/- mice, retinal edema and mononuclear 654 

phagocyte infiltration were reduced even after pericyte depletion (Fig. 4F) (Ogura et al., 2017). In 655 

addition, time-lapse imaging of ex vivo explants of pericyte-deficient retinas demonstrated that 656 

aflibercept reduced the motility of mononuclear phagocytes and recovered their dendrite formation 657 

(Fig. 4G) (Ogura et al., 2017). Furthermore, intravitreally injected aflibercept suppressed mononuclear 658 

phagocyte infiltrations and vascular leakage in the pericyte-deficient retina (Fig. 4H). Together, as shown 659 

in Fig. 4I, these observations indicate a positive feedback loop between ECs and mononuclear 660 

phagocytes in pericyte-deficient retina, in which VEGFR1 signaling facilitates cell motility of 661 

mononuclear phagocytes. Thus, despite the underlying complexity of multiple signaling pathways 662 

mediating interactions between at least three different cell types, we can conclude that in this setting, 663 

Jo
urn

al 
Pre-

pro
of



   

 

Page 26 

simultaneous neutralization of VEGF-A and PlGF can effectively block the cycle of BRB breakdown. 664 

4.2. Retinal vascular occlusions 665 

Retinal ischemia due to vascular occlusion occurs most commonly in branch retinal vein 666 

occlusion (BRVO) and central retinal vein occlusion (CRVO) but may also appear as a complication in 667 

hemoglobinopathies (sickle cell disease and thalassemia), peripheral ischemic retinopathies such as 668 

Eales’ disease, familial exudative vitreoretinopathy, sickle cell retinopathy, Susac syndrome and others 669 

(Caprara and Grimm, 2012; Gilmour, 2015; Hartnett, 2017; Sigler et al., 2014). In all instances, key 670 

features include elevated vascular permeability and edema, which can affect central vision (Ho et al., 671 

2016). Furthermore, sustained retinal ischemia can also result in the formation of new blood vessels 672 

that grow toward the vitreous cavity without resolving retinal hypoxia (Fukushima et al., 2011; Ho et al., 673 

2016). 674 

Clinically, ocular levels of VEGF-A and PlGF are elevated in RVO (Aiello et al., 1994; Noma et al., 675 

2015). An analysis of aqueous samples taken from controls and patients with BRVO showed marked 676 

elevations of both VEGF-A and PlGF (Noma et al., 2014), and importantly a significant positive 677 

correlation for both VEGF-A and PlGF with increasing levels of ischemia (Ryu et al., 2021). These positive 678 

correlations are also observed in patients who have CRVO (Noma et al., 2015). Furthermore, significant 679 

correlations were observed between levels of PlGF and soluble ICAM-1, PDGF-AA, CCL2, and IL-8 (Noma 680 

et al., 2014, 2015), which implicates activation of microglia and macrophages by VEGFR1 as part of the 681 

disease pathology in RVO patients. 682 

As with DME, current treatment strategies for RVO include removal of the angiogenic and 683 

inflammation drivers or the use of steroids to reduce the overall inflammatory response. Intravitreal use 684 

of aflibercept and ranibizumab is effective in reducing edema and restoring visual acuity in patients with 685 

BRVO (Campochiaro et al., 2015; Campochiaro et al., 2010) and CRVO (Boyer et al., 2012; Brown et al., 686 

2010; Holz et al., 2013). Furthermore, vision gains and maintenance of vision were reported in patients 687 

with significant areas of non-perfusion as a result of CRVO in the COPERNICUS and GALILEO studies 688 

(Feltgen et al., 2019; Pielen et al., 2017).  689 

Clinical comparative studies show that agents that target VEGF-A only, or those that bind VEGF-690 

A and PlGF, both provide robust responses in improving vision and reducing macular edema. Clinical 691 

study outcomes are particularly relevant, as any emerging signals are observed despite the inherent 692 

variability between patients In a comparator trial in DME (Protocol T) (Wells et al., 2015; Wells et al., 693 
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2016), statistical superiority in visual acuity gains was shown, and in RVO trials (LEAVO: (Hykin et al., 694 

2019); SCORE 2: (Scott et al., 2017)), less frequent treatment was required and fewer non-responders 695 

were observed with aflibercept versus bevacizumab* and/or ranibizumab. In contrast, effects on 696 

inflammatory readouts (e.g. aqueous CCL2, IL-6, IL-8 and others) appear to be similar (Cui et al., 2021; 697 

Kotake et al., 2019). This is different from what we observed above in DR and might be due to the 698 

different pathogenic contributions of PlGF signaling in RVO versus DR, or to differences in the 699 

methodologies used to measure these agents in the aqueous.  700 

The pathogenesis of RVO and its subtypes have been described in clinicopathological studies 701 

(Green et al., 1981; Powner et al., 2016; Wolter, 1961), but its pathophysiology is less clear. 702 

Nevertheless, attempts have been made to further explore potential pathobiological mechanisms of 703 

RVO in animal models, typically using laser photocoagulation. Histological studies on primate RVO 704 

models conducted in the 1970s have described the time course of degenerative changes of the vessels 705 

and the surrounding tissue after occlusion (Hockley et al., 1976, 1979), which match human histology. In 706 

addition, retinal vessel occlusion models have been generated and explored in many different animals, 707 

usually with a focus on the vascular and edematous changes and retinal atrophy (Khayat et al., 2017). 708 

Transcriptional profiling in rabbits and mice has shown a strong upregulation of genes associated with 709 

hypoxia, angiogenesis, cell damage and inflammation (Martin et al., 2018; Neo et al., 2020) after 710 

occlusion. In a non-human primate RVO model ranibizumab attenuated retinal edema and atrophy but 711 

did not affect expression of CCL2, IL-6 and angiopoietin-1/2 (Inagaki et al., 2020), reflecting the clinical 712 

findings mentioned above. On a cellular level, activation of microglia and invasion of macrophages from 713 

the systemic circulation are prominent responses to experimental BRVO in mice (Ebneter et al., 2017). 714 

Remarkably, the invading macrophages seem to have a protective effect on the vein ECs (VanderVeen 715 

and Cataltepe, 2019), but whether VEGFR1 signaling is relevant upstream or downstream of the 716 

inflammatory response, specifically in RVO, is not known. 717 

4.3. Retinopathy of prematurity 718 

ROP is a vasoproliferative disorder of premature infants born with an incompletely vascularized 719 

retina. A mismatch between oxygen levels of the in utero and postnatal environments (exacerbated by 720 

supplemental oxygen), can lead to delayed retinal vascularization, hypoxia and excessive angiogenic 721 

stimuli in the peripheral retina. This results in abnormal vessel growth, in particular at the leading edge 722 

of the developing retinal vasculature, and can cause loss of vision through macular dragging and 723 
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tractional retinal detachment (Mintz-Hittner et al., 2011). Clinically, ROP is classified according to the 724 

extent of retinal vasculature development (zone I is the smallest, most central region, and zone III the 725 

largest). Also relevant are the circumferential extent (described using hours of a clock face), the severity 726 

(stage 1-5, with 5 being the most severe) and the presence of dilated, tortuous posterior pole vessels 727 

(referred to as ‘plus’ disease) (Agarwal and Jalali, 2018; International Committee for the Classification of 728 

Retinopathy of Prematurity, 2005).   729 

The standard of care treatment for ROP is laser ablation of the peripheral - not yet vascularized - 730 

retina, removing the source of the excessive angiogenic stimulus. Alternatively, anti-VEGFs can be used 731 

to directly counteract the main angiogenic mediator in the retina, but this approach is still novel and its 732 

place in the therapeutic armamentarium remains to be established  (VanderVeen and Cataltepe, 2019) .  733 

The BEAT-ROP study was the first large randomized trial and demonstrated a superiority of 734 

bevacizumab* to laser treatment in recurrence rate and unfavorable outcome in zone I eyes, with the 735 

caveat that this was not the case for zone II eyes and recurrence after laser treatment was unusually 736 

high in this study (Mintz-Hittner et al., 2011; VanderVeen and Cataltepe, 2019). Nevertheless, in the 737 

following years several smaller case series studies showed positive effects of bevacizumab* and 738 

ranibizumab (Moran et al., 2014; Stahl et al., 2018; Stahl et al., 2019; Yang et al., 2018; Yoon et al., 739 

2017). Similarly, aflibercept has also been shown to be effective in ROP (Salman and Said, 2015), and 740 

further clinical studies are underway assessing aflibercept versus laser treatment in ROP (e.g. 741 

NCT04004208 [FIREFLEYE]). However, treatment decisions, such as laser versus anti-VEGFs or the 742 

optimal timepoint for anti-VEGF injection, depend on multiple variables and are still not straight forward 743 

(Stahl, 2018). 744 

The effects of intravitreally injected anti-VEGFs can be clinically observed within a few days 745 

when retinal vessels start to grow into the avascular peripheral retina. This apparently paradoxical, pro-746 

angiogenic effect of an anti-angiogenic drug can be explained by a normalization of excessively high 747 

VEGF levels, which are known to prevent normal vascular development from studies in model systems 748 

(Bentley et al., 2009; Gerhardt, 2008). However, correct dosage is clearly a crucial issue here as excess 749 

inhibition of VEGF-A can prevent retinal vascularization as it has been shown in a canine model of ROP 750 

(Lutty et al., 2011). To what degree VEGFR1 signaling might be relevant in ROP is however less obvious. 751 

A retrospective study (single-center) compared ranibizumab versus aflibercept and found that the need 752 

for retreatment was lower and recurrences were delayed in the aflibercept group (Sukgen and Kocluk, 753 

2019). This hints towards an involvement of PlGF or VEGFR1 in ROP but more clinical studies are needed 754 
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to draw firmer conclusions.  755 

Nevertheless, some insights about the potential functions of VEGFR1 and PlGF in ROP have been 756 

gained from animal models. The aberrant angiogenesis that develops in ischemic retinas can be 757 

mimicked in neonatal mice or rats by exposing them temporarily to high atmospheric oxygen, which 758 

leads to premature cessation of vascularization followed by an increase in retinal VEGF-A levels when 759 

the animals are returned to room air and the development of oxygen-induced retinopathy(OIR) (Kim et 760 

al., 2016; Smith et al., 1994). PlGF levels have also been shown to increase in OIR rodent models 761 

(Ozgurtas et al., 2016; Sato et al., 2009). Notably, the formation of neovascular tufts is suppressed by 762 

deletion of the Pgf gene or administration of an anti-VEGFR1 antibody in mouse OIR (Carmeliet et al., 763 

2001; Luttun et al., 2002). Furthermore, in comparison to a VEGFR2 specific antibody, the anti-VEGFR1 764 

antibody was equally effective at reducing neovascularization and even more effective at preventing 765 

BRB breakdown (Huang et al., 2011). It is unlikely that the effects of the anti-VEGFR1 antibody are based 766 

on preventing VEGF-A from binding to VEGFR1 (i.e. inhibiting the endogenous VEGF-A inhibitor) and 767 

raising VEGF-A levels, because it is established that rising VEGF-A levels in the OIR model worsen 768 

neovascularization. It can therefore be assumed that the relevant mechanism here is the blocking of 769 

direct VEGFR1 signaling, affecting either vascular leakage or inflammation. As discussed in sections 3.2 770 

and 3.3, there is evidence for both scenarios.  771 

It is well known that the neovascular response in the OIR model is accompanied by upregulation 772 

of inflammatory signals, infiltration of mononuclear phagocytes and activation of resident microglia 773 

(Binet et al., 2020; Brockmann et al., 2018; Davies et al., 2006; Sun et al., 2017; Wang et al., 2020). This 774 

relates to preterm human infants where the risk of ROP is association with sepsis (Huang et al., 2019b) 775 

and systemic inflammation (Lee and Dammann, 2012; Sood et al., 2010). More specifically, soluble 776 

VEGFR1, IL-8, TNF-α and other inflammation-associated proteins in the serum were found to be 777 

associated with increased risk in early ROP (Holm et al., 2017).   778 

Experiments in the OIR model have shown that elimination of mononuclear phagocytes leads to 779 

decreased neovascular tufts and facilitates vascular regeneration, demonstrating a functional role 780 

(Kubota et al., 2009). The contribution of mononuclear phagocytes towards aberrant angiogenesis is 781 

however unlikely to be mediated via VEGF-A, because macrophage-specific deletion of VEGF-A, HIF-1A, 782 

or EPAS1 had no impact on VEGF-A levels in whole retinas, or on neovascularization in the OIR model 783 

(Liyanage et al., 2016; Nürnberg et al., 2018). Nevertheless, mononuclear phagocytes might contribute 784 

indirectly to VEGF-A upregulation via activation of Müller glia in ischemic retinas (Nürnberg et al., 2018). 785 
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In this setting, the specific functions of the VEGFR1 signaling in mononuclear phagocytes await 786 

elucidation.  787 

5.  Role of VEGFR1 in age-related macular degeneration 788 

The relationship between the eye and the immune system has often been considered one of 789 

“immune privilege,” in which a combination of the physical BRB and an inhibitory ocular 790 

microenvironment (such as high levels of TGFβ) serve to limit local immune and inflammatory responses 791 

in order to preserve vision (Zhou and Caspi, 2010). However, accumulating evidence suggests a role for 792 

chronic inflammation in the pathogenesis of retinal diseases, including AMD and DR (Chen and Xu, 2015; 793 

Guillonneau et al., 2017; Whitcup et al., 2013). So that we may further explore the role of VEGFR1 on 794 

the migration and localization of inflammatory cells within the posterior eye with macular degeneration, 795 

we should first fully understand those processes, schematically represented in Fig. 1.  796 

In advanced disease conditions such as GA, in which there has been RPE death and the 797 

photoreceptor cell layer shows signs of degeneration (Fleckenstein et al., 2018; Sarks, 1976), a 798 

substantial body of evidence implicates the subretinal infiltration and accumulation of mononuclear 799 

phagocytes (Combadiere et al., 2007; Eandi et al., 2016; Gupta et al., 2003; Hu et al., 2015; Lad et al., 800 

2015; Lavalette et al., 2011; Levy et al., 2015a; Levy et al., 2015b; Penfold et al., 2001; Sennlaub et al., 801 

2013). Mononuclear phagocytes also play a critical role in photoreceptor degeneration and the 802 

recruitment and activation of inflammatory cells is thought to exacerbate photoreceptor cell death in 803 

retinal degenerative conditions such as AMD (Akhtar-Schafer et al., 2018; Combadiere et al., 2007; Cruz-804 

Guilloty et al., 2013; Guillonneau et al., 2017; Kohno et al., 2013; Rutar et al., 2012; Sennlaub et al., 805 

2013; Suzuki et al., 2012). This is supported by findings from Bhutto et al. who showed that donor eyes 806 

with AMD show increased numbers and degranulation of mast cells. It is speculated that mast cell 807 

degranulation may, through release of proteolytic enzymes, contribute to death of the choriocapillaris 808 

and the RPE and ultimately to CNV formation (Bhutto et al., 2016). 809 

Deposits of soft drusen – lipoproteinaceous debris – within Bruch’s membrane and adjacent to 810 

the RPE are a known hallmark of early and intermediate AMD (Fleckenstein et al., 2018; Guillonneau et 811 

al., 2017; Sarks, 1976), and represent a known risk factor for progression to advanced or late-stage AMD 812 

(Klein et al., 2004). More recently, reticular drusen, observed as discrete yellow-white subretinal dots on 813 

fundoscopy, have also been implicated in late AMD, as they appear to affect photoreceptor integrity and 814 

are associated with RPE damage (Greferath et al., 2016). Interestingly, in late-stage AMD, presence of 815 

Jo
urn

al 
Pre-

pro
of



   

 

Page 31 

reticular drusen is also associated with significantly thinner choroids (Cheung et al., 2018a; Thorell et al., 816 

2015), offering additional insights in the interplay of choroidal and retinal inflammatory processes as 817 

AMD progresses. Both large classical drusen and reticular drusen are characterized by the accumulation 818 

of mononuclear phagocytes in the subretinal space (Combadiere et al., 2007; Eandi et al., 2016; 819 

Greferath et al., 2016; Guillonneau et al., 2017; Levy et al., 2015a; Sennlaub et al., 2013).  820 

Mononuclear phagocytes have been identified in donor tissues using various markers: Ricinus 821 

communis agglutinin-I (Gupta et al., 2003), C-X3-C motif chemokine receptor 1 (CX3CR1) (Combadiere et 822 

al., 2007), CD18 (Combadiere et al., 2007; Levy et al., 2015a; Sennlaub et al., 2013), Iba1 (Sennlaub et al., 823 

2013), CD163 (Lad et al., 2015), and CD14 (Eandi et al., 2016). Although CX3CR1, CD18, and Iba1 are 824 

expressed on ramified microglial cells, the presence of CD163-positive and CD14-positive mononuclear 825 

phagocytes in AMD demonstrates an activation of microglial cells and/or the recruitment of monocyte-826 

derived macrophages, supporting the notion that AMD may be an inflammatory disease. Interestingly, a 827 

significant portion of subretinal mononuclear phagocytes in GA, as well as in and around large drusen, 828 

express CCR2, the receptor for the chemokine CCL2, which is only expressed on inflammatory 829 

monocytes and early monocyte-derived macrophages (Sennlaub et al., 2013), indicating that the 830 

subretinal infiltrate comprises a mixture of monocyte-derived macrophages and activated microglial 831 

cells. McLeod et al. (2016) describe significantly increased numbers of Iba1-positive macrophages in the 832 

choroid of eyes with signs of early and intermediate AMD. In addition, numbers of HLA-DR-positive 833 

submacular macrophages were significantly increased in all stages of AMD, and they exhibited 834 

morphologic features suggesting an activated state (McLeod et al., 2016). Debate remains regarding 835 

how best to distinguish resident and infiltrating mononuclear phagocyte populations within the retina or 836 

the choroid. A subset of mononuclear phagocytes may be clinically visible in AMD patients and a 837 

significant number of mononuclear phagocytes (identified using immunohistological markers) in AMD 838 

donor eyes contain melanosomes, presumably from ingested RPE debris (Lad et al., 2015; Sennlaub et 839 

al., 2013).  840 

The presence of hyperreflective foci is related to neovascular AMD severity (Altay et al., 2016). A 841 

prospective, observational study conducted by the Age-Related Eye Disease Study 2 group found that 842 

proliferation and inner retinal migration of hyperreflective foci detected by spectral-domain OCT were 843 

correlated with the progression of AMD disease in terms of RPE atrophy and expansion of GA 844 

(Christenbury et al., 2013; Leuschen et al., 2013). One could postulate that in addition to migrating RPE 845 

cells, these cells could be melanin-containing mononuclear phagocytes (Zanzottera et al., 2015). 846 
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Hyperreflective foci are also reduced following anti-VEGF treatment; however, the heterogeneity of the 847 

anti-VEGF treatment effects, as well as the mechanism behind this phenomenon, are currently unclear 848 

(Coscas et al., 2013; Ota et al., 2010; Sennlaub et al., 2013). Thus, although it has been confirmed that 849 

relevant inflammatory cells are implicated in the pathogenesis of AMD disease, these prior studies did 850 

not explicitly examine whether VEGFR1 was expressed in these cells. Consequently, we must turn to 851 

preclinical studies to assess the role VEGFR1 may play.  852 

Despite major differences between the murine model and human disease processes, laser-853 

induced CNV in the mouse model is used extensively in retinal research as it does mimic the main 854 

phenotypical features of exudative AMD (Akhtar-Schafer et al., 2018; Tsutsumi et al., 2003). The laser 855 

ruptures the RPE layer and Bruch’s membrane causing a rapid recruitment of mononuclear phagocytes, 856 

and, within a few days, choroidal capillaries penetrate into the retina (Akhtar-Schafer et al., 2018). The 857 

laser CNV model has been used to demonstrate that blocking inflammatory macrophage recruitment 858 

strongly reduces CNV (Akhtar-Schafer et al., 2018; Tsutsumi et al., 2003). The role of VEGFR1 itself was 859 

recently shown in the development of CNV post-laser treatment using a tetrameric tripeptide, called 860 

iVR1, directed against the receptor and specifically developed as an antagonist of VEGFR1 (Tarallo et al., 861 

2020). Intravitreal administration of iVRI potently inhibited laser-induced CNV in a dose-dependent 862 

manner seven days after laser-included damage (reduction of CNV volume by around 70%, p=0.0002 863 

compared to DMSO control injections). Remarkably, this treatment was more effective than an anti-864 

mouse VEGF-A polyclonal antibody (which achieved a reduction of CNV volumes of around 50%, 865 

p=0.001). The observation points to the involvement of VEGFR1 in pathological neovascularization and 866 

therefore blocking this receptor provides a potential alternate treatment route besides VEGF blockade. 867 

Interestingly, when a chemically slightly modified version of iVRI was administered by gavage, a 868 

significant reduction in CNV was also observed (around 50% of CNV volume, p=0.001).  869 

Macrophage-derived VEGF-A does not contribute significantly to CNV development in mice 870 

(Huang et al., 2013; Liyanage et al., 2016). However, VEGF-A can promote mononuclear phagocyte 871 

recruitment and infiltration in models of laser-induced CNV (Balser et al., 2019). This effect could be 872 

due, in part, to the stabilizing effect of VEGF inhibition on the local vasculature as well as to a direct 873 

effect of VEGF-A on mononuclear phagocytes. Indeed, circulating human monocytes, which participate 874 

in mononuclear phagocyte infiltration in AMD, express VEGFR1 but not VEGFR2, and a VEGFR1-875 

neutralizing monoclonal antibody has been shown to significantly suppress VEGF-A-induced migration of 876 

microglial cells (Sawano et al., 2001). In addition, Massena et al. described a specific population of 877 
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neutrophils, characterized as CD49d+/CXCR4-high/VEGFR1-high, that migrate to hypoxic areas, 878 

potentially enhancing angiogenesis (Massena et al., 2015). This process is dependent on neutrophil 879 

VEGFR1 and endothelial VEGFR2 expression. Recruited neutrophils co-express CD49d, CXCR4, and 880 

VEGFR1 and use VLA-4 integrin to facilitate extravasation: VEGFR2 is not expressed by this specific, pro-881 

angiogenic population (Massena et al., 2015). 882 

Similarly, a comparison of an RNA sequencing database (Immunological Genome Project, 883 

immgen.org) revealed that monocytes, but not microglial cells, express significant amounts of VEGFR1, 884 

and neither cell expresses VEGFR2, in this analysis, at least in mice. Consistent with the role of VEGFR1 885 

in monocyte recruitment to the laser-injured subretinal space is the observation that the blockade of 886 

PlGF (Crespo-Garcia et al., 2017) and VEGFR1, but not VEGFR2, inhibits the peak of mononuclear 887 

phagocyte recruitment three to four  days following laser injury (Huang et al., 2013). The inhibitory 888 

effect of VEGFR2-blockade at 14 days after laser impact (Huang et al., 2013) is likely due to the direct 889 

effect of VEGF-A/VEGFR2 on vascular permeability.  890 

Two recent studies investigated the role of PlGF and VEGF-A inhibition on neovessel formation 891 

and mononuclear phagocyte reactivity in the murine laser-CNV model (Balser et al., 2019; Crespo-Garcia 892 

et al., 2017). Both reports showed that PlGF inhibition, particularly with aflibercept, dampened vascular 893 

leakage and CNV. Importantly, blocking PlGF and VEGF-A, but not VEGF-A alone, prevented the 894 

accumulation of reactive microglia and macrophages in the lesion area. Higher levels of PlGF and VEGF-A 895 

were detected in the laser-damaged retina by immunostaining, and in situ co-expression of PlGF and 896 

VEGF-A was demonstrated by the presence of Iba1-positive mononuclear phagocytes in the RPE/choroid 897 

complex. These data were verified by quantitative enzyme-linked immunosorbent assays, again 898 

demonstrating a strong induction of VEGF-A and PlGF protein levels in the laser-CNV model and 899 

effective inhibition of both factors, especially with aflibercept (Fig. 5) (Balser et al., 2019).  900 

Use of intravitreally administered anti-VEGF agents has been associated with a reduction in 901 

intraocular (aqueous humor/vitreous humor) levels of selected pro-inflammatory cytokines that are 902 

produced by mononuclear phagocytes (Noma et al., 2017), which could indicate that inhibiting VEGF 903 

reduces the inflammation in human patients. AMD patients treated with intravitreal ranibizumab or 904 

aflibercept displayed a reduction in aqueous humor levels of inflammatory factors and VEGF-A, which 905 

accompanied improvements in visual acuity and central macular thickness (Motohashi et al., 2017). 906 

Furthermore, some studies have shown increased growth factors and pro-inflammatory mediators after 907 

anti-VEGF treatment in subpopulations of patients categorized as low- to non-responders 908 
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(Pongsachareonnont et al., 2018), suggesting that there is complexity in the underlying mechanisms of 909 

inflammation, and in the identification and role of relevant mononuclear phagocytes.  910 

In summary, these reports suggest that the main effect of VEGF-A and PlGF on subretinal 911 

inflammation is the participation of VEGFR1 signaling in monocyte recruitment and activation of retinal 912 

mononuclear phagocytes. In human AMD, indirect evidence suggests that a similar VEGF-A/PlGF-913 

mediated mechanism might contribute to the pathogenic retinal inflammation. Aqueous humor 914 

concentrations of CCL2, which is expressed by subretinal mononuclear phagocytes in AMD (Grossniklaus 915 

et al., 2002; Sennlaub et al., 2013) and implicated in inflammatory monocyte recruitment, is reduced 916 

following two months of anti-VEGF therapy (Motohashi et al., 2017). In addition, anti-VEGF-A/anti-PlGF 917 

therapy reduces the number of hyperreflective foci that likely, represent pigment-laden infiltrating 918 

mononuclear phagocytes, at last in part (Coscas et al., 2013). Taken together, the inhibition of VEGFR1 919 

signaling might contribute to the beneficial effects of anti-VEGF-A/anti-PlGF in AMD, as it is likely to help 920 

control the pathogenic inflammation.  921 

Results of a number of randomized clinical studies comparing anti-VEGF-A therapies with the 922 

anti-VEGF-A/anti-PlGF therapy have been published, but it remains unclear whether there are distinct 923 

differences between therapies in terms of vision improvements or anatomical benefits. One recent 924 

meta-analysis of observational studies with wet AMD patients suggests that an anti-VEGF-A/anti-PlGF 925 

strategy may be more beneficial for those patients with initial reduced vision (Zhang et al., 2017), which 926 

would likely be a more difficult-to-treat population. This would suggest a potential benefit of VEGFR1 927 

inhibition by agents that block all VEGFR1 ligands including PlGF, such as aflibercept and conbercept*, 928 

versus other anti-VEGFs such as ranibizumab, bevacizumab* or brolucizumab, which do not bind PlGF. It 929 

has been established that inflammation and hypoxia are important contributors to retinal vascular and 930 

choroidal diseases. Notably, inflammatory cells such as microglia and monocytes upregulate VEGFR1, 931 

and it has also been shown that VEGFR1 is the sole VEGF-A receptor upregulated during hypoxic 932 

conditions (Miyamoto et al., 2007). There is a clear need in this area to better understand, from the 933 

clinical perspective, the interplay between microinflammation and angiogenesis in CNV. Furthermore, 934 

studies that examine the interplay of target binding affinity and potency, intraocular half-life and 935 

duration of VEGF suppression within the eye may provide further context to assign relative order of 936 

importance for understanding clinical differences in efficacy among the agents. 937 

6. Future directions  938 
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To date, the use of VEGF inhibitors has revolutionized the treatment of degenerative retinal 939 

diseases characterized by neovascularization, including AMD and DR, with many of these agents coming 940 

to represent new standards of care (Bakri et al., 2019; Framme et al., 2018; Singh et al., 2019; Tsilimbaris 941 

et al., 2016). Estimates suggest that more than 90% of patients with AMD treated with anti-VEGF 942 

therapy avoid moderate to severe vision loss (Miller, 2016). However, despite these therapeutic 943 

successes, a subset of patients fails to respond to anti-VEGF therapy or show sub-optimal or a 944 

diminishing response over time (Nguyen et al., 2018). It is therefore important to understand the 945 

mechanistic basis of these shortcomings so we can continue to raise therapeutic standards. As our 946 

understanding of the pathogenesis of ocular neovascular diseases continues to evolve and potential new 947 

therapeutic targets and/or formats of anti-VEGF mediated mechanisms of action are being identified, 948 

the hope is that this progress can be translated into the clinical setting (Table 1). 949 

6.1. Receptor–ligand interrelationships and localization 950 

One of the biggest challenges in this field remains the lack of clarity around the functional 951 

relevance of ligand and receptor heterodimers versus homodimers. As discussed in this review, it is 952 

possible for heterodimers to have stimulatory as well as inhibitory effects depending on the 953 

circumstances. Unless we fully understand the full range of relevant molecular interactions between 954 

VEGF-A, VEGF-B and PlGF, we will continue to struggle with the interpretation of experimental 955 

manipulations and clinical observations. Furthermore, it is essential to gain a clearer picture about which 956 

cells send signals and which cells receive them, including within inflammatory cell subpopulations, and 957 

further experimental research is clearly needed here. In this context it is important to keep in mind that 958 

there may be important differences between animal models and humans with regards to the prevalence 959 

of isoforms and heterodimers in the VEGF ligand/receptor family as well as immune cell subpopulations. 960 

It is likely that the rapidly evolving technologies enabling integrative single-cell analysis (Stuart and 961 

Satija, 2019) will be transformational in this field.    962 

6.2. Research models 963 

We have discussed the complexity of the pathogenic processes in this review and identified 964 

some of the multifactorial interactions between different cell types. An ongoing need exists for new, or 965 

modified, research models with which to explore those cellular interactions and their impact on 966 

neovascular disease and retinal and choroidal vascular permeability disorders. Although existing 967 
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preclinical models have proven helpful – and new models continue to emerge (Kitahara et al., 2018; 968 

Morita et al., 2018) – they never fully represent a given human pathology. An overreliance on animal 969 

models that phenocopy particular traits of human eye diseases (e.g. neovascularization) may arguably 970 

be at least in part responsible for the high failure rate at the transition from preclinical proof of concept 971 

to clinical application. Instead, models that aim to improve our understanding of specific molecular 972 

interactions and signaling pathways, which have been validated as relevant in humans, are more likely 973 

to advance therapeutic development. 974 

6.3. Inflammation 975 

We have also seen that questions remain regarding VEGFR1 in the context of inflammatory cells 976 

in ocular disease processes. These concern the potential differentiating effects of blocking PlGF versus 977 

VEGF-A or VEGF-B on inflammatory processes; the specific role of VEGFR1 on microglia/macrophages 978 

(Ding et al., 2018) in terms of downstream signaling; the possible role of co-receptors; the composition 979 

and dynamics of different immune cell subpopulations; and the consequences of selective targeting with 980 

pharmacological agents. Recent human data have implicated inflammatory processes in AMD and DR, 981 

with high intraocular levels of VEGF family ligands (e.g. VEGF-A and PlGF) and pro-inflammatory 982 

cytokines (e.g. TNF-α and CCL2) reported (Ten Berge et al., 2019; Tsai et al., 2018), although the impact 983 

of immunomodulation at the cellular level remains unclear. In patients with various retinal diseases, 984 

only a limited number of studies have examined the effects of anti-VEGF treatment on aqueous/vitreous 985 

levels of selected pro-inflammatory cytokines (Motohashi et al., 2017; Noma et al., 2017). Further 986 

robust studies are required to clarify the complex relationships between intravitreal VEGF-A or PlGF 987 

inhibition and effects on downstream mediators quantified in aqueous/vitreous media.  988 
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7. Conclusions 989 

This review has delved into the context and role of VEGFR1 in retinal and choroidal vascular 990 

diseases, providing updates on the requisite preclinical studies and clinical context that inform on 991 

emerging evidence of potentially greater contributions by VEGFR1 to these mechanisms than were 992 

previously recognized. Signal transduction following VEGF-A, VEGF-B, or PlGF binding to relevant VEGFRs 993 

was examined in the context of known, versus yet to be elucidated, downstream activity. Preclinical 994 

studies have shown that VEGFR1 acts as a decoy receptor, and that transduction signaling following 995 

VEGF-A versus PlGF binding to VEGFR1 may demonstrate attenuated versus potentiated signaling. Thus, 996 

further work is merited to clarify the differences and the downstream consequences of these 997 

differences in retinal diseases. 998 

Advances have been made in the understanding and the importance of VEGF-A/PlGF 999 

heterodimers, VEGFR1/VEGFR2 heterodimers versus homodimeric ligands and/or homodimeric VEGF 1000 

receptors in the context of the pathobiology of retinal diseases and other relevant organ systems. It 1001 

remains challenging, however, to show clear clinical benefit to specific ligand/receptor interactions in 1002 

retinal disease function. Greater understanding will require more nuanced studies to interpret and 1003 

establish robust relationships.  1004 

Both preclinical and clinical studies in retinal vascular diseases such as diabetic eye diseases, 1005 

RVO and ROP have provided support and understanding for the contributory role of inflammation 1006 

mediated by VEGFR1/PlGF/VEGF-A. The results of well-designed comparative trials may provide insights 1007 

regarding the functional benefit of specific anti-VEGF agents with different target profiles. As discussed 1008 

in section 4, in retinal vascular diseases such as DME and RVO some trials have shown outcome 1009 

differences between aflibercept and other agents that bind VEGFA only, which has led to speculation 1010 

concerning a potential role for PlGF inhibition contributing to these differences. Further characterization 1011 

of the molecular features and pharmacokinetic profiles for these agents may contribute to our 1012 

understanding and support our quest to explain these clinical differences. In choroidal vascular diseases, 1013 

preclinical evidence is just beginning to clarify a role for VEGFR1/PlGF in their pathobiology (Balser et al., 1014 

2019; Crespo-Garcia et al., 2017). Prior mechanistic work in multiple studies has confirmed that 1015 

mononuclear phagocytes contribute to the pro-inflammatory environment within AMD (Kauppinen et 1016 

al., 2016; Knickelbein et al., 2015). It remains to be determined whether VEGFR1 was induced in these 1017 

mononuclear phagocytes which, upon binding to VEGF-A or PlGF, in turn contributed to the 1018 

inflammatory milieu described by such studies. Even as experiments have confirmed the major 1019 
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contribution of inflammation to the pathology of AMD, most studies have not examined whether 1020 

VEGFR1 was induced in the mononuclear phagocytes. Thus, an opportunity remains to better 1021 

understand the potential interplay between known complement cascades within the retina and VEGFR1-1022 

induced inflammatory cytokines, and to further examine and/or establish a role for VEGFR1/PlGF and its 1023 

clinical relevance in AMD. 1024 
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 1028 

* Note on drug approval status:  Bevacizumab is not approved for intraocular use, even though it is used 1029 

off-label in several countries; Conbercept is currently only approved and used in China. 1030 
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Table 1. Currently approved and emerging anti-VEGF therapies and ongoing clinical trials. 1032 

 1033 

Drug Molecular 

Features 

Approval Status Ongoing Trials 

Ranibizumab 

(LUCENTIS) 

Fab against all 

VEGF-A isotypes 

First approval 

2004 

Multiple retinal 

disease 

indications 

LUMINOUS – observational 

study 

Control arms for multiple 

emerging anti-VEGFs and 

other targets 

Aflibercept  

(EYLEA) 

Fusion protein 

against all VEGF-

A isotypes, VEGF-

B and PlGF 

First approval 

2012 

Multiple retinal 

disease 

indications 

Multiple observational 

studies 

Control arms for multiple 

emerging anti-VEGFs and 

other targets 

Brolucizumab 

(BEOVU) 

scFv against all 

VEGF-A isotypes 

First approval 

2019 

nAMD USA 

 

Multiple trials 

initiated/planned in DME, 

RVO, and T&E trials in nAMD 

Conbercept Fusion protein 

against all VEGF-

A isotypes and 

PlGF 

Approval (China) 

2013 

nAMD 

Phase III 

Abicipar DARPin against 

all VEGF-A 

isotypes 

Phase III Phase III development in 

nAMD (not approved by FDA 

[June 2020]) 

Faricimab Antibody against 

VEGF-A and anti-

Ang2 

Phase III Phase III development in 

nAMD and DME 

Ang2, angiopoietin-2; DARPins, designed ankyrin repeat proteins; DME, diabetic macular edema; 1034 

Fab, monoclonal antibody fragment; nAMD, neovascular age-related macular degeneration; PlGF, 1035 

placental growth factor; RVO, retinal vein occlusion; scFv, single-chain variable fragment; T&E, treat and 1036 

extend; VEGF-A, vascular endothelial growth factor-A. 1037 

  1038 
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Figure legends 1039 

Figures 1-4 are to be reproduced in color 1040 

Fig. 1. Schematic representation of VEGFR1 in the choroid and retina and VEGFR1 signaling (for 1041 

illustrative purposes and not to scale). A shows VEGFR1 expression in various types of cells, including 1042 

vascular endothelial cells, pericytes, mononuclear phagocytes, Müller cells, photoreceptor cells, and the 1043 

retinal pigment epithelium. B shows VEGFR1 signaling through VEGF-A and/or PlGF, via a variety of 1044 

different pathways, contributing to numerous pathologic processes in the choroid and retina. In 1045 

endothelial cells and pericytes: pericyte ablation, loss of tight junctions between endothelial cells, 1046 

vasodilation, breakdown of the blood-retinal-barrier, increased permeability and leakage, edema and 1047 

hemorrhage in surrounding tissue, neutrophil migration and monocyte migration and differentiation 1048 

into macrophages, influx of pro-inflammatory cytokines e.g. tumor necrosis factor-α and interleukin-6, 1049 

into surrounding tissue, increased angiogenic sprouts and neoangiogenesis. C shows consequences of 1050 

excess VEGFR1 signaling in the choroid and retina: in retinal pigment cells: neoangiogenesis of vessels 1051 

through Bruch’s membrane into retinal pigment epithelium, loss of retinal pigment cells; in 1052 

photoreceptor cells: loss of photoreceptor integrity, rod death and cone segment loss; in Müller cells: 1053 

Müller cell activation; in microglial cells: recruitment, accumulation, and activation of microglial cells 1054 

and other retinal macrophages, release of pro-inflammatory cytokines e.g. platelet-derived growth 1055 

factor-A, soluble intracellular adhesion molecule-1, CC chemokine ligand 2, and interleukin-8, leading to 1056 

the development of hyperreflective foci. 1057 

 1058 

Fig. 2. VEGFR1 and VEGFR2 and the family of ligands and co-receptors. There are five VEGFR 1059 

ligands, of which VEGF-A binds to both VEGFR1 and VEGFR2 and PlGF only binds VEGFR1. Splicing 1060 

creates isoforms of both VEGF-A and PlGF. In addition, soluble/secreted versions of VEGFR1 and VEGFR2 1061 

can be produced via alternative splicing or proteolytic cleavage retaining the extracellular ligand–binding 1062 

domains. Furthermore, VEGF-A and PlGF are able to bind neuropilin (NRP) 1 and 2, bridging VEGFRs and 1063 

NRP1 or NRP2 to create holoreceptor complexes. VEGF-A and PlGF ligands and the VEGFR1 and VEGFR2 1064 

receptors can form heterodimers as well as homodimers. Functional synergistic effects of PlGF and 1065 

VEGF-A are due to sharing of the common receptor, VEGFR1, and the ability to heterodimerize.  1066 

 1067 

Fig. 3. Pgf-DE-Ki mice, a fully functional Pgf-KO mouse achieved by knocking in the Pgf-DE variant 1068 
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unable to bind and activate VEGFR1, show robust reduction of CNV and protection from vascular 1069 

leakage. A is CNV volumes measured 7 days after laser-induced damage by Isolectin B4 staining of RPE-1070 

choroid flat mounts. B is qualitative fundus fluorescein angiography in C57BL6/J, Pgf-KO, and PlGF-DE-1071 

Knock-in mice acquired at three different times (early – 1 min, intermediate – 5 min, late – 15 min) after 1072 

intraperitoneal delivery of fluorescein at days 3, 7, and 14 after laser-induced damage.  1073 

Reproduced under Creative Common CC-BY license (Apicella et al., 2018). 1074 

 1075 

Fig. 4. VEGFR1 signal in a mouse model of pericyte-deficient retinopathy (pups intraperitoneally 1076 

injected with an anti-platelet-derived growth factor receptor β monoclonal antibody [clone APB5 in A–1077 

H] or control phosphate-buffered saline [A–E]) at postnatal day [P]1). A. Labeling of retinal endothelial 1078 

cells (ECs) and pericytes (PCs) at P5 by whole-mount immunohistochemistry (WIHC) for CD31 and NG2, 1079 

respectively. Note the absence of PCs and disorganized vascular networks in the APB5-treated retina. B. 1080 

Hematoxylin and eosin (HE) staining of paraffin sections from P10 retinas showing edema and 1081 

hemorrhage in the APB5-treated retina. C. Flow cytometry in P8 retinas. Tissue-resident microglia and 1082 

inflammatory mononuclear phagocytes (MPs) are represented by CD45
lo

CD11b
+
 and CD45

hi
CD11b

+
 cells, 1083 

respectively. Note the high VEGFR1 expression level in CD45
hi

CD11b
+
Ly6C

+
 MPs from the APB5-treated 1084 

retinas. D. Retinal whole-mount in situ hybridization for Vegfa (left) and Pgf (right) at P8 in conjunction 1085 

with labeling of vascular basement membranes and MPs by WIHC for type IV collagen and Iba1, 1086 

respectively. Note the upregulation of Vegfa and Pgf in perivascular MPs of the APB5-treated retinas. E. 1087 

VEGFR1 reporter expression in P8 retinas from Vegfr1-BAC-DsRed mice in conjunction with WIHC for 1088 

Iba1. Note the VEGFR1-expressing MP (arrowhead) in the APB5-treated retina. F. Retinal cups (upper) 1089 

and WIHC for CD31 and Iba1 (lower) at P11 in APB5-treated VEGFR1-TK mice. Note the suppression of 1090 

retinal edema and MP infiltration even without PC coverage in VEGFR1-TK
−/−

 mice. The graphs show the 1091 

number of Iba1
+
 cells per area and the vessel density (n = 20). G. The trajectory of MPs in APB5-treated 1092 

retinas from P8 Cx3cr1-GFP mice. After 3 hours ex vivo imaging, retinas were treated with control IgG or 1093 

aflibercept, and further monitored for 3 hours. The graphs show quantification of cell body movement 1094 

velocity (Pre IgG, n = 68; Post IgG, n = 56; Pre VEGF Trap, n = 52; Post VEGF Trap, n = 47) and total 1095 

dendrite length per cell (Pre IgG, n = 40; Post IgG, n = 34; Pre VEGF Trap, n = 43; Post VEGF Trap, n = 33). 1096 

H. Labeling for isolectin B4 (IB4), ICAM-1, and Iba1 at P13 in APB5-treated retinas after intravitreal 1097 

injections of control IgG or aflibercept at P7. Note the normalization of vascular networks with reduced 1098 

MP infiltration after aflibercept injection. I. Schematic diagram of EC-MP interactions in PC-deficient 1099 
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retina. In ECs, activation of nuclear factor of activated T cells (NFAT) leads to upregulation of CCL2, 1100 

which subsequently facilitates the influx of circulating CCR2
+ 
monocytes. The infiltrating monocytes and 1101 

activated microglia contribute to generation of inflammatory MPs, which secrete VEGF-A and PlGF, and 1102 

activate VEGFR1 in MPs and VEGFR2 in ECs. The VEGF-A-VEGFR2 signal further activates NFAT. This 1103 

positive feedback loop sustains breakdown of the blood-retina barrier. In box-and-whisker plots, median 1104 

(line within the box), upper and lower quartile (bounds of the box), with minimum and maximum values 1105 

(bars) are shown. 
***

p<0.001; NS, not significant, by Student's t-test. Scale bars, 50 µm (A and B); 20 µm 1106 

(D and E); 100 µm (F and H). Adapted from Ogura et al., 2017 with permission from American Society for 1107 

Clinical Investigation. 1108 

 1109 

Fig. 5. Effects of PlGF and VEGF inhibition on mononuclear phagocytes in retinal flat mounts in 1110 

the laser-induced mouse model of CNV. A and B are quantification of microglia/macrophages per laser 1111 

spot in retinal flat mounts 3 and 7 days, respectively, after laser-induced damage. C and D are 1112 

quantification of ionized calcium-binding adaptor molecule 1 signals 3 and 7 days, respectively, after 1113 

laser coagulation in retinal flat mounts by counting the mean of colored pixels per image. E, F, and G are 1114 

interleukin-6, interleukin-1β, and tumor necrosis factor levels, respectively, in retinal flat mounts 6 hours 1115 

after laser damage quantified by enzyme-linked immunosorbent assay with naive (not lasered) animals 1116 

used as controls. Reproduced under Creative Common CC-BY license (Balser et al., 2019). 1117 
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